PowerPC® Microprocessor Family:

The Programming Environments Manual for
64-bit Microprocessors

Version 3.0

July 15, 2005

© Copyright International Business Machines Corporation 1999, 2003, 2004, 2005

All Rights Reserved
Printed in the United States of America July 2005

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM IBM Logo

IBM Microelectronics PowerPC

PowerPC Logotype PowerPC Architecture
RS/6000 pSeries

System/370 PowerPC 750

*AltiVec is a trademark of Motorola, Inc. used under license.
Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics home page can be found at http:/www.ibm.com/chips

pem_64bit_title.fm(3.0)
July 15, 2005

http://www.ibm.com
http://www.ibm.com/chips

é;—é-??: Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
Contents
L0703 =T 3 3
= o = o] (= 11
= o L T == 17
Y o L0y I T3 = T T 21
F AT Lo =T oo = PSPPSR 22
(@0 F=T a V4= 11[o] EEU TP PPSUUPPTPRPPRPRPN 22
T8 (o o =] (=To l S T=Y: Lo {19 T EO RSP OTRTTRIN 23
General INfOrMEALIONo.oiiiiiiee e e e e e st ee e e e e e st ae e e e enbeneeeeesseeeeeennnees 23
(01N = T4 o O o Yol U] 0 =T o1 =1 o] o P 24
(070 T 01Ty | o] o 1= PO PP UP PO URPPTPRPPOTRPN 25
Acronyms and ADDIEVIAHIONScoiiiiiiiiiiiie e 26
LI g0 Te] (oo |V @o] 0 1Y/=T 11 o] 1SS 28
IO L= V- 29
1.1 POWErPC ArchiteCture OVEIVIEWoooiiiiiiiii e e e e e e ee e e e e e e e e e e s e neeeeees 30
1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subsetcociiiiiii e 31
1.1.1.1 Temporary 64-Bit Bridgeccoeuiiiiiiiiiiieiiie e e e e e e 31
1.1.2 Levels of the POWerPC ArchiteCtureooceviiiiiiii e 32
1.1.3 Latitude Within the Levels of the PowerPC Architectureocooevieiiieiiniiinieeee e, 32
1.1.4 Features Not Defined by the PowerPC ArchiteCturecocoveviiiiiiiiiiiie e 33
1.2 The PowerPC Architectural MOGEIScooiiiiiiiiiiiie et 33
1.2.1 PowerPC Registers and Programming Modelcccooiiiiiiiiiiiiiennee e 34
1.2.2 Operand CONVENTIONScoiiiiiiiiiii ittt et et bb e ssee e st e s sabe e e sate e e abeeesbeeesabeeeeneeas 35
22 I Y (- @ 7o (=14 o T PP PRP 35
1.2.2.2 Data Organization in Memory and Data Transferscccccooceieiiiiiie e 36
1.2.2.3 Floating-Point CONVENLIONSccoiiiiiiiiie et 36
1.2.3 PowerPC Instruction Set and Addressing MOdEesocueiiiiiiiniiiniiii e 36
1.2.3.1 POWEIrPC INSIIUCHION ST ..o e e e e e e e e 36
1.2.3.2 Calculating Effective AdAreSSESccoiiiiiiiiiiiiiiee et 38
1.2.4 POWEIPC Cache MOGEIueiiiiiiiiiie et 38
1.2.5 POWErPC EXCEPLION MOGEIcooeiiiiiiie ittt ettt 39
1.2.6 PowerPC Memory Management MOdelcoooiiiiiiiiiiiii e 39
1.3 Changes t0 this MANUAIcooiiiiiiii e e esnreeeaeee 40
2. PowerPC Register Setcccciiimimmmmmmmmeeessesssnsssssnnnnns 41
2.1 Overview of the POWerPC UISA REQISIEISc.oiiiiiiiiiiieiie ettt 41
2.1.1 General-Purpose Registers (GPRS)occuiiiiiiiiiiee ittt e e st e e sreeee e eaes 44
2.1.2 Floating-Point Registers (FPRS)ccoiiiiiiiiiiie e e e 44
2.1.3 Condition RegiSter (CR)ooiiiiiiiiiiiiie ettt e e e e e e s rare e e e e 45
2.1.3.1 Condition Register CRO Field Definitionccoiiiiiiiiiiiiie e 46
2.1.3.2 Condition Register CR1 Field Definitionccooeiiiiieiiiiie e 46
2.1.3.3 Condition Register CRn Field—Compare INStructioncocoviiiiiiiiiiiiie e 47
pemTOC.fm.3.0 Contents

