Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

Ski IA-64 Simulator Reference Manual

Rev. 1.0L (9 Oct 07)

Copyright © 2000 Hewlett-Packard Co.

Page 1

Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

Notice

Theinformation in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection
with furnishing, performance, or use of this material.

This document contains information which is protected by copyright. All rights are reserved. No part of this document may
be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard.

Copyright © 2000-2007 by Hewlett-Packard Devel opment Company, L.P.

Trademarks

Linux is aregistered trademark of Linus Torvalds.

MS-DOS and Windows are registered trademarks of Microsoft Corporation. UNIX is atrademark or registered trademark of
the Santa Cruz Operation.

Intel is aregistered trademark of the Intel Corporation.

Preface

This document is the Ski 1A-64 Simulator Reference Manual. The goal of this document is to provide a description of the
features, commands, and simulation environment provided by the Ski 1A-64 simulator. The version of the simulator
described hereisVersion 0.873l.

How to Use This Manual

The first chapter of this manual is a quick-start tutorial. Using only the first chapter, you can learn enough about Ski to do
useful work. If you are using Ski to simulate an 1A-64 application program and are familiar with debuggers such as HP's
xdb, the first chapter and Appendix A, Command Reference may be all you need to read.

The remaining chapters provide information about Ski in depth. Use these chapters to learn about commands not covered in
the tutorial and to learn more about how Ski operates.

Use "Command Reference” and the on-line hel p command to find alist of all Ski commands and a brief description of each
command.

Use "Simulator Status and Error Messages' to understand the causes and possible solutions for each of Ski's error messages.

Font Conventions

In this manual, fonts are used as described below. Depending on how you are viewing this document (paper, a web page, a
PDF file, etc.), some distinctions may not be visible.

italic

isused for optional text including operand fields such as count, and for the names of bitfields such as ps.be.

Page 2

Ski IA-64 Simulator Reference Manual 1.0L Draft (9 Oct 07)

light italic
isused for graphical button names such as Run.

fixed-width bold
isused for literal text including commands such asdbndl , and for examples such asbski -icnt foo <bar >baz.

SMALL UPPERCASE
isused for processor instructions such as BREAK.

fixed-wi dth regul ar

isused for directories and filenames such as hel | o, and for web URL'ssuch asht t p: / / www. hp. com

Syntax Conventions

In this manual, symbols are used as described below.

[italic]
Square brackets surrounding optional argument(s) indicate that the argument(s) can be omitted, as in the "Command
Reference" description of the dj command: dj [address].

italic+
A plus sign applied to an argument indicates that the argument must be supplied one or more times, as in the
"Command Reference" description of theeval command: eval expression_without_spacest.

[italic]+

A plus sign applied to optiona argument(s) in square brackets indicates that the argument(s) can be supplied zero or
more times, asin the "Command Reference” description of the| oad command: | oad filename [args] +.

Page 3

Ski 1A-64 Simulator Reference Manual 1.0L

Table of Contents

1 Getting Started - A SKi TULOEL........ccueuireieiirieirieerieesi sttt ettt b et 10
THE SKi SIMUIBLON ...ttt ettt b bt b et e et b et b et et et e n s 10
How to Run an 1A-64 APPliCatioN PrOgraiM.........ccccceeierieneieeieesie e seeseesteseseessestesesesssessesnsesssssessessessesssesaes 10

SEAMTING XSKi 1t enereuesrenereesee s bt s et e st e b e s se s s st e st s h e e e R e e e e e st e e e R e e e h e e e R e e e R et e R e R e s e R e s e R et e s e ne e e st e n e e enens 10
EEXITING SKivutvteeetiieteese sttt et b £ £ b e b e b e R R R e R e et E R s e n e 12
(0= o [gTo 0T [T = VTS 12
TS o1 o1 00 [N - - T 15
ViIEWING DAL TN ASCI ...ttt b e bt b et een e nn e e 18
LOOKING 8L COUR......ceeveeitiirteisieieste ettt sttt s s s e b et b et b et b e bt e e bt e b et et et b e s et b e e b 19
Viewing Source Code Mixed In with ASSembly COUE.........c.ccooiviiicieeiiie e 20
Controlling BreaKPOINLS........ciiieeeeieeiesecieese e s e esee e ste s e eseeseesaesseesseseesaeeseesseseesaeessensessessesssessessessenssensessens 21
RUNNING @ PTOGIAIML......viiiieiiieeteiet ettt se e s et ne e b e b e et s e eb e e s b e e e e e nn b e ene e 22
SINGIE-SIEPPING B PrOGIAM.... ettt b ettt se b ee b e e b e e et e e b b 23
Changing REGISLErS @aNA IMIEIMIONY.......cecuiiiiiieieece s e see et s e et esresae s eseebestesae e eaesresbeseneeseseeseanes 24
LT 7o T [T o T 29
LSRS0S PSR RUPTST 29

B O = VTS 30

L gLl [N Toxx o] o ISP 30
I IS 1= 111 30
SKI'S SCOPE. ...ttt b ettt e R R R R AR R R R e R R R R R e R e R e R R e n e 30

What You Need to KNow to USE TRIS MaNUEL..........c.ccveiiiiiiieeese et 30

Defects and DEfECt REPOIING........ccciiiiiieiee ettt sttt e e e e e ae s be st e e eseeaesbesbeaeseesestesteneenes 31

R (V£ 1= 1o LSS 31
Using bski fOr BalCh SIMUIBLIONS...........couiueiiieiiieieesi s 31

Sz 1] 00 S SO PSPPSR 33
COMMEANA LINE FIAOS......ccuiieeieii ettt sttt st et te st e e e aesbe st e e eseetesbesteneeneetenreneens 33

ST 0= YA = 34
B L= S T T SR 34

QUITEING SKi.. ettt b ettt b e b e bbb e e b e b e bRt e et s e et e et e e b 35
Summary of the QUIt COMIMANG...........ceiiiiiecese e s re et s te e e ae b s resaeneenens 35

R o= s 1= 1 o) TS 36
SKi'S USE OF WINTOWS......ceeeiiiieieeee ettt sttt e et ste e e enesbestese e e enesaesbenseneesesaeseenseneesenseseensenen 36
THE REJISIEN WINTOW........civiiieiisieieseeie ettt e bt b ettt b e e e b et bbb e ene e 36

The USEr REJISLEIS PANE........ccueiceeiece ettt st st st e st e e ne st et et eneeaesresbe e eseeseerestansenes 37
The General REJISIEIS PaANE........c.occeii et ettt saeeae et e s besae e e e sbesaeeneeneesresnennnens 38
The Floating POiNt REJISLEIS PANE..........ccoiiiiiiirieeieiieeieses et es 38
The SyStem REGISIEIS PANE..........ciiiiisiese ettt 39
The IA-32 REQISIEIS PANE.........o ittt st st a et et s ee e e e n et e s re e ennenene 40

Resizing Register Window Panes With XSKi.........cccoiiiieriinn e seeres e see et nee e s 40

The RegiSter WINGOW GNG SKi.......coueiiieiieiieeieesieies e s e s nn e es 40

THE Program WINGOOW.coucirieiiieieisieisee ettt b e b et s b e bt b et b b e s b e et ettt b s s 41
[A-B4 INSLIUCLION DISPIAY ... ccueuieieiiiiieieise sttt s st sa e be st e sae s e e e sesbesse e eneeneseensenneneas 42
[A-32 INSLIUCLION DISPIAY......ecueeiiiiieceiceese et e e e e e s be e re et e tesreeseeeeseesreeneeneenes 43
Changing the Range of Locations Shown in the Program Window.............ccueinennenneeseeseeeseseens 44
Invalid Code and the Program WINGOW...........c.oeeirereneecseseesee et 44

L= B = 2= AV 1o oSSR 46
Changing the Range of Locations Shown in the Data Window...........cccvvveerennnenieene e seesee e 47

Page 4

Ski 1A-64 Simulator Reference Manual 1.0L

Invalid Code and the Data WIiNAOW...........ccoeeiiiiirieeeese e se et sae e sae e snesaenseneas 48
The ComMEN/M@AIN WINOOW........couiiriiirieisieesieesi sttt sttt bt b et e b 48
THE XSKI MAIN WINTOW.......ccveuiieiiieiisieieseeiees sttt e s st ne b e e et e e saeneseeseneesenensenens 48
The ski COMMEANA WINAOW.oeeee ettt ne e st et e e e neeeeseenes 49
(@10 T= ARV 0T (0SSP 50
4 COMMANG LANGUAGE.e.teeeeeeeeeteitesteeeteste s e sseeesestestesaeeesessessessesessessessesseseesessestansensesesseseassensesessessassnssssessensanens 52
(@0 T01007=1 010 I 11 Y25 TSRO 52
(@001 0gF=T 1o AN o 10T TR 52
Command Sequences, Repetition, and ADDIreViatioN..........cccccviiiiieieis e 52
ArgUMENT SPECITICALION. ... cvieeeeeeecte ettt e se b e s be st e e e se et e stesee s eneasesreseeneenens 53
NUMEITC ATGUMENTS.......ueetiiieiteieiete st te st et et te st e e e e eaesbesbeeeseesesbesbesseseesestesbesseneesestestessensesessesseseenenssssensennan 53
NUMDENS BN0 COUNES.......etiieeieieieeieseeee ettt te e ee e esesaesseneeneesesaesseneeneeseseeseenseneenesseseenenns 53
0= 0] SO PP 53
AGUIESSES. ...ttt e et b et b et b e e R e bbbt AR e Rt bbbt e s 55
SYMBOLIC ATGUMENTS.....c.uiieecietee ettt ae st e st e st e e aeebe st e seeseeaesbesbeseeseesesaesbeseneeseeteseensennesents 55
Program-Defined SYMDIOIS.... ..ot st e e s e e 56
REGISIENS. ..ttt E R R R R e R bRt R Rt R R e b bt e a e r s 56
INEEINAl VATBDIES......c.eceiiiee bbbttt b et b et e 56
0. £SO 57

L =S 57
Resolving Ambiguous Symbols and NUMDELS............oeiiecse e 57

5 Screen Manipulation COMMENGS.........c.coeiieiiierieeses et s e e resre e e s e sesbe st e seeseesesressenaesessesressenen 59
Register WIindOW COMMIBINGS..........cciieiieiieeeieiesieeee st te e e sae st besaesestesaestessesestessessessesessessessensessssessessensesensens 59
Summary of Register Window COMMENTS..........cceeiirireeeeeeeseseeeee st sesee e see e seeesne st seeseenesaessessesenens 59
XSKi Register Window COMMEBNGS..........couruiirieirieirieiesisiesesieesie e sn s 59

Ski Register Window COMMBINGS..........cccceiuerieeieieiesieese e stesaes s stesae e sesresaesaesessestesaesessssessessassnsens 59
Program Window COMIMANGS.........c.cceiiiieiieieieie et ste ettt sa e aesbe b esaesesbesbesbesesestestessessensssestessenens 60
Data WindOW COMIMANGS.........ciueiereeieiitererieeeie st esee e etesteseeseeeesesteseeseeneesessesseseeneenessessenseneesessessenseneesessessenes 63
Summary of Data Window COMIMANGS............curieririiirieirieeseeiese e se e sse e neens 63

I 7= TS T LU= (o g RS 66
Application-Mode and System-Mode SIMUIBLION...........ccceiieieeiecereeee et s e e re e e nae s 66
Ski Support for Application-MOdE PrOgramS...........ccoiueirieirieenesiesessee s see e snesees 66
APPliCatioN-MOAE [A-64 PrOGIaIMIS.......coueuiieieesieirieitseeiesesie it ss e s b s st s e ss s s ese e e snenees 66
ApPPlicatioN-MOAE IA-32 PrOQraIMS.........ccviueeieiireitisieeeesestesseesseseessessesssessessassssessessessessssessessessensesessessens 66
Ski Support for SySteM-MOAE PrOgraMS.........cccveiiiieseeeee ettt st be s e e sttt eesesbesbesaeneennnes 66
SYSIEM-MOUE [A-B4 PrOGIaMS.......ccuiiieieeeeeeies ettt s ee et st ee e e e s aesbesseneesesaeseenseneenesseseeeenens 67
SyStEM-MOUE [A-32 PIOQIAITIS.ccuiueiteuerieirieieseetese sttt e s e st e et s e s b e s e e e se et se s es e e e se e s ens 67
SysSteM-MOdE TLB SIMUIBLION.........cieiiiiiieeeee ettt sttt st e s e e s resse e eneenesre e 67
Summary of TLB Display COMMANGS..........ccccueiiuiriiiieiece ettt sttt sre st e e b sresaeneenes 67
MiSAlIgNEA DALAACCESS THAP. ... eeueeueitirieeeeeieetestesteeeteseeseeseeeeseseeseeseneesesteseeneeneesessesseeeneeseseesseneeneeseseeseeneeneans 68
PrOGram LOBOING. ... cveueeeueirieisieeste sttt s e bbb et s b e e b et b ettt e et b et b n s 68
[[TV (o T 0= o = oo = o 1SS 69
Summary of Program Loading COMMENGS............ccceiueiieeiriienieeee s eseeeesesre e saeeesessestesaesesessessessenessens 69
[N[o) == o 18 f = foTe =0 118 I = o |1 o O TS 69
Adding INformation after LOAOMING..........curruiririeirieirieirie et nnens 69
Creating the argc, argv, and enNVP ParamELErS..........ccciieeeiee it 69
PrOQIaM EXECULION........cueitiiieiieceeeete ettt sttt st e e se et e st e sae e eaeebesbeste s eseebesbeesenseseebesbebeneeseetesteseensennates 70
Summary of Program EXeCUtion COMMANGS...........creirerereneeiresereeeeeseesteseeeeseseeseeseeesseseeseeseenesnsssesens 70

7 Linux and MS-DOS ABI EMUIGLION.........cciiueeeiresesieiseseseseeesestesseseese e ssessesessessessessessssessessessesssssssessensesens 71
L= (0011 o 0SSR 71

Ski 1A-64 Simulator Reference Manual 1.0L

Linux APPliCation ENVIFONIMENL.........coiiiiirieirieese ettt ss b ns et en s 71
MS-DOSAPPIICatioN ENVIFONMEN.........cieeeeeieeieseriee st ree st te e e re e s te e sesbesresaessesessesteaeseesesresseaenenses 73

L 0o =10 0 1 /L TSRS 73

S D= o 18 o o |1 oo IH TSSO P TSR PTS PR P 75
Changing Registers and Memory with Assignment COMMENGS...........ccoeirrirrenneieseereesesee e 75
Summary of ASSIgNMENt COMME@NGS.........ceiueeeiiiiereeee s se et sa e sesresbe s eseesesbesrenaeneenenrs 75
Examples of ASSIgNMENt COMIMANGS.........cccceiiiiieiieieiesesteeee st te st e ettt e e s bt eesesresbe e e e esesbesreneenens 76

(N2 o == T g o | S 78
AAArESS ALTGNIMENE. ...ttt b et b ettt b et b e e bt st ne b ne e s 78
Bit-eNCOUEI REJISIEIS.....ccueiveececte sttt sttt sa e e e s s be st e s se et e s tesae s enesreseeseeneens 78

PagE ATTOCAION. ..ottt sttt st e e e b st e st e e e aeebesbe s s e e eseebesbesbenseseetestestensennans 78
Evaluating Formulas and FOrmMatting DataL.........c.coeveiririireeeee et s e e 78
Summary of The eval COMIMANG...........ccoeiriiiiieriee bbbt n b ebeneas 78
Program BreaKPOINES..........ceeueeiiieieseeese s e e et s e e st et s testesae e e seste st e e eseesesbe st eaessesesbessenaesensestessensenenseseeseens 78
Setting Program BrEaKPOINTS...........cieieieiiieiesieeete e steseeessestessesessessestesseeesestestessensssessessessessssessessesassessens 79
Deleting Program BreaKPOINES...........c ereeeererenieee e ses et seese s s eeseeseeseseeseeseeeenessesseseeneenessessensenens 79
Listing Program BrEaKPOINES..........coueiieirieiieeesesieestees st se et eb bt 79
NOtes 0N Program BrEakPOiNES..........ccviiierieiiesiesieiee sttt ste st s ae e asssesbesae e esesresteseneesessessenenns 80

How SKi Implements BreakpOiNES.........cccviuiieiieieeeeeseseeee st e et sre e s s st sae e esesresbesaeseesesreseanes 80
UNEXPECLEd BIrEaKPOINTS.coueiiiiieieeeeeie ettt e ettt e e st e see e e e seseeseeneeneenessensnneanens 80
Summary of Program Breakpoint COMIMANGS............cuiiiiriiirieiieesieesesiesese st 81

[z = Y 2T == 00] £ STPPR 81
Setting Data BreakPOINES.........covcveiiiiiiieieeee e stese et e st s teae e stestesbesee e s tesbesbesesessestestessessssessesseseessessssenseneas 81
Deleting Data BreaKPOINES.........coiiiiieeeee e sttt s e e e e seste e eneenesseseeneeneeneas 81
LiSting Dala BreaKPOINTS.......c.cvrveireeiereeiireetenesiee st sae st ss e bt se e s b e e bt na s nsebe e b e e 82
Summary of Data Breakpoint COMMEANGS...........ccceiiiiereeiieitesieeeeete e se et sre e se e ssesae e esesressesaeneesens 82
Dumping Registers and Memory t0 @ Fil€.......c.ceciiiieicce e 82
Saving and Restoring the SIMUIBEOr SEALE..........ccoieieeeerere et 82
Summary of Save and ReStOre COMMANGS..........oeirieiiririeririirieesee st n s 82

SymbBol Tahle COMMEANGS.........cceieeeiie et st sttt e s e e eaesresbeaeseeseeresrenes 82
Summary of SymbBOl COMMEANGS..........cceiiiiieiie et eeae b st sae e etesbesbenaeneenes 83

LS 0010072 1T I S S 84
T QTR R= 2 o) o N T =SS 84
Labels and Control FIow in ComMMEaNd FilES..........cociiiiiiirinesieess et 84
The goto Command and LaDEIS..........ooueeciieceec e bbb b s nens 84

TRE T COMMENC.......oiii ettt ettt e st eesee e esesee st e se e e enessesseeeneenesaeseenseneeneas 85
CommENtS N COMMEANG FIIES........coueeeeei ettt se st esae e esesreseeaeseeseseesaenenns 85
AN EXample COmMMAaNG FilE..........ooucieie et sttt st e s e e ae s beste e e e enesrenrennas 85
Summary of Command File COMMANGS..........cccciieieiiiie et s st st sre e e e eresbesreseeneens 86

10 COMMANA REFEIEINCE.......cueiueiteeeieieeee ettt et ee e be e e e e sesee st esseneeseseeseesseneesessesseneeneeneseessaneeneanens 87
11 REGISIEN INBITIES......eeeeiieetee ettt se bt b et e st s bt e b e e b et e e st s h e e e R e e e b e st e e e s e b e R e e e b e e e b et e b et et b e s e b e e eb e e e 93
[A B4 REJISLENS.....cueeuiceiitiieeee ettt e et et st e et e st s be st e e e st e be st e st e e eseebeaeesaenseaeebeaseseneeaeeresteneeneerenrenteneenen 93

12 Internal Variahl @ NGITIES.........coiirieiieeseise ettt sttt se s e e et et et e e b e neneeseneesenes 100
INEEINEI VAITADIES.......eeeee ettt s ae s be e e et e seesee st eneeneseeseeeeneeneseeneas 100

13 Simulator StAtUS aNd ErTOr IMESSAOES.........cuerieiiiriiisiee ettt st 101
I Lo 0 =SSOSO 110
Creative CommONS PUDITIC LICENSE........cciiirieirieireeierisies ettt sse st saeseseenenens 110
[Tl TSRO 110
Creative COMMONS NOLICE.........ciiieieeei ettt te e ee et e e sesaesbesse e esesseseesseneesesseseeseenenneses 113

Page 6

Ski 1A-64 Simulator Reference Manual 1.0L

lllustration Index

[ustration 1: Starting xski From the Command LiNe...........coovereinienenseesieesees e 11
[Hustration 2: The Four Primary XSKi WINAOWS..........cciiiieiniiieieieeee et sae s esne st nesesresrenes 12
[Hustration 3: Loading the "Nell0" Program...........co e ceeees e ee et es e st sresee st st sneenee st sresneeneesreens 13
[Hustration 4: The XsKi Program WINOOW............ccurerieseeseeseese e 14
[Hustration 5: The XSKi Data WIiNAOW..........cceviiiiierieeeese ettt et stesaensesessestesaeneennens 14
[Hustration 6: The XsKi REGISLEr WINGOW.........ceiveiiiiiieieese ettt sttt ettt e e ne s eesaanens 15
[llustration 7: Changing the Data Window DiSplay........ccccceeeerinirieenere e seeee e s e e snas 16
[llustration 8: The Data Window Showing the argv and enVp VECLOI'S...........coeerreineineeseeeseseseseeesee e 16
[llustration 9: The Data Window Showing argv and envp Stringsin Hexadecimal............ccovevveineennienncces 17
[llustration 10: The Main Window Showing Commands in the Command HiStory...........ccceeeevveveveveecccecesienens 18
[llustration 11: The Data Window Showing argv and envp StringSiN ASCl ..o 19
[ustration 12: Jumping the Program Window to the Beginning of Main()..........cccoeerrerneieneieneeeseseseseeeseees 20
[llustration 13: The Program Window Showing Code at the Beginning of Main()........c.ccccvevrrennenneieneseneeeenes 20
[Hlustration 14: The Program Window Showing a Breakpoint af Main().........cccceeievevereeieneseneereeieseseseesese e 21
[Hustration 15: The Breakpoint LISt WINAOW..........cccciriiieciere et ee st st ee s sre e esae st sressesssesresnesneeseeens 22
[llustration 16: The Termina Window After the "hello" Program iS RUN...........cocooieineineineecereeseeese e 23
[llustration 17: The xski Main Window after the "hell0" Program iSRUN...........ccoecriirrinneineerees e 23
[llustration 18: The Main Window After Reaching the Breakpoint a main+10.............ccocveveenenenereeiececeseenens 24
[llustration 19: The xski Register Window After Stopping at a Breakpoint at main+10...........c.cccceecveevveecveeennnen. 25
[ustration 20: The xski Register Window After Changing the ip REQISLEY ... 26
[ustration 21: The xski Data Window Widened to SHOW ASCl ... 27
Illustration 22: The xski Data Window After Changing the "Hello, world" String.........ccccccvevevievienieecieieenes 28
[llustration 23: The xski Main Window Showing an eval Command and ItS ReSult............cccccceevieevieevceecceeenee, 28
[Hustration 24: The Curses-based SKi INTEITACE.........cvi i e 31
[llustration 25: The X Window System, Motif-based XsKi Interface.........cccceovvveverescinee e e 32
[ustration 26: The Command-Line DSKi INEEITACE.........ccviiriiriisere e 33
[Hustration 27:The RegiSter WINGOW 1N XSKi....ueciueieiireerenieseeieeseseseeseesseseseeseessessesssssesssesssssssssessesssessessssesnses 37
[Hustration 28: The XsKi USer REQISIEIS PaNE...........cciiiiiiiiirieirieisieesesie sttt 38
[ustration 29: The xski General REJISIEIS PANE..........ccoo i 38
[Hustration 30: The xski Floating Point REQISLErS PanE..........ccciieieici st 39
[Hustration 31: The XsKi System REQISLEIS PaNe..........cccceirieiieeiere e sie e see e ste e ee e s te e seesrestesneeseessesresnenns 39
[ustration 32: The XsKi IA-32 REGISIEIS PaNE.........ccciiiiiieireee e 40
[llustration 33: An xski Pane Resizer: The Small Box Between the Scroll bars..........cccceovvvveveceniesn e, 40
[Hustration 34: The ski Register WIindOW (@ TOP).....cccceiererieiereiesieieeeee st stesseestesteste s s e srestesaesesne e s e saessssesns 41
[llustration 35: xski's Program Window Showing Part of an 1A-64 "hello world" Program..........cccccevevvvveeieenene 42
[ustration 36: xski's Program Window Showing |A-64 Predication and Breakpoints.............ccccoveeeneenencneneene 43
[lustration 37: xski's Program Window Showing 1A-32 Code, the Instruction Pointer, and a Breakpoint............ 44
[Hustration 38: xski's Program Window Showing lllegal INStTUCLIONS...........ccceoeeeeiieiirceee et 45
[llustration 39: xski's Program Window Showing Unallocated Space or NO Trandation...........ccccevevevereerennnne 46
[lustration 40: xski's Data Window Showing Unallocated Space Followed by Data............ccoeevveereeenencincennes 47
[llustration 41: xski's Data Window Showing Data I nterpreted as Instruction Bundles............cccoovverienenenieennns 47
[Hustration 42: xski's Main (Command) WINGOW............ccccuieieiiriiiiiieeieee sttt sne s 49
[lustration 43:; ski's Command Window (at BOtOM).........coeeieiriiierese e 50
[Hustration 44: XsKi's SymMbDOI LiSt WINOOW..........ccoriiiieiieeiseesee et 51
[ustration 45: XsKi EVAlUBLING EXPrESSIONS........cciuiuiiiiieiirieirieiiseesesesiesesie e ss s se s st ssese e s e s e ssesees 55
[Hustration 46: XsKi's SYmbBOol LiSt WINAOW..........cccciiiiiiricieeece ettt st sae e s ne e e 56
[llustration 47: xski's Program Window Showing I|A-64 Assembly Language Code..........cccceveveveeevceevcieesveene 61

Ski 1A-64 Simulator Reference Manual 1.0L

[lustration 48:
[llustration 49:
[llustration 50:
[lustration 51.:
[lustration 52:
[llustration 53:
[llustration 54:
[lustration 55:
[lustration 56:
[llustration 57:
[llustration 58:

xski's Program Window Showing Intermixed C and |A-64 Assembly Code.........ccceevvevicinnnnnns 62
xski's Assembly Language DUMP WINAOW..........ccoiierieieeie et aenennens 63
xski Showing Data as INStruction BUNIES...........cccciiiieicece ettt s 64
xski Showing Data in Raw Hexadecimal and ASCI ..o 64
XsKi's Hexadecimal DUMP WINCOW...........cooiiriiiieinieesesiese e 65
SOt COMMANG OULPUL TN XSKi v.vvveveeeeieririeiiesiee st sesieeesesrestesaeee e sresaessesessessesseseesessessessensesessessanes 68
The Original Program Loaded iN SKi.......ccccciiiieiiiice ettt sre e nenens 77
The Program After ASSIgning @ SEHNG iN SKi......ooveceeviiereeeerere e 77
Three Breakpoints, 0, 2, and 1, Visible in xski's Program Window...........ccceccvevveveecveceecesceeene. 79
xski's Breakpoint List Window Showing |A-64 and |A-32 Breakpoints..........cccoeevevieecieecieenene, 80
The Symlist OULPUL FrOM XSKi.....cueiuiiieieeiiieciisieeeeete et e e s teste e e besbe e e e e ebesbesae e e e enesressennenens 83

Page 8

Ski 1A-64 Simulator Reference Manual 1.0L

Index of Tables

Table 1: Ski Simulator Arithmetic and LOGIC OPEIELOIS.........coviueirieeiririeresieresseeseeeseeese s seens 54
Table 2: Example Code to Simulate an EXternal INTEITUPL...........ccceiiiiieieec et ene 67
Table 3: Linux System Calls SUPPOrted DY SKi........cccceiiiiicie e e s 72
Table 4: Linux System Calls Accepted but 1gN0red DY SKi........ocorveirieinicneeseese e 73
Table 5: MS-DOS System Calls (in Hexadecimal) Supported DY SKi.........ccoveveineennensereeseeseeeses e 73
Table 6: An Example Command File to Compute FibonacCi NUMDEXS..........ccoeveeriieieneeece et 86

Page 9

Ski 1A-64 Simulator Reference Manual 1.0L

1 Getting Started - A Ski Tutorial

In this chapter, you learn how to use Ski by executing a brief tutorial. At the end of the tutorial, you will learn where to look
in this manua for detailed descriptions of Ski's operation and commands. Introductory information on Ski is presented in
the "Overview" on page 30.

The Ski Simulator

Ski simulates the 1A-64 architecture and also has limited support for smulating 1A-32 programs. Ski runs on 1A-32 Linux
host systems. You can use Ski for many purposes, as described in the "Introduction” on page 30. One of the most common
uses of Ski isto test an IA-64 program in a Linux environment, and in this chapter, you will learn how to use xski, the X
Window System version of Ski, by "walking through" a sample session, in about ten minutes. Ok, twenty minutes.

You should aready be familiar with the 1A-64 architecture and the C programming language, have xski installed on your
Linux system, and have the Xski file in your home directory or in your X Window System app-defaults directory, typically
/usr/1ib/X11/ app- def aul ts. You will also need to have an executable Linux |A-64 program such as the classic "hel | o
wor | d" program.

How to Run an IA-64 Application Program

Ski provides a Linux application environment in which an IA-64 program you provide can be simulated. The release notes
provide the most up-to-date information on Ski's support for the Linux Application Binary Interface (ABI). The following
sections provide a short tutorial which leads you through an | A-64 program session with xski. You will learn how to use the
most common Ski commands.

Starting xski

As shown in Illustration 1: Starting xski From the Command Linel, start xski by typing its name to the Linux shell, just
like any other Linux program. When running inside the |A-64 Linux Native User Environment (NUE), make sure that the
environment variable DISPLAY is set to a string of the form host nane: di spl ay (e.g., nyhost: 0", values such as

uni x: 0" or : 0" won't work) before invoking xski. If you have never run the simulator before, it will first prompt you to
read and accept the software license it is distributed under. After accepting the license, the four primary xski windows will
be displayed on your screen, as shown in Illustration 2: The Four Primary xski Windows. No 1A-64 program is loaded yet,
so the Program Window and Data Window are empty. Scroll the various panes of the Register Window and note that with
few exceptions, the registers are set to zero.

Page 10 1 Getting Started - A Ski Tutorial

Ski IA-64 Simulator Reference Manual 1.0L

[llustration 1: Starting xski From the Command Line

1 Getting Started - A Ski Tutorial Page 11

Ski 1A-64 Simulator Reference Manual 1.0L

Program Window

Program

(Files 7723

QOOOOAOBOD0000LY sconan
Q0000000000020 e
QOOAAAON00000030 st
QOO0OO0B000B004D s
QOO0OO0B000B00GN s
QOOOOOOBON0000BD sconaa

| Data Window
Data

SIS

QOOO0A00000000LY o KX
QOOOAANO0D0000Z0 xRN KXXXXNRRRKEKIL
QO00COOO0ONN0ZN soceaaneOneenae XGEONONNIEG
QO00COAO0ONN04N sceaaeOneenae XGEONONNIEG
QOO00A00000000B 00aaennonn KXEONONERKEN
QOO00A00000000B xRN KX
QOOOAAOOOD0000T xR KX
QO00COOOOOONN0EN s0eaaneOneenie XGENNONNIG
QO000OOO0ONNNTN s0eaaneOneenie XGENNOaNamIEG

Fegisters Window

[EIEE

ip 000000000OO00000 psrum mfhImfllaciuplbe f

prs 10000000 00000000 000000 0OAO000 HAAOOON0 GO HHOAANO0N KOO
b 0000000000000000 QO0NOANOACONDNNY b2 GONODOOAAAOANNNN HOAANOOO00NNOND
b4 00000000AAANO000 QOOINOACONDING bE GOOOACAAAAAHANNNY HHGANOON00ANAHH)
rrbp rrbf rrbg sor =0l =of
ofm 0 0 0 0 0 %
pfm 0 0 0 o 0 0

lc 0000000000000000 ec 00 bel O
rac 0000 0 0 0 pec 00 ppl O

ri 0000000000000000
r4 0000000000000000
rd 0000000000000000
0000000000000000
0000OOAOAOAONNN)
00AGA0A00000000)
QOAGHNA0000000M)

0000AOCO00NODNIN
000000CO0000DNN
Q00000C000000000
Q00000C000000000
Q00000C00ONOONNN
0000AOCO00NODNIN
0000AACO00AODIN

QOOAA0O00000N0I
000000000000
0000000000000000
0000000000000000
Q0OOOOAOAOAONNN)
QOOAA0O00000N0I
QOOGA0000000N0I

QOO0OHA0O0000000
Q0000000000000
Q000000000000000
Q000000000000000
QOOOAOANONNNN0
QOO0OHA0O0000000
Q000000000000

I_IffT\.