July 15, 2005 Page 3 of 657

Programming Environments Manual for 64-Bit Microprocessors ====%Z
PowerPC RISC Microprocessor Family
2.1.4 Floating-Point Status and Control Register (FPSCR)cccooiiiiiiiiieiieeceee e 47
2.1.5 XER Register (XER)ueoiiiiiiie ettt e e 50
2.1.6 LiINK REGISTE (LR) .eeiiiiiiiiei ittt ettt e ettt e e s s bt e e e e e et bt e e e s enbeeeeeeaae 51
P B A o1V | g 2 (= To 1] (= ol (O I 2) R PPPRRN 52
2.2 PowerPC VEA Register SEt—TIimMeE BaSEccceiiiiiiiiiiiiiiiie ettt e s saeee s 53
2.2.1 Reading the TimMe BasSEc.eiiiiiiiiiii ittt e e s ee e e eae 56
2.2.1.1 Reading the TiMeE BaASEcoiiiiiiiiiiiiiee e 56
2.2.2 Computing Time of Day from the Time Baseoocuiiiiiiiiiiiii e 56
2.3 POWErPC OEA REGISIEI SOtueiiiiiiii ittt ettt saa e e nr e e saeee s 57
2.3.1 Machine State Register (MSR)ooiiiiiiiii ettt 60
2.3.2 Processor Version Register (PVR)oooiiiiiiii ettt 63
2.3.3 SR ittt n e e et e e R e e nnn e e e e e nneeen 64
2.3.4 Address Space RegiSter (ASR)ueiiiiiiiiiie e e st e e e e e e ane 65
2.3.5 Data Address Register (DAR)oocuuiiiiiiie et e e 67
2.3.6 Software Use SPRS (SPRGO—SPRG3B) ...ccceiiiiiiieiiieeiieeesieeesieeeseeestee st e e sneeeseeeeesneee e 67
2.3.7 Data Storage Interrupt Status Register (DSISR)c.veiiiiiiiiiiei e 68
2.3.8 Machine Status Save/Restore Register 0 (SRRO)ooviiiiiiiiiiiiieiee e 68
2.3.9 Machine Status Save/Restore Register 1 (SRRT)coooiiiiiiiiiiii e 69
2.3.10 Floating-Point Exception Cause Register (FPECR)ccooiuiiiiiiiiiiiiiieec e 69
2.3.11 Time Base Facility (TB)—OEA ... ettt e e e e e e e s e e e e e e e e e e e s 69
2.3.11.1 Writing t0 the TIME BASEccciiciiiiiiiiiieeie e 69
2.3.12 Decrementer RegISter (DEC)ocuiiiiiiiiiiee ettt ettt e aee e e smbeeens 70
2.3.12.1 Decrementer OPerationooeeeeiiiiiiiiie e e s e eneeas 70
2.3.12.2 Writing and Reading the DECcooiuiiiiiiie e 71
2.3.12.3 Data AdAresSSs COMPAIEcouiiiiuiiiieiiiiiieeeeaireeeesaasteeeesasaseeeessansrareesaansseeaesansneeeesssssees 71
2.3.13 Data Address Breakpoint Register (DABR)coouiiiiiiiiiiieeeie et 71
2.3.14 External Access Register (EAR)oooi i 73
2.3.15 Processor Identification Register (PIR)oociiiiiiiiiiiiie et 74
2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers 74
2.3.16.1 Notes for Table 2-16 and TabIE 2-17ooooueiiiiiiee e 77
3. Operand CONVENLIONSccoiiiiiimmmriiniiismmnsrrsssssssss s sssams s ss s ssmms s s s s s s s mmnn s e snnnen 79
3.1 Data Organization in Memory and Data Transfers ... 79
3.1.1 Aligned and MiSaligned ACCESSEScccuuiiiiiiiiiiie ettt 79
T B2 = 1Y (=T @ o 1= 1o T PSPPSR 80
3.1.2.1 Big-Endian Byt€ OrderiNgc..eeiiuuieiiieiiiie ettt s rne e sne e 80
3.1.2.2 Little-Endian Byte Orderingcoceoioiiieiiiie it 80
3.1.3 Structure Mapping EXAmMPIESooiiiiiiieie e 80
3.1.3.1 Big-Endian Mappingcceeeieiiiiiiiee et e e e 81
3.1.3.2 Little-Endian MapPingccooeeeoo oottt e e eeeeas 82
3.1.4 POWEIPC BYE OFIEIING ...coutiiiiiiiieiiii ettt ettt ettt et et e s rabe e s ae e e s rate e e smbe e s aabeeesneeeans 83
3.1.4.1 Aligned Scalars in Little-Endian MOdeooiiiiiiiiiiiie e 83
3.1.4.2 Misaligned Scalars in Little-Endian Mode ..o 86
T B B\ [o] g =To= - T £ TSP STPR P 87
B.1.4.4 Page TabIES ... 87
3.1.4.5 PowerPC Instruction Addressing in Little-Endian Modeccccoooiiiiiiiiiiiiiieen 87
3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode 88
3.2 Effect of Operand Placement on Performance—VEA ... 89
3.2.1 Summary of Performance EffECtSc.ooiiiiiiiii e 89
3.2.2 INSruCtion RESTAIoeiiiie e e 91
Contents pemTOC.fm.3.0