I.IrfT\.

£ 0000000000000O0ONA0AI { 0,0000e+00}
F2 000000000000000000000 { 0,0000+00
4 0000000000000000000
FB - 000000000000000MC

OFFFFS00000000000M000 ¢ 1, 0000e+00)
QOOA000000000ANI0NN {0, 0000e+00)

Filz Wiew

Conf igure
psr 00000DOOO0OODN00 ip:
iva 0DOOOOOOOOOOOOON pt.

I_IrfT\. I.IffT\.

ga: 00000000 ebe 0000000
ezt 00000000 edi 0000000
oz 0000 ds (000 es 0000
ef lags 00000000 [lelbell

Clase|

5

Comnands

I |

i

= 1

[llustration 2: The Four Primary xski Windows

Exiting Ski

You can quit xski and this tutorial with the Qui t button, with the File->Quit menu selection, or with the "qui t " command.
All arein the Main Window. (Don't quit now; you are just beginning!)

Loading Your Program

Use the "Command" area of the "main" Window to load your program. For example, let's say your program is the famous
"Héello, world" program, the executable file is named "hel | 0", and the source code file is named "hel | 0. ¢". Type "l oad
hel | 0" in the Command areato load it into Ski, as you seein Illustration 3: Loading the "hello" Program. After a moment,
the other three windows will change appropriately: the Program Window will show the program code in assembly language
form as shown in Illustration 4: The xski Program Window, the Data Window will show global and static data as shown in

Page 12 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

Illustration 5: The xski Data Window, and the Register Window will show, inr 12 the value of the stack pointer, as shown in
Illustration 6: The xski Register Window. (You may need to use the scrollbar in the genera registers pane of the Register
Window to see these registers.)

= [=I[=]]x]
File Miew Configure Help
Stepl M Pr‘ogl Datal Page | Lache EI Quitl
Command;
[1osd relo
|
= 1

[lustration 3: Loading the "hello" Program

1 Getting Started - A Ski Tutorial Page 13

Ski 1A-64 Simulator Reference Manual 1.0L

= Frogram “Window B
Program (File; #9773

_init+0030 NOP . M L300 MIE
nop, 1 [0
br,ret,sptk,many bo::

> _start alloc ré=ar,pf=, 0,070 ML

mio P =0 0008004002 FO0ZEF

_start+0010 addz ra34=16,r12 ML
mo 1 r1=0xdf FFFFFEFFFFA4a8:

_start+0020 142 r33=[r341.8 MII
Mok ra=ip:s
sub rl=r9,rl::

_start+0030 MO, i ar, fpsr=ri MFI
nop, £ (0
addl ra2=x200, r1

_start+0040 add] ra6=0x2F8, rl HF 1
nop, f L300
addl r3h=0188, r1::

_start+0050 143 r32=[r32] HHI
143 r3h=[r3a]
adds rag=16,r12

Close| &

Illustration 4: The xski Program Window

Data Windaw

Data

_I0_stdin_used

4000000 A0
4000000002330
A000C0000FEE0
4000000002300
40000000 SRE0
400000000 SE7 0
40000000007 BEE0
400000002230
40000000007 280
40000000007 BRE)
400000000 A0

QOOOO00OOAO20001
QOOOA00N0E45:72
Q00Q000AOA0N00E:
455248545F 444952
S4hf434f dcdcdl4d
4d5f434f dcdcdldd
n0005fF 44444853
bfh3414d5£50414d
420f434f dcdcd14d
203a636f6cbeb16d
2067EeEIEFET 7EE2
B42520616e657241

Ef 77 20EfBcEoBRES
BvSEedf FEEEE4Ef
545F424fdcdcdldd
00005f 444c4£ 4853
005F 4441 500 F504{
455248545f 004144
4d5F424fdcdcdldd
0OO0OO0OAODOOC0
OO0OON5T 4b4 24545
E564 206762697370
00000/ ZEbEFEFES
QOOCAOR00AN0033 5

r1d
RI

AL
HAL
SHO
HAP
AL
mal
biig
Are

—

EIDSEI ST .’_*.I

Illustration 5: The xski Data Window

Page 14

1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

— Registers Window o

ip _main psr.um aclup|BEIOR

prs 10000000 0000000 OQOOOOCOOO OQOOOOOOO OOOHOOHO QOOHOOHO HOOHOONO HOOHOOHE
110 ololblololbTololblololololololoRmelololelololelololelolololololo B Y- olololololololololelolololololo R olololelolololololelololelo]o]
b4 0000000000000 00ROODOODOODOODO be O0ODODDODDODOODDO OODOODOODOODOODD

|_1.|1l

lc
rsc

DOBDOABOADOOODOO
pooe 1 0 0

ec OO0 bol 0
pec OO ppl O

rrbp rrbf rrbg

ctm [} a
pfm 4] Q

sor sol

Q Q (4}

sof
0 0 o 96

tr16
r20
t24
28
r32
36
r40

elololo]ololo]olololo]olulo]ole]
ololololololoololololololol 0]
elololblelotololatololeloTolle]
elololo]ololo]olololo]olulo]ole]
elololololalolololololololoToN]
[ololelololelololololoRNo]olo]
ololololololoololololololol 0]

0000000000000AB0
olplololololololololoololollo]
00000BOADOADOODO
0000000000000AB0
ffffffEFFELf OO
olblololelololelololeelolo] o]
olplololololololololoololollo]

0000000000000AB0
olplololololololololoololollo]
00000BOADOADOODO
0000000000000AB0
ffffffffffffcald
olblololelololelololeelolo] o]
olplololololololololoololollo]

0000000000000AB0
olplololololololololoololollo]
00000BOADOADOODO
0000000000000AB0
olplololololololololoololollo]
olblololelololelololeelolo] o]
olplololololololololoololollo]

L s

fo
2
f4

olelololololololololololololololelololol0]
lolblololelolelvlolatolvlaTotoloTalololol0]

0RO e+00)
0008e+00)

Offf£8000000000000000
olblololblolotvlatatolaielelololell0lbl0]

. 000De+00)
BOA0e+H0)

000000000000000000000

000000000000000000000

LL=f7 !

——— —

1

0.
0.0000e+00)
0.

(o.

(o.

(0.0000e+00)
6 00000000D00000ANOAR00 (O,.0000e+00) 0000AOOOO00GOANOOOOOE DOO0e+00)

LL=f7 !

0000000ODOADONOY der 00OODOODOADOOODO
goooepEAREEENAN. gpta OROOOOADONOOADOO

psr
iva

000OOBO3000OBDO3 ipsr
aoEpEREAEERARANO pta

eax 00000000 ebx OOOOOOOO ecx OOOOOOOEO edx AOOOOOOO
esi 00000000 edi DOOOOODO ebp OOOOAOOO esp FLffffcBO
cs QOO0 ds 000D es ODDO fs QODD gs DOOD ss ODDO 1dt ODDO tss QOO0

eflags 00000000 [lelbelltlidlaclvm|lrfInt|Olof|df |if|tf|sflzflaf|ipflcf]

Close| el

eip 0000 :0000O000

L Lty

1

[llustration 6: The xski Register Window

Inspecting Data

To look at the argv and envp strings, you need to use the Data Window. Linux passes ar gc, argv, and envp on the
memory stack (r 12). To look at this memory area, use the "dj " command ("dataj ump") in "Command" area of the Main
Window. Supply, as an operand, the address of the memory stack. For example, if r12 issetto of fffff f f f f 780, you can
type "dj r12" or"dj offffffffff780", as shown in lllustration 7. Changing the Data Window Display and the Data
Window changes to display the hexadecimal data stored at the location, as shown in Illustration 8: The Data Window
Showing the argv and envp Vectors. Find the value of r 12 in your program and use "dj " now. (Y ou might wonder why "dj "
exists, instead of a simple scroll bar. Imagine scrolling through the entire 1A-64 address space it would take a long, long
timel)

1 Getting Started - A Ski Tutorial Page 15

Ski 1A-64 Simulator Reference Manual 1.0L

£ [=I[E
File Wiew Configure Help
Stepl Runl Pr‘ogl Datal Poge | Lache TLBl Duitl
load kello
Commands;
I di SFFEFFEFFFFFFFTEO
3
= 1

[llustration 7: Changing the
Data Window Display

SI=ES

Cata Window
Data

SEFFFFFFFFFFFTE0 D000000000000000
SEFFFFFFFFFFFTI0 D000000000000001
SEFFFFFFFFFFFTA0 0000000000000
SFFFFFFFFFFFFTDO SFFFFFFFFFFFFIBO
SFFFFFFFFFFFFTCO SFFFFFFFFFFFFOTA
SEFEFFFEFFFFFTAD SFFFFFFFFFFFFOD
SEFFFFFFFFFFFTE0 SFFFFFFFFFFFFOad
SEFEFEFEFEFFFTFD SFFFFFFFFFFFFaDE
SEFFFEFEFEFEFRO0 SFEFEFEFEFERE ad4
SFFFFFFFFFFFFBLO SFFFFFFFFFFFFaT4
SFFFFFFFFFFFFBZ0 SFFFFFFFFFFFFacL
SFFFFFFFFFFFFEE0 SFFFFFFFFFFFFaFD

0000000000000000
IFFFFFFFFFFFFIZE
IFFFFFFFFFFFFIZe
IFFFFFFFFFFFFIEA
IFFFFFFFFFFFFIad
IFFFFFFFFFFFFaCa
LS
IFFFFFFFFFFFFaZe
b= o ol ol o o =
IFEFFFFFFEFFaTe
IFFEFFFFFFFFFac?
IFFFFFEFFFFFFRO0

oc
Yoo

A

L.
t..

e

4

EIDSEI $¢§¢|

[llustration 8: The Data Window Showing the argv and envp Vectors

Looking at the Data Window, you can see that the first 16 bytes of the stack are all zeros. This is a scratch storage area. The
next 8-byte word contains ar gc, the argument count. It has a value of 1 as the only argument passed to the program is the
program name itself. The ar gc count is then followed by the ar gv and envp vectors. All C programs receive the same kind
of data structure for ar gv: a variable-length vector of char * pointers whose end is marked with a NULL pointer. In
Illustration 8: The Data Window Showing the argv and envp Vectors, the first of the char * pointers is
offffffffffffoa38. (The first char * pointer may be in a different place on your system. Adjust the following

Page 16 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

instructions accordingly.) Jump the Data Window there using the command "dj of fffffffffff938" (12 f's) and you will
see lllustration 9: The Data Window Showing argv and envp Strings in Hexadecimal, showing the hexadecimal codes for the
null-terminated ASCII character strings of ar gv and envp. (In amoment, you'll learn how to see datain ASCII trandation.)

=I[8][x]

Cata Window
Data

SFFFFFEFFFFFFIE8 454c006fEcbeR568 Foiddednh04fh353 hel

SFFFFFFFFFFFFI4E
SFFFFFFFFFFFFIGE
SFFFFFFFFFFFFIED
SFFFFFFFFFFFFITE
IFFFFFFFFFFFFIBE
IFFFFFFFFFFFFIS0
IFFFFFFFFFFFFIa0
IFFFFFFFFFFFFIDE
SFFFFFFFFFFFFICE

BeBIE22F 72757 02T
Q07 320206873260
4553000020262 d4b
4d4Eh400EdE4E37E
BcE1636FEC2F 7273
¥3746eEfEE2FEREd
Geb673d4d52455452
534343006c616:69
414eh4534F 480036

TOEIFO7E7SELECEF
4240484 34c49414d
E16432d454d414e02
5230035444146
BB 7 42F 6269602
4fdecdf 43003321 2F
Bd7265742d656d6F
35323d455a495304
2efI616C703d454d

fus
2,.=
k=E
wid
ard
mf ¢
RTE
ina
E.H

SFFFFFEFFFFFFIdE 2e676e6174736f6d 4e474f4c006d6FE3 mos
SFFFFFFFFFFFfIed 637661643d454d41 GF54494243006d54 AME

Close| ters| st

[llustration 9: The Data Window Showing argv and envp Sringsin
Hexadecimal

Typing hexadecimal numbers is error-prone, and Ski provides severa shortcuts to avoid it. The first is xski's Command
History, an unlabeled window pane just above the "Command" area in the Main Window. As you execute commands, they
move up to the Command History. Later, you can bring them back into the Command area. A single click brings a command
back for you to edit. A double click brings the command back and re-executes it immediately. Try the Command History by
doing this: Type "dj 0" to jump the Data Window to location 0. The Main Window should look like Illustration 10: The
Main Window Showing Commands in the Command History. Then click onthe"dj offffffffffff938" commandinthe
Command History. Hit the enter/return key to execute it.

1 Getting Started - A Ski Tutorial Page 17

Ski 1A-64 Simulator Reference Manual 1.0L

= [=I[B[x]
File View Configure Help
Stepl Runl Prngl Datal ??g?l ia?h?l TLB| ﬂuitl
load hello
dj SFFFFFFFFFFFFTa0
dj SFFFFFFFFFFFFasa
dj 0
Caommands
i]
#
=~ =]

[llustration 10: The Main Window Showing
Commands in the Command History

Another shortcut is the * pointer-dereference operator for indirect addressing. Type "dj 0" to jump the Data Window to
location 0. Then type "dj *(r12+18) ". Ski will take the contentsof r 12 (9f f f f f f f f f f 780, remember?), add 18 (hex) and
use that as the address of the operand. The * operator fetches the contents of *(r12+18) and uses that value,
offffffffffa38, as the address to jump to. Compare the Data Window display resulting from "dj r12+18" with the
display resulting from "dj *(r12+18)".

You will use the * operator a lot in debugging C programs because it performs the same function as C's * operator: it
dereferences pointers. Unlike C's *, however, Ski's * operator is not type-specific: you can use it in any context where any
kind of address is needed and you can use it to dereference registers like r 12, memory locations, or anything that has a
value. (This doesn't dways make sense, of course. For example, dereferencing a floating-point register is rarely useful
because floating-point registers don't hold pointers.)

Viewing Data in ASCII

Hexadecimal is no fun. To expose the ASCII trandation, use your window manager's standard mechanism to make the Data
Window wider. (How you do this depends on the window manager you're using, but generally this can be accomplished by
grabbing the edge of the Data Window with your mouse cursor and dragging it to the right.) You should see approximately
Illustration 11: The Data Window Showing argv and envp Strings in ASCII. Now click on the Main Window, to make it the
active window again. Try the "df " ("data f orwards') and "db" ("data backwards') commands without operands to move
forwards and backwards in the Data Window, one screenful each time.

Page 18 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

Data Window

SEFFFFFFFFFFFI38 404c00BfEcEcEhEl Yodddednb04f5253 hello, LESSOPEN=I
IFFFFFFFFFFFFI48 BeBIB22F7273702F FORIVO7E73R06c2F Ausr/bin/lesspip
SEFFFFFFFFFFFInE 0073252065732:65 434548434c49414d e sh s MAILCHEC
IFFFFFFFFFFFFIEE 4003000030363d4b 616434454d414e02 k=60, USERNAME=da
SEFFFFFFFFFFFITE 4d4B54006d646976 ¥H2F3d53544edf46 widm, TRHFONTS=/u
IFFFFFFFFFFFFI88 BoBlB36FEca 7273 FERRV42FE2696c2F srdlocal/lib/tex
SEFFFFFFFFFFFI98 73746ebfBE2FEEED 4f4cdf43002a2F2F mf/fontss 1. COLO
IFFFFFFFFFFFF9al Beb73d4dh2450452 6d7265742d656d6F RTERM=grnome-term
SEFFFFFFFFFFFIbE G34948006C616e69 305323d455a495304 inal (HISTSIZE=25
IFFFFFFFFFFFFacE 414eh4534F480036 2279616c703d454d B, HOSTHAME=play,
SEFFFFFFFFFFFadE 2eb7Eebl74736F6d 4e474f4c006dEFES mostang, com, LOG
IFFFFFFFFFFFFIed BI7661643d454d41 5F04434243006d64 AME=dawvidm, INIT_

[llustration 11: The Data Window Showing argv and
envp Strings in ACI|

Elnsel i

Looking at Code

Initially, the Program Window shows the beginning of the program. For C programs, thisisn't the first line of user code, it's
the start-up routine from crt 1. o that provides an interface between the operating system environment and the ANSI C
environment. Thisroutineisnamed "_st art " and the ELF header in hel | o namesit asthe start of the program. That's what
Ski showsin the Program Window by default: the start of the program according to ELF.

You use the "pj " command ("program j ump") to jump the program window elsewhere. For example, jump it to the first
instruction in the user's main(), as shown in Illustration 12: Jumping the Program Window to the Beginning of main(). The
Program Window now looks like Illustration 13: The Program Window Showing Code at the Beginning of main(). You can
move the Program Window forwards and backwards through program code with the "pf " ("program f orwards') and
"pb" ("program backwards') commands, respectively. Try these commands, and then try using "pj " without an operand:
note how it jumps you back and forth between the previous and current locations. The "dj " command does the same thing
in the Data Window. Handy, eh?

1 Getting Started - A Ski Tutorial Page 19

Ski 1A-64 Simulator Reference Manual 1.0L

= [=I[E[x]
File View Configure Help
Stepl EEDJ Prngl Datal ????I ia?h?l IEEJ ﬂuitl

load hello
dj SFFFFFFFFFFFFTa0

dj O
dj #{r12+13}

Caommands

pJ main

| I < |

=~ =]

[llustration 12: Jumping the Program
Window to the Beginning of main()

Program WWindow
Progtam (filer 797
__do_frames+0030 br,ret,zptk ,many b BBB
nop.b ()
nop.b Oz s
06 printf {"hello worldwn'i:
main alloc r3d=ar,pfz.0,3,1.0 MII
addl r1d=0:1118,r1
Moy r3Z=ri2
main+0010 nop i 3] MIT
Moy r33=hi::
add= r12=-1F,r12
main+O020 1da r3b=[r141] MIE
nop, i 3]

br,call,sptk,many bO=_I0_printf::
007 return 0@

main 0030 o ra=0:: MHI
o r12=r32
Mo, i ar,pfe=ri4

main+0040 nop i 3] MIB
Moy bO=r33

br,ret,sptk ,many bz

Close| sots| eig]

[llustration 13: The ProgramWindow Showing Code at the
Beginning of main()

Viewing Source Code Mixed In with Assembly Code

The Program Window shows the C source code intermixed with the 1A-64 assembly code. You can turn the source code

Page 20 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

display off or on using the pa ("program assembly”) and pm ("program nixed") commands, respectively. Mixed code
display only works if you have the source code to the program available to Ski; the source code isn't embedded in the ELF
file. Also, you must compile your code with the appropriate compiler flags, for example, with the - g flag used by many C
compilers to generate debug line record information. If your program is composed of multiple object files, for example "cc
-0 test foo.o bar.o baz.o", Ski can only show source code from the files compiled with the - g flag. Make sure the
Program Window is in mixed mode for now.

Controlling Breakpoints

You can think of Ski as a debugger that happens to work on a simulated processor rather than a real processor. Like any
good debugger, Ski provides breakpoints. To set a breakpoint in an 1A-64 program, use the "bs" command ("breakpoint
set"). In the example that follows, you will want to have the Program Window display the area of code near main(). Use the
command "pj mai n", asyou learned above.

To set a breakpoint at the beginning of main(), type "bs mai n" in the Main Window. The Program Window shows a"0" in
the first column of the window at the breakpoint location (the aloc'instruction), because you just used breakpoint #0, as
Illustration 14: The Program Window Showing a Breakpoint at main() shows. (The first three columns are also used for line
numbers.) Set a breakpoint at mai n+10 and another at nai n+20. SKi lets you set up to ten breakpoints.

Program Window
Program (filey 7993
__do_frame*+0090 br.ret,sptk.many b BBE
nop.b (e}
nop.b Ozl
006 printf {"hello worldsn®i:
0 main alloc r3d=ar,pfz,0,3.1.0 HIT
addl rld=0:1110, -1
Mot r32=r12
main+00Lo NOp.. M Oz MIT
moy r33=hi::
adds r12=-16,r12
main+OHz0 1da r35=[r14] MIE
nop., i ()

br.call.sptk,.many bO=_I0_printfrs
007 return 02

main+O030 Mo re=fz:: MMI
Mot rl2=r32
mow, i ar pfa=rad

main+0040 NOR.. M 00 MIE
Mo bo=r33
br.ret,sptk.omany bO: s

Elosel Hgr
[llustration 14: The Program Window Showing a Breakpoint

at main()

Use the "bl " command ("breakpoint | ist") to see alist of the breakpoints, as shown in Illustration 15: The Breakpoint List
Window. If you prefer using a mouse, use the "Breakpoints" item on the View menu instead of the "bl " command. When
you are finished viewing the breakpoint list, click itsd ose button to dismiss the window.

To delete breakpoints individually, use the "bd" command ("breakpoint delete"). Use the "bD" command ("breakpoint Delete
al") to delete all breakpoints at once. Delete all your breakpoints before continuing this tutorial.

1 Getting Started - A Ski Tutorial Page 21

Ski 1A-64 Simulator Reference Manual 1.0L

Breakpoints
Addres= Conmand
0 P main IA-G4 =
1 P main+HilQ IA-64
2 P main+0020 IA-64
¥

[llustration 15: The Breakpoint List
Window

Running a Program

To run your program, type the "run" command or click the Run button in the Main Window. Ski will start the simulation
and connect the program's standard /O ports (stdin, stdout, and stderr) to Ski's standard ports. For example, assuming there
are no breakpoints still setin hel | o, you will see "hello world" printed out when you run it, as lllustration 16: The Terminal
Window After the "hello" Program is Run shows, and run statistics will appear in the Main Window, as Illustration 17: The
xski Main Window after the "hello" Program is Run shows. The statistics tell you how many instructions were simulated
and how much time it took, the instructions-per-second rate, the number of 1A-64 processor cycles that were consumed on
the simulated CPU, and the average number of instructions per cycle, which provides an indication of the best-case effective
paraldism of the program. (Ski smulates all the instructions in an instruction group in one cycle; a hardware
implementation may not be as capable.)

Ski will stop the simulation for three reasons: if a breakpoint is reached, if the |A-64 program attempts to access privileged
resources or non-existent memory, or if the program ends normally by calling exit() or similar functions. If simulation stops
due to a breakpoint, you can continue simulation with the "cont " command ("cont inue") or you can step through the
simulation with the "st ep" command or St ep button. You cannot re-run a program, nor can you re-load it and start over.
You must exit and re-enter xski and then reload your program.

Page 22 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

Linuxfiag4d Console

[llustration 16: The Terminal Window After the "hello"
Programis Run

= [=I[B[5]
File \Wiew Configure Help
Stepl RunI Progl Datal Fege| Dache TLBI Quitl
bs main A1
bs main+10
bs main+20
bl _J
bl i
Conmands
) |
All breakpoints deleted
program exited with status O
19639 insts, 0,39 =ec, 49899 if=, 7287 cycles, 2,70 ipc
- =]

[llustration 17: The xski Main Window after
the "hello" Programis Run

Single-stepping a Program

To try single-stepping (and no, this is not a kind of ethnic dance), set a breakpoint a mai n+10. Then use the "run"
command or Run button to simulate the program up to the breakpoint. (If you receive the error message "Not hi ng to
run”, stop and reread the last sentence in the previous paragraph.) Ski stops at the breakpoint and notifies you with a
message in the Main Window. Ski tells you why it stopped and gives you statistics about program execution up to this point,
as you can see in lllustration 18: The Main Window After Reaching the Breakpoint at main+10. The Program Window
marks the next instruction to be fetched with a greater-than symbol in the second column. If the instruction is predicated off,

1 Getting Started - A Ski Tutorial Page 23

Ski 1A-64 Simulator Reference Manual 1.0L

Ski uses an asterisk instead of a greater-than symbol, and shows the predication register in parentheses.

E [l
File View Configure Help
Stepl RunI Progl Datal Paae | fache TLBl ﬂuitl

load hella
b main+10
r
LConmands
Jreakpoint {IA-B4} at main+O0l0 2
15836 instz, 0,15 sec, 102261 ifs, BO28 cycles, 2,B3 ipc
- 1=

[llustration 18: The Main Window After
Reaching the Breakpoint at main+ 10

Move and resize your windows so the Main Window and Program Window don't overlap. Now use the "st ep" command or
St ep button to execute one instruction. Note that the greater-than symbol moves down one line; Ski keeps track of 1A-64
bundles and groups but it smulates individual instructions. You can follow the "st ep” command with a (decimal) number to
specify how many steps Ski should take, for example, "st ep 10" to execute ten instructions. As a shortcut, shift-clicking on
the Step button causes Ski to take ten steps. Most Ski commands can be abbreviated, as described in " Command
Reference" on page 87. The st ep command can be abbreviated as"'s".

Changing Registers and Memory

To debug a program, you usualy need to inspect and alter registers and memory. The first three panes in the Register
Window shows the registers of most concern to application programmers: user registers in the first pane, genera registersin
the second pane, and floating point registers in the third pane, as you can see in lllustration 19: The xski Register Window

After Stopping at a Breakpoint at main+10.

Page 24 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

ip ma:n+(010

L QO0OGQOO0OONRN00
rec Q000 O 3 0 P

psr,um mfhlMFLlac|up lbe

ec 00 bol 17
ec 00 ppl 3

bd O00OOO0O0HOOAO00 HOOAOODOOOOONN0 bE main

prs 10000000 Q0000000 Q0000000 00000000 J00AN00 NOAAON00 NOAOOON KOO0
b0 __libc_sta%+0250 0000000000000000 b2 0000000000000 HO0A000AOG00000

HOGO0MOAACA0MO0

rrbp rrbf rrbg =or =0l sof

cfm]
pfm 0 0

] B 4
] 0 17 0

PO 0000000DO0CO00DD
rd 0000000D00000000
P8 40000000000003e0
L2 SFFERFFEFFFRFTTO
Pl 0000000DO00O000N
P20 SFFFFFFFFFFFFO40
r3d 0000000000000000

BOO0ON0NO00NELTE
QOOOOA0AO0O0N0H00
BOOOON0OO00NE1T7E
QOOOONOAAONOONN0
Q0000000000021
BOO00N0000NTEFS
QOOOOA0AO0ONH0H00

OOO00D00O00N0N00
OOOAOD0D0DOA0N00
QOO00D00O00N0N00
BOOOODONOOONFHI0
QOO00D00000N000E
400000000007 9578
OOOAOD0DODOA0I00

0OOB00400270033F
QOGODHOAOHO0H0N
QOOO0OONNONO0N0N
QOGOCHOANOCO0N0N
Tefefefefefefeff
QOOOOHOANOCO0N0H
QOGODHOAOHO0H0N

L--______.L—fr‘~

LL-fr‘~

fO 00000000000A000000000 ¢ 0, 0000e+00x OFFFFE000000000000000 ¢ 1, 0000e+00)
f2 0000000000 0A0000N0NA0 ¢ 0, 0000e+005 0OOOO00NONOR00N0N00 {0, H000e+003
f4 0000000000GA00O00H0NA0 ¢ 0, 0000e+000 DOOOOCO0HONNOCO0A0NN0 {0, 0000e+00}
fE 0000O00OOOOA0O0ON0000 ¢ 0, 0000+003 000000000Q0OA00000000 ¢ 0, 000e+003

psr Q0OOOOOZ00000010 ipsr OOOOOOOOOOOO000 der QOOOOAOODONOOA00
iva 0000000000000000 pta O0000000000D003: gpta OOOOODOOOOOHONO0

eax 00000Ze0 ebx O0OOOOO0 ecx 0000517 edx QOOOOOO0
esi 00007530 edi QOOOOOOO ebp OOOOOOOD esp FFFFFFO
cs 0022 ds feff es 0000 fs £340 gs 76f8 =s 0008 ldt 9678 tssz 6478

eflags 00000000 [lelbelltlidlaclvmlrf IntlOlof [dF 1if 1tf]=f [z |afF Ipflcf]

Elosel

[llustration 19: The xski Register Window After Stopping
at a Breakpoint at main+10

eip 0021:000003F0

L.L—fr‘~ lerT‘u

By changing the value of the i p register, you can change where in the program Ski will resume simulation. Enter the
command "= i p mai n+20" in the Main Window and observe the first line of the first pane in the Register Window: notice
that the i p register changes to reflect your command, as Illustration 20: The xski Register Window After Changing the ip
Register shows. (You may need to left-click in the Main Window to make it active.) You can make similar changes to all of
the architecturally-visible, non-hardwired |A-64 registers, which helps you debug your program. You can test your
program'’s behavior in exceptional cases, such as handling unusua errors.

1 Getting Started - A Ski Tutorial Page 25

Ski 1A-64 Simulator Reference Manual 1.0L

Register

ip ma:n+HQ020

L QO0OGQOO0OONRN00
rec Q000 O 3 0 P

psr,um mfhlMFLlac|up lbe

ec 00 bol 17
ec 00 ppl 3

b GOOGAOOOCHOHO000 HOMOOOONOACOO0N0 BE main
rrbp rrbf rrbg =or =0l

cfm]
pfm 0 0

prs 10000000 Q0000000 Q0000000 00000000 J00AN00 NOAAON00 NOAOOON KOO0
b0 __libc_sta%+0250 0000000000000000 b2 0000000000000 HO0A000AOG00000

OOOOAMHNOAOONNO0

zof
] g 4

] 0 17 20

PO 0000000DO0CO00DD
rd 0000000D00000000
P8 40000000000003e0
SFFRFFEFFFFFFTTO
00O0O0DOOANA000
SFFEFFEFFFFFFO40
0000000000000

BOO0ON0NO00NELTE
QOOOOA0AO0O0N0H00
BOOOON0OO00NE1T7E
QOOOONOAAONOONN0
Q0000000000021
BOO00N0000NTEFS
QOOOOA0AO0ONH0H00

OOO00D00O00N0N00
OOOAOD0D0DOA0N00
QOO00D00O00N0N00
BOOOODONOOONFHI0
QOO00D00000N000E
400000000007 9578
OOOAOD0DODOA0I00

0OOB00400270033F
QOGODHOAOHO0H0N
QOOO0OONNONO0N0N
QOGOCHOANOCO0N0N
Tefefefefefefeff
QOOOOHOANOCO0N0H
QOGODHOAOHO0H0N

L--______.L—fr‘~

LL-fr‘~

fO 000000000000000000000 ¢ 0, 0000e-+00)
f2 0000000000 OAO000N0NA0 {7, DO0Ce+(0
f4 00000000H0GAO0O00N0NA0 ¢ 0, GO00e+(0
fE 000OO000QOOG000ON0000 ¢ 0, 0000-+00}

OFFFFE0000A0000000000 { 1, 0000e+003
0OOOADONOOONANONNOON0 - { 0, 0000e+00}
OOO0OD0DO0ONON0BN0000 { O, G000e+00}
00000A00MOANOA00N0N00 {0, M000=+00}

Q0000000000001 ipsr OOOOAOOOONOOA000 dor OOOMOGOOMONNR00
Q0000000000000 pta OOOOAOOOON0OO0Z: gpta OOOMOCOOONNOHO0

psi
iva

L.L—fr‘~ lerT‘u

eax 00000Ze0 ebx O0OOOOO0 ecx 0000517 edx QOOOOOO0
esi 00007530 edi QOOOOOOO ebp OOOOOOOD esp FFFFFFO
cs 0022 ds feff es 0000 fs £340 gs 76f8 =s 0008 ldt 9678 tssz 6478

eflags 00000000 [lelbelltlidlaclvmlrf IntlOlof [dF 1if 1tf]=f [z |afF Ipflcf]

Elosel

[lustration 20: The xski Register Window After Changing
the ip Register

eip 0021300000400

Changing registersisn't enough to debug most programs, however. Often, you need to change values in memory as well. Ski
provides severa commands for this, differing in whether they modify one-byte chunks, two-byte chunks, four-byte chunks,
eight-byte chunks, or variable-length C-language text strings. For example, instead of "hello world", you can have the
program output "Ski!Ski!Skil". You can do this by using the "=s" command ("= string") to modify the data stored at the
address "_| O st di n_used+8". (The string may be stored at a different address in your program. If so, use the Data
Window to locate the string and then use the corresponding address instead.) Here's what to do:

First, make sure the Data Window is wide enough to show ASCII trandations along with hexadecimal, asin Illustration 21:
The xski Data Window Widened to Show ASCII. To avoid confusion, make sure the Data Window doesn't overlap the Main
Window

Page 26 1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

Data Window
Data

400000000007 8213
4000000000078828
400000000007 8233
4000000000078848
400000000007 8253
4000000000078868
400000000007 8273
4000000000078288
400000000007 8233
40000000000788a8
400000000007 8203
40000000000788:8

Ef 77 206f BobckhEd 000000000646:72
B /Bhe2f FEERE4ZE QOOOOQOONAO0NNES
545f434f dcdcdldd 455248040f 4445952
00005F 444c4£ 4803 540F434Fdcdedidd
005F4441505f004f 4d5f434f dcdcdl4d
455248045F00414d 00005F 444044853
4d5f434f dcdcdldd GrHE414d5f50414d
Q0QODOAAOOQOONN0 . 435F424Fdcdcdidd
0000005f 4b4 24548 203a636fbokboBlBd
B56420676e637370 20676636767 /562
0000027 36bEFEFEE B42020616e607241
O000DOAAO0NN0a3a B2206d6574737973

hello world,....
ddewdrull,vvies
HALLOC_TRIM_THRE
SHOLD_., ,MALLOC_T
OP_PAD_,MALLOC_H
HAP_THRESHOLD_, .
HALLOC _HMAP_MAX_
vasreeslTALLOC_C
HECK_...malloct

uzing debugging

hooks. . .Arena %d
Tessrrsssysten b

Elosel i

[lustration 21: The xski Data Window Widened to

Show ACI|

Next, issue the command "=s _1 O stdi n_used+8 Ski! Ski! Ski!" inthe Main Window. (You may need to left-click in
the Main Window to make it active.)) Observe how the Data Window changes: the hexadecimal values at, and after,
_1 O stdi n_used+8 have changed, as have their corresponding ASCII trandations, and a null byte (the value zero) has been
added to the end of your string to make it a valid C-language string. Compare Illustration 21: The xski Data Window
Widened to Show ASCII and Illustration 22: The xski Data Window After Changing the "Hello, world" String.

1 Getting Started - A Ski Tutorial Page 27

Ski 1A-64 Simulator Reference Manual 1.0L

[=I[8[x]

Data

4000000000073818
4000000000078328
4000000000073838
4000000000078348
4000000000073858
4000000000078368
4000000000078878
4000000000078388
4000000000073358
4000000000078358
4000000000073868
40000000000783c8

2169625321696E53
EcvbEz2f YEERE42F
540 434f dcdodldd
00005F444c4F4802
005f 4441505504
456243545F00414d
4d5f434f dcdcdldd
Q00003000000
000005F 4b4 24548
ESE42167 6637275
0000057 36b6FEFES
0000300000004

0000000021 E96E53
O000000000G0NES
450248545F 444952
540f 424F dododldd
4d5f 434 dededldd
00005F 444c4f 4802
5fh8414d550414d
430F 424F dododldd
203a636f EchchlBd
20676eB9E7E7 TEEZ
E42520615eE07241
E2206dE07 4737973

SkilSkilSkil,,,,
Adewinull, . .eae,
MALLOC_TRIM_THRE
SHOLD_, .MALLOC_T
OP_PAD_, MALLOC _H
MAP_THRESHOLD_, .
HALLOC_MHAP_MAK_
sessass MALLOC_C
HECK_...mallaoc:

uzing debugging

hooksz, , .Arena 2d
ferssasaaystem b

Closel

[llustration 22: The xski Data Window After
Changing the "Hello, world" String

The commands to change one, two, four, and eight byte quantities are =1, =2, =4, and =8, respectively. They are described in
detail in "Changing Registers and Memory with Assignment Commands" on page 75 and in "Command Reference on page

87.

Often, you will need to evaluate formulas. For example, to find the address of the first envp string, you would need to
compute the sum of the contents of r 12 and 18 (hex) and then add the length of the ar gv vector (ar gc+1) multiplied by

eight (the size of a char

* on |1A-64). To do this, you use the "eval " command in the Main Window, as shown in

Illustration 23: The xski Main Window Showing an evd Command and Its Result. (The use of the "*" operator was
discussed in "Inspecting Data" on page 15.) Asyou see, the result is shown in decimal and hexadecimal .

Command;

£ (==
File Miew Configure Help
Stepl M Progl]]atal
run A
step 1
= ip main+20

=z _I0_stdin_used+8 SkilSkilskil
eval rl2+18+0k{r12+102+1 %8

|

L

Breakpoint {IA-B4} at main+O010

15836 insts, 0,65 =ec, 24204 ifs, BOZ8 cycles, 2,63 ipc
1 insts, 0,00 sec, 386 ifs

Hex: SFFFFFFFFFFFFTI0 Decimal: 11529215046068467E00

=1 =]

[lustration 23: The xski Main Window
Showing an eval Command and Its
Result

Page 28

1 Getting Started - A Ski Tutorial

Ski 1A-64 Simulator Reference Manual 1.0L

Getting Help

To see what commands are available, type "hel p" in the Main Window or use the Help->Commands menu selection. To see
the syntax of a specific command, type "hel p" followed by the command name, asin "hel p eval ".

Next Steps

Congratulations! You now know how to use xski to test an |A-64 program. In the rest of this manual, you'll find out how to
use ski and bski and the many additional commands and facilities not covered in this brief tutorial.

« The"Overview" chapter, presents the capabilities of Ski, how to start it and stop it, and a brief discussion of
installation issues. The chapter also shows how to use bski for batch simulation.

« The"Screen Presentation” chapter, discusses the various screen displays of xski and ski in depth.
« The"Command Language" chapter, defines the syntax of the language you use to control Ski's operation.
« The"Screen Manipulation Commands' chapter, presents the Ski commands for controlling Ski's screen displays.

« The"Program Simulation" chapter, introduces the concepts of Ski program simulation, shows you how to load
programs, and presents the Ski commands for simulating a program. Much of the information needed to use Ski for
firmware devel opment and operating system simulation isin this chapter.

« The"Linux and MS-DOS ABI Emulation” chapter, discusses the Ski mechanisms and support for simulating
application programs. If you are using Ski for to develop system software, such as bootstrap firmware or operating
systems, you can skip this chapter.

- The"Debugging" chapter, presents Ski commands and facilities that are useful in debugging and tuning programs.

« The"Command Files' chapter, introduces command files, a mechanism that lets you extend Ski to meet your
particular needs.

« Theremaining chapters contain summaries of the Ski command set, alist of the registers and internal variables Ski
recognizes, a description of the Ski error and status messages, their causes, and any possible solutions., and any
applicable licenses.

1 Getting Started - A Ski Tutorial Page 29

Ski 1A-64 Simulator Reference Manual 1.0L

2 Overview

Introduction

The Ski simulator is a software package designed to functionally simulate the | A-64 processor architecture at the instruction
level. Ski offers an informative, screen-oriented machine state display and a friendly, powerful command interface.
Programs may be loaded from disk in executable format; they may be run from start to finish, single-stepped, and
breakpointed. Trandation lookaside buffers may be simulated. Certain Linux and MS-DOS operating system functions
(system calls) are provided for smulation of application programs. These capabilities are complemented by screen-oriented
symbolic debugging to provide a view into the smulated | A-64 processor.

Ski's Strengths

Ski is particularly well-suited for:
e |A-64 application devel opment:

Ski can simulate |A-64 programs in a Linux environment and 1A-32 programs in an MS-DOS environment. Ski
provides a user interface that looks very much like a typical debugger but the processor you are debugging on is
virtual, smulated by Ski. Ski has successfully executed the SPEC-92 and SPEC-95 benchmark suites.

e |A-64 compiler tuning:
Ski provides performance statistics that can help you tune 1A-64 compiler code generators. Ski can help you
improve your compiler's use of 1A-64 architectural enhancements for parallelism.

e |A-64 operating system and firmware development:

Ski can simulate a "raw" 1A-64 processor, with no operating system provided. Because of this, you can use Ski to
simulate an 1A-64 operating system running IA-64 and 1A-32 programs. For example, Ski has been used
successfully to develop the | A-64 version of the Linux kernel.

e |A-64 processor functional hardware verification:

Ski is atrue implementation of the | A-64 architecture. You can compare the behavior of code simulated with Ski to
the same code running on other 1A-64 implementations. This helps you verify the correctness of those
implementations.

Ski's Scope

Many different kinds of simulators can be created: device simulators that function at the semiconductor quantum physics
level, circuit ssmulators that model the behavior of small numbers of transistors and other circuit elements, gate simulators
that model digital circuits at the boolean logic level, and so on. Ski is an instruction simulator, which makes it very fast. Ski
doesn't model any particular physical 1A-64 implementation. Instead, it models an architecturally-compliant 1A-64
processor with extensive compute resources.

What You Need to Know to Use This Manual

This manual describes the user interface of Ski in detail. In reading this manual, you will learn how to use Ski to smulate
your 1A-64 and 1A-32 programs. To understand this manual, you should already be familiar with the |A-64 architecture.
IA-64 abbreviations such asi p, psr, and eax are used without explanation.

Page 30 2 Overview

Ski 1A-64 Simulator Reference Manual 1.0L

Defects and Defect Reporting

Ski is provided "as is', without any guarantees or warranties. However, a mailing list has been created for reporting Ski
defects and for general Ski discussions. See the release notes for details on the mailing list address and how to subscribe.

Ski Variations

The smulator is available in three varieties, distinguished by their user interfaces: ski, xski, and bski. The underlying
simulation engine is identical across all three varieties. The figures below show how each variety looks when first started.
Illustration 24: The Curses-based ski Interface shows ski, which uses a terminal-oriented, curses-based, character user
interface. lllustration 25: The X Window System, Motif-based xski Interface shows xski, using an X Window System,
Motif-based, graphical user interface. lllustration 26: The Command-Line bski Interface shows bski, which provides a
batch-oriented, command-line-driven environment and no user interface. Ski command line flags, some of which are shown
in lllustration 26: The Command-Line bski Interface are described in "Command Line Flags'.

The three varieties understand the same command language. There are a few, unavoidable differences and they are pointed
out where appropriate in this manual. Most examples and sample screen displays are taken from xski sessions. All
exampl es have been verified in actua use.

Using bski for Batch Simulations

Because bski has no user interface, you typically control it using a command file (see "Command Files' on page 84) and
the-i command line flag (see "Command Line Flags"). ski and xski are intended for you to use interactively, while bski
excels at batch simulations that might run for a long time as background jobs on your workstation or on a higher-powered
remote simulation server. The cr on and make programs work well with bski. With cr on, you can schedule simulations to
run at night and on remote servers. With nmake, you can execute complex networks of tests quickly, letting make keep track
of the dependencies between the tests. These programs are documented in man pages.

=[B[x]

PO 0000000000000000 000D000000000000 0000000000000000 D000DO00D000N000
P4 0000000000000000 0O0D000O00000000 0000000000000000 DO00NO00N000N000
P8 0000000000000000 0000000000000000 0000000000000000 D000DO00N000N000
P12 0000000000000000 0O0D000DO00O0000 0000000000000000 DO00NO00N000N000
r16 0000000000000000 _0000000000000000 0000000000000000_ 0000000000000000

IA-64 Debugger/Simulator
Version 0,8731 (EAS 2.5)
Copyright (&) 18998-2000
The Hewlett-Packard Company
All Rights Reserved

00000QOC0OO0DNCN S R R
0OO0OOO0D00DN TN st e e

Commard Version 0,8731 (EAS 2.5

vEy |

Illustration 24: The Curses-based ski Interface

2 Overview Page 31

Ski 1A-64 Simulator Reference Manual 1.0L

Data Window =i
Tata
Program ‘Window QOOOOOOAOANOONLY OnCEOBORNNOENGE KX
Program ifiler 227 0000000000000020 3o SO0
QOOOOOOAOANONNEN 00aCaOnaEaNeeaeE KNI
0000000000000010 st Q0000000000040 300NN KRKREEEKKKIHNRKL

0000000000000020 3 OO0OOOONODNONNGN HKXEXECHBCHNL XXERRIHGRXTARLL
0000000000000030 s QOOO0O00000000B0 xxxxRXHRXRARKKK KRERXKEXRKKIHKKLK
0000000000000040 3xxxxxxx OO00000O0OONN0T 300000maaaeenn X
0000000000000050 3xxxxxsx 0000000000D000E0 HKXEXXEODCHNL XXERRIHGRXIAALL
O000000000000DEN sy Q0000000000000 3e00eooeRRee KEENEEKKINKE

ip 0000000000000 psr,um mfhlnfl | aclup|be

prs 10000000 00000000 0OO0GNCH AOOAD00O A0ANO0N0 OANONO0 HONOAN0N HAAANNOD

by OOOOOAAOHOOAAA00N DOOAOANCONANAANG b2 GOOOOOAAOANONO0N AOOGHOHOOHAAINN]

b4 OOOOOAOOAHOOAAANN DOOAOAICONAAANNG BE GOOOOOAAOANANO0] GOOGOHOOHAINN]
rrbp rrbf rrbg sor =0l sof

lo QOQ0OO0GON0000 ec 00 bol O cfm a0] o0 0 5

rac 000 O 00 pec 00 ppl O pfm 0 0 0 0 0 4

Fegisters Window IQIEIZ
3

ri - 0000000000000O000 0000CO0AOAA00000 AOO0O0AOOANONN0N OAOOHOOAAANNNL
rd 000000O000OAO00D AOGDCOOAAAANON0 GROOOOAAOANAO0N OANOHOOHAAHNNNL
r8 000000000GAAO00D AOGNCOOAAAANODN0 GOOOOOAGOANANO0] OADOHOOHAAHNNIL
ri2 000ooonooeaooon 0o00CoHRAANO0N0 NOOONONOANODN0Y OOOONOHAGOHOANG
rl6 O00000H00AAN0D AOGNCOOAAAANON0 GOOOOOAAOANANO0Y OANOHOOHAAHNANG
r20 Q0000000000000 00ADCH0ANAAN0D00 GOOOD0ANOANANN0Y OAN0HOOAANHNODH
r2d O00000000GAAAN0D AOGDCOOAAAANODN0 GOOOOOAGOANADO0] OGDOHOOHAINAIL

£ O000000O00AAAONON0000 ¢ 0,0000e+003 OFFFFEOOOAO0OO0NOON0G {1, 0000e+00}
f2 000000000000AA00N0000 ¢ O 0 Y]

f4 00000000000GOOO0OH
f6 000000000000

File Wiew Configure

par QOO0OOOOOOOAN0N ip:

iva 0000000000000000 pt. ﬂl M mI EI LI i EI MI

eax 00000000 ebyx QOOOOOM
exsi 00000000 edi QOOOO0M
cs 0000 ds 0000 es 0000
eflags 00000000 [lelbell

Closel

Conmand

i

=

=

o

Ll-fr‘\

L Ly L L

[llustration 25: The X Window System, Motif-based

xski Interface

Page 32

2 Overview

Ski 1A-64 Simulator Reference Manual 1.0L

3 cat command_file
eval 3+4

rUn

guit

3 bski -noconszole -i command_file -stats -icnt instruction_counts hello
Hex: T Decimal: 7

hello world

progran exited with status 0

2Cﬁ13 inst=, 0.04 =ec, DROTAE ifs, T485 cucles, 2.R9 ipc

3

Illustration 26: The Command-Line bski Interface
Starting Ski

To start the Ski simulator, type its name (ski, xski, or bski) and any necessary command line options and file redirections,
just as you would start any other Linux program. (Command line options are described in " Command Line Flags'.) The
simplest invocation of the simulator is:

ski

This starts the (curses-based) ski version of the simulator with no program loaded: a "bare" |A-64 emulation is ready
for you to use.

A more sophisticated invocation would be;
xski ny_program

This starts the (X/Motif-based) xski version of the simulator and loads the | A-64 executable file ny_pr ogr am ready to
run. The program will not receive any command line arguments (via the argc/argv mechanism) when you run it.

To run the simulator as a batch job in the background on an al-night run, you might execute this command line:
bski -noconsole -stats -i nmy_commands ny_program foo bar <test_data >out_stuff 2>bad_news &

This invokes the (batch) bski version of the smulator and loads the 1A-64 executable file my_pr ogr am ready to run.
The - noconsol e flag tells bski not to create a separate console window for the program's standard 1/0. The program
will receive the command line arguments f oo and bar via the argc/argv mechanism when bski runs it. Both the
simulator and the program being simulated will have standard in, standard out, and standard err redirected from/to
test _dat a, out _st uf f , and bad_news, respectively, and the simulator will execute the commands in ny_comands.
(Ski never reads from standard in, so there is no possibility of confusion.) The - st at s flag specifies that at the end of
the run, collected statistics will be output to standard out (which is redirected). The ampersand ("&") runsthe job in the
background.

Command Line Flags

The simulator accepts certain flags on the command line when you start it up. The flags are passed on the command linein
standard Linux fashion. The Ski command line syntax is shown below. The-i , -rest, -icnt, and - st at s flags can appear
in any order.

2 Overview Page 33

Ski 1A-64 Simulator Reference Manual 1.0L

ski [-hel p] [-i filename] [-rest filename] [program filename [args]+]

xski [-hel p] [-noconsol e] [-i filename] [-rest filename] [program_filename [args]+]
bski [-hel p] [-noconsol e] [-i filename] [-rest filename] [-i cnt filename] [- st at s] [program filename [args]
+]

Summary of Flags

-hel p
A list of flags accepted by this variety of Ski (ski, xski, or bski) is printed out. No other processing is done and Ski
terminates.

-i filename

The specified fileis run as a command file before the first prompt to the user. If an program_filename is provided on the
same command line, the program filename is loaded before the command file is run. This provides a convenient way to
load a program, initialize other machine state, and then turn control over to the user.

-icnt filename

For bski only: This flag specifies instruction counts should be saved in the specified file. For each kind of instruction
executed during the simulation, the instruction count file shows five fields of information:

e® Theinstruction mnemonic
e Thetotal number of timesthe instruction was executed
e Thenumber of executions that were predicated on
e Thenumber of executions that were predicated off
e Thenumber of executions that were predicated on predicate register 0, which is "hardwired" on
The value in the second field equal's the sum of the valuesin the last three fields.
-noconsol e

For xski and bski only: This flag tells Ski not to create a separate console window for the simulated program's
standard 1/0O. Instead, Ski will use the existing console window's for standard 1/0O purposes in the simulated program.

-rest filename

Restore the simulator run saved in filename. See "Saving and Restoring the Simulator State™ on page 82. This flag
cannot be combined with an program filename. If combined with a-i flag, the-i flagis accepted and the - rest flag
issilently ignored.

-stats

For bski only: specifies execution run-time and instruction rate information should be send to standard out (stdout) at
the end of the run. This information is normally displayed in the Main/Command Window of xski and ski. The
- stat s flag allows users of bski to get the same information.

The xs«i File

xski's screen presentation is substantially controlled by the contents of the XSki file, which uses the X Window System's
resource mechanism to provide information to xski. You can edit this file to change xski's use of graphic buttons, described
in "The xski Main Window" on page 48. The XSki fileis part of the standard Ski distribution and you should put thisfile in
your X Window System's app- def aul t s directory or in your home directory. If there is no valid Xski file, the simulator
will not be usable. You can find more information on installing xski in the release notes that come with each Ski

Page 34 2 Overview

Ski 1A-64 Simulator Reference Manual 1.0L

distribution.

Quitting Ski

The qui t command causes the simulator to exit. If a numeric operand or expression is supplied, the value is returned to the
shell as Ski's exit status. This can be particularly useful with bski and command files (see "Command Files' on page 84),
for automated testing and regression testing. The exit status from Ski becomes the new value of your shell's $? variable (for
most shells) and can also be retrieved automatically by the make program, if you use makefiles to control batch runs.

Summary of the Quit Command
qui t [expression]

Terminates the simulator and returns control to the system, setting the exit status to expression (default is 0).

2 Overview Page 35

Ski 1A-64 Simulator Reference Manual 1.0L

3 Screen Presentation

Ski's Use of Windows

xski and ski generally divide the screen into four windows. (bski doesn't create any windows because it has no user
interface, only a command line interface.) xski uses Motif windows which you can move and resize using the mechanisms
provided by your window manager (WindowMaker, Englightenment, fvwm, twm, etc.) xski creates additional windows as
necessary.

ski uses the curses package to create four windows on the terminal screen. Because ski uses curses, it runs on nearly any
termina or terminal emulator, including xterm. When ski needs to show data that isn't appropriate for one of its four
windows, it uses apager such as"nor e" or "l ess" instead and restores the curses windows when the pager compl etes.

Ski uses three of the windows to display information to you. The fourth window is shared between you and Ski: You enter
commands that control Ski and Ski reports errors and other immediate information to you. You control the windows using
Ski commands (see "Screen Manipulation Commands" on page "59") and the smulator updates the windows whenever
necessary to maintain consistency with the internal state of the ssmulator engine. The four windows are described in more
detail below.

The Register Window

Ski divides the 1A-64 processor registers into five sets. In xski, al five sets are displayed in one window, the Register
Window, with each set in its own subwindow or "pane". The panes show user registers, genera registers, floating point
registers, system registers, and 1A-32 registers respectively, as shown in Illustration 27:The Register Window in xski The
five panes share screen space and, unless you have a very large screen, it's not possible to see all five panes at full size
simultaneously. xski shows portions of all five panes by default, but you can toggle any panes off with commands described
in " Screen Manipulation Commands" on page 59).

xski understands the Page Up and Page Down keys and the up-arrow and down-arrow keys found on most keyboards. These
keys operate on the current pane, which is usually highlighted with a bright border. When the Register Window has the X
Window System focus, the Page Up and Page Down keys scroll the current pane one "pane-full” less one line of overlap.
The up-arrow and down-arrow keys scroll the current pane one line. The Tab and Shift+tab keys change the current pane
highlight to the next or previous pane, respectively, "wrapping around" the top and bottom of the Register Window.

Page 36 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

— Registers Window o

ip 0O0ROAROO0OROOOD psr.um aclupl|BE|IOR

prs 10000000 00000000 00000000 00000000 OOODOOO0 OOOOOO00 COOOOOOD QOOOODDO
b0 0EOOOOOOODOEOOON COOOODOEROOOOOOO H2 00OEEOOOOOOOO000 COOEEODHOEOOOODG
b4 00OO00OO000OO000 QOOOODOOOO0OO000 he OOOEOOOOOOOOO000 COOEOODHOOOOOODO

|_u|ll

lc
rsc

ololafolelololololelolelblol0]0]
Quoe 1 00

ec OO0 bol O
pec 0O ppl O

rrbp rrbf rr

ctm ¢} 4]
pim ¢} 4}

bg sor sol
(0]

(0] (0] 9]

sof
o] 19} 96

rQ
r4
r8
rl12
rl16
r20
r24

0000000000000000
0000000000000000
[afolelolololelofololblofololole]
[afolelolololelofololblofololole]
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
[afelelolololelotolololofololole]
[afelelolololelotolololofololole]
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
[afelelolololelotololblotololelo]
[afelelolololelotololblotololelo]
0000000000000000
0000000000000000
0000000000000000

[olo]elelololalelelulololololole]
[olo]elelololalelolololalolololt]
[ololelelolololelelolblolelololt]
[ololelelolololelelolblolelololt]
[olo]elelololalelelulololololole]
[olo]elelololalelelulololololole]
[olo]elelololalelelulololololole]

=

fo
f2

000000000000000000000
000000000000000000000

.00B0e+00)
.0OA0e+00)

of £ £8000000000000000
000000000000000000000

. 0000e+30)
0000e+00)

f4 000000000000000000000 .0000e+00)

000000000000000000000

=,

o
loRoNolo]
S~ ——

1

0.
0.0000e+00)
0.

f6 000000000000000000000 .0000e+00) 000000000000000000000 0000 e+00)

=,

0000000000000003 ipsr 000D0OODOOO0O000 der 0OOODOOOOOOODODO
0000000000000000 pta 000000CDOOO0O000 gpta DOOODOOOOOOODOOO

psr
iva

eax Q0OODOOOO ebx 0000000 ecx DOOODOOD edx QOOOODOO
esi QOOROOOED edi OOOOEDOD ebp DOOODOOD esp DOOODOOO
cs QD00 ds 0000 es 0OO0 fs 000D gs O0OOD ss QOO0 1ldt OOD0 tss 00O

eflags 00000000 [lelbelltlidlac|lvmlrfInt|Olof|dflifltflsflzflafipflct]

Closel Help

eip OOO0:DODOOOOO

=

[llustration 27: The Register Window in xski

ski shows only a portion of aregister set at atime and you use the commands described in " Register Window Commands’
on page 59 to select which portion of which set to see. The sets are described below in the order they appear in the Register
Window. Their xski realizations are shown as well.

The User Registers Pane

The user registers pane (see lllustration 28: The xski User Registers Pane) displays the Predicate Registers (pr s) in binary,
the Application Registers in hexadecimal, and the Branch Registers (b0-b7) and the Instruction Pointer (i p) symbolicaly if
possible, otherwise in hexadecimal. Symbolic displays are limited to sixteen characters; when more than sixteen characters
are needed, the first fifteen are displayed and an asterisk ("*") is added to indicate that the symbolic display has been
abbreviated. The fields of the Current Frame Marker (cf m) register and subfields of the Previous Frame Marker field (pf m)
are displayed in decimal. For bit-encoded registers, some bits are displayed individually using their |A-64 mnemonics. If a
bit name is displayed in uppercase, the bit is currently set, and if the name is displayed in lowercase, the bit is currently
clear. For example, the ps.be bit is shown as "BE" in Illustration 28: The xski User Registers Pane, indicating that the bit is
set. The User Mask bitfield (ps.um) from the Processor Status Register (psr) is displayed in this pane; the entire psr is
shown in the System Registers pane, described in "The System Registers Pane'. Predicate Registers pr 16-pr 63 are
displayed in their rotated form, as indicated by the r r bp field of the Current Frame Marker (cf m) register.

At the middle of the pane, the line starting "cl ean” shows, in decimal, the values in the internal registers that control the
Register Save Engine (rse). The |A-64 architecture requires that these registers exist but provides no program-visible
access to them.

3 Screen Presentation Page 37

Ski 1A-64 Simulator Reference Manual 1.0L

=

ip compress psr.um aclup|BE|OR

prs 10000001 00000000 0OOHOOO0 OOOGOOOH OOOODOO0 OOOGOEOH OOOODOOG OHADEGH

bl main+2280 _main+0a60 |y olololololotololololelololaToloRmaloTalolololeTololaloleTolololo]

b4 0OOOOOECOO0EC000 GOOODOOAODODAG0O b _brk+O0oeD [={olalololelololalolalolelolols)
rrbp rrbf rrbg sor sol sof

lc 0OOOO0OOOO0OO00O0 ec OO bol 15 cfm 0] 19} 0} 0} ¢} 5

rsc QOO0 1 0 0 pec 00 ppl 3 pfm [0} 0] 0] 0] 8 13

clean © cleanNAT © dirty 15 dirtyNAT @ invalid 76 rle @

bsp 9fffffff7fo00078 bspst 9ELfffff7£600000

rnat @O00000000000000 unat 0OOOOOOECODOOCOO

fpsr 0O09804c0270033f itc AOO00O00O0000O00 cev DHOOOOHOOACOOOOG

ko 0000000000000000 DOOBRDOOODEOACODD k2 00DEEOLDOOGODOOG 0ODOOEOOLOAGBOO0
k4 [ololelofolololofololelololololopuelolololelololololololole ol o o olelelolololololololb lolololole B loTolelololblolatololol0 0 10]0]
eflags 000000000000D0OO0 cflg DOODOOOODOOADOOO

csd 0000000000000000 ssd 000000000D0OOODO -

r\

[llustration 28: The xski User Registers Pane

The General Registers Pane

The genera registers pane shows the current values of the 64-bit general (integer) data registers, four to a line, in
hexadecimal. Registers whose corresponding NaT bits are set are displayed with aleading asterisk ("*") to indicate this. The
display reflects |A-64 register stacking and rotation: only the 32 static registers and the stacked registers alocated to a
function are displayed. The allocated rotating registers are displayed in their rotated form, as indicated by the r r bg field of
the cf mregister, displayed in the user registers pane. The general registers pane is shown in Illustration 29: The xski General
Registers Pane

e
ri 0000000000000000 6000000000009a68 0009804cO270033f DODODOOOOOOTOTO T
r4 eQOOODOODODOZ2000 HO000DO000002becd 0OODODAOVOOOOOOOD OOOODODOODODAOOOO
r§ 0000000000000000 0OODAOOODODODAOCO 0ODODAOOODOT0000 000DODAVLEDOCDOD
rl2 OfffffffffEfffb4n 9Qffffffffffffc74 0OODODADOOOOOOOD OOOOOODOOODODAOOO
rl16 0000000000000000 0OODACOODONODAOCO DODODAOOODODOONE 000DODAVLADOCDOD
r20 0000000000000000 e(000O00ODODO2000 600000000002bec8 0OODODOVOODOOOESE
r24 olalololololololololoba{o kit J-tolololololelolalolololololo o elolalololololelolelolalelololo RuE dulololololalololalololalolelole)
r28 0000000000000000 cOODOODODODODZ286 60000000000L53d0 0OODODAVOODOOOOD
r32 OffffffffEfffd8O H6ODOOOODOVAOI338 Offffffffffffb4d cODODOODOODOOODLAO
r36 40000000000081 40 |

Iustration 29: The xski

The Floating Point Registers Pane

General Registers Pane

The floating point registers pane shows the current values of the 82-bit floating point data registers, two to a line displayed
in hex and scientific decimal notation. Floating point registers f 32-f 127 are displayed in their rotated form, as indicated by
the rrbf field of the cf m register, displayed in the user registers pane. The floating point registers pane is shown in
[lustration 30: The xski Floating Point Registers Pane with various values in the registers.

Due to the nature of floating point arithmetic on the host computer, the scientific decimal displays may be inaccurate for
very large and very small numbers, positive and negative. The hexadecimal display is aways correct, as are al calculations
done by the simulated program.