Page 4 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.3 Floating-Point Execution Models—UISA ... 92
3.3.1 Floating-Point Data FOrMALcuiiiiiiiiiiee e 92
3.3.1.1 Value Representationcoo i 94
3.3.1.2 Binary Floating-Point NUMDErSccuuiiiiiii e 95
3.3.1.3 Normalized Numbers (ENORM)ouuiiiiiiiiii i e e e e e e ee s 95
3.3.1.4 ZEr0 VAlUES (F:0) .eeeeeeiiiiiiieiiiiiiee e ettt e e ettt e e e st ee e e st e e e st e e e e e bt e e e e e ntae e e e e nrreeeeeanees 96
3.3.1.5 Denormalized Numbers (DENORM)cooiiiiiiiiiiie e 96
B.3.1.8 INFINIHIES (F2) 1.eveeeeiiiiiii ittt e e st e e e bn e e e e as 97
3.3.1.7 NOt @ NUMDEIS (NANS) ...cceiiiiiiiiii it e e e e e e e e e e e e e e e e e s e nannnrneeees 97
3.3.2 SigN Of RESUIL ..ot ss e et e e ear e e sane e e s rre e s aneeeea 98
3.3.3 Normalization and Denormalizationcoooiiiiiii i 99
3.3.4 Data Handling and PreCiSIONeoii oottt e 99
G JRC TSI = (0101 o 10T R PP PP PPP PP OPPPPP 101
3.3.6 Floating-Point Program EXCEPLIONSccuuiiiiiiiiiiiii e 103
3.3.6.1 Invalid Operation and Zero Divide Exception Conditionsc.cccceeieiiiieninien e 109
3.3.6.2 Overflow, Underflow, and Inexact Exception Conditionsc.cccceeveeeeiiiiiieiccciiieeeen. 113
4. Addressing Modes and Instruction Set Summaryocrcciiiiiiiinnreeeeeeeene. 119
o @70])V 7=T o1 o] o T PSPPSR 120
4.1.1 Sequential EXeCUtioN MOAEIcceeeiiiiiiiiieee e a e e e aee s 120
e B2 0 1 gl o 10 =i To] 1Y, oo [R 120
4.1.3 Classes Of INSIIUCHIONSuiiiiiiieiiii ettt e e sane e et e e e eneeas 121
4.1.3.1 Definition of Boundedly Undefined ..o 121
4.1.3.2 Defined INSIrUCHON ClaSScvviiiieieiieeeiiie et e e e 121
4.1.3.3 lllegal INStruCtion ClaSSceiiiiiiiiiiiie ettt e e e 123
4.1.3.4 Reserved INSIIUCHONSoouiiiiiiiieee e e 123
o I |V =Y 4 g To T VA [0 | =TT o o TSP 124
v 0 IV 1= 0 g To T oV @) 0 T=T - T Lo £ SRS 124
4.1.4.2 Effective Address CalCulationceooiuiiiiiiie i 124
4.1.5 Synchronizing INSTIUCHIONSuiiiiiiiei et e 125
4.1.5.1 Context Synchronizing INStrUCIONSccooiiiiiiiii e 125
4.1.5.2 Execution Synchronizing INSTrUCIONScooiiiiiiiiiiiiie e 126
4.1.6 EXCEPLON SUMIMAIY ..oiiiiiiiiiee ittt ettt et e st e st e e e s b e e e br e e s ane e e e anneesanneeeanneeas 126
4.2 POWEIPC UISA INSITUCTIONS ...ciiiiiiiiiii ittt e e e e b e e e s sabeeeeeeaans 127
4.2.1 Integer INSIFUCTIONSeeiiii et e e e e e eaneeee s 127
4.2.1.1 Integer Arithmetic INSTIUCTIONSuuiiiiiiiiii e 128
4.2.1.2 Integer Compare INSIIUCHONScoiiiuiiiiiiie et 132
4.2.1.3 Integer Logical INSIUCHIONSooiiiiiiiieee e 133
4.2.1.4 Integer Rotate and Shift INSTrUCLIONScoooiiiiiiii e 135
4.2.2 Floating-Point INSITUCHIONScoiiiieeeee e 139
4.2.2.1 Floating-Point Arithmetic INStrUCtiONSocciiiiiiiie e 140
4.2.2.2 Floating-Point Multiply-Add INStrUCtIONSeiiiiiiiiiiiee e 142
4.2.2.3 Floating-Point Rounding and Conversion INStructionsccccooceviie e 143
4.2.2.4 Floating-Point Compare INSIrUCIONScccoviiiiiiiiiiiiie e 145
4.2.2.5 Floating-Point Status and Control Register InStructionsccoccoeiieeiiie e 145
4.2.2.6 Floating-Point Move INSTrUCHIONScuviiiiiiiiie e 147
4.2.3 Load and Store INSTIUCHIONScooiiiiiiiiiiee e 147
4.2.3.1 Integer Load and Store Address Generationcccccevviiieeeiiniiene e 148
4.2.3.2 Integer Load INSIIUCHIONScooiiiiiiiiie e 151
4.2.3.3 Integer STore INSITUCHIONSo..eiiiiiiiiiee e 153
pemTOC.fm.3.0 Contents

July 15, 2005 Page 5 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.3.4 Integer Load and Store with Byte-Reverse Instructionscccccoiiiiiiiiiienniienens 154
4.2.3.5 Integer Load and Store Multiple INStrUCtIONSoooiiiiiiiiiiiiie e 155
4.2.3.6 Integer Load and Store String INStrUCHIONScoiiiiiiiiii e 155
4.2.3.7 Floating-Point Load and Store Address Generationccccoeeeuieeeeiniiieeeeeniiiee e 156
4.2.3.8 Floating-Point Load INSrUCIONSccviiiiiiiiiie e 158
4.2.3.9 Floating-Point Store INSIrUCHIONSoiiiiiiiiiiieie et 159

4.2.4 Branch and Flow Control INSTIUCHIONSccoviiiiiiiiicieiee e 160
4.2.4.1 Branch Instruction Address Calculationcoccviiiiie e 160
4.2.4.2 Conditional Branch CONtrolcooiiiiiiiiiiiiii e 166
4.2.4.3 Branch INSITUCHIONSeeiiiiiiiiie et 169
4.2.4.4 Simplified Mnemonics for Branch Processor INStructionscccccevvieeeeiiiiien e 170
4.2.4.5 Condition Register Logical INStruCtionsc.cooviiiiiiiii i 170
4.2.4.6 Trap INSITUCHONSeeiiiiiiiiii et e e e e e e e e s e eeeeeas 171
4.2.4.7 System Linkage Instruction—UISA ..ot 171