Page 38 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

0R0O00O00000000000
1££££800000000000
1££££200000000000
001 23000000000000

ojola10)
0Jola10]
6101510
0123

{ 0.0000e+00)
(— +Inf —-)
(——NaTVal———)
(2.5105e+71)

0f £ £ £ 3000000000000000 (
1E££££0000000000000000
1££££cO0000O000000000
2000000000000000001 23

1.0000e+00)

(Unsupported)
(———gNaN-——-)
(_

6.3101e-17)

LL-

=

[llustration 30: The xski Floating Point Registers Pane

The System Registers Pane

The system registers pane shows the Processor Status Register (psr), Control Registers, Region Registers (rr0-rr7),
Protection Key Registers (pkr 0-pkr 15), Data Breakpoint Registers (dbr 0-dbr 15), Instruction Breakpoint Registers (i br 0-
i br 15), and Performance Monitor Configuration Registers (pnt0-pnt15), in hexadecimal. Application programs have
limited access to these registers. Addresses are displayed symbolically when possible. Symbolic displays are limited to
sixteen characters, when more than sixteen characters are needed, the first fifteen are displayed and an asterisk ("*") is
added to indicate that the symbolic display has been abbreviated. The i va register shown on the second text line in

[llustration 31: The xski System Registers Pane is an example of this.

psr
iva
iip
isr
iitr
itm
lid
irrQ
ire3
itwv
lrrD

rr0
rri

pkrd
pkra
pkr8
pkril12

dbri
dbr4
dbr8
dbr12

ibr0
ibr4
ibr8
ibri12

pmcd
pmcé
pmc8
pmcl2

0O000000ROBO2002
VHPT _Translatio*
startl

ololololelololalololalelolololo]
ololololelololalololalelolololo]
ololololelololalololalelolololo]
ololololelololalololalelolololo]
[ololololelololalolololelolololo]
ololololelololalololalelolololo]
ololololelololalololalelolololo]
ololololelololalololalelolololo]

0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
000000000000O000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

=
ipsr 0000100000000002 der QOOOOO0OOOOOOOOO0 -
pta 000OOO0OOOO0OO000 gpta OOOOOOOOOOOOOOO0
ida 0000000000000000 ifs QOOOOOOOOOOOOOO0
iha 0000000000000000 iim QOOOOOOOOOOOOOO0
idtr 0000000000000000
iipa test_3+0048
ivr 00000000000000ff tpr QOOOOOOOOOOOOOO0
irrl 0000000000000000 irr2 Q0000000000000
R ololalelolololololololelolololo)
pmv DOOOOOOOOO000000 cmev OOOOOOOOOOOOOOO0
lrr1 0OO0O0OO000O0000
0O000000O0000000 rr2 0000000000000000 ROOODOODOOHORHO0
0O00O000O0000000 rrb 0000000000000000 ROOODOODOOHORHO0
0O00000000000000 pkr2 0000000C0OC0OO00 ODOOOOOODOOOOOO0
0O00000000000000 pkre 0OO0OOOOOOCOOOO0 OOOOOOOOOOOOOOO0
0O00000000000000 pkr1d 0OOOOOOOOOCOOOO0 OOOOOOOODOOOOOO0
0O00000000000000 pkrl14 0OOOOOOOOOCOOOO0 OOOOOOOOOOOOOOO0
0O00000000000000 dbr2 0000000000000000 ODOOOOOODOOOOOO0
0O00000000000000 dbré 0O000O0COOCOOOO0 OOOOOOOODOOOOOO0
0O00000000000000 dbr10 0OOOOOOOOOCOOOO0 OOOOOOOODOOOOOO0
0O00000000000000 dbr14 0OOO0OOOOOOOOOOO0 ODOOOOOODOOOOOO0
0O00000000000000 ibr2 0O000O0C0OC0O000 ODOOOOOODOOOOOO0
0OO0O00OA0OOO000 ibre OOOOOOOOOOOOOOO0 OOOOOOOADOOOOOOO
0O00000000000000 ibr10 0OOOOOOOOOCOOOO0 ODOOOOOODOOOOOO0
0O00000000000000 ibrl4 0OOOOOOOOOCOOOO0 OOOOOOOODOOOOOO0
0O00000000000000 pme2 0O00O0OOOOOOOOOO0 ODOOOOOODOOOOOO0
0O00000000000000 pmect OOOOOOOOOOOOOOO0 ODOOOOOODOOOOOO0
0O00000000000000 pmel1d OOOOOOOOOOOOOOO0 ODOOOOOODOOOOOO0
0O00000000000000 pmel4d OOOOOOOOOOOOOOO0 OOOOOOOODOOOOOOO

[llustration 31: The xski System Registers Pane

3 Screen Presentation

Page 39

Ski 1A-64 Simulator Reference Manual 1.0L

The 1A-32 Registers Pane

The 1A-32 registers pane shows IA-32 registers in hexadecimal. For bit-encoded registers, the bits are named individually
using their IA-32 mnemonics. If aname is displayed in uppercase, the corresponding bit is currently set, and if the name is
displayed in lowercase, the bit is currently clear, as shown in Illustration 32: The xski |A-32 Registers Pane.

=y

eax 00000000 ebx 00000001 ecx QOOOOOD2 edx OOOOOO0O3 eip 1010:0000014c

esi fffdab70 edi OOOOOOO5 ebp OOOOOOD6 esp OOOOOT0O0

cs 1010 ds 1000 es 1000 fs QOO0 gs QOO0 ss 1091 1dt QOO0 tss QOO0

eflags 03003246 [LEIBElltlidlaclvmlrfint|3lofldflIFItflsflZF|af|PFlcf]

csd 000 Offff 00010100 [gldlplolsl@] dsd o000 Offff 00010000 [gldlplols|ol
ssd 000 Offff 00010910 [glblplolsl@] esd 000 Offff 00010000 [gldlplolsiol
fsd 333 33333 ccccccce [gldlpl11S13] gsd 222 22222 dddddddd [gldlpl1lsi2]
1dtd 111 11111 eeeeeeece gdtd OO0 QOOOO ffffffff

tssd 000 QOOOO 000OOOO0O idtd 000 QOOOO 00000000

cr@ 00000000 [pcelpgelmcelpaelpseldeltsdlpvilvme] iobase 0000000000000000
cr? O0OOOO00 cr3 00000000 [00000|pcdlpwt]

cr4 00000000 [pgledinwlamlwplomliilifliolneletltslemlmplpel

dr6 00000000 [btlbslbdlb3Ib2Ibllba] =

[llustration 32: The xski 1A-32 Registers Pane

Resizing Register Window Panes with xski

As mentioned above, even alarge X Window System screen is too small to display all the registers simultaneously, so you
may haveto scroll a pane to see the registers you want, or resize the pane by dragging Pane Resizer, the small resize square
on the right side of the dividing line between each pair of panes, as shown in Illustration 33: An xski Pane Resizer: The
Small Box Between the Scroll bars.

4] 4] 4] 4] 4]
rle 0

I.I--IT'--.

1000 0000000000000

1000 0000000000000

lololoNmmmolalalolalolglalalolalalglalol)

[llustration 33: An xski Pane Resizer: The Small Box Between the
Scroll bars

The Register Window and ski

The ski simulator, as noted above, uses curses to display multiple windows on non-graphic (text) terminals and terminal
emulators. These windows are fixed in size and are not big enough to display al the data at the same time. On a
conventional, twenty four line screen, ski uses five lines for the Register Window, as shown in lllustration 34: The ski

Page 40 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

. Because of this lack of space, the Register Window shows only one of the five sets of registers at a time: user, integer,
floating point, system, or 1A-32, and then only a portion of each set. If your screen islarger than twenty four lines when you
start ski, ski will make use of the extra space. (You can resize terminal emulators using command-line arguments or by
using your window manager's standard mechanisms for window resizing.)

Youusetheur, gr, fr,sr,andiar commandsto tell ski which set of registers to display. To see the various registersin a
set, you use the rf and rb commands to scroll the Register Window forwards and backwards, respectively. These
commands are described in "Summary of Register Window Commands' on page 59.

=1ES
General Registers
r0 0000000000000000 0000000000000000 0000000000000 HOOO000OOOOC000D
r4 0000000000000 O000000000000000 0000000000000 HDO00000DOOC000N
P 0000000000000000 0000000000000000 0000000000000000 ODON0000DOOC000N
P12 0000000000000000 0000000000000000 0000000000000 ODON0000DONC000N
P16 0000000000000000 0000000000000000 0000000000000000 _ G000000000000000

[]
_

IA-64 Debugger,/Sinulatar
Verzion 00,8731 (EAS 2.5)
Copuright () 1986-2000
The Hewlett-Packard Company
All Right=s Reserved

pata |
QOOOOC0AACOCCCNICT M g i L
QOOOO0OOOOO0DNTLY i g St s

Command Ver<ion 00,8731 (EAS 2.5

2 * 1

[llustration 34: The ski Register Window (at Top)

The Program Window

The Program Window provides a view into the program space. Whether you load a program into the simulated processor's
address space via the command line or using Ski's | oad, i al oad, or r om oad commands, the program is displayed in a
format resembling a compiler's assembler listing file. For 1A-64 programs compiled from a high-level language such as C'
and linked with the appropriate options, the source code is displayed with line numbers, mixed in with the generated
assembly language as shown in Illustration 35: xski's Program Window Showing Part of an |1A-64 "hello world" Program.
As an example, to compile the "hello world" program with the | A-64 compiler used in testing Ski, the command lineis:

cc -o hello -g hello.c

Note that the - O (capital-O) "optimization" flag was not specified. Optimization, by definition, rearranges the object code. If
you turn on optimization, the correspondence between source code and object code will be obscured and you may find the
resulting display difficult to interpret.

| A-64 assembly code is displayed through disassembly; the original assembler source code is not displayed. Source code for
IA-32 programs, high-level and assembly, is not displayed.

Ski chooses whether to interpret the instructions as |A-64 or 1A-32 encodings based on the setting of the ps.is bit. If your

3 Screen Presentation Page 41

Ski 1A-64 Simulator Reference Manual 1.0L

program has amix of 1A-64 and |A-32 code, you may need to manually set or clear this bit when trying to view a part of the
program that is in a different encoding from the encoding at the current i p location. You can set the bit with the Ski
command "= psr.is 1" and you can clear the bit with "= psr.is 0". If the bit is set incorrectly, Ski will use the wrong
instruction decoder and will show |A-64 code disassembled as if it was IA-32 code or vice-versal Remember to set the bit
back before resuming simulation.

IA-64 Instruction Display

Each |A-64 ingtruction bundle is labelled on the left with an hexadecimal byte-addressed offset from the nearest, preceding
symbol up to Oxffff bytes away. If the symbol name and offset are longer than sixteen characters, the first fifteen are
displayed and an asterisk ("*") is added to indicate that the symbolic display has been abbreviated. For each 128 bit bundle,
the two or three instructions are displayed in the center of the window with operands to their immediate right. The template
for the bundle is shown as a triplet of capital letters, such as"M 1 ," to the right of the last operand of the first instruction in
the bundle. The end of each instruction group (a unit of potentialy parallel execution) is marked with a pair of semicolons
("; ; ") after the last operand of the last instruction in the group.

Program YWindow I=I=][=
Program filer 773
__do_framek+0030 br,ret,zptk,many b0 BER
rap, b £
hop, b IS
006 printf (“hello worldsn'i:
main alloc r3d=ar,pf=,0,3,1.0 HII
addl rl4=0x1118,r1
e, r3Z=ri2
main+O010 nap. i) MIT
Mo r33=b0z::
add= r12=-15.r12
main+O0z0 1d3 r3h=[r14] HIE
hop, 1 0

br,call,sptk.many bO=_I0_printf::
oo7 rpeturn O3

main+OE0 M r8=0:: HMI
M rl2=r32
may, 1 ar, pfe=ri4

main+040 nop.,m L] HIB
M bo=r33

br,ret,sptk, many bo::

Close| &oin| ieipl

[lustration 35: xski's ProgramWindow Showing Part of an 1A-64 "hello world"
Program

Ski uses the first few columns for source code line numbers. Ski also uses the first column to show breakpoint locations for
|A-64 assembly language instructions, numbering the breakpoints "0" through "9." 1A-64 breakpoint commands include bs,
bD, bd, and bl , and are described in "Program Breakpoints' on page 78. For the purpose of setting breakpoint addresses, Ski
"pretends’ that the slot 0 instruction in a bundle is located at the first byte of the bundle, the slot 1 instruction is located at
the fourth byte, and the slot 2 instruction islocated at the eighth byte. See "How Ski Implements Breakpoints' on page 80.

Predication is an 1A-64 feature that increases the usable parallelism of user programs and allows better utilization of
functional units. Ski shows predication information in the second column of the Program Window, as shown in lllustration
36: xski's Program Window Showing |A-64 Predication and Breakpoints. If the second column of a given instruction line

Page 42 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

contains an exclamation mark ("! "), the instruction is predicated on a predicate register that is currently O: the instruction is
"predicated off". The predicate register is displayed in parenthesis immediately to the left of the instruction mnemonic. Ski
uses a different encoding for the instruction pointed to by the i p register: an asterisk ("*") indicates that the instruction is
predicated off and a greater-than symbol (">") indicates that the instruction is predicated on. (That is, the ">" symbol means
"Thisisthe next instruction to be simulated.")

Program Window r
Program
_start+0a70 1d4 r8=[r8] MFB
nop. f Ox0
nop.b 0x0;;
_start+0080 and r8=0x1,r8 MFB
nop. f Ox0
nop.b 0x0;;
4 _start+0090 cmpd. eq pb,po=rd, 8 MFB
nop. f Ox0
! (p6) br.cond.sptk.few _start+0x00d0;;
_start+00alb nop.m Ox MLI
movl r9=__signal_magic_cookie
_start+00bd nop.m Ox MLI
movl r8=0x0000000006211989; ;
_start+08ci st4 [r9]=r8 MFB
nop. f Ox0
nop.b 0x0;;
5 _start+00do nop.m Ox MLI
movl r8=_environ;;
_start+08ed 1d8 r8=[r8] MFB
nop. f Ox0
nop.b 0x0;;
Closel {.§<>‘Z'<>| %--%eipl

[llustration 36: xski's Program Window Showing 1A-64 Predication and Breakpoints

IA-32 Instruction Display

IA-32 instructions are displayed as shown in Illustration 37: xski's Program Window Showing 1A-32 Code, the Instruction
Pointer, and a Breakpoint, according to the conventions for Intel assembly code. As with |A-64 instruction display, Ski uses
the first column of each assembly language instruction line to show breakpoint |ocations, numbering them "0" through "9."
Except for the use of i abs rather than bs, 1A-32 breakpoint commands are the same as |A-64 breakpoint commands and
includei abs, bD, bd, and bl ,as described in "Program Breakpoints' on page 78. In the second column, Ski puts a greater-
than symbol (">") to point to the next instruction to be executed, i.e., the location pointed to by thei p register.

Because |A-32 instructions are variable in length, it is possible to set the i p to point into the middle of an instruction. This
can happen, for example, when an instruction with prefix bytes is needed at the top of the first pass through a loop, and the
same instruction without the prefix bytes is needed at the top of subsequent passes. When this happens, Ski uses a plus-sign
("+") in column two, rather than a greater-than symbol, to warn you that i p points somewhere in the middle of the line of
code displayed on the screen. To update the display, use the command "pj i p". This will cause Ski to reinterpret the
instruction stream and to display the variable length instructions with the new interpretation.

3 Screen Presentation Page 43

Ski 1A-64 Simulator Reference Manual 1.0L

Program Window

Program

_set_fpu_t*+005f ret
> start mov ax, Ox1040

start+0003 mov ds, ax
start+0005 mov es, ax
start+0007 and sp, Oxfffc
start+000a call _get_cpu_type
start+000d call _get_fpu_type

0 start+0010 call print
start+0013 mov ax, Ox4cO0
start+0016 int 0x21
print mov dx, 54
print+0003 mov ah, 9
print+0005 int 0x21
print+00a7 cmp byte ptr [10], 1
print+000c jnz print+0011
print+000e Jmp print+009e
print+0011 cmp byte ptr [8], O
print+0016 jnz print+0033
print+0018 mov dx, 92
print+001b mov ah, 9
print+001d int 0x21

Closel {.§<>‘Z'<>| %--%eipl

[llustration 37: xski's Program Window Showing 1A-32 Code, the Instruction Pointer, and a
Breakpoint

Changing the Range of Locations Shown in the Program Window

xski doesn't place a scroll bar in the Program Window. Instead, like ski, xski provides the pf and pb commands, described
in "Program Window Commands' on page 60. You use these commands to scroll the Program Window forwards and
backwards, respectively, through the assembly language program display. Ski also provides the pj command which lets you
"jump" the Program Window to any location in the address space. In addition, xski understands the Page Up and Page
Down keys and the arrow keys. When the Program Window has the X Window System focus, the Page Up, Page Down, up-
arrow, and down-arrow keys emit the "pb", "pf ", "pb 1", and "pf 1" commands, respectively.

You can control the size of xski's Program Window using your window manager's standard mechanisms. If you are using
ski, the window is fixed in size; on a twenty four line terminal, the window will be nine linestall.

Invalid Code and the Program Window

Ski will disassemble the area of memory it is displaying in the program window, regardless of whether the area contains
program code or data. If you tell Ski to display non-program memory, Ski attempts to display the (non-existent) instructions.
When Ski finds bit encodings that don't represent valid instructions, it displays the word "i | | egal Op" instead, as shown in
Illustration 38: xski's Program Window Showing Illegal Instructions. Sometimes, Ski may display x's, indicating that you
asked Ski to show a page of memory that doesn't exist, as shown in Illustration 39: xski's Program Window Showing
Unallocated Space or No Trandlation. There are three cases to consider:

e Inapplication-mode, x's indicate a page of memory that hasn't been accessed by the program and therefore hasn't
been allocated by Ski.

e In system-mode with instruction address translation enabled (the ps.it bit is on), x's indicate a page of memory
for which no entry exists in the Trandation Lookaside Buffer (TLB) or in the Virtual Hash Page Table

Page 44 3 Screen Presentation

Ski IA-64 Simulator Reference Manual 1.0L

(VHPT).

® |n system-mode with instruction address trandation disabled (the pg.it bit is off), x's indicate a page of memory
that has not yet been accessed by the program.

Application-mode and system-mode programming are discussed in more detail in Program Simulation on page 66.

Program Window

[lustration 38: xski's ProgramWindow Showing Illegal Instructions

3 Screen Presentation Page 45

Ski 1A-64 Simulator Reference Manual 1.0L

Program Window

Program

QoEROO0OO000DO00 XXXXXXXX
aoEROOOOODO0ROT0 XXXXXXXX
aoERO00OR0000020 XXXXXXXX
QoEROO0OO0000O30 XXXXXXXX
aeEROO0OODD0DR40 XXXXXXXX
QoEROO0OO000DO50 XXXXXXXX
aoEROO0OODD0DD60 XXXXXXXX
aoEROO0ORD00ROT0 XXXXXXXX
aoEROO0OOD00DO80 XXXXXXXX
QoEROO0OR000D090 XXXXXXXX
QoERO00OR00000AD XXXXXXXX
goEROO0OO0000OLY XXXXXXXX
aoEROO0OOD0000CH XXXXXXXX
aeEROOOOOD000OdD XXXXXXXX
aoORO00OO00000ed XXXXXXXX
aoEROOOOOD00ROE0 XXXXXXXX
goEROOOOOD00DT00 XXXXXXXX
aeEROOOORD00OTT0 XXXXXXXX
aoEROO0OOD000T20 XXXXXXXX
aoEROO0OO00001T30 XXXXXXXX
QoEROO0OO0000OT40 XXXXXXXX

Closel @{}‘Z‘Ql %"%e%pl

Illustration 39: xski's ProgramWindow Showing Unallocated Space or No Trandation

The Data Window

In the Data Window, xski and ski present data in hexadecimal format, sixteen bytes to a line, as shown in Illustration 40:
xski's Data Window Showing Unallocated Space Followed by Data. The data are displayed as four groups of eight
hexadecimal digits each, with an ASCII character trandlation on the right and the data address on the Ieft. (The endianness
of the displayed bytesis determined by the current value of the ps.be bit which may change by the time the simulated 1A-64
processor actually loads the bytes.) The address is expressed as a symbol from the executable file's symbol table or as a
sixteen digit hexadecimal number.

With the dbndl command, Ski can display data formatted as |A-64 instruction bundles in hexadecimal, as shown in
Illustration 41: xski's Data Window Showing Data Interpreted as Instruction Bundles. (The figure was generated by loading
a program and then issuing the command "dj mai n- 10" followed by the dbndl command.) This is useful when you need
to see the raw hexadecimal instruction encodings. The first column displays the address of each bundle. The second column
displays the template field. The remaining three columns are the 41-bit instructions from dots O, 1, and 2. Note: for the
purpose of setting breakpoint addresses, Ski "pretends’ that the slot O instruction is located at the first byte of the bundle, the
dlot 1 instruction is located at the fourth byte, and the dot 2 instruction is located at the eighth byte. See "How Ski
Implements Breakpoints" on page 80 for more information.

Page 46 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

l

Data

6000000000000 fel) XXXXXXXKX XXXXXXXX XXXXXXXX XXXXXXXX

6000000000000 ff0 XXXXXXXKX XXXXXXXX XXXXXXXX XXXXXXXX

__data_start 48656chc 6f2c2077 6£f726cH4 QadDOOOO Hello, world....
6000000000001010 40282329 20582e30 3223031 204c5036 @(#) X.02.01 LP6
6000000000001020 3420454d 20322e32 206c6962 632e615f 4 EM 2.2 libe.a_
6000000000001030 49444040 2f6d6169 6e2f7231 30736163 IDEBR/main/ri10sac
600000000000 1040 2f6c6962 635£7361 632f320a 40282329 /flibc_sac/2.@(#)
60O00000DANO1050 202f7578 2f636f72 652f6c69 62732f6c fux/core/libs/1
600000000000 1060 6962632f 61726368 6976655f 656d3232 ibefarchive_em22
60000B0000001070 5£36342f 6c696263 2e615f49 440a4028 _64/1ibe.a_ID.&(
600000000000 1080 23292041 75672032 37203139 39362030 #) Aug 27 1996 O
6000000000001090 323a3132 3a353600 OO0OOO00 OOODOOOD 2:12:56.........

Closel @{}‘Z‘Ql %--%eipl

[llustration 40: xski's Data Window Showing Unallocated Space Followed by Data

=

Data Wirdow
Data

4000000000000 30
mair

4000000000000 750
400 QOGRS
4000000000000 70
4000000000000 730
__do_global_ctok
4000000000000 50
4000000000000 7RO
4000000000000 7 0
4000000000000°7d0
400 OOOC RO 2l

17 00103001100 04000000000 04000000000
00 0200208880 13000130220 1080000200
02 0003000000 00183000840 113f5ce0300
11 030c0e003ch OOO0BOA0O0N OB FFHI000
00 10302000200 00154044000 00200142000
11 Q000000000 QOO0E0O0000 (0105001100
01 0200408880 13000150800 1020000000
O 020c2000800 00008000000 00188000240
Da 0a0c23103c6 080c2300046 00e0011186
1d ObOca0f08c0 QOO0BOO0O00 O2000004008
1c 1d8323Fe000 Q0008000000 031LFF 06
Qo QOOAZAOOAA0 0154044000 000014 2000

Elnsel &aygl

ﬁ#54

Illustration 41:

xski's Data Window Showing Data

Interpreted as Instruction Bundles

Changing the Range of Locations Shown in the Data Window

As with the Program Window, xski doesn't place a scroll bar in the Data Window. Instead, like ski, xski provides the df ,
db, and dj commands, described in "Data Window Commands on page 63. Use these commands to scroll the Data Window
forwards and backwards and to "jump" the Data Window. In addition, xski understands the Page Up and Page Down keys
and the arrow keys. When the Data Window has the X Window System focus, the Page Up, Page Down, up-arrow, and
down-arrow keys emit the "db", "df ", "db 1", and "df 1" commands, respectively.

You can control the size of xski's Data Window with your window manager's standard mechanisms. If you are using ski,
the window isfixed in size; on atwenty four line terminal, the window will be two linestall.

3 Screen Presentation Page 47

Ski 1A-64 Simulator Reference Manual 1.0L

Invalid Code and the Data Window

If you tell Ski to display non-existent memory, Ski will display x's instead, as shown in Illustration 40: xski's Data Window
Showing Unallocated Space Followed by Data. Non-existent memory is defined for the Data Window similarly to its
definition for the Program Window, described in the "Invalid Code and the Program Window" section, except that the
relevant bit for system-mode programs is pg.dt.

The Command/Main Window

xski and ski are command-driven simulators. Most of your interaction with them is done by typing commands. Your
commands are typed in a window titled "nmai n" in xski (see lllustration 42: xski's Main (Command) Window and
"Command" in ski (see lllustration 43: ski's Command Window (at Bottom)).

The xski Main Window

xski divides the Main Window into five areas:

e Menus: File, View, Configure, and Help. The File menu provides a "Quit" selection for you to exit the program.
The View menu lets you choose which windows to see. The Configure menu is currently non-functional. The
Help menu provides a "Commands' selection that displays the commands Ski recognizes and a "Product
Information” selection that displays information about xski.

e Buttons. Step, Run, Prog, Data, Regs, Cache, TLB, and Quit. Clicking on the Step button executes the
command "step 1", single-stepping the simulated program. Shift-clicking the button executes the command
"step 10", stepping the simulated program through ten instructions. The Run, Prog, Dat a, and TLB buttons
execute the run, pj , dj , and sdt commands respectively. If the Program Window has been closed (removed
from the screen, not merely minimized to an icon), the Prog button recreates it. The Dat a button operates
similarly with respect to the Data Window. The Regs and Cache buttons are currently non-functional.

xski's buttons are configurable. Using the X Window System resource mechanism, you can change the
number of buttons, the button labels, and the commands the buttons emit. The easiest way to do this is to edit
the xSki file, described in "The X Ski File" on page 34. Much of xski's user interface behavior is controlled by
this file but you should be careful in making changes to any elements other than button descriptions; xski may
change in the future in ways that are not backwards-compatible with changes you make.

e Command History: commands you've already entered.
e Command: where you type commands to xskKi.
® Responses: responses and error messages from xski.

The Menu, Button, and Command History areas provide shortcuts for typing commands. The St ep button is particularly
useful: when you are single-stepping through a program, you can click on the St ep button instead of repeatedly typing the
"st ep" command. The Command History area provides another way to avoid typing: you can double-click on a command
in the Command History to run the command again, or single-click on the command to move it to the Command area where
you can edit and then re-run it. The Command area is where you type commands to the simulator, but, as mentioned above,
you can use the menus, buttons, and Command History as shortcuts. Two useful commands to know are "hel p", which
causes a window listing all the commands to be displayed, and "hel p command" which causes information about the
command to be shown in the Responses area. The Responses areais also used by the simulator to give you feedback when it
can't execute one of your commands.

xski understands the Prev and Next keys and the arrow keys found on many HP keyboards. When the Main Window has the
X Window System focus, the current areais highlighted, usually with a bright outline. You can make a different area current
with Tab and Shift-tab. The Prev, Next, up-arrow, and down-arrow keys scroll through the current area, allowing you to
easily edit and re-run previous commands from the Command History and review previous messages in the Response area.

Page 48 3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

In addition, you can use the Alternate key ("at") like a Shift key, along with the underlined letter in each menu name as a
shortcut to access the menu, rather than using the mouse. For example, Alt+F brings up the File menu. This lets you spend
less time shuttling between the keyboard and mouse, and more time doing productive work.

E“ﬁi

File View Configure Help

Stepl M Progl Datal ?%eg}fsl C{z{;%'zel Ml Quitl

load hello
isyms
run

eval 3+4
help dj

Command:

L-

program exited with status 13
2926 insts, 0.646262 sec, 4528 ifs, 940 cycles, 3.11 ipc

Hex: 7 Decimal: 7
dj jump to specified address in data window

format: dj [<address>]

[lustration 42: xski's Main (Command) Window

The ski Command Window

ski's Command Window is simpler, as shown in lllustration 43: ski's Command Window (at Bottom). There are no menus,
buttons, or Command History. Instead, you enter commands when you see a * prompt in the 4-line Command Window at
the bottom of the screen. ski displays its responses in this window as well. The window scrolls so that information lost off
the top of the window may be recovered using the up and down arrows on your keyboard (for Emacs fans, Ctrl-P and Ctrl-N
serve the same function). As atyping shortcut, if you hit the enter/return key, ski will repeat the last command you entered.

3 Screen Presentation Page 49

Ski 1A-64 Simulator Reference Manual 1.0L

=l

General Registers
OQOOA00O0A0000 SO00Q000000054TE Q0000000000000 OO0E004002TO033F
rd OOQOOA00O0AA000 AOOOQ00OA0A00000 QOOQQ0AQ0AQ0000 QOO0
gt FEEFFEFFEEFFFFO0 4000000000000200 O0000000GACA000 GO000OGACC000G
r12 SfFFFFFEFFFFFTI0 0000000000000 Q000000000001 Q000000000004 25
rl1E SfFFFFFEFFEFFTE0 BO000000000045ec QOOOQQOQQOOA0000 Q0OQC00CACO00C0)
Propra file: T
__libc_opent+0010 N0 .M] MEE
! (e br,cond,sprt,few syscall error

br.ret,sptk.fen bO;;

__libc_fentl add= r15=0=425, r0 MIT
> break , 1 O 100000
Chp, e pE=-1, r10;;
__libc_fon#+0010 (gl 'a (000 MEE
! (pE) br,cond,spnt,few _=yscall error

b, ret,sptk few b

Data

Version 0.873]1 (EAS 2.5

83 insts, 0,03 =zec, 2473 ifs, 22 cycles, 3.77T ipc
¥ dj _I0 stdin_usect+s

* is _I0_stdin_used+d SkilsGrest!

¥

Other

Some commands, such as hel p, i syns, and sy i st , cause xski and ski to create additional windows. When xski creates
an additional window, it adds scroll bars if there is more information than will fit. As an example, the output window created
by xski for the sym i st command is shown in Illlustration 44: xski's Symbol List Window. xski understands the Page Up
and Page Down keys and the arrow keys. The Page Up and Page Down keys scroll through the window a windowful at a

time, with
When ski

windows.

[lustration 43: ski's Command Window (at Bottom)

Windows

one line of overlap. The up-arrow and down-arrow keys scroll through the window aline at atime.

needs to display additional information, it does so by overwriting the four standard windows. ski sends the
information through a pager, using | ess by default. When the pager finishes, ski refreshes the screen with the standard ski
If you prefer to use a different pager, for example nore or page, set the PAGER environment variable

accordingly, before starting the simulator.

Page 50

3 Screen Presentation

Ski 1A-64 Simulator Reference Manual 1.0L

1
IValue Hame

Q000000000000458
40000000000001c8
4000000000000b40
4000000000005300
4000000000005730
4000000000005a40
4000000000006bd0
4000000000006e20
4000000000007 3¢
4000000000007 840
4000000000007 ccl
40000000000081 40
40000000000085c0
4000000000008a40

DEBUG_LINE
__text_start
_DYNAMIC
_main
main
_start
__exit
_atexit
_isalnum
_isalpha
_isentrl
_isdigit
_isgraph
_islower

LL-|

Cbsq Eﬁ%ﬂ

[lustration 44 xski's Symbol List Window

3 Screen Presentation

Page 51

Ski 1A-64 Simulator Reference Manual 1.0L

4 Command Language

The Ski command language is smple, efficient, and easy to learn. It consists of commands you can invoke from the
keyboard or from a command file (see "Command Files' on page 84). Each command is given with an appropriate set of
arguments (some optional) to further qualify the command. Commonly-used commands may be abbreviated as described in
"Command Reference" on page 87 and commands may be repeated easily. A limited on-line help facility (the hel p
command) is provided for quick reference. This chapter presents the syntax of the command language. Information about
specific commands (command semantics) isin later chapters and in "Command Reference" on page 87.

Command Entry

xski and ski provide similar mechanisms for controlling the simulator. Both provide for direct keyboard entry of
commands. In addition, xski offers buttons, menus, and the Command History to minimize typing, as described in " The
xski Main Window" on page 48, and ski provides the command repetition mechanism for the same purpose, as described in
"The ski Command Window" on page 49. You give a command to Ski by typing the command name at the keyboard
followed by operands and the enter/return key. (Use the hel p command to see a menu of available commandsor hel p
followed by the command name to see the command syntax.) xski displays the command you typed in the Command area
of the Main Window. ski displays the command in the Command Window at the bottom of the screen following the *
prompt. Commands are case sensitive. When you hit the enter/return key, Ski acts on your command and updates the screen
to reflect any changes caused by the command. For example, the command

db

causes the Data Window to show the contents of lower addressesin memory.

Command Arguments

Some commands, such as save, require additional information. If you don't provide the information, Ski displays an error
message. Some commands have optional arguments. As described in " Syntax Conventions' on page 3, command summaries
in this manual show optional arguments surrounded by sguare brackets [like this] . If you don't specify an optional
argument, Ski uses a suitable default value. For example,

pf 3
causes the Program Window to advance three bundles after the last bundle in the Program Window, while
pf

aone moves the Program Window ahead one windowful. Some arguments can be supplied in alist, one or more times; these
are shown by putting a plus sign ("+") after the argument name like this+. For example, the syntax description for the =1
command is:

=1 address or_symbol value+
which suggests that the command
=1 _ data_start 12 56 90 cd

assigns the hexadecimal values 12, 56, 90, and cd to the four bytes starting at the location specified by the symbol
__data_start. Brackets and plus signs can be combined, [like this]+, to signify optional arguments that can be supplied
Zero or more times.

Command Sequences, Repetition, and Abbreviation

You can type multiple commands on a single command line by separating the individual commands with semicolons (*; ").

Page 52 4 Command Language

Ski 1A-64 Simulator Reference Manual 1.0L

This is caled a "command sequence"'. Command sequences make re-executing a series of commands easy, using the
Command History mechanism of xski (see "The xski Main Window" page 48) or the command repetition mechanism of
ski (see "The ski Command Window" on page 49). For example, you might want to repeatedly execute the commands
"step 100" and "eval ny_buffer". This pair of commands would execute one hundred instructions and then print the
value of (your) variable named "ny_buf f er . By combining these two commands into one command sequence, i.e., "st ep
100 ; eval ny_buffer", you can use the Command History or command repetition mechanism to run these commands
over and over. (The spaces around the semicolon are optional but improve readability.)

There is no grouping construct in Ski. This can be important when you write command files: when you want to execute
commands conditionally using thei f command, you cannot use the semicolon to group several commands into the "then"
or "elsg" clauses. Instead, you must use labels and the got o command. The "Command Files’ on page 84 discusses
command filesin depth.

Most commands may be abbreviated, someto a single letter. A command may be abbreviated to the shortest prefix which is
not also a prefix of acommand which precedes it in the command menu. (See " Command Reference” on page 87.)

Argument Specification

The arguments which are given with commands are, in general, obvious and natural. The description which follows should
clarify those cases which are not. The terms defined here are used in the command summaries throughout the remainder of
this manual .

Numeric Arguments

Many commands accept numeric arguments. The argument may be an address, a value, an execution count, or some other
variable which is best expressed numerically.

Numbers and Counts

Some commands take arguments that are naturally expressed in hexadecimal: addresses, for example. Other commands take
arguments that are naturally expressed in decimal, such as the number of instructions to simulate with the st ep command.
To make using Ski easier, some Ski commands default to interpreting their arguments as (hexadecimal) numbers and some
default to interpreting their arguments as (decimal) counts. You can always override the default interpretation by specifying
aradix override, as described below.

Hexadecimal digits may be upper or lower case. The default radix may be overridden by preceding the number or count
with 0D or 0d for decimal, 0X or Ox for hexadecimal, 00 or Oo (zero-oh) for octal, and 0B or Ob for binary. Since both the
decimal and binary prefixes look like hexadecimal, hexadecimal values such as 0d600000 and 0b100000 must be specified
either with an explicit hexadecimal prefix, asin 0x0d600000 and 0x0b100000, or without the leading 0, asin d600000 and
b100000.

Expressions

Wherever a number or count is needed, you can use a numeric expression instead, with parenthesis as needed for grouping.
No spaces are allowed in an expression. In an expression whose result will be used as a number, numbers not preceded by a
radix override are assumed to be hexadecimal. If the result will be used as a count, numbers not preceded by a radix
override are assumed to be decimal. For example, the st ep command expects a count operand, so the command

step r0+10

steps (decimal) ten instructions. On the other hand, the pj command expects an address operand, which is a number, so the
command

pj rO0+10

4 Command Language Page 53

Ski 1A-64 Simulator Reference Manual 1.0L

displays (hexadecimal) address 0x10 in the Program Window. (r O is hardwired to always return a zero when read.)

The available operators are shown in order from higher to lower precedence in Table 1: Ski Simulator Arithmetic and Logic
Operators. Operator precedence rules follow the C language rules.

Operator Description

() group operators with operands

b~ + - 0% opposite truth value, logical one's complement,
unary plus, unary minus, dereference: treat as an
address and read eight bytes

* multiply, divide

+ - add, subtract

<< >> logical left shift, logical right shift

< <=>>= less than, less than or equal to, greater than,

greater than or equal to
== 1= equal to, not equal to

& bitwise and

n bitwise exclusive or
I bitwise or

&& logical and

[logical or

Table 1: Ski Smulator Arithmetic and Logic Operators

Asan example, in xski,
eval 64 0d64 0064 0b100000 *mai n ~(((0D1234+0X10EFQ) * 4) <<6) +0B10001001

prints the values of the six expressions in the Main Window, as shown in Illustration 45: xski Evaluating Expressions. The
first expression is taken as a hexadecima number, the second as a decima number, the third as an octal number, and the
fourth as a binary number. The fifth expression is the value at the location specified by the symbol "nai n" (the first 64 bits
of the code bundle at that location), and the sixth expression is the result of some arithmetic.

Page 54 4 Command Language

Ski 1A-64 Simulator Reference Manual 1.0L

File View Configure Help

E“ﬁi

Stepl m Progl Datal ?%eg}fsl C{z{;%'zel H Quitl

load hello
eval 64 0d64 0064 0b100000 *kmain ~(({(0D1234+0XX10EF0)*4) < <6)+0B10001001

Command:

2

Hex: 64 Decimal: 100

Hex: 40 Decimal: 64

Hex: 34 Decimal: 52

Hex: 20 Decimal: 32

Hex: 8150880052002 Decimal: 2274926065426434

Hex: fffffffffeec3e88 Decimal: 18446744073691479688

[llustration 45: xski Evaluating Expressions

Addresses
An address is specified by a 64 bit hexadecimal number. For example, the command
pj 1000

repositions ("jumps") the Program Window to address 0x1000. As discussed in "Application-Mode and System-Mode
Simulation" on page 66, Ski supports generic addresses in application-mode programs (that is, the concept of "virtual
memory" doesn't apply to application mode programs), and physical and virtual addresses in system-mode programs. For
system-mode programs, the ps.dt and pg.it bits control whether Ski interprets addresses as physical or virtual. In some
cases, you may need to change the value of one or both of these bits temporarily, so that Ski will interpret addresses the way
you want. You should restore the bit values before resuming simulation, of course. You can set the pg.dt bit with the Ski
command "= psr.dt 1" and clear the bit with "= psr.dt 0". The corresponding commands for the pg.it bit are "=
psr.it 1"and"= psr.it 0", respectively.

Addresses may be computed using expressions. For example, the command
dj 1000+0d50

repositions ("jumps’) the Program Window to address 1032, because 1000 (hexadecimal) added to 50 (decimal) is 1032
(hexadecimal). Address expressions are particularly useful in symbolic constructs, as described below.

Symbolic Arguments

A symbol is a sequence of characters (a "name"). Examples of symbols are program-defined symbols, registers, internal
variables, labels, and filenames. Arguments may (and sometimes must) be expressed symbolically.

4 Command Language Page 55

Ski 1A-64 Simulator Reference Manual 1.0L

Program-Defined Symbols

A program-defined symbol is an identifier which can be used as a mnemonic for a memory location. Program-defined
symbol names are defined in the executable file for the program being simulated. Some symbols are common, well-known
names (e.g. pri ntf, mai n), and others are defined by the programmer (e.g. f oo, bar). The sym i st command shows you
the symbols sorted by address, as lllustration 46: xski's Symbol List Window shows.

1
IValue Name

0O00000000000458 DEBUG_LINE
A40000000000001c8 __text_start
4000000000000b40 _DYNAMIC
4000000000005300 _main
4000000000005730 main
4000000000005a40 _start
4000000000006bd0 ____exdit
4000000000006e20 _atexdit
40000000000073c0 _isalnum

LL-|

4000000000007840 _isalpha
4000000000007 ccd) _iscntrl
4000000000008140 _isdigit
40000000000085¢c0 _isgraph
4000000000008a40 _islower

Cbsq Eﬁ%ﬂ

[llustration 46: xski's Symbol List Window

Registers

A register name is a predefined mnemonic for a processor register. The genera registers, for example, are referred to as r 0,
ri,..,r127. (The register names Ski recognizes are listed in "Register Names" on page 93.) For example, the command

=r3lip

assigns the value contained in the i p register to general register 31. (For a description of the = command, see "Changing
Registers and Memory with Assignment Commands" on page 75.) Wherever the simulator expects you to supply a numeric
argument, you can use a register instead. You may only refer to currently-visible registers, according to the stacking and
rotation mechanisms of the |A-64 architecture.

Internal Variables

The smulator providesinternal variables for you to use in command files (see "Command Files' on page 84). Theseinterna
variables are read-only; you cannot change their values. You can refer to an internal variable in any context where you could
refer to an | A-64 register. Ski has four internal variables:

$cycl es$

The total humber of "virtual cycles’ simulated. A virtual cycle is a cycle on a machine with an very large number of
execution units and very fast memory; area |A-64 processor may take more cycles. In a command file, you might use
this variable to gather statistics about the efficiency of a particular compiler optimization agorithm. The value of

Page 56 4 Command Language

Ski 1A-64 Simulator Reference Manual 1.0L

$cycl es$ isalways equal to the value of $i nst s$ for |A-32 programs.

$exi t ed$

The value 0 until the simulated program exits. Then the variable takes the value 1. In a command file, you would use
$exi t ed$ to detect a program termination. Program termination is defined for 1A-64 application-mode programs as a
call to the exit() function or the receipt of an unhandled signal. For 1A-64 system-mode programs, normal
termination is defined to be a call to the Simulator System Call exit function or execution of BREAK 0 instruction. This
variable is not supported for 1A-32 programs in application-mode or system-mode. (See "Application-Mode and
System-Mode Simulation” on page 66 for details on these modes.)

$heap$

This variable has meaning only for 1A-64 programs running in application-mode, as described in " Application-Mode
and System-Mode Simulation™ on page 66. $heap$ marks the address past the "far end" of the simulated heap, that is,
the end farthest from the end of the data section. The heap starts at the first sixteen-byte-aligned address after the data
section. Ski updates the $heap$ variable as the program being simulated malloc's memory (for programs written in C;
adapt accordingly for other programming languages). You can use the $heap$ variable to debug wild pointer problems:
if your program has a pointer that allegedly points to a malloc'ed data structure, but the pointer value exceeds $heap$,
the pointer is invaid. For system-mode programs and |A-32 programs, this variable is meaningless, as there is no
malloc support.

$i nsts$

The number of instructions that have been simulated so far (including any faulting instructions, for programs running
in system-mode, described in "Application-Mode and System-Mode Simulation” on page 66 . In a command file, you
might use this variable to stop simulation after a certain number of instructions. The value of $i nst s$ is always equal
to the value of $cycl es$ for |A-32 programs.

Labels

Labels (see "Labels and Control Flow in Command Files' on page 84) are names which consist of an apha (upper or lower
case alphabetic, $, or _), followed by a sequence of aphas or digits (e.g., abc123, $f oo_bar, etc.) and ending with a colon
(": ™). They may be up to 132 characters long. Labels are used in command files as targets of the got o command.

Filenames

Filenames are subject to the restrictions of the underlying Linux operating system. Ski performs tilde ("~") expansion: if
you provide a pathname whose first word starts with atilde, Ski assumes the word is a username and tries to replace it (and
the tilde) with the user's home directory. For example, "~davi d/ hel | 0" might be expanded to "/ hone/ davi d/ hel | 0".

Resolving Ambiguous Symbols and Numbers

Some character sequences can be interpreted in more than one way. For example, the character sequence "b3" can be
interpreted as a branch register, a program-defined symbol, or a hexadecima number. To resolve the ambiguity, Ski looks
first in its symbol tables for program-defined symbols and internal variables (which includes register names). If a match is
found, the matching value is used, otherwise the character sequence is taken as a number. You can force the numeric
interpretation by putting a "0x" or "0X" prefix in front of the number, such as "0xb3". It is undefined whether Ski searches
the symbol table for program-defined symbols before or after the internal variable symbol table. Because of this, itiswiseto
avoid naming global variables and functions with names duplicating any of Ski's internal variables. In practice, this means
you should avoid using register names as hames of variables and functionsin your programs.

4 Command Language Page 57

Ski 1A-64 Simulator Reference Manual 1.0L

Page 58 4 Command Language

Ski 1A-64 Simulator Reference Manual 1.0L

5 Screen Manipulation Commands

Ski provides several commands to manipulate windows. These commands let you make major changes of context or fine
adjustments. xski provides more flexibility: you can change the location and size of xski windows using the mechanisms
provided by your window manager, and xski provides scrollbars in some windows, for minor adjustments.

Register Window Commands

As described in "The Register Window" on page 36, xski shows all five sets of registers in the Register Window, with scroll
bars and pane resizers so you can select what registers to see within each set and how much screen space should be devoted
toeach set. Thefr, gr,iar, sr,and ur commands alow you to toggle display of individual sets on and off. Illustration 47:
xski's Program Window Showing | A-64 Assembly Language Code on page 61 shows the xski Register Window.

ski has much less screen space available and therefore shows only one set and only a part of it at atime. Thefr, gr, i ar,
sr, and ur commands allow you to choose which register set to see. Therf and r b commands let you choose what part of
the chosen register set to see lllustration 47: xski's Program Window Showing 1A-64 Assembly Language Code in "The
Register Window" on page 36, which shows the ski Register Window.

Summary of Register Window Commands
rd [filename]

Dump the Register Window to the screen in a new window (xski) or using a pager (ski), or, if filename is provided, to
the file given by filename. The mnemonic stands for "register dump".

xski Register Window Commands
fr

Toggles display of the floating point registers (f r) pane in the Register Window. See Illustration 50: xski Showing Data
as Instruction Bundles on page 64.

gr

Toggles display of the general registers (gr) pane in the Register Window. See Illustration 49: xski's Assembly
Language Dump Window on page 63.

Toggles display of the IA-32 registers (eax, ebx, esp, €tc.) pane in the Register Window. See Illustration 52: xski's
Hexadecimal Dump Window on page 65.

Sr

Toggles display of the system registers (cr, rr, pkr, dbr, i br, pnt, and pnd) pane in the Register Window. See
Illustration 51: xski Showing Datain Raw Hexadecimal and ASCI| on page 64.

ur

Toggles display of the user registers (pr, br, ar, i p, ps.um) pane in the Register Window. See Illustration 48: xski's
Program Window Showing Intermixed C and | A-64 Assembly Code on page 62

ski Register Window Commands
fr

5 Screen Manipulation Commands Page 59

Ski 1A-64 Simulator Reference Manual 1.0L

Displays the floating point registers (f r) in the Register Window.
ar
Displays the general registers (gr) in the Register Window.
iar
Displaysthe |A-32 (eax, ebx, esp, €tc.) registers in the Register Window.
Sr
Displays the system registers (cr, rr, pkr, dbr , i br, pne, and pnd) in the Register Window.
ur
Displaysthe user registers (pr, br, ar, i p, ps.um) in the Register Window.
rf [count]

Moves the Register Window "forward" (scrolls down) through the currently-displayed register set. The Register
Window is scrolled count lines. If count is omitted, the Register Window scrolls down one windowful less oneling, i.e.
the last line of the old window is displayed as the first line of the new window.

r b [count]

Moves the Register Window "backward" (scrolls up) through the currently-displayed register set. The Register Window
is scrolled count lines. If count is omitted, the Register Window scrolls up one windowful less oneline, i.e. thefirst line
of the old window is displayed as the last line of the new window.

Program Window Commands

The Program Window displays disassembled instructions, one instruction per line. (See "The Program Window" on page
41))
pj [address]|

If address is specified, repositions ("jumps') the Program Window so that the 1A-64 bundle or IA-32 instruction
containing the specified address is second in the window. If no address is given, jumps to the previous location. The
mnemonic stands for "program jump".

pf [count]

Moves the Program Window forward count 1A-64 bundles or IA-32 instructions. If count is not specified, moves the
Program Window forward one windowful less one bundle or instruction. The mnemonic stands for "program forward".

pb [count]

Moves the Program Window backward count 1A-64 bundles or IA-32 instructions. If count is not specified, moves the
Program Window backward one windowful less one bundle or instruction. The mnemonic stands for "program
backward".

pa

Display the program being simulated in assembly language only, as shown in Illustration 47: xski's Program Window
Showing 1A-64 Assembly Language Code. This command is valid for I1A-64 code only. The mnemonic stands for
"program display assembly".

Page 60 5 Screen Manipulation Commands

Ski 1A-64 Simulator Reference Manual 1.0L

Program Window

Program

main alloc r33=ar.pfs,4,0,1,0 MII
mov r34=b0
or r32=rd,rl12

main+0010 adds r12=-32,r12 MFB
nop. f Ox0
nop.b 0x0;;

main+0020 or r35=r1,r0d MIB
adds r9=—48,r12
nop.b 0x0;;

main+0030 nop.m Ox0 MLI
movl r36=__data_start;;

main+0040 nop.m Ox0 MFB
nop. f Ox0
br.call.sptk.few bO=_printf;;

main+0050 or r1=r35,r0 MFB
nop. f Ox0
nop.b 0x0;;

main+0060 or r12=rQ, r32 MII
mov bO=r34
mov.i ar.pfs=r33;;

Closel Q{}‘Z‘Ql %--%eipl
[lustration 47: xski's Program Window Showing 1A-64 Assembly Language Code
pm

Display the program being simulated in its source code form with the assembly language translation mixed in, as shown
in Illustration 48: xski's Program Window Showing Intermixed C and 1A-64 Assembly Code . The source code display
is for your convenience only; you cannot interact with the source code, e.g., modify the source code, click on avariable
name to see its value in the Data Window, and so on. The source code is not embedded in the executable file. Instead,
the compiler and linker place into the executable file a record of the location and filename of the source code. The
source code file must be available to Ski in the location recorded in the executable file. In practice, this means you will
want to run xski or ski from the directory where the program was compiled. (See " The Program Window" on page 41
for more information on source code compilation.) This command is valid for |A-64 code only. The mnemonic stands
for "program display mixed".

5 Screen Manipulation Commands Page 61

Ski IA-64 Simulator Reference Manual 1.0L

Program Window

[llustration 48: xski's ProgramWindow Showing Intermixed C and 1A-64 Assembly Code

pd starting_address ending_address [filename]

Dump the assembly language trandation of the program in the area between the two addresses (inclusive) to the screen
(ski) or to awindow (xski) if no filename is given, or to the specified file if one is. Source code will not be dumped
aong with the assembly language, even if the pmcommand is given. Illustration 49: xski's Assembly Language Dump
Window shows an example of an assembly language dump of the program in Illustration 47: xski's Program Window
Showing |A-64 Assembly Language Code and Illustration 48: xski's Program Window Showing Intermixed C and
IA-64 Assembly Code . The mnemonic stands for "program dump".

Page 62 5 Screen Manipulation Commands

Ski 1A-64 Simulator Reference Manual 1.0L

progdump_popup

-
A TIR———

main alloc r33=ar.pfs,4,0,1,0 MLI -
movl r36=__data_start

main+0010 nop.m [05740] MII
mov r34=b0
or r32=r0,r12;;

main+0020 adds r12=—32,r12 MIB
or r35=r1,rd
nop.b 0x0;;

main+0030 adds r9=—48,r12 MFB
nop.f [05740]
br.call.sptk.few bO=_printf;;

main+0040 or r1=r35,rd MFB
nop.f [05740]
nop.b 0x0;;]

Closel Haln

[llustration 49: xski's Assembly Language Dump Window

Data Window Commands

The Data Window displays an area of memory in hexadecimal format and, if the window is wide enough, an ASCII
trandation. (See "The Data Window" on page 46.) The commands to adjust the Data Window are similar to those for the
Program Window and are described below.

Summary of Data Window Commands
dj [address]

If address is specified, repositions ("jumps") the Data Window so that the bytes containing the specified address are
first in the window. If no addressis given, jumps to the previous location. The mnemonic stands for "data jump”.

df [count]

Moves the Data Window forward count display lines or one windowful if count is not specified. The mnemonic stands
for "dataforward".

db [count]

Moves the Data Window backward count display lines or one windowful if count is not specified. The mnemonic stands
for "data backward".

dbndl

Displays the data as hexadecimal instruction bundles, as shown in Illustration 50: xski Showing Data as Instruction
Bundlesand in on page . It is your responsibility to ensure that the Data Window is actually positioned on instructions;
if not, Ski will dutifully display nonsense. The first column displays the address. The second column displays the
template field. The remaining three columns display the 41-bit instructions from slots 0, 1, and 2, with the least-
significant bit to the right. The mnemonic stands for "data window bundle".

5 Screen Manipulation Commands Page 63

Ski I1A-64 Simulator Reference Manual

1.0L

Dlata

=|[El%]

A000000N000T S0
main

400000000007 E0
AN /)
A000000A000T F
4000000000C0TEN
__do_global _cto%
A0000ONCO0T a0
4000000000007
ARG o0
4000000000070
4000000000007 a0

17 00103001100 04000000000
00 02c00302330 13000130350
02 000000000 00188000240
11 OE0cOetogoiy QO
00 10302000200 0015404 4000
11 OOOOS000000 QO0EO00NCH
01 02c00408330 13000150800
O 020c2000800 0000B0000CH
Da 0a0c2310Z3cE 080c2300046
1d ObOcalfi8cd Q0O0BOAMACH
1 1d8222Fe000 Q000B0000CH
QO QOAOSOOOO00 0015404 4000

QA QOO0
10800c00300
119f 80200
OB+ b
000014 2000
00103001100
1030000000
00122000340
000011186
Q2000004006
DI1FFFFCOnE
Q00014 2000

Elnsel $¢§¢|

ﬁ?ﬁ4

[lustration 50: xski Showing Data as Instruction
Bundles

dh

Displays the data as raw hexadecimal with an ASCII translation, as shown in Illustration 51: xski Showing Datain Raw
Hexadecimal and ASCII. The mnemonic stands for "data window hexadecimal".

H

Data

6000000000000 ff0 XXXXXXXKX XXXXXXXX XXXXXXXX XXXXXXXX

__data_start 48656cHc 6f2c2077 6f726cH4 0abODOOOD Hello, world....
6000000000001010 40282329 2058230 322e3031 204c5036 @(#) X.02.01 LP6
6000000000001020 3420454d 2032232 206c6962 632e615f 4 EM 2.2 libec.a_
6000000000001030 49444040 2f6d6169 6e2f7231 30736163 IDR@/main/rlbsac
6000000000001040 2f6c6962 635£7361 632£320a 40282329 flibe_sac/2.@(#)
6000000000001050 202f7578 2f636f72 652f6c69 62732f6c fux/core/libs/1
6000000000001060 6962632f 61726368 6976655f 656d3232 ibe/archive_em22
6000000000001070 5£36342f 6c696263 2e615f49 440a4028 _64/1ibe.a_ID.@(
6000000000001080 23292041 75672032 37203139 39362030 #) Aug 27 1996 O
6000000000001090 323a3132 3a353600 00000000 0OODOOOO 2:12:56.........
60000000000010a0 0DOOOOOO OOOOOOOD COODOOOO COODODODDccceueas

Closel @{}‘Z‘Ql %--%eipl

[lustration 51: xski Showing Data in Raw Hexadecimal and ASCI|

dd starting_address ending_address [filenamg]

Dump the memory area between the two addresses (inclusive) to the screen (ski) or window (xski) if no filename is
given or to the specified file if one is. The dump will be in the format selected by the most recent dbndl or dh
command. An example of a hexadecimal dump is shown in Illustration 52: xski's Hexadecimal Dump Window. The
mnemonic stands for "data dump".

Page 64 5 Screen Manipulation Commands

Ski 1A-64 Simulator Reference Manual 1.0L

__data_start 48656cHbc 6f2c2077 6£726cH4 QaROOOOO Hello, world....
6000000000001010 40282329 20582e30 3223031 204c5036 @(H#) X.02.01 LP6
6000000000001020 3420454d 20322e32 206c6962 632e615f 4 EM 2.2 libe.a_
6000000000001030 49444040 2£6d6169 6e2f7231 30736163 IDAR/main/ri10sac
6000000000001040 2f6c6962 635£7361 632f320a 40282329 /libc_sac/2.0@(#)
6000000000001050 202f7578 2f636f72 652f6c69 62732f6c fux/core/libs/1
6000000000001060 6962632f 61726368 6976655f 656d3232 ibefarchive_em22
6000000000001070 5£36342f 6c696263 2e615f49 440a4028 _64/1ibe.a_ID.@(
6000000000001080 23292041 75672032 37203139 39362030 #) Aug 27 1996 O
6000000000001090 323a3132 3a353600 OO0OOOOO OOODOOOD 2:12:56.........
60000000000010a0 00000000 ODOOOOOO OOOOODOO OOODOOODcc00ceu.
60000000000010b0 0OOO0OO0 ODOOOOOO OOOOODOO DOODOOODccc.0ceu.

Closel Haln

[llustration 52: xski's Hexadecimal Dump Window

5 Screen Manipulation Commands Page 65

Ski 1A-64 Simulator Reference Manual 1.0L

6 Program Simulation

Ski's main responsihility is to simulate |A-64 instructions and programs built from these instructions. Many commands and
features are supplied to provide you with agreat deal of flexibility in using Ski.

Application-Mode and System-Mode Simulation

Ski supports two instruction sets and two modes of simulation. The two instruction sets supported by Ski are the |1A-64
instruction set and a subset of the traditional 1A-32 instruction set, often called the "Intel x86" instruction set.

Ski's two simulation modes let you simulate an application program ("application-mode") or an operating system or
firmware ("system-mode"). For |A-64 programs, Ski determines the mode based on the presence or absence of the _at exi t
symbol. (If you strip symbols from your 1A-64 program, Ski will not find _at exi t and will assume your program is a
system-mode program.) For 1A-32 programs, you select the mode, using the i al oad command for application-mode
simulation and ther oml oad command for system-mode simulation. Program loading is discussed in "Program Loading".

Ski Support for Application-Mode Programs

To support application-mode programs, Ski emulates a Linux operating system (for 1A-64 programs) or an MS-DOS
operating system (for 1A-32 programs).

Application-Mode 1A-64 Programs

For 1A-64 programs, Ski provides (simulated) memory for the text and data portions of the program's address space. Ski
also manages a growable heap for the C language's malloc() function, a growable Register Save Engine area, and a growable
stack. As your program runs, Ski tracks the memory references emitted by the program. Ski tries to distinguish between
reasonable references and ridiculous references indicative of wild pointers. To track stack-based data structures, Ski adds
stack pages when it notices a reference to alocation just past the end of the stack. To track heap-based data structures, Ski
provides an implementation of the malloc() family of functions. ("Linux and MS-DOS ABI Emulation” on page 71
discusses Ski's pseudo-operating system in detail.) Ski tracks pages used by the Register Save Engine as well.

Application program calls to Linux system functions are emulated by the simulator or passed to the host Linux operating
system; unsupported calls cause simulation to stop. Registers are initialized according to Linux calling conventions.
Application mode programs can't access (simulated) 1/0 devices or privileged registers. Application mode programs can't
execute privileged instructions or receive interrupts; any interruptions cause Ski to stop simulation and generate an error
message. Application-mode programs never see virtual memory page faults or TLB faults and therefore the si t and sdt
simulator commands (see " System-Mode TLB Simulation™) are disabled when simulating application-mode programs.

Application-Mode I1A-32 Programs

For IA-32 programs, Ski's support is more limited. Ski provides a subset of MS-DOS" int 21 " functions. Ski does not
simulate Microsoft Windows. Loadable libraries (DLL's), config.sys , and autoexec.bat are not supported.
Environment variables are not available to MS-DOS programs. Registers and memory are initialized according to MS-DOS
conventions.

Ski Support for System-Mode Programs

A system-mode program is, as far as Ski is concerned, running on a "bare" 1A-64 processor. No operating system emulation
is provided and the system-mode program has compl ete access to the simulated 1A-64 processor.

Page 66 6 Program Simulation

Ski 1A-64 Simulator Reference Manual 1.0L

System-Mode 1A-64 Programs

A system-mode |A-64 program "sees' a more complete simulated environment: writeable registers are initialized to zero,
page and TLB faults are simulated and cause a transfer to the interruption vector table (IVT), privileged instructions can be
executed, privileged registers can be accessed, and so on. A tricky issue for system-mode simulation is handling I/O because
there are no real /O devices to simulate! Instead, Ski provides a specia interface using BREAK instructions to implement
Simulator SystemCalls (SSC's), which provide access to the console, keyboard, SCSI disk and Ethernet devices. A system-
mode | A-64 program can't access the underlying operating system; it "thinks" it's running on areal |A-64 computer.

A system-mode 1A-64 program must provide interruption handlers. The program must create a valid Interruption Vector
Table (IVT) and set the Interruption Vector Address (IVA) accordingly. You can test your interruption code by creating code
that generates conditions corresponding to internal faults, traps, and interrupts, such as divide-by-zero and page-not-present.
To test code for external interrupts, use the inter-processor interruption mechanism, as defined by the 1A-64 architecture
manual. Example assembly code for this is shown in Table 2: Example Code to Simulate an External Interrupt. Timer
interruptions can be simulated using the Simulator System Call mechanism.

$sm 0x6000 /1 Set psr.i and psr.ic to 1

mov cr.lid=r0 /'l For processor 0

nmovl r4=0xf ee00000 /1 Interrupt block base for proc 0
mov r5=0x10 /1 Interrupt vector 16

st8 [r4]=r5 /1 Code branches to iva+0x3000 (the
ext ernal

/1 interrupt handler). irr0{16} is set
to 1,
/1 ivr = 0x10

Table 2: Example Code to Smulate an External Interrupt

System-Mode IA-32 Programs

Ski does not support 1A-32 programs running in system-maode.

System-Mode TLB Simulation

The smulator provides facilities for modeling the TLB's (Translation L ookaside Buffers) for system-mode programs.

Summary of TLB Display Commands
sit
sdt

When a system-mode | A-64 program is loaded, these commands display information from the Instruction Trandation
Lookaside Buffer (ITLB) and Data Trandation Lookaside Buffer (DTLB), respectively. The simulator displays the
entire selected TLB (Tranglation Registers and the Translation Cache) on the screen, as shown in Illustration 53: sdt
Command Output in xski

The" v"and" RI D" columns represent theV (valid) bit and Region Identifier, respectively, for each TLB entry. The "
Virtual Page " and" Physical Page " columns show the actual address translation handled by each TLB entry.
The" PgSz"," ED"," AR"," PL"," D"," A"," MA",and" P" columns represent the Page Size, Exception
Deferral, Access Rights, Privilege Level, Dirty Bit, Accessed Bit, Memory Attribute, and Present fields, respectively, for
each TLB entry. Finally, the" KEY " column represents the Protection Key for each TLB entry. A blank line separates

6 Program Simulation Page 67

http://simulate.htm/#42532

Ski 1A-64 Simulator Reference Manual 1.0L

the Trandation Registers (TR's) from the Translation Cache (TC). The number of TR's and the size of the TC is
implementation-dependent. Current versions of Ski provide 16 TR's and 128 entries for the TC but this may change. If
the precise value isimportant, check the release notes.

W RID Mirtual Page Phyzical Page PgSz ED AR PL D A MA P KEY

1 000213 20000000000f4 000000000047 16k 1 1 2 o0 1 WE 1 000319 A
1 000E0b EO000000DNNZ: Q0000000M0ced 1Bk 1 3 3 1 1 WE 1 00030b

1 0003213 20000000000ec 000000000044 1Bk 1 1 3 0 1 WE 1 000319

1 000519 2000000000008 MOO0000003F34 16k 1 2 3 1 1 WE 1 000319

1 000319 200000000008 ooooooooooded 16k 1 1 3 0 1 WE 1 000319

1 000E0b BOO00000D0014 Q000000000chd 1Bk 1 3 2 1 1 WE 1 00030b

1 0003lc SFFFFFFFE0000 oooooooooachn 16k 1 3 3 1 1 WE 1 0003lc _J
1 000E0b EO0000000001E O0000000M0ca: 1Bk 1 3 3 1 1 WE 1 00030b

1 000319 200000000003 oo0000000ced 16k 1 2 3 1 1 WE 1 000319

1 000319 200000000020 oOOOOOO00bL: 16k 1 1 3 0 1 WE 1 000319

1 000208 40000000000 0O0000000ORFE 16K 1 1 2 0 1 WE 1 00030a

1 000E0b BOOOOOODNN00 Ooo0000000d18 1Bk 1 2 2 1 1 WE 1 00030b

1 000203 2000000000040 0000000004038 16k 1 1 3 0 1 WE 1 000303

1 0003lc SFFFFFFEFFFFS ooooooooooctd 16k 1 3 3 1 1 WE 1 0003ic r

[llustration 53: sdt Command Output in xski

Misaligned Data Access Trap

If the ps.ac bit is set, the |A-64 architecture requires alignment checks on memory accesses; i.e., when data accesses are
made to items larger than a byte, the appropriate number of low-order address bits must be zero. If the bit is clear, the |A-64
implementation may choose whether or not to make such checks; Ski chooses to make the checks for references from 1A-64
code. When an 1A-64 program attempts an misaligned access, the behavior of the simulator depends on whether it is
running in application-mode or system-mode. In application-mode, the simulator stops the program and displays an error
message. In system-mode, the simulator traps to the unaligned access vector.

Program Loading

The Ski simulator supports loading |A-64 programsin the standard | A-64 ELF executable format and in MS-DOS . comand
. exe formats. ELF files contain enough information to alow the simulator not only to load the program and its data, but
aso to build a symbol table, properly structure virtual memory, and initiaize the screen and i p with the proper values. For
IA-64 Linux programs, the ps.be hit is always initialized to zero, indicating that the program will run with little-endian
byte-order.

The MS-DOS formats do not include symbol table information. Instead, you must supply the information in the form of a
mapfile compatible with those created by Microsoft's "ML" linker. If you don't provide Ski with a mapfile, no program-
defined symbols will be available. The MS-DOS formats do not specify where to place the program in memory. You must
provide this information to Ski yourself. The . comformat is very basic and is supported with the i al oad and r onl oad
commands, described in "Summary of Program Loading Commands" The . exe format contains header information that is
used by thei al oad command and ignored by the r ol oad command. For this reason, . exe files are not useful in system-
mode simulation. For 1A-32 programs, only 1A-32 (little-endian) byte ordering is supported.

Page 68 6 Program Simulation

Ski 1A-64 Simulator Reference Manual 1.0L

How to Load a Program

There are two ways to load a file. The first way is to run the simulator with a 1A-64 (not 1A-32) executable program
filename as an argument. The file will be loaded immediately after the simulator initializes itself and before any command
file specified with the - i flag is executed. (see "Command Files' on page 84 and "Command Line Flags" on page 33.) An
exampleis™ xski ny_program". The second way isto usethel oad , i al oad , or ronl oad commands, which take the
filename asthe first argument, for example, " | oad ny_program”.

Summary of Program Loading Commands
| oad filename[args] +

Prepare for 1A-64 application-mode simulation: Load the file specified by filename and prepares to pass the program
args encoded using the C-language argc/argv mechanism. The file must be an |A-64 ELF file.

i al oad filename address[mapfile [args]+]

Prepare for 1A-32 application-mode simulation: Load the 1A-32 executable file specified by filename , which must be
an MS-DOS . comor . exe file and prepare to pass the program args encoded using MS-DOS command line argument
conventions. The address specifies where Ski should load the program. This should be a physical address; virtual
addressing is only supported for system-mode programs. The value you provide is used, along with information from
the . exe file or MS-DOS defaults for a . com file, to setup the 1A-32 execution environment, such as segment
descriptors, the stack pointer, etc. The mapfile is an ASCII text file providing the mappings between symbols and
addresses; it must be compatible in format with the mapfile produced by the Microsoft "ML" linker. The pg.isbit is set.

r onl oad filename address [mapfile]

Prepare for 1A-64, 1A-32, or mixed system-mode simulation: Load the MS-DOS . com -format file specified by
filename . (The MS-DOS . comformat is essentially raw binary.) Address and mapfile are as described for the i al oad
command above. The address can be physical or virtual, depending on the setting of the pg.it bit, as described in
"Addresses’ on page 55.

Notes about Program Loading

Adding Information after Loading

Sometimes, the load file doesn't contain enough information. In this case, you can use a command file (see "Command
Files' on page 84) to add more information. You execute the command file at the appropriate time, generally after loading
the program. For example, perhaps you want to test how an application program handles error conditions that are hard to
create in a"real” hardware environment. You could load the program and use a command file to create the error condition.
Then you would run the program and test its behavior.

As another example, perhaps you want to simulate the transfer of control from a bootstrap program, an interrupt, or an
application program to the operating system. You could load the operating system as a system-mode program and use a
command file to set up memory and registers to their appropriate state at the instant of the control transfer.

Creating the argc, argv, and envp Parameters

The first time an application-mode simulated program starts, it receives command line parameters and environment
variables using the C language argc/argv/envp mechanism. (1A-32 application-mode programs do not receive environment
variables.) By default, the program receives the same command line parameters you gave to Ski when you started it. For
example, if you invoked Ski as " xski my_program foo bar ", Ski would start up using the X Window System
interface, load the executable 1A-64 program ny_program, and use " foo ", " bar ", and environment variables to

6 Program Simulation Page 69

Ski 1A-64 Simulator Reference Manual 1.0L

initialize the arge, argv and envp parameters passed on the memory stack. The environment variables are a copy of the
variables Ski received from the shell when it started.

Instead of specifying the executable program on Ski's invocation line as in the example above, you can use the | oad or
i al oad commands to load the executable program. You can add extra arguments to | oad and i al oad . Later, when you
invoke the r un command, Ski will pass the extra arguments to the simulated program as command line parameters. For
example, you could issue the command " | oad my_program foo bar ". When you r un the program, Ski would pass "
foo " and " bar " to the program as command line parameters using the argc/argv/envp mechanism. Note that 1A-32
application-mode programs must be loaded with thei al oad command; they cannot be loaded from the Ski invocation line.

Program Execution

Programs may be run in their entirety without interruption, they may be stopped at appropriate places (see "Program
Breakpoints' on page 78) and continued, or they may be single-stepped for debugging purposes. The different program
execution choices are described below.

You can stop a running simulation in ski at any time with your interrupt character (usually ~C). The interrupt will be
honored at the beginning of simulation of the next instruction. xski and bski do not have interrupt handlers; if you use your
interrupt character while they are running, they will be terminated by the operating system.

Summary of Program Execution Commands
run
Starts/ restarts execution of a program at the current i p value. Generally used after a breakpoint is encountered.
cont
Same function as the r un command. The mnemonic stands for "continue".
step [count]
With no argument, executes a single instruction. If acount is specified, executes count instructions.

step until expression

Page 70 6 Program Simulation

Ski 1A-64 Simulator Reference Manual 1.0L

7 Linux and MS-DOS ABI Emulation

Asdiscussed in "Application-Mode and System-Mode Simulation™ on page 66, Ski can provide application programs with a
Linux-compatible or MS-DOS-compatible environment. The environments aren't full-blown operating system emulations,
however. The most common OS functions are provided, as described below.

Interruptions

The 1A-64 architecture defines a large set of interruption types, including faults, traps, and interrupts. Interruptions may
happen asynchronously, during an instruction, or between instructions. Like application programs running on a "real" Linux
machine, 1A-64 application-mode programs in Ski never see interruptions. Instead, Ski trandates interruptions into the
signal that a real 1A-64 Linux kernel would generate. For example, a memory access violation gets trandated into the
SIGSEGYV signdl. Similarly, if Ski receives akeyboard signal such asthe SIGINT generated (usually) by control-C, it passes
this signal on to the | A-64 application. Ski does not accurately smulate the si gi nf o and si gcont ext structures that a real
IA-64 Linux kernel would pass to a signa handler. Thus, applications relying on either of these parameters cannot be
simulated in Ski application mode.

Linux Application Environment

Ski provides a commonly-used subset of the Linux environment to 1A-64 application-mode programs. Both statically linked
and dynamically linked programs are supported. The argc, argv, and envp parameters are created on the stack as described in
"Creating the argc, argv, and envp Parameters’ on page 69. Ski initializes the IA-64 registerslike this:

sp pointsto the top of the stack.

bsp, and bspst or e are initialized in the same way the |A-64 version of Linux islikely to do.
rsc.pl isinitialized to 3.

rsc.be and ps.be are cleared.

Ski supports the Linux system calls shown in Table 3: Linux System Calls Supported by Ski. Thislist is subject to change;
consult the release notes for the latest information. The data passed between the application program and the simulated
Linux environment isinterpreted as 64 bit (LP64) quantities.

7 Linux and MS-DOS ABI Emulation Page 71

Ski 1A-64 Simulator Reference Manual 1.0L

accept access acct adjtimex
bind brk chdir chmod
chown chroot clone (fork & vfork) close
connect dup dup2 execve (1A-32 & |A-64)
exit fchdir fchmod fchown

fentl fdatasync flock fstat

fstatfs fsync ftruncate getcwd
getdents getegid geteuid getgid
getgroups getitimer getpagesize (4KB) getpeername
getpgid getpid getppid getpriority
getresgid getresuid getrlimit getrusage
getsid getsockname getsockopt gettimeofday
getuid ioctl ioperm kill

Ichown link listen Iseek

Istat mkdir mknod mmap
mmap2 mount mprotect mremap
msgget msgrev msgsnd msync
nanosleep open personality pipe

poll pread (not atomic) pwrite (not atomic) read

readlink readv (not atomic) reboot recv
recvfrom recvmsg rename rmdir
rt_sigaction rt_sigpending rt_sigprocmask rt_sigsuspend
sched_get_priority_max sched_get_priority_min sched_getparam sched_getscheduler
sched rr_get_interval sched_setparam sched_setscheduler sched_yield
select semget semop send
sendmsg sendto setdomainname setfsgid
setfsuid setgid setgroups sethostname
setitimer setpgid setpriority setregid
setresgid setresuid setreuid setrlimit
setsid setsockopt settimeofday setuid

shmat shmdt shmget shutdown
sigd stack socket socketpair stat

statfs swapoff swapon symlink
sync syslog times truncate
umask umount uname unlink

ustat utimes vhangup wait4

write writev (not atomic)

Table 3: Linux System Calls Supported by Ski

Page 72 7 Linux and MS-DOS ABI Emulation

Ski 1A-64 Simulator Reference Manual 1.0L

Ski accepts but ignores the system calls shown in Table 4: Linux System Calls Accepted but Ignored by Ski. For those that
return an error indication, the errno code is shown in parentheses. All other ignored system calls return with a success
indication, having done nothing.

_sysctl (ENCBYS) bdflush (ENCBYS) capget capset

create_module (ENCSYS) delete_module (ENCSYS) get_kernel_syms (ENCSYS) getpmsg

init_module (ENCSYS) msgctl (ENCSYS) munlockall nfsservctl

pretl ptrace (ECPNOTSUPP) putpmsg query_module (ENCSYS)
quotactl (ENOSYS) rt_sigqueueinfo rt_sigtimedwait semctl (ENOSYS)
sendfile shmctl (ENCSYS) sysfs (ENCSYS) sysinfo (ENCBYS)

Table 4: Linux System Calls Accepted but Ignored by Ski

All other system calls are unsupported. When an |A-64 application-mode program makes an unsupported system call, the
simulator stops the simulation and displays an error message.

MS-DOS Application Environment

1A-32 application-mode programs "see" a limited MS-DOS environment. The MS-DOS environment is emulated by
creating and initializing an MS-DOS Program Segment Prefix (PSP) and by setting up the stack pointer (i asp) and
segmentation registers. The arguments you gave with the i al oad command, such as "i al oad ny_program foo bar
baz", are placed in the PSP as if they were command line parameters.

Ski supports the MS-DOS "I NT 20" call to terminate the simulated program and the "I NT 21" system calls shown in Table
5: MS-DOS System Calls (in Hexadecimal) Supported by Ski. When an 1A-32 program makes an | NT 21 call that's not
supported, the simulator stops the simulation and displays an error message.

00: terminate program 02: display character 08: read keyboard without echo
09: display string 2a: get date 2c: get time

30: get version number 3c: create file with handle 3d: open file with handle

3e: closefile with handle 3f: read file or device 40: write file or device

44 device status control 44, sub-function O: get devicedata 4c: end program

51: get PSP address 62: get PSP address (same as 51)

Table 5: MS-DOS System Calls (in Hexadecimal) Supported by Ski

Program I/O

Your program may need to read from standard in (stdin: file descriptor 0) and write to standard out (stdout: file descriptor 1)
and standard err (stderr: file descriptor 2). As with all Linux programs, these file descriptors are connected, by default, to
your keyboard and screen. You can redirect them in the usual way: when you invoke Ski, use the < and > operators
recognized by most Linux shells. For example, "bski -noconsole my_program foo bar baz < test_input
>si mul at ed_out put " runs bski, loading the |A-64 program file ny_pr ogr amand passing it the argumentsf oo , bar and
baz via the argc/argv mechanism. Because no command file was provided via the -i flag (described in "Command Line
Flags' on page 33), bski internally generates a run command followed by a qui t command. The (simulated) program

7 Linux and MS-DOS ABI Emulation Page 73

Ski 1A-64 Simulator Reference Manual 1.0L

reads on standard in from the filet est _i nput and writes on standard out to the file si nul at ed_out put . Having not been
redirected, writes to standard err go to the default place, normally the terminal screen.

Page 74 7 Linux and MS-DOS ABI Emulation

Ski 1A-64 Simulator Reference Manual 1.0L

8 Debugging

The smulator provides many facilities to help you debug your programs. You can modify the current state of the simulated
processor, set program breakpoints, trace program execution, and dump a memory image into afile.

Changing Registers and Memory with Assignment Commands

Use the = command to assign a value to a register. The = command takes two arguments: the first is the name of aregister
and the second is the value to be assigned.

To change the contents of memory, you use one of five different commands, depending on whether you want to set a byte,
two bytes, four bytes, eight bytes, or a C-language string (a sequence of bytes terminated by a byte with the value zero, the
"null" byte). The commands are =1, =2, =4, =8, and =s respectively. Each command takes at least two arguments (some take
more): an address or symbol or expression resolving to an address, and the new value you want placed there.

Summary of Assignment Commands
= register_name value

The value is assigned to the register specified by register_name. The old valueislost. Unless amodifying prefix such as 0d,
Ob, or Oo is used, value will be treated as a hexadecimal number. Floating point registers must be set piecewise, using the
register name (f 2 through f 127) followed by a. s to set the sign, . mto set the mantissa, or . e to set the exponent. The first
general register, r 0, is "hardwired" to 0 and any attempt to assign to it will be rejected. Similarly, floating registers f 0 and
f 1 are "hardwired" to be 0.0 and 1.0, respectively, and predicate register p0 is "hardwired" to 1 and they too cannot be
changed. Some |A-64 registers are read-only according to the 1A-64 architecture specification, but all non-hardwired
registers are writable with Ski's = command to assist your debugging.

=1 addressvalue+
=2 address value+
=4 address value+
=8 address valuet

The value is assigned to the specified location in memory. The old value at the location is lost. The location may be on
any allocated page, including instruction pages, as discussed in " Page Allocation”. Multiple values, separated by spaces,
may be supplied; if so, they will be assigned to sequential memory addresses. Unless a modifying prefix such as 0d, 0b,
or 0o is used, value will be treated as a hexadecima number.

The =1 command truncates any extra high-order bytes of the value to make a single byte. The =2 command truncates or
pads (with zero) the high order bytes of the value as necessary to make a two-byte quantity. Similarly, the =4 and =8
commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively.

The =2, =4, and =8 commands respect the current value of the ps.be bit, which controls whether multi-byte data
memory references are big-endian (if the bit is set) or little-endian (if the bit is clear). The bit aso controls the format of
data display in the Data Window (see "The Data Window" on page 46). You can set the pg.be bit with the command "=
psr.be 1" andyou can clear it with "= psr. be 0".

Ski supports physical and virtual addressing. For more information, see "Addresses’ on page 55.
=s address string_without_spaces+

The string_without_spaces is assigned to memory locations starting at the location specified by address. A null byteis
added to the end of the string automatically. The old value at the location is lost. The location may be on any alocated
page, including instruction pages, as discussed in "Page Allocation”. Multiple values may be supplied, separated by a

8 Debugging Page 75

Ski 1A-64 Simulator Reference Manual 1.0L

space. The strings may not contain spaces and quoting it is hot aworkaround.

Examples of Assignment Commands

rl 1234

The hexadecimal value 0x1234 is assigned to general register 1. The six upper (more significant) bytes are padded with
ZEeroes.

rl ip+10
Thevaueini p added to 0x10 is assigned to general register 1.
f22.m1234 ; =f2.s 1 ; =f2. e 10033

The hexadecimal value 0x300330000000000001234 is assigned to floating register 2. The register now encodes the
decimal value of -2.2754, approximately. The "= f2. m 1234" part sets the mantissa (the 64 low-order bits). The "=
f2.s 1" part encodes the mantissa sign (the most significant of the 82 bits). The "= f2. e 10033" encodes the 17
exponent bits (which fit between the sign bit and mantissa bits), using a bias of 65,535 (Oxffff).

=4 data start+30 0d10 13feffff b3

The decimal value 10 is assigned to the four bytes starting 48 bytes past the location of the symbol " data_start".
Because the value 10 occupies only one byte, three high-order zero bytes will be padded in, so the actual value assigned
will be 0x0000000a. The value 13feffff is assigned to the four bytes starting 52 bytes past the location of
__data_start. The lower four bytes of branch register 3 will be copied into the four bytes starting 56 bytes past the
location of __data_start. (Toassign the value Oxb3, use the Ox prefix.)

=s mai n Thi sProgran sBroken

The string "Thi sPr ogr aml sBr oken" with anull byte appended is placed in memory overwriting the instructions at the start
of the program, as shown in the "before" and "after" views of Illustration 54: The Original Program Loaded in ski and
Illustration 55: The Program After Assigning a String in ski. (The symbol "nai n" traditionally marks the first instruction of
a user program written in the C language.) The instructions previously at that location are lost. If you attempt to run the
program, it will almost certainly fail! Note that the string is not quoted and has no whitespace.

Page 76 8 Debugging

Ski 1A-64 Simulator Reference Manual 1.0L

."r*

[=I[Bl[x]

General Registers
[t QO000A0A0000000 QO00A0A0000A0000 A0A0A0000A000000 Q000000000000

rd4 0000000000000000 0000000000000000 0000000000000 0000000D00000000
rE 0000000000000000 000D000000000000 0000000000000 0000000D00000000
P12 SFFFFFFFFFFFFTA0 0000000000000000 00000D0000000000 0ODO0CODO00O0000
P16 0000000000000000 0000000000000000 _ 0000000000000000_ 0000000000000000
Progres ___ _ (file:?®d |

__do_frame*+0030 br . ret . sptk.many bO EEB

nop L b 040
nop . b 03015 5

main alloc radd=ar ,.pfs, 0,3, 1,0 MII
add L r14=0xchE, rl
Moy ra32=riz

maint 0010 nag . m Q=0 HMII
Moy ra3=hi; ;
add= r17= 1BIP12

maln cOe00SE006111000 B400600400483205 L, ...

40000000000 0210000 100000002 BcfoBTOIBI006200 |, vy eeeeD. ...
Command Version 00,8731 (EAS 2.5

¥ load hello
* @] maln
* dj main

=l

[lustration 54: The Original Program Loaded in ski

=S
Gereral Registers .
g} Q0000OA0OO00000 Q0000000000000 GO00A00A00M00000 OO0OOCOOC0OA0000
g} 00000OA0D000A000 Q0000003000000 JO00A00AN0A00000 Q00000000000
g Q0D00DO0000I000 J00IA0ANCANCAD0T IO0OANOANOA0000 QOOOOCOOC00I00I0
P12 SEFFEFFFFFFEFTA0 Q0000000300000 QO00OG0OA00A0030 Q0OC0OC00C00TI000
16 Q000003000000000 Q0000000000 CO0OANOA00A0030 QOOC0AC0OC00I0000
Progrem (file:?7 |
__do_frame*+0030 br et gptk many bO EEBE
nop . b 040
nog ., b 0005 5
main illegalOp 01928390 4h42 T
illegalOp 0 1h585cE9dhd
illegallp Oxcdeedsdend?
I maint0010 (pd3) nop.n Oxdce; s MMI
arlz, i
ardzs r12=-16, r12;;

maln BTEFTZ2o0T3I695254 GFT24273496d6172 ThisProgram IzBro

4000000000030 OZ100001008e656h BcfcBTO1B0006200 ken, .. v. b, .. 8.,
Ebnland Version 00,8731 (EAS 2.5
¥

* 1nj main
dJ main

* is main ThisProgran IsBroken
*

[llustration 55: The Program After Assigning a Sring in ski

8 Debugging

Page 77

Ski 1A-64 Simulator Reference Manual 1.0L

Notes on Assignment

Address Alignment

Ski aligns addresses on natural boundaries. two-byte quantities are aligned on addresses divisible by two, four-byte
quantities are aligned on addresses divisible by four, and eight-byte quantities are aligned on addresses divisible by eight.
For example, the command

=4 data start+1 0x12345678
results in the message
Non wor d-al i gned address. Aligned to 0x6000000000001000

and the value is assigned starting one byte before the requested address. ("__dat a_st art " is a program-defined symbol for
0x6000000000001000.)

Bit-encoded Registers

Many registers are bit-encoded. You can assign to individual bits or to entire registers. For example, you can set the pg.it bit
with this:

=psr.it 1
and you can set the entire Processor Status Register (psr) with this:
= psr 1234567890abcdef
A complete list of the registers and bits Ski recognizesisin "Register Names" on page 93.

Page Allocation

Virtual memory is simulated only for system-mode programs. In system-mode, your program is responsible for page
dlocation. In application-mode, Ski handles page allocation for you. Either way, if you try to assign data to a non-existent
page using the assignment commands, Ski will refuse, with an error message. The assignment commands never cause a TLB
miss or replacement.

Evaluating Formulas and Formatting Data

The eval command evaluates one or more expressions and prints the result(s) in decimal, and hexadecimal. An example of
theeval command and a more complete discussion are in "Expressions” on page 53.

Summary of The evaa Command
eval expression+

Evaluate the expression(s) and print the result(s) on the screen. If the expression is simply a register name, the value is
display in the appropriate format: decimal, hexadecimal, or symbolically, depending on the kind of register. If the
expression has any operators, the result is displayed in decima and hexadecimal. For example, "eval ip" causes the
current value of thei p register to be displayed symbolically or in hexadecimal. But "eval +i p" causes the value to be
printed out in hexadecimal and decimal.

Program Breakpoints

Program breakpoints are "marks' within the executable code of a program that cause simulation to halt when they are

Page 78 8 Debugging

Ski 1A-64 Simulator Reference Manual 1.0L

encountered in the normal flow of a running program. When simulation stops because of a breakpoint, the instruction
pointer (i p) is pointing to the instruction at which the breakpoint is set (before the instruction is executed) and control is
returned to you.

The simulator provides several commands to let you manipulate program breakpoints. These commands are explained in
detail below.

Setting Program Breakpoints

To set a breakpoint in IA-64 code, use the bs command. For 1A-32 code, use the i abs command. If given with no
arguments, these commands set a breakpoint at the instruction pointed to by the i p register. If an addressis given following
the command, the breakpoint is set at that address. The address must be valid when Ski resumes simulation; Ski will refuse
to simulate code if any breakpoints are set at non-existent addresses. You can set breakpoints in system-mode programs
using physical or virtual addresses. See "Application-Mode and System-Mode Simulation” on page 66 for information
about system-mode programming and "Addresses" on page 55 for information on physical vs. virtua addressing.

Up to ten breakpoints may be set at any one time. They are indicated by the digits " 0" through "9" in the first column of the
program window, as the example in Illustration 56: Three Breakpoints, O, 2, and 1, Visible in xski's Program Window shows.

Program Window r
Program
_main+0420 nop.m Ox MFB
nop.f 0x0
br.ret.sptk.few bd;;
0 main alloc r33=ar.pfs,4,0,1,0 MII
mowv r34=b0
or r32=r0,rl12
2 maint0010 adds r12==32,r12 MFB
nop.f 0x0
nop.b 0x0; ;
1 maint0020 or r35=r1,r0 MIB
adds r9=—48,r12
nop.b 0x0; ;
main+0030 nop.m 0x0 MLI
movl r36=__data_start;;
main+0040 nop.m 0x0 MFB
nop.f 0x0
br.call.sptk.few bO=_printf;;
main+0050 or r1=r35,r0 MFB
nop.f 0x0
nop.b 0x0; ;
Closel {3.§<>‘2'<>| %--%eipl

[llustration 56: Three Breakpoints, O, 2, and 1, Visible in xski's Program Window

Deleting Program Breakpoints

Two commands del ete program breakpoints. The bd command deletes a specified breakpoint. The bD command deletes all
breakpoints currently set.

Listing Program Breakpoints

The bl command causes a list of currently set program breakpoints to be displayed on the screen, symbolically if possible,

8 Debugging Page 79

Ski 1A-64 Simulator Reference Manual 1.0L

as shown in lllustration 57: xski's Breakpoint List Window Showing |A-64 and |A-32 Breakpoints. The first column of the
display shows the breakpoint number, for use with the bd command. The second column displays a "P" for physically-
addressed breakpoints and "Vv" for virtually-addressed breakpoints. The column labelled "Address’ is, of course, the
breakpoint address. In the next column, "I A- 64" indicates a breakpoint in |A-64 code and "I A- 32" indicates a breakpoint in
1A-32 code. The "Command" column is currently unused.

Ereakpoints
Address Conmmand
0 P init IA-32 2]
1 P raize IA-32
2 P main IA-E4
3 P _ID_printf IA-G4
l
Elnsel

[llustration 57: xski's Breakpoint List Window
Showing |A-64 and 1A-32 Breakpoints

Notes on Program Breakpoints

How Ski Implements Breakpoints

Program breakpoints are implemented by replacing the instruction at the address of each breakpoint with an 1A-64 BREAK
instruction or an |A-32 INT3 instruction. The replacement is done at the time the program is started or restarted (e.g., with
cont) and the original instructions are replaced when the program halts. Thus, if your program reads the location where a
breakpoint is set, it will retrieve the BREAK or INT3 instruction instead. Ski detects if your program attempts to write new
data into the breakpoint location and automatically reinstalls the breakpoint after such an update.

You need to tell Ski where to set your |A-64 breakpoints but the 1A-64 architecture doesn't provide for addressability of
individual instructions. Instead, instructions are bundled. To work around this, Ski "pretends’ that the dot O instruction of a
bundle isin the first four bytes of the bundl€'s location, the slot 1 instruction is in the second four bytes of the bundle, and
the dot 2 instruction is in the third four bytes of the bundle. You can only set breakpoints at these "pretend" locations. For
example, setting a breakpoint at "rai n", "mai n+1", "mai n+2", and "mai n+3" al result in the breakpoint being set on the
first instruction in the bundle at "mai n". Similarly, "nmai n+5", "mai n+6", and "nmai n+7" all correspond to "mai n+4", and
"mai n+9", "mai n+a", and "mai n+b" al correspond to "mai n+8", If you try to set a breakpoint at the remaining bytesin the
bundle ("mai n+c", "mai n+d", "nmai n+e", and "mai n+f " in this example), Ski will generate the error message "11 | egal

slot field in breakpoint address". Ski can place IA-32 breakpoints at any byte address. If the breakpoint address
doesn't correspond to the beginning of an |A-32 instruction, Ski's behavior is undefined.

Unexpected Breakpoints
The 1A-64 breakpoint mechanism uses BREAK.M 0, BREAK.I 0, BREAK.B 0, and BREAK.F 0, and BREAK.X 0 instructions.

Page 80 8 Debugging

Ski 1A-64 Simulator Reference Manual 1.0L

These are special cases and executing these instructions will not cause "BREAK instruction trap" interrupts for system-mode
programs. The same is true for INT3 instructions in 1A-32 code. However, if Ski finds BREAK or INT3 instruction at a
location which doesn't correspond to a breakpoint, Ski's behavior depends on whether the program is simulating in
application-mode or system-mode. Application-mode programs should never generate, or expect to receive, interrupts. If Ski
reaches a BREAK or INT3 instruction in an application-mode program at a location which doesn't correspond to a
breskpoint, simulation halts and Ski displays an error message. System-mode |A-64 programs will receive the BREAK
interrupt.

Summary of Program Breakpoint Commands
bs [address]

Sets an |A-64 breakpoint at the specified address or, if no addressis given, at the location pointed to by i p.
i abs [address]

Sets an 1A-32 breakpoint at the specified address or, if no addressis given, at the location pointed to by i p.
bd breakpoint_number

Deletes the breakpoint numbered by breakpoint_number.
bD

Deletes all breakpoints.
bl

Displaysalist of currently set breakpoints.

Data Breakpoints

Data breakpoints can be viewed as temporary access restrictions on an area of data. Access of a datum within the specified
area causes a running program to halt at the instruction which attempted the access. Control is then returned to the user at
command level.

The simulator allows up to ten areas to be specified within which data breakpoints may be set. They may vary in size from
one byte to an entire region. Further, the area may be specified to cause a break either only on reads, writes, or on both reads
and writes. Several commands apply to the manipulation of these data breakpoints.

Setting Data Breakpoints

The dbs command sets data breakpoints. The command requires two arguments and accepts an optional third argument. The
first argument is the starting address of the area which is associated with the break. The second argument specifies the
length of the area (in bytes). The third argument, if present, is the string r w (default), which indicates that the break is to
occur on both reads or writes, r , which indicates that only reads cause breaks, or w, which indicates that only writes cause
bresks.

Deleting Data Breakpoints

Two commands del ete data breakpoints. The dbD command deletes all data breakpoints currently set. It takes no arguments
and requires no verification from the user. The dbd command deletes the data breakpoint with the number specified by the
argument.

8 Debugging Page 81

Ski 1A-64 Simulator Reference Manual 1.0L

Listing Data Breakpoints

The dbl command causes alist of currently set data breakpoints to be displayed on the screen, symbolically if possible.

Summary of Data Breakpoint Commands
dbs address length [type]

Sets a data breakpoint at the specified address. The length of the area (in bytes) is set to length. Type is the string r w
(default) specifying breaks on reads or writes, r , specifying breaks on reads only, or w, specifying breaks on writes only.

dbd number
Deletes the data breakpoint numbered by number.
dbD
Deletes all data breakpoints.
dbl
Displays on the screen alist of currently set data breakpoints.

Dumping Registers and Memory to a File

You can dump the registers to a file with the "r d" command, described in "Register Window Commands" on page 59. You
can dump a block of memory into a file in two forms: in hexadecimal or in symbolic disassembled form, corresponding
(roughly) to the formats in the Data Window and the Program Window, respectively. The commands to do this are "dd" and
"pd" and are described in "Data Window Commands' on page 63 and "Program Window Commands' on page 60,
respectively.

Saving and Restoring the Simulator State

You may need to interrupt a simulation session and continue it later. For example, you might be tracking down a difficult
bug and want to save the state of the simulator just before the bug occurs so you can replay the problem and try different
strategies. The save command saves the state of the currently executing program to anamed disk file. Later, you restore the
saved filewith ther est command or the - r est command line flag (described in "Command Line Flags' on page 33).

The save command saves the state of the simulated | A-64 processor, including the overlaid |A-32 registers, the symbol
table for program-defined symbols, and memory. Certain simulator state information, in particular the values of internal
variables and window-related information, is not saved. Linux and MS-DOS state information such as open file handles and
f seek pointersis not currently saved; thiswill probably change, so you should check the release notes.

Summary of Save and Restore Commands
save filename

Saves an image of the machine state (1A-64 and 1A-32) in the specified file.
rest filename

Restores an image of the machine state (1A-64 and 1A-32) from the specified file.

Symbol Table Commands
Ski supports two kinds of symbols: program-defined symbols, which are identifiers provided by a compiler, linker, or

Page 82 8 Debugging

Ski 1A-64 Simulator Reference Manual 1.0L

human programmer (see "Program-Defined Symbols' on page 56), and internal symbols, which include register names and
internal variables (see "Registers’ on page 56 and "Internal Variables' on page 56). Ski places program-defined symbols in
one symbol table; you can see the contents with the sym i st command. For 1A-64 programs, the ELF executable file
aways contains symbols, regardless of whether you used your compiler's debug symbols flag (typically - g), unless you
stripped the symbols. Internal symbols are stored in a second symbol table along with the register names Ski recognizes,
listed in "Register Names" on page 93. Thei synms command displays the contents of this table.

Summary of Symbol Commands
synl i st [filename]

Shows the list of program-defined symbols sorted by ascending address, as seen in Illustration 58: The symlist Output
from xski. If filename is given, the list is written to the named file, otherwise the list is written to the screen.

1
IValue Hame

0O00000000000458 DEBUG_LINE
AQ0Q00000000017c8 __text_start
4000000000000b40 _DYNAMIC
4000000000005300 _main
4000000000005730 main
4000000000005a40 _start
4000000000006bdd _____exit
4000000000006e20 _atexit
40000000000073cd _isalnum

LL-|

4000000000007 840 :isalpha
4000000000007 ccd _iscntrl
4000000000008140 _isdigit

Cbsel i@gﬂ
[llustration 58: The symlist Output from xski

i syns [filename]

Writes the list of internal variables to filename if given, otherwise to the screen.

8 Debugging Page 83

Ski 1A-64 Simulator Reference Manual 1.0L

9 Command Files

Thedot (" . ") command temporarily redirects command input to the ssmulator so that input is taken from the file provided
as an argument to the command. Into this file (a "command file"), you put commands as if you had typed them from the
keyboard. Several commands are specifically applicable to command files and are described below. Command files may be
nested; i.e., one command file may invoke another. The maximum nesting depth is operating-system-dependent.

Some syntax rules that apply to keyboard input don't make sense or would be cumbersome in command files. Most notably,
in ski , a shortcut for re-executing the previous command is to hit the enter/return key on an empty line. This rule is
removed in command files, so you are free to put in blank lines for readability. You can also indent lines as necessary.

The ability to assign values to registers and memory and the flow control features provide the simulator with a powerful
Church-Turing-complete command language; i.e., tasks which can be accomplished in any programming language, subject
to memory constraints, can be accomplished in the command language of the smulator. Command files are particularly
appropriate for initializing the state of the simulator and for implementing complex facilities on top of Ski's native
commands. For example, you can write command files to setup the machine state just before an /O interrupt, to create
sophisticated breakpointing, and to take complex performance measurements.

Initialization File

If you start Ski with a-i option followed by a filename, the named file will be executed as a command file before the first
prompt (see "Command Line Flags' on page 33). This feature is particularly important for bski , because without a
command file to guide it, bski will only run your program and then qui t . If you want to do anything else, you need a
command file. When you combine the - i option with Ski's ability to load a program on the command line, you can create a
powerful debugging environment. For example, this command line:

bski -i test.init -stats -icnt instruction_counts
combined with thist est . i ni t command file:

loadi a_test 0x26c50

romload test.com etext test.map

uses the command filet est . i ni t toload an 1A-64 Platform Support Filenamed i a_t est (filling in Ski's symbol table for
program-defined symbols), and then loads the 1A-32 system-mode program test.com , putting it at the location
corresponding to the symbol " etext " inia_test . The command file finishes and bski automatically executes arun
command followed by aqui t command. To start the run, thei a_t est program receives 0x26¢50 as its argv[1] value. This
corresponds to the value of the symbol " et ext " and tellsi a_t est wheret est. comwas loaded. The 1A-64 program
completes its initialization and transfers control to the |A-32 program, setting the ps.is bit appropriately. When the 1A-32
program completes, bski prints out end-of-run performance statistics and writes an instruction frequency count to the file
instruction_counts .

Labels and Control Flow in Command Files

Command files are useful as macro sequences of simple commands and, more interestingly, to create small programs that do
useful things for you: create formatted displays of data structures, create complete breakpoints, and gather run-time
statistics, for example. Two commands provide the ability to change the flow of control in acommand file: got o andi f .

The goto Command and Labels

A label identifies aparticular linein acommand file. Labels are defined in "Labels" on page 57. No other text can appear on
alabel line.

Page 84 9 Command Files

Ski 1A-64 Simulator Reference Manual 1.0L

The got o command takes a label as an argument and searches the command file for a line with that label. Execution
resumes at the first command after the label. There is no good reason to have a label appear more than once in a particular
command file; if this condition occurs, only the first occurrence of the label will be noticed and al subsequent occurrences
will be ignored. The got o command can only be executed in a command file. A got o may go forward or backward. An
example of using got 0 and alabel is:

| oop:
... other commands ...

goto | oop

The i+ Command

The i f command allows for conditional execution. If the expression following the command evaluates to nonzero, the
remainder of the line is executed; otherwise it is ignored. (No spaces are allowed in the expression.) For example, this
command file steps through a 1A-64 application-mode simulation 600 instructions at a time until the program finishes,
printing the contents of general register 32 after each step:

| oop:
step 600
eval r32

if !$exited$ goto |oop
qui t

If acolon surrounded by spaces is present on the line, the remainder of the lineistaken to be an "else" clause. That is, if the
i f expression evaluates to nonzero, the remainder of the line up to but not including the colon is executed; if zero, that part
of the line is ignored and execution continues immediately following the colon. For example, the following command file
line sets the contents of general register 4 to zero or one depending on whether the sum of the contents of general integer 1
and 2 are equal to the contents of the location pointed to by general register 13.

if (rl+r2)==*r13 =r4 0: =r1r4 1

Comments in Command Files

To document command files, you can add comments any characters following an octothorpe (also called a "pound sign” or
"sharp sign" and shown, typically, as" # ") are ignored by the command interpreter. Examples of comments are in Table 6:
An Example Command File to Compute Fibonacci Numbers

An Example Command File

Command files are easy to write. The command file in Table 6: An Example Command File to Compute Fibonacci Numbers
for computing Fibonacci numbers was written in less than five minutes and most of that time was spent making the
comments correct.

9 Command Files Page 85

Ski 1A-64 Simulator Reference Manual 1.0L

Conpute and print Fibonacci numbers from1l to 50
Initialize variables

rl0 1 # Hold n-2 th val ue

rll 1 # Hold n-1 th val ue

rl2 0 # Tenporary holding place for n-1 th value
r13 0 # Loop counter

HouononHH

eval rl10
eval rl11
Calculate and print the rest of the nunbers. The | ast

Print out first two Fi bonacci nunbers (initial val ues of

rio & r11)

line has the

stopping value of the loop index. (This is a sinple counting |oop.)

| oop:

eval +rl11 # + rmakes an expression: decinmal and hex printing

=r12 r11 # Compute n th Fibonacci term
=r11 r11+r10

=r10 r12

= r13 r13+1 # Increnent |oop counter

if r13<0d50 goto | oop # Loop again?

Table 6: An Example Command File to Compute Fibonacci Numbers

Summary of Command File Commands

. filename

Executes commands in the given command file. The file is opened and its contents are executed as if they were entered
from the keyboard. When the contents of a non-nested command file are exhausted, xski and ski resume keyboard
input and bski executes ar un command followed by a quit command. When a nested command file is exhausted,

control returns to the next-higher-level command file.
i f expression-without-spaces true-command

i f expression-without-spaces true-command : false-command

In the first form, causes the rest of the line to be ignored if expression-without-spaces evaluates to zero. Otherwise,
true-command is executed. In the second form, if expression-without-spaces evaluates to nonzero, the true-command is

executed. Otherwise, the false-command is executed.

Thei f command may be executed from the keyboard. In combination with xski 's Command History (see "The xski
Main Window" on page 48) or ski 's command repetition mechanism (see "The ski Command Window" on page 49),

this can be quite powerful.
got o label

In a command file (only), causes execution to continue following the first line in the file which contains the label .

Goto's may be forward or backward.
comment

The" #" and all characters following it until the next newline are ignored.
label :

The colon (" : ") command marks agot o label. All characters following the " :

ignored.

" and preceding the next newline are

Page 86

9 Command Files

Ski 1A-64 Simulator Reference Manual 1.0L

10 Command Reference

In the command descriptions that follow, t hi s f ace indicates literal text you should type, this face indicates operand text
you should modify, [bracketed text] indicates text you may choose to omit (never type the brackets), and the + symbol
indicates items you may repeat. The syntax of the command language is described in "Command Language" on page 52.

The order in which commands appear here is the order in which they may be abbreviated: any command may be abbreviated
to as few letters as are needed to distinguish it from all commands preceding it in the list below. For example, the "st ep”
command may be spelled out in full or abbreviated as "st e", "st ", or "s". The "save" command can be spelled out in full
or abbreviated as "sav" or "sa". It can't be abbreviated as"s" becauseit follows"st ep" in the list below.

. filename

Execute commands from the command file specified by filename. The file is opened and its contents are executed as if
they were entered from the keyboard. When the contents are exhausted, ski and xski resume reading commands from
the keyboard. bski, on the other hand, executes a r un command and then a quit command (unless, of course, the
command file already executed a qui t command). Command files can be nested to a reasonable level. See "Command
Files' on page 84.

comment
Comments may be used to help document the design and implementation of command files. A comment is any part of
a line following an octothorpe ("#"). The octothorpe and everything following it on the line are ignored. See
"Commentsin Command Files' on page 85.

label:
Labels are targets for got o commands and are valid only in command files. See "Labels and Control Flow in
Command Files" on page 84

= register_name value

Assign value to the register specified by register_name. Unless a modifying prefix such as 0d, 0o, or Ob is used, value
will be treated as a hexadecimal number. See " Changing Registers and Memory with Assignment Commands” on page
75. The register names recognized by Ski are listed in "Register Names' on page 93.

=1 address value+
=2 address value+
=4 address value+
=8 address value+

The valueis assigned to the specified location in memory. The old value at the location is lost. The location may be on
any alocated page, including instruction pages. Multiple values separated by whitespace may be supplied; if so, they
will be assigned to sequential memory addresses. Unless a modifying prefix such as 0d, 0o, or Ob is used, value will be
treated as a hexadecimal number. See "Changing Registers and Memory with Assignment Commands' on page 75.

The =1 command truncates any extra high-order bytes of the value to make a single byte. The =2 command truncates
or pads (with zero) the high order bytes of the value as necessary to make a two-byte quantity. Similarly, the =4 and =8
commands truncate or pad high order bytes to make four- and eight-byte quantities, respectively. The ps.be hit
controls whether the data is stored in big-endian or little-endian format.

=s address string_without_spaces

10 Command Reference Page 87

Ski 1A-64 Simulator Reference Manual 1.0L

The string_without_spacesis assigned to memory locations starting at the location specified by address. A null byteis
added to the end of the string automatically. The old value at the location is lost. The location may be on any allocated
page, including instruction pages. Multiple values may not be supplied. The string may not contain spaces and quoting
it is not aworkaround. See "Changing Registers and Memory with Assignment Commands' on page 75.

bs [address]
Set breakpoint at the location specified by the current value of i p or at the specified address. (IA-64 code only). See
"Setting Program Breakpoints' on page 79.

bD
Delete all breakpoints. See "Deleting Program Breakpoints' on page 79.

bd breakpoint_number

Delete breakpoint breakpoint_number. Use the bl command to get a list of al breakpoints and their corresponding
numbers. See "Deleting Program Breakpoints' on page 79.

bl
Display alist of current breakpoints. See "Listing Program Breakpoints' on page 79.

cont
Continue simulating the program from the current i p value. Most commonly used after the simulator stops at a
breakpoint. See "Program Execution” on page 70.

dj [address]
Jump the Data Window display to the specified address. If no address is given, the window display changes to the
previous location, providing a handy way to swap the display between two different parts of memory. See "Data
Window Commands" on page 63.

db [count]
Move the Data Window backward count lines or one windowful if no count is given. See "Data Window Commands"'
on page 63.

dbndl

Display the Data Window contents as instruction bundles. See "Data Window Commands" on page 63.

dbs address length [r|w rw

Set data breakpoint covering the memory area of length bytes starting at address. See " Setting Program Breakpoints"
on page 79

dbD
Delete all data breakpoints. See "Deleting Program Breakpoints' on page 79.

dbd breakpoint_number

Delete data breakpoint breakpoint_number. Use the dbl command to get a list of al breakpoints and their
corresponding numbers. See "Deleting Program Breakpoints' on page 79.

dbl

Page 88 10 Command Reference

Ski 1A-64 Simulator Reference Manual 1.0L

Display alist of current data breakpoints. See "Listing Program Breakpoints' on page 79

dd starting_address ending_address [filename]
Dump memory contents to the screen or to the file given by filename. The range dumped is between starting_address
and ending_address inclusive. The dump is formatted as hexadecimal. See "Data Window Commands' on page 63.

df [count]
Move the Data Window forward count lines or one windowful if no count is given. See "Data Window Commands' on
page 63.

dh
Display DataWindow contents in hexadecimal format. See "Data Window Commands’ on page 63.

eval expresson without_spaces+

Evaluate one or more expression_without_spaces and print the result in an appropriate format, typically hexadecimal,
and/or decimal, or symbolically. An expression without spaces can include numbers, registers, interna variables,
program-defined symbols, operators, and parentheses for grouping. See "Evaluating Formulas and Formatting Data' on

page 78.

fr
ski: Show the floating point registersin the Register Window. See "Register Window Commands' on page 59.

xski: Toggle the display of the floating point registers pane. See "Register Window Commands" on page 59.

got o label

Causes execution to continue following the first line in the file which contains the label. Goto's may be forward or
backward. Goto's are valid only in command files. See "The goto Command and Labels" on page 84.

ar
ski: Show the general registersin the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the general registers pane. See "Register Window Commands" on page 59.

hel p [command_name]

Display a list of the commands Ski recognizes, or, if a command_name is specified, a syntax description for that
command. See "Command Entry" on page 52.

ski: Show the IA-32 registersin the Register Window. See "Register Window Commands" on page 59.
xski: Toggle the display of the | A-32 registers pane. See "Register Window Commands" on page 59.

i abs [address]

Set 1A-32 breakpoint at address or at the current value of i p if address is omitted. (IA-32 code only) See "Setting
Program Breakpoints" on page 79.

i al oad filename address [mapfile [args]+]

10 Command Reference Page 89

Ski 1A-64 Simulator Reference Manual 1.0L

Prepare for |A-32 application-mode simulation: Load an 1A-32 executable file (. comor . exe) and prepare to pass the
program args using the MS-DOS command line parameter mechanism. address specifies where to load the program.
mapfile provides Ski with the mapping between program-defined symbols and their addresses and must specify an
ASCII text file exactly compatible with mapfiles produced by the Microsoft "ML" linker. See "How to Load a
Program" on page 69.

i f expression_without_spacestrue_command [: false command]

Execute true_command if the expression_without_spaces evauates to a non-zero value, false_command if it evaluates
to zero. See "The if Command" on page 85.

i syns [filename]
Writeinternal symbols to the screen or to the file given by filename. See " Symbol Table Commands"' on page 82.

| oad filename [args]+

Prepare for 1A-64 application-mode simulation: Load the 1A-64 ELF executable program file given by filename and
prepare to pass the program args using the C language argc/argv parameter mechanism. See "How to Load a Program”
on page 69.

pj [address]|

Jump the Program Window display to the specified address. If no address is given, the window display changes to the
previous location, providing a handy way to swap the display between two different parts of the program. See
"Summary of Program Loading Commands" on page 69.

pa

Display the program in assembly language format only. (I1A-64 only) See "Summary of Program Loading Commands'
on page 69.

pb [count]

Move the Program Window backward count 1A-64 bundles or |A-32 instructions, or one windowful less one bundle or
instruction if no count is given. See " Summary of Program Loading Commands' on page 69.

pd starting_address ending_address [filenamg]

Dump memory to the screen or to the file given by filename. The range dumped is between starting_address and
ending_address inclusive. The dump is formatted as disassembled instructions, without source code. See " Summary of
Program L oading Commands" on page 69..

pf [count]

Move the Program Window forward count 1A-64 bundles or A-32 instructions, or one windowful less one bundle or
instruction if no count is given. See " Summary of Program Loading Commands' on page 69.

pm

Display an IA-64 program in both source and assembly form. The source code file must be available to the simulator in
the location recorded in the executable file when this command is issued. The source code is displayed for
convenience; it cannot be modified or interacted with. Mixed display may not be useful if a high degree of
optimization was applied during compilation. (I1A-64 only) See "Summary of Program Loading Commands" on page
69.

qui t [return value for_shell]

Page 90 10 Command Reference

Ski 1A-64 Simulator Reference Manual 1.0L

Quit the simulator. If no return_value_for_shell is given, a zero value is returned to the shell. Return values are useful
in shell script programming. See " Quitting Ski" on page 35.
run

Simulate the program. Using the C language argc/argv mechanism, Ski will pass the program a copy of the command
line parameters Ski received on its command line, or, if specified, the command line parameters provided with the
| oad and i al oad commands. See "Program Execution" on page 70.

rest filename

Restore the state of a simulated processor from the specified file and prepare to resume a suspended simulation. Only
the registers and memory of the simulated processor are restored; state information private to the smulator such as
cycle countsis not restored. See " Saving and Restoring the Simulator State”" on page 82.

rf [count]

Moves the Register Window "forward" (scroll down) through the currently-displayed register set. The Register
Window is scrolled count lines. If count is omitted, the Register Window scrolls down one windowful less one line, i.e.
the last line of the old window is displayed as the first line of the new window. (ski only) See "ski Register Window
Commands" on page 59.

r b [count]

Moves the Register Window "backward" (scroll up) through the currently-displayed register set. The Register Window
is scrolled count lines. If count is omitted, the Register Window scrolls up one windowful less one line, i.e. the first
line of the old window is displayed as the last line of the new window. (ski only) See "ski Register Window
Commands" on page 59.

rd [filename]
Dump the Register Window to the screen or to the file given by filename. See "Register Window Commands" on page
59.

r om oad filename address [mapfil€]

Load an MS-DOS . comformat file for |A-64, 1A-32, or mixed system-mode simulation. address specifies where to
load the program. mapfile provides Ski with the mapping between program-defined symbols and their addresses and
must specify an ASCI| text file exactly compatible with mapfiles produced by the Microsoft "ML" linker. See "How to
Load a Program" on page 69.

st ep [count

Execute count instructions or, if no count is specified, one instruction. See "Program Execution” on page 70.
step until expression_without spaces
Execute instructions until the expression_without_spaces has a non-zero value. See "Program Execution” on page 70.

save filename

Save the state of a simulated processor in the file given by filename. Only the registers and memory of the ssmulated
processor are saved; state information private to the smulator such as cycle counts is not saved. See "Saving and
Restoring the Simulator State” on page 82.

sdt

10 Command Reference Page 91

Ski 1A-64 Simulator Reference Manual 1.0L

Show the Data Trandation Lookaside Buffer (DTLB) (system-mode only). See "Symbol Table Commands' on page
82.

Sit
Show Instruction Translation Lookaside Buffer (ITLB) (system-mode only). See " Symbol Table Commands' on page
82.

Sr

ski: Show the system registers (Control Registers, Region Registers, Debug Registers, Protection Key Registers, Data
Breakpoint Registers, Instruction Breakpoint Registers, Performance Monitor Configuration Registers, Performance
Monitor Data Registers) in the Register Window. See "Register Window Commands"' on page 59.

xski: Toggle the display of the system registers pane. See "Register Window Commands" on page 59.

synl i st [filename]
Write program-defined symbols to the screen or to the file given by filename. See " Symbol Table Commands' on page
82.

ur
ski: Show the user registers (Predicate Registers, Branch Registers, Application Registers, Instruction Pointer, User
Mask) in the Register Window. See "Register Window Commands" on page 59.

xski: Toggle the display of the user registers pane. See "Register Window Commands' on page 59.

Page 92 10 Command Reference

Ski 1A-64 Simulator Reference Manual 1.0L

11 Register Names

IA-64 registers are fully described in other documents. This chapter provides alist for convenience only. The register names
are documented here as recognized by Ski and, in a few cases, don't exactly match the names in other documents due to
program limitations. For example, the floating point registers must be accessed in three pieces. the mantissa part, the sign
part, and the (biased) exponent part. Similarly, the "Not a Thing" bits of the various registers are separate entities for Ski.
Individua bits of complex registers such as the psr are documented here as well, corresponding to the names by which Ski

recognizes them.

IA-64 Registers

a, ah, ax, eax

ar0 - ar127
b0 - b7

bl, bh, bx, ebx

bp, ebp

bsp
bspst
Cccv

cl, ch, cx, ecx

cmev
cr0 - cri27
cs

cd

dbr0 - dbr15
der

dl, dh, dx, edx

di, edi

IA-32 Registers: al and ah are byte-wide, ax is a and ah taken together as two bytes, eax is four bytes
wide with ax as the two least significant bytes.

IA-64 Application Registers
|A-64 Branch Registers

I1A-32 Registers: bl and bh are byte-wide, bx is bl and bh taken together as two bytes, ebx is four bytes
wide with bx as the two least significant bytes.

IA-32 Base Pointers: bp is two bytes wide, ebp is four bytes wide with bp as the two least significant
bytes.

IA-64 Register Save Engine (RSE) Backing Store Pointer Register
IA-64 Register Save Engine (RSE) Backing Store Pointer Register for memory stores
|A-64 Compare and Exchange Vaue Register

I1A-32 Registers: cl and ch are byte-wide, cx is ¢l and ch taken together as two bytes, ecx is four bytes
wide with cx as the two least significant bytes.

IA-64 Corrected Machine Check Vector Register
IA-64 Control Registers

IA-32 Code Segment Register

I1A-32 Code Segment Register Descriptor

|A-64 Data Breakpoint Registers

|A-64 Default Control Register

I1A-32 Registers: dl and dh are byte-wide, dx is dl and dh taken together as two bytes, edx is four bytes
wide with dx as the two least significant bytes.

1A-32 Arithmetic Registers: di is two bytes wide, edi isfour bytes wide with di as the two least significant

11 Register Names

Page 93

Ski 1A-64 Simulator Reference Manual 1.0L

ds

dsd

ec

eflags
eflags.ac
eflags.af
eflags.be
eflags.cf
eflags.df
eflags.id
eflags.if
eflags.iopl
eflags.le
eflags.It
eflags.nt
eflags.of
eflags.pf
eflags.rf
eflags.sf
eflags.tf
eflags.vm
eflags.zf
€0i

s

esd

bytes.

IA-32 Data Segment Register

IA-32 Data Segment Register Descriptor
|A-64 Epilog Count Register

IA-32 Flags Register

IA-32 Alignment Check bit

IA-32 Auxiliary Carry Flag bit, also called the IA-32 Adjust Flag bit

1A-32 Below Equal Flag bit
I1A-32 Carry Flag hit

IA-32 Direction Flag bit
IA-32 ID Flag bit

IA-32 Interruption Flag bit
1A-321/0O Privilege Level bit
1A-32 Less Equal Flag bit
IA-32 Less Than Flag bit
IA-32 Nested Task bit

1A-32 Overflow Flag bit
IA-32 Parity Flag bit

IA-32 Resume Flag bit
IA-32 Sign Flag bit

IA-32 Trap Flag bit

IA-32 Virtual 8086 Mode bit
I1A-32 Zero Flag bit

IA-64 End of Interrupt
1A-32 "Extra' Segment Register

IA-32 "Extra" Segment Register Descriptor

Page 94

11 Register Names

Ski 1A-64 Simulator Reference Manual 1.0L

esp

I1A-32 four byte Stack Pointer; see "iasp" below

fO.e, fl.e, & f127.e

|A-64 Floating-point Register exponent parts

fO.m, f1.m, & f127.m

| A-64 Floating-point Register mantissa parts

fO.s fl.s, & f127.s

fpsr
fps.traps
fpsr.sfO
fpsr.sf0.ftz
fpsr.sfO.wre
fpsr.sfO.pc
fps.sfO.rc
fpsr.sfO.v
fpsr.sfO.d
fps.sf0.z
fps.sf0.0
fpsr.sfO.u
fpsr.sf0.i
fpsr.sfl
fpsr.sf2
fpsr.sf2.pc
fpsr.sf2.rc
fpsr.sf2.v
fpr.sf2d

fpr.sf2.z

|A-64 Floating-point Register sign bits

| A-64 Floating-point Status Register

|A-64 FPSR Trap Bits

I1A-64 FPSR Status Field O

IA-64 FPSR Status Field 0, Flush-to-Zero mode bit.

I1A-64 FPSR Status Field 0, Widest range exponent mode hit

IA-64 FPSR Status Field O, Precision control bits

IA-64 FPSR Status Field 0, Rounding control bits

IA-64 FPSR Status Field O, |EEE Invalid Operation status bit
IA-64 FPSR Status Field 0, Denormal/Unnormal Operand status bit
|A-64 FPSR Status Field O, IEEE Zero Divide status bit

IA-64 FPSR Status Field O, |EEE Overflow status bit

IA-64 FPSR Status Field O, IEEE Underflow status bit

|A-64 FPSR Status Field O, |EEE Inexact status bit

I1A-64 FPSR Status Field 1

IA-64 FPSR Status Field 2

IA-64 FPSR Status Field 2, Precision control bits

IA-64 FPSR Status Field 2, Rounding control bits

IA-64 FPSR Status Field 2, |EEE Invalid Operation status bit
IA-64 FPSR Status Field 2, Denormal/Unnormal Operand status bit

|A-64 FPSR Status Field 2, IEEE Zero Divide status bit

11 Register Names Page 95

Ski 1A-64 Simulator Reference Manual 1.0L

fp.sf2.0 IA-64 FPSR Status Field 2, IEEE Overflow status bit
fpsr.sf2.u IA-64 FPSR Status Field 2, IEEE Underflow status bit
fpsr.sf2.i |A-64 FPSR Status Field 2, |IEEE Inexact status bit

fpsr.sf3 I1A-64 FPSR Status Field 3

fs IA-32 additional extra Segment Register

fsd IA-32 additional extra Segment Register Descriptor

gdtd IA-32 Global Descriptor Table Descriptor

ap IA-64 Global Pointer, a synonym for rl

gp.nat IA-64 Global Pointer Not-aThing bit, a synonym for rl.nat
gs IA-32 additional extra Segment Register

gd IA-32 additional extra Segment Register Descriptor

iasp, esp 1A-32 Stack Pointer: iasp is two bytes wide, esp is four bytes wide with iasp as the two least significant

bytes. (The x86 mnemonic for the iasp register is "sp" but that conflicts with the |A-64 Stack Pointer of
the same name, hence the name change for 1A-32.)

ibrO - ibr15 |A-64 Instruction Breakpoint Registers

ifa | A-64 Interruption Faulting Address Register
ifs IA-64 Interruption Function State

iha |A-64 Interruption Hash Address

iim IA-64 Interruption Immediate Register

iip IA-64 Interruption Instruction Bundle Pointer
iipa |A-64 Interruption Instruction Previous Address
ip | A-64 Instruction Pointer

ipsr IA-64 Interruption Processor Status Register
irr0-irr3 IA-64 Interrupt Request Registers

isr |A-64 Interruption Status Register

itc |A-64 Interval Time Counter

itir IA-64 Interruption TLB Insertion Register

Page 96 11 Register Names

Ski 1A-64 Simulator Reference Manual 1.0L

itm

itv

iva

ivr

kO - k7

Ic

Idt

Idtd

lid

IrrO-lrrd

pO - p63

pfs

pkrO - pkrl5
pmcO0 - pmcl15
pmdoO - pmd15
pmv

psr

ps.ac

psr.be
psr.bn
ps.cpl
psr.da
psr.db
psr.dd
psr.dfh

ps.dfl

IA-64 Interval Timer Match Register
IA-64 Interval Timer Vector

IA-64 Interrupt Vector Address
IA-64 Interrupt Vector Register
I1A-64 Kernel Registers

IA-64 Loop Count Register

IA-32 Loca Descriptor Table

IA-32 Loca Descriptor Table Descriptor
I1A-64 Locd Interrupt ID

IA-64 Loca Redirection Registers
|A-64 Predicate Registers

| A-64 Previous Function State

|A-64 Protection Key Registers

|A-64 Performance Monitor Configuration Registers

|A-64 Performance Monitor Data Registers
|A-64 Performance Monitoring Vector
|A-64 Processor Status Register

IA-64 PSR Alignment Check bit

IA-64 PSR Big-Endian bit

IA-64 PSR Register Bank bit

IA-64 PSR Current Privilege Level

IA-64 PSR Disable Access and Dirty-bit faults bit
IA-64 PSR Debug Breakpoint fault bit
IA-64 PSR Data Debug fault disable bit
IA-64 PSR Disabled Floating-point High bit

IA-64 PSR Disabled Floating-point Low hit

11 Register Names

Page 97

Ski 1A-64 Simulator Reference Manual 1.0L

ps.di I A-64 PSR Disable Instruction set transition bit
psr.dt IA-64 PSR Data address Trandlation bit

ps.ed IA-64 PSR Exception Deferral bit

ps.i IA-64 PSR Interrupt unmask bit

ps.ic IA-64 PSR Interrupt Collection bit

ps.id IA-64 PSR Instruction Debug fault disable bit
ps.is IA-64 PSR Instruction Set bit

ps.it IA-64 PSR Instruction address Tranglation bit
ps.Ip IA-64 PSR Lower Privilege transfer trap bit
psr.mfh IA-64 PSR Floating-point High modified bit
psr.mfl IA-64 PSR Floating-point Low modified bit
ps.mc IA-64 PSR Machine Check abort mask bit
psr.pk IA-64 PSR Protection Key enable bit

ps.pp IA-64 PSR Privileged Performance monitor enable bit
ps.ri IA-64 PSR Restart Instruction slot number
ps.rt IA-64 PSR Register stack Trandlation bit

ps.si IA-64 PSR Secure Interval timer bit

psr.sp IA-64 PSR Secure Performance monitors bit
psr.ss IA-64 PSR Single Step enable bit

ps.tb | A-64 PSR Taken Branch trap bit

psr.um IA-64 PSR User Mask bits

psr.up IA-64 PSR User Performance monitor enable bit
pta | A-64 Page Table Address

ro, rl, & r127 |A-64 General Registers

rO.nat, & rl27.nat
|A-64 General Register Not-a-Thing bits

Page 98

11 Register Names

Ski 1A-64 Simulator Reference Manual 1.0L

rnat |A-64 Register Save Engine (RSE) Not-a-Thing (NaT) Collection Register

rp IA-64 Return Pointer, a synonym for b0

rrQ - rr7 |A-64 Region Registers

rrbf I1A-64 CFM Register Rename Base for floating-point registers

rrbg I1A-64 CFM Register Rename Base for general registers

rrbp I1A-64 CFM Register Rename Base for predicate registers

rsc I1A-64 Register Stack Configuration Register

S, esi IA-32 Arithmetic Registers: si istwo byteswide, esi is four bytes wide with si as the two least significant
bytes.

sof IA-64 CFM Size of Stack frame

sol IA-64 CFM Size of Locals Portion of Stack frame

sor IA-64 CFM Size of Rotating Portion of Stack frame

sp IA-64 Stack Pointer, a synonym for r12. For the IA-32 equivaent of the x86 "sp" register, see the
description of "iasp" above.

sp.nat IA-64 Stack Pointer Not-a-Thing bit, a synonym for r12.nat.

ss IA-32 Stack Segment Register

ssd 1A-32 Stack Segment Register Descriptor

tpr IA-64 Task Priority Register

unat IA-64 User Not-a-Thing (NaT) Collection Register

11 Register Names Page 99

Ski 1A-64 Simulator Reference Manual 1.0L

12 Internal Variable Names

Ski has one combined symbol table for registers and internal variables. (See "Registers’ on page 56 and "Internal Variables'
on page 56.) A separate symbol table describes program-defined symbols.

Internal Variables

$cycless Number of "virtual cycles' simulated.

$exited$ The value 0 until the simulated program exits. Then the variable takes the value 1.
$heap$ The address of the bottom of the simulated heap.

$instsd The number of instructions simulated so far.

Page 100 12 Internal Variable Names

Ski 1A-64 Simulator Reference Manual 1.0L

13 Simulator Status and Error Messages

The following is a description of some of the status and error messages which can be produced by the simulator. "Fault" and
"Trap" messages are usually the result of a program trying to do something that, under Linux, would cause a signa to be
generated.

The "%" constructs are printf() substitutions. Where "%s" appears, a string will be substituted in the error message at
runtime. Where "%lIx" appears, a 64-bit hexadecimal integer will be substituted in the error message at runtime. See the
printf() man page for more information on % substitutions.

All breakpoints deleted
You executed the bD command. Ski is confirming that it has deleted all the breskpoints. Thisis a status message, not an
error message. See See "Deleting Program Breakpoints' on page 79.

All breakpointsin use
You tried to set a breakpoint but al ten are in use. Use the bl command to list them and then the bd or bD commands
to free up some for you to use. See " Setting Program Breakpoints' on page 79.

Assignment failed
You tried to use the =1, =2, =4, =8, or =s commands to write data to an invalid location. Ski creates new pages of
memory when the simulated program needs them; Ski will not create new pages in response to the assignment
commands. See "Changing Registers and Memory with Assignment Commands" on page 75.

Bad breakpoint number. (Use 0-9)
You tried to specify a breakpoint but used an invalid specifier. There are ten breakpoints, numbered 0 through 9. See
"Deleting Program Breakpoints' on page 79.

Break instruction fault
A non-Ski-breakpoint BREAK instruction was executed. One possible cause is a wild branch to page with all zeroes.
This can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "How Ski Implements Breakpoints' on page 80 and "Interruptions' on page 71.

Breakpoint already set at that location
You tried to set a breakpoint at an address where there already is a breakpoint. Your request is ignored; Ski will not set
two breakpoints at one address. See " Setting Program Breakpoints' on page 79.

Breakpoint #%d at % s (%s) deleted
You used the bd command to delete a specific breakpoint. Ski is confirming that it has deleted the breakpoint. Thisisa
status message, not an error message. See "Deleting Program Breakpoints' on page 79.

Breakpoint (1A-64) at %s
An 1A-64 breakpoint has been reached. This is a status message, not an error message. See "Program Breakpoints® on
page 78.

Breakpoint (1A-32) at %s
An 1A-32 breakpoint has been reached. This is a status message, not an error message. See "Setting Program

13 Simulator Status and Error Messages Page 101

Ski 1A-64 Simulator Reference Manual 1.0L

Breakpoints' on page 79.

Breakpoint #%d wasn't set

You used the bd command to delete a specific breakpoint but that breakpoint doesn't exist. Did you specify the right
breakpoint? Use the bl command to list the breakpoints. See "Deleting Program Breakpoints' on page 79 and perhaps
"Listing Program Breakpoints' on page 79.

Cannot accessregistersoutside current frame

You tried to use the = command to assign a hew value to a register that isn't in the set of registers currently visible to
your program. The only registers for which this can occur are the General Registers (gr) and their NaT bits. Ski
faithfully implements |A-64 register stacking and rotation. Look at the most recent ALLOC instruction.

Cannot open file%s (%s) for %s

This generic error message indicates that Ski tried to open a file and failed. The first %s field is replaced with the
filename you provided, the second %s field is replaced with the filename Ski tried to use after tilde expansion, and the
third %s field is replaced with the mode Ski tried to use, either "r eadi ng", "wri ti ng", or "appendi ng". Check that
you typed the filename correctly and that the directories you specified are accessible. |s there a permissions problem or

anetwork failure, perhaps? See "Filenames" on page 57.

Construct DWARF image: can't find .debug_info section
You told Ski to load a program. Ski couldn't find the part of the executable file containing source code line number
information. As a result, Ski won't be able to show source code in the Program Window. See "Program Window
Commands" on page 60.
Could not open %sfor reading
You told Ski to load a program but Ski couldn't open the file you specified. Perhaps you specified a file that is doesn't
exist or a pathname that includes non-existent or inaccessible directories? See "Program Loading" on page 68.
couldn't find label %s
A command file tried to use the got o command but Ski can't find the label to which the got o refers. The %s field is
replaced with the label. Perhaps the label is spelled incorrectly? See "The goto Command and Labels" on page 84.
Couldn't open file %s. Wasski started in theright directory?

Ski loaded a program to simulate, per your request, and tried to access source code pointed to by that program. But, for
some reason, Ski couldn't open the specified file. This can happen, for example, if files have been moved after
compilation. See "Program Window Commands" on page 60.

Couldn't open instruction count file

You started bski with the -i cnt option but bski couldn't open the file you specified. Perhaps you specified afile that
is write-protected or a pathname that includes non-existent or inaccessible directories? See "Using bski for Batch
Simulations" on page 31 and "Command Line Flags' on page 33.

Data larger than a %s. Truncated to 0x%]Ix

You used the =, =1, =2, =4, or =8 commands to write data to a register or to memory. You provided more data than
would fit, so Ski truncated the excess most significant part away and used the least significant part. The %sfield on the
left is how many bytes Ski needed. The %lIx field on the right is the value after truncation. See " Changing Registers

Page 102 13 Simulator Status and Error Messages

Ski 1A-64 Simulator Reference Manual 1.0L

and Memory with Assignment Commands" on page 75.

Error reading %s line: %d

Ski tried to display the source code corresponding to an |A-64 program you loaded. For some reason, it failed to read a
line from the file represented by the %s field, at the line humber represented by the %d field. Perhaps the file
permissions are wrong or aremote file has suddenly become inaccessible? See " The Program Window" on page 41 and
the discussion of the pmcommand in "Program Window Commands" on page 60.

Error: unrecognized restorefiletag: %s
You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See "Saving and
Restoring the Simulator State" on page 82.

Expression aligned to (mod %lld) boundary

You tried to assign an address to a register that requires an address on a specific boundary, but the address you
specified isn't on that boundary. Ski has adjusted the address for you, but you should check to make sure the
adjustment matches your intent. See "Changing Registers and Memory with Assignment Commands" on page 75.

Expression > 47

You tried to assign avalue greater than 47 to ther r bp register.

Expression > 95
Youtried to assign avalue greater than 95 to ther r bf or rr bf register.

Filesize> Memory size

Youtried to load an | A-64 program but the library Ski usesto parse ELF files can't make sense of the file. Are you sure
it's an |A-64 program and not an 1A-32 program, an object file, or something completely different? See "Program
Loading" on page 68.

Following values could not be assigned:

You supplied multiple values in an =1, =2, =4, or =8 command. Some of the values overflowed on to the next page of
memory but that page hasn't been allocated. Ski creates new pages of memory when the simulated program needs
them; Ski will not create new pages in response to assignment commands. See " Changing Registers and Memory with
Assignment Commands" on page 75.

FP exception fault

An 1A-64 application-mode program attempted to execute a floating point operation that doesn't make sense, such as
divide by zero or square root of a negative number. This can only happen for | A-64 application-mode programs; |1A-64
system-mode programs handle this fault through the interruption mechanism. See "Program Simulation" on page 66
and "Interruptions" on page 71.

FP exception trap

An 1A-64 application-mode program caused a floating-point trap. This trap, like all traps, stops smulation of
application-mode programs. A trap is different from afault: faults are detected before the machine state is changed, for
example when an attempt is made to divide by zero. Traps are detected after the machine state is changed, for example,
when numeric overflow occurs. This can only happen for application-mode programs; system-mode programs handle
this trap through the interruption mechanism. See "Program Simulation" on page 66 and "Interruptions" on page 71.

13 Simulator Status and Error Messages Page 103

Ski 1A-64 Simulator Reference Manual 1.0L

goto only allowed inside a command file
You tried to execute the got o command from the keyboard. The command is only legal within command files. See
"The goto Command and Labels" on page 84.

Halting Simulation
Your 1A-64 system-mode program executed a BREAK 0 instruction at a place where there is no Ski breakpoint. See
"How Ski Implements Breakpoints' on page 80 and " System-Mode |A-64 Programs" on page 67.

help: Unknown command: %s
You asked Ski to tell you about a particular command but the command you asked for doesn't exist. Try the hel p
command aloneto get alist of al of the commands Ski understands. See "Command Entry" on page 52.

| A-32 program terminated

An 1A-32 application-mode program finished executing and invoked an MS-DOS system function to terminate itself.
The function it used doesn't provide a way for the program to return a completion status. See "Application-Mode
IA-32 Programs" on page 66.

| A-32 program terminated with status %d
Your 1A-32 application-mode program finished execution in the normal fashion and invoked an MS-DOS system
function to terminate itself and indicate a completion status. See "Application-Maode 1A-32 Programs" on page 66.
Ignored attempt to write a Read-Only symbol
Some registers and symbols recognized by Ski are read-only. You tried to modify one of them. See "Symbolic
Arguments' on page 55 and "Changing Registers and Memory with Assignment Commands' on page 75.
[llegal expression: %s
You used an expression that can't be parsed. Check parentheses, variable hames, and the matching of operands and
operators. See "Expressions’ on page 53.
%s: lllegal number of arguments< %d >:

You passed too few or too many operands with a Ski command. The command appears in the %s field on the |eft and
the number of operands you passed appears in the %d field on the right. Use the hel p command for information about
the command of interest or see "Command Reference” on page 87.

Illegal operation fault

An attempt was made to execute an invalid instruction; probably a wild pointer in a jump table caused a wild branch.
This can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "Program Simulation" on page 66.

Illegal slot field in breakpoint address

You used the bs command to set an |1A-64 breakpoint, but you specified an address in the last four bytes of a bundle.
Because the |A-64 architecture provides for bundle-level, but not instruction-level, addressing, Ski "pretends’ that the
first instruction of the bundle is in the first four bytes, the second instruction is in the second four bytes, and the third
instruction is in the third four bytes. You specified a location in the fourth four bytes of a bundle and that isn't allowed
by Ski. See " Setting Program Breakpoints' on page 79 and "How Ski |mplements Breakpoints' on page 80.

Page 104 13 Simulator Status and Error Messages

Ski 1A-64 Simulator Reference Manual 1.0L

Interrupting simulation

Ski received a SIGINT signal while simulating, probably because you hit control-C (or whatever key you have
configured to interrupt arunning program.) This is a status message, not an error message. See "Interruptions' on page
71 and the first few paragraphs of "Command Files' on page 84.

missing command

Youused the"i f expression true_command : false_command" command. Either you left the true_command blank and
the expression evaluated to a non-zero value, or you left the false command blank and the expression evaluated to zero.
See "Theif Command" on page 85.

Missing ELF header

See "File size > Memory size".

Missing file version number

You are trying to restore a saved simulator state and the first non-blank, non-comment line of the file doesn't begin
with "file_ver", the file version string. Is the file a Ski smulator state save file? See "Saving and Restoring the
Simulator State" on page 82.

missing value for option %s

You specified acommand line option that requires an argument. See "Command Line Flags' on page 33.

Morethan %d charactersin expression: %s

You gave Ski an expression that istoo long for it to parse. Try a shorter expression. See "Expressions' on page 53.

Nesting over flow
You invoked a command file from within another command file, and another command file from within there, and
again and again... and you did it too much. Do you have an recursive loop, where a command file invokes itself? See
"Command Files" on page 84.

No breakpoints set
You tried to list all breakpoints with the bl command but there aren't any. See "Listing Program Breakpoints' on page
79.

No breakpointsto delete
You tried to delete all breakpoints with the bD command but there aren't any. See "Deleting Program Breakpoints' on
page 79.

No previous command
You tried to re-run the previous command in ski but you haven't executed any commands yet there is nothing to re-run.
See "The ski Command Window" on page 49.

No such command

You typed a command to Ski that Ski doesn't understand. Either you mis-typed, or Ski is broken, or the rules that
underpin the basic functioning of our universe have ceased to operate properly. In the first case, try typing your
command correctly; use the "hel p" command or see "Command Reference’ on page 87 to find out what the

13 Simulator Status and Error Messages Page 105

Ski 1A-64 Simulator Reference Manual 1.0L

commands are. In the third case, you're on your own; bring film.

No such user %s

You specified afilename with a leading tilde ("~"), causing Ski to try to expand the first word into the home directory
for the corresponding user. Ski wasn't able to the find the user. Perhaps you mis-typed the filename or specified a user
that doesn't exist? See "Filenames' on page 57.

Non % s-aligned address. Aligned to 0x%Ix

You used the =2, =4, or =8 commands to write data to memory but you specified an improperly-aligned address. The
%s field on the left tells what kind of alignment was needed and the %l|x field on the right is the address that Ski used.
This may not be the address you want! See "Changing Registers and Memory with Assignment Commands' on page
75.

Not an ELF file
Not an | A-64 file

See "Filesize > Memory size".

Nothingtorun

No program has been loaded. Use the | oad, i al oad, or r oni oad command, depending on what kind of program you
want to simulate or load an |A-64 program by naming it on Ski's command line. See "Program Loading" on page 68.

Out of memory

Ski needed to get more memory to run but couldn't get it. You need more virtual memory swap space or you've found a
Ski defect. See your local Linux specialist.

Page not allocated

When Ski loads an 1A-64 application-mode program, Ski allocates pages for the fixed-size parts of the program and
allocates a small stack. As the program runs, Ski alows the stack to grow. If the program tries to access a page which
isn't in one of those areas, Ski detects the error and prints the message. The most likely cause is a wild pointer. See
"Application-Mode | A-64 Programs" on page 66.

Pager %snot found

You executed a ski command that sends output through a pager and there was a problem. Did you set the PAGER
environment variable to point to a program that's not reachable through your PATH shell variable? Did you set the
PAGER variable to point to a non-executable program? If your pager is on aremote file system, is there a problem with
accessing that system? Did your pager program return a failure status for some reason? If none of these reasons is
applicable, you may have found a Ski defect. See " Other Windows' on page 50.

popen failed

A call to the Linux system routine popen() failed, that is, a-1 was returned from the call. Thisis unusual and, while it
doesn't indicate an internal Ski error, it may suggest that your Linux operating system is corrupt, perhaps due to some
other program. ski uses popen() when it needs to invoke a pager to display alarge amount of text to you, for example,
when you use the hel p and syni i st commands. The popen() function might fail if you have the maximum allowed
number of processes running on your computer or if you have run out of swap space.

Privileged operation fault

Page 106 13 Simulator Status and Error Messages

Ski 1A-64 Simulator Reference Manual 1.0L

Your |A-64 application-mode program tried to execute a privileged instruction. This can only happen for application-
mode programs; system-mode programs handle this fault through the interruption mechanism. See "Program
Simulation" on page 66 and "Interruptions’ on page 71.

Privileged register fault

Your 1A-64 application-mode program tried to access a privileged register. This can only happen for application-mode
programs; system-mode programs handle this fault through the interruption mechanism. See " Program Simulation™ on
page 66 and "Interruptions” on page 71.

program exited with status %d

Your 1A-64 program finished execution in the normal fashion. Thisis a status message, not an error message.

Register NaT Consumption fault

Your 1A-64 application-mode program tried to reference the contents of aregister that didn't contain avalid vadue. This
can only happen for application-mode programs; system-mode programs handle this fault through the interruption
mechanism. See "Program Simulation" on page 66 and "Interruptions” on page 71.

Reserved register/field fault

Your 1A-64 application-mode program tried to access a reserved register or portion of a register. This can only happen
for application-mode programs, system-mode programs handle this fault through the interruption mechanism. See
"Program Simulation” on page 66 and "Interruptions’ on page 71.

screen sizeis % dx%d -- minimum is % dx%d
ski uses the curses package to create a multi-window interface on a terminal. Curses requires a termina of the
specified minimum size but your terminal is smaller than that. See "' Ski Variations' on page 31.

Starting address > ending address

You used the dd or pd command to dump data or program code to afile but the starting address you passed is greater
than the ending address. Perhaps you have them reversed? Are you are using symbolic addresses that don't bind to the
locations you think they bind to? See "Program Window Commands" on page 60 and "Data Window Commands" on

page 63.

Stopping at % sdueto | A-32 halt instruction
An IA-32 HALT instruction was reached; simulation has stopped. This is a status message, not an error message. See
"Application-Mode | A-32 Programs" on page 66 and " System-Mode | A-32 Programs" on page 67.

Stopping at % sduetoreserved | A-32 instruction

An attempt was made to execute an 1A-32 instruction whose encoding has been reserved by Intel. Ski recognizes the
encoding but doesn't know what to do with it. See " Application-Mode | A-32 Programs" on page 66 and " System-Mode
IA-32 Programs” on page 67.

Stopping at % s dueto unimplemented | A-32 instruction
An attempt was made to execute an |A-32 instruction that isn't implemented by Ski. See "Application-Mode 1A-32
Programs" on page 66 and " System-Mode | A-32 Programs" on page 67.

Stopping at % s dueto unimplemented instruction

13 Simulator Status and Error Messages Page 107

Ski 1A-64 Simulator Reference Manual 1.0L

Your program tried to execute an 1A-64 instruction that isn't implemented by Ski.

Symbol %s not found

You referred to a symbol that Ski doesn't know about. Did you spell the symbol correctly, with leading underscores as
needed? Is the symbol a C++ mangled name? Have you loaded the right program? See the section "Argument
Specification" on page 53, particularly " Symbolic Arguments' on page 55.

%s: Too many arguments (> %d)

You passed too many operands with a Ski command. Ski's internal parser can handle a maximum number of arguments
(currently 64) and you tried to pass more than that number. This could happen with the =1, =2, =4, and =8 assignment
commands, the eval and i f commands, and the | oad and i al oad program loading commands. See "Changing
Registers and Memory with Assignment Commands" on page 75, "Evauating Formulas and Formatting Data" on page
78, "The if Command" on page 85, and the section "Program Loading" on page 68.

Too many commandsin aline (> %d)

You can type multiple commands on a line by separating them with semicolons. But there's a limit, as shown, to the
number of commands you can do this to... and you exceeded it. See "Command Sequences, Repetition, and
Abbreviation" on page 52.

Unable to open console window

Your system-mode program tried to open a console with the appropriate Simulator System Call but Ski wasn't able to
spawn the corresponding xterm program. First, verify that environment variable DISPLAY is set to the proper
hostnhame:displaynumber string. If this does not help, perhaps there is no xterm available via your PATH environment
variable? Perhaps you have hit the process limit or used all the pseudo-tty devices on your Linux system? See " System-
Mode |A-64 Programs' on page 67.

Unaligned Data fault
An attempt was made to access data on an unnatural boundary. Two-byte quantities must be on addresses evenly
divisible by two; four-byte quantities must be on addresses evenly divisible by four, and so on. See "Misaligned Data
Access Trap" on page 68 and "Interruptions’ on page 71.

Unexpected end of file
You are trying to restore a saved simulator state and either the save file is corrupt or Ski is broken. See "Saving and
Restoring the Simulator State”" on page 82.

unrecognized option %s
You specified a command line option that Ski doesn't understand. Different varieties of Ski (xski, ski, and bski)
understand different flags. See "Command Line Flags' on page 33.

Unrecognized symbol name: %s

You tried to refer to a symbol in an expression but Ski doesn't know about that symbol. Perhaps you mis-typed it? Or
perhapsit is a program-defined symbol in afile that wasn't compiled with debugging symbol generation enabled (the -
g flag on many compilers)? Or perhaps you referred to an | A-64 register using a mnemonic that Ski doesn't recognize?
See "Symbolic Arguments" on page 55, " Symbol Table Commands' on page 82, and "Register Names" on page 93.

unsupported DOS int 21 function % 02x% 02x

Page 108 13 Simulator Status and Error Messages

Ski 1A-64 Simulator Reference Manual 1.0L

Your |A-32 application-mode program tried to invoke an MS-DOS function that Ski doesn't emulate. The first
hexadecimal number is the MS-DOS function code and the second number is the sub-function code. See " Application-
Mode |A-32 Programs' on page 66 and "MS-DOS Application Environment" on page 73.

Unsupported SSC: %d

Your 1A-64 system-mode program invoked a Simulator System Call that Ski doesn't support. Either your program has
abug or Ski is broken. See "System-Mode 1A-64 Programs' on page 67.

unsupported system call %d

Your 1A-64 application-mode program tried to invoke an Linux system call that Ski doesn't emulate. See "Linux
Application Environment” on page 71 and "Application-Mode | A-64 Programs' on page 66.

Usage: % s[optiong] [file [argg]]

Ski's generic command line help message.

13 Simulator Status and Error Messages Page 109

Ski 1A-64 Simulator Reference Manual 1.0L

14 Licenses

This chapter lists the applicable licenses for Ski.

Creative Commons Public License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES.
DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE
COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES
RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE
A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

"Collective Work™ means a work, such as a periodical issue, anthology or encyclopedia, in which the Work
in its entirety in unmodified form, along with one or more other contributions, constituting separate and
independent works in themselves, are assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this
License.

"Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works,
such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound
recording, art reproduction, abridgment, condensation, or any other form in which the Work may be
recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be
considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with
a moving image ("synching") will be considered a Derivative Work for the purpose of this License.

"Licensor" means the individual, individuals, entity or entities that offers the Work under the terms of this
License.

"Original Author" means the individual, individuals, entity or entities who created the Work.
"Work™ means the copyrightable work of authorship offered under the terms of this License.

"You" means an individual or entity exercising rights under this License who has not previously violated the
terms of this License with respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use,

Page 110 14 Licenses

Ski 1A-64 Simulator Reference Manual 1.0L

first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights
in the Work as stated below:

to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the
Work as incorporated in the Collective Works;

to create and reproduce Derivative Works provided that any such Derivative Work, including any translation
in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes
were made to the original Work. For example, a translation could be marked "The original work was
translated from English to Spanish," or a modification could indicate "The original work has been
modified.";;

to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission the Work including as incorporated in Collective Works;

to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a
digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the Work is a musical composition:

Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect,
whether individually or, in the event that Licensor is a member of a performance rights society
(e.g. ASCAP, BMI, SESAC), via that society, royalties for the public performance or public digital
performance (e.g. webcast) of the Work.

Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect,
whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency),
royalties for any phonorecord You create from the Work ("cover version") and distribute, subject
to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the
equivalent in other jurisdictions).

Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound
recording, Licensor waives the exclusive right to collect, whether individually or via a performance-rights
society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work,
subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the
equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised. The
above rights include the right to make such modifications as are technically necessary to exercise the rights in
other media and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the
terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this
License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any terms on the Work that restrict the terms of
this License or the ability of a recipient of the Work to exercise the rights granted to that recipient under
the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to
this License and to the disclaimer of warranties. When You distribute, publicly display, publicly perform,

14 Licenses Page 111

Ski 1A-64 Simulator Reference Manual 1.0L

or publicly digitally perform the Work, You may not impose any technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collective Work, but
this does not require the Collective Work apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Collective Work any credit as required by Section 4(b), as requested. If You
create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove
from the Derivative Work any credit as required by Section 4(b), as requested.

If You distribute, publicly display, publicly perform, or publicly digitally perform the Work (as defined in
Section 1 above) or any Derivative Works (as defined in Section 1 above) or Collective Works (as
defined in Section 1 above), You must, unless a request has been made pursuant to Section 4(a), keep
intact all copyright notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the
Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing
entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by
other reasonable means, the name of such party or parties; the title of the Work if supplied; to the extent
reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated
with the Work, unless such URI does not refer to the copyright notice or licensing information for the
Work; and, consistent with Section 3(b) in the case of a Derivative Work, a credit identifying the use of
the Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay
based on original Work by Original Author"). The credit required by this Section 4(b) may be
implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear, if a credit for all contributing authors of the
Derivative Work or Collective Work appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use
the credit required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties,
as appropriate, of You or Your use of the Work, without the separate, express prior written permission of
the Original Author, Licensor and/or Attribution Parties.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE
WORK AS-IS AND ONLY TO THE EXTENT OF ANY RIGHTS HELD IN THE LICENSED WORK BY THE
LICENSOR. THE LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR
THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE
OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

This License and the rights granted hereunder will terminate automatically upon any breach by You of the
terms of this License. Individuals or entities who have received Derivative Works (as defined in Section 1
above) or Collective Works (as defined in Section 1 above) from You under this License, however, will

Page 112 14 Licenses

Ski 1A-64 Simulator Reference Manual 1.0L

not have their licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the
applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the
Work under different license terms or to stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above) or a Collective
Work (as defined in Section 1 above), the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this License.

Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under this
License.

If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to
this agreement, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

No term or provision of this License shall be deemed waived and no breach consented to unless such
waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the Work licensed here.
There are no understandings, agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that may appear in any communication
from You. This License may not be modified without the mutual written agreement of the Licensor and
You.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages
arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations
of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons" or
any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

14 Licenses Page 113

Ski 1A-64 Simulator Reference Manual 1.0L

Page 114 14 Licenses

	1 Getting Started - A Ski Tutorial
	The Ski Simulator
	How to Run an IA-64 Application Program
	Starting xski
	Exiting Ski
	Loading Your Program
	Inspecting Data
	Viewing Data in ASCII
	Looking at Code
	Viewing Source Code Mixed In with Assembly Code
	Controlling Breakpoints
	Running a Program
	Single-stepping a Program
	Changing Registers and Memory
	Getting Help
	Next Steps

	2 Overview
	Introduction
	Ski's Strengths
	Ski's Scope

	What You Need to Know to Use This Manual
	Defects and Defect Reporting
	Ski Variations
	Using bski for Batch Simulations

	Starting Ski
	Command Line Flags
	Summary of Flags and Parameters

	The XSki File

	Quitting Ski
	Summary of the Quit Command

	3 Screen Presentation
	Ski's Use of Windows
	The Register Window
	The User Registers Pane
	The General Registers Pane
	The Floating Point Registers Pane
	The System Registers Pane
	The IA-32 Registers Pane

	Resizing Register Window Panes with xski
	The Register Window and ski
	The Program Window
	IA-64 Instruction Display
	IA-32 Instruction Display
	Changing the Range of Locations Shown in the Program Window
	Invalid Code and the Program Window

	The Data Window
	Changing the Range of Locations Shown in the Data Window
	Invalid Code and the Data Window

	The Command/Main Window
	The xski Main Window
	The ski Command Window

	Other Windows

	4 Command Language
	Command Entry
	Command Arguments
	Command Sequences, Repetition, and Abbreviation
	Argument Specification
	Numeric Arguments
	Numbers and Counts
	Expressions
	Addresses

	Symbolic Arguments
	Program-Defined Symbols
	Registers
	Internal Variables
	Labels
	Filenames

	Resolving Ambiguous Symbols and Numbers

	5 Screen Manipulation Commands
	Register Window Commands
	Summary of Register Window Commands
	xski Register Window Commands
	ski Register Window Commands

	Program Window Commands
	Data Window Commands
	Summary of Data Window Commands

	6 Program Simulation
	Application-Mode and System-Mode Simulation
	Ski Support for Application-Mode Programs
	Application-Mode IA-64 Programs
	Application-Mode IA-32 Programs

	Ski Support for System-Mode Programs
	System-Mode IA-64 Programs
	System-Mode IA-32 Programs
	System-Mode TLB Simulation
	Summary of TLB Display Commands

	Misaligned Data Access Trap
	Program Loading
	How to Load a Program
	Summary of Program Loading Commands
	Notes about Program Loading
	Adding Information after Loading
	Creating the argc, argv, and envp Parameters

	Program Execution
	Summary of Program Execution Commands

	7 Linux and MS-DOS ABI Emulation
	Interruptions
	Linux Application Environment
	MS-DOS Application Environment
	Program I/O

	8 Debugging
	Changing Registers and Memory with Assignment Commands
	Summary of Assignment Commands
	Examples of Assignment Commands
	Notes on Assignment
	Address Alignment
	Bit-encoded Registers
	Page Allocation

	Evaluating Formulas and Formatting Data
	Summary of The eval Command

	Program Breakpoints
	Setting Program Breakpoints
	Deleting Program Breakpoints
	Listing Program Breakpoints
	Notes on Program Breakpoints
	How Ski Implements Breakpoints
	Unexpected Breakpoints

	Summary of Program Breakpoint Commands
	Data Breakpoints
	Setting Data Breakpoints
	Deleting Data Breakpoints
	Listing Data Breakpoints
	Summary of Data Breakpoint Commands
	Dumping Registers and Memory to a File
	Saving and Restoring the Simulator State
	Summary of Save and Restore Commands

	Symbol Table Commands
	Summary of Symbol Commands

	9 Command Files
	Initialization File
	Labels and Control Flow in Command Files
	The goto Command and Labels
	The if Command

	Comments in Command Files
	An Example Command File
	Summary of Command File Commands

	10 Command Reference
	11 Register Names
	IA-64 Registers

	12 Internal Variable Names
	Internal Variables

	13 Simulator Status and Error Messages
	14 Licenses
	Creative Commons Public License
	License
	Creative Commons Notice