4.2.5 Processor Control INStructionS—UISA ..o 172
4.2.5.1 Move to/from Condition Register INStructionscccooviieiiiiiiee e, 172
4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)ccociiiiiieiiiiiiiiennns 172

4.2.6 Memory Synchronization INnstructions—UISAcooiiiiiiiiie e 173
4.2.7 Recommended Simplified MNEMONICScooiiiiiiiiieee e 175

4.3 POWEIPC VEA INSITUCTIONS ...oiitiiiiiiieiitee ettt ettt sttt be et e s e snee e snbe e e nanes 176
4.3.1 Processor Control INStrUCHONS—VEAcuoii it 176
4.3.2 Memory Synchronization INStructionS—VEA ... 177
4.3.3 Memory Control INStruCtioNS—VEA ... e 178
4.3.3.1 User-Level Cache INStruCtioNS—VEAoooiiiiiiieiee e 178

4.3.4 External Control INSTIUCIONScoiiiiiiiiii e 182

4.4 POWEIPC OEA INSIIUCLIONSeiiiiiiiiiie ettt e e e e et e e e e e e e e e e s nereeeeeeas 183
4.4.1 System Linkage InStructionS—OEA ... e 183
4.4.2 Processor Control INStructions—OEAoiiiii e 184
4.4.2.1 Move to/from Machine State Register INStructionsccccoociiiiie e 184
4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)cccociiiiiieiiiiieeiiienens 185

4.4.3 Memory Control INStruCtionS—OEA ... e 185
4.4.3.1 Segment Register Manipulation INSrUCtiONSccoociiiiiieiriee e 186
4.4.3.2 Translation and Segment Lookaside Buffer Management Instructionsc.c..... 186

5. Cache Model and Memory COhErencycccccuccccemmmrmnnscissmmsnsssnsssssssss s sssssssnnes 189
5.1 The Virtual ENVIFONMENTt e e e e e e e e e e e e e e nnnnereeeeeeas 189
5.1.1 MemOry ACCESS OFUEINGueiiiiiiiiiii ettt ettt ee et e et e e st ee e s bee e s bt e e s aneeesneeesneeeeanreeas 190
5.1.1.1 Enforce In-Order Execution of I/O INStructioncevveiiiiiiiiiiiieee e 190
5.1.1.2 SyNChronize INSTIUCTION ...t e e e e e e e e s e eeeeees 190

LT B2 N (o] 11T PRSP OPTR 191

L I 07 Vo o T 1 o Yo [R SSPS 192

LT B |V =Y 4o To TV O] =Y = o oA USSP 193
5.1.4.1 Memory/Cache ACCESS MOUESoeeiiiiiiiiiiieee e 193
5.1.4.2 Coherency PreCaulionsc.cooiiiiiiiiiiiiii ettt sree e 195

5.1.5 VEA Cache Management INStrUCIONScooiiiiiiiiiiiiii e 195
5.1.5.1 Data Cache INSrUCHIONSccoeiieieeee e e e as 195
5.1.5.2 Instruction Cache INSTUCHIONScceiiiiiiiii e 197

5.2 The Operating ENVIFONMENTooiiiiiie ittt e sere e e eabe e e eaes 199
5.2.1 Memory/Cache AcCeSS ALHDULEScccuiiiiiiiiii e e 199
5.2.1.1 Write-Through ALHDULE (W) oo e 200
Contents pemTOC.fm.3.0

Page 6 of 657 July 15, 2005

====%= Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
5.2.1.2 Caching-Inhibited AHADULE (1) ..ooooeieiee e 200
5.2.1.3 Memory Coherency AHIDULE (M)ocueiiiiiiiiiee et 201
5.2.1.4 W, |, and M Bit COMbBINAtIONSevueiiiiiiiieee e e e e e e eeeees 201
5.2.1.5 Guarded ArDULE (G) ..eoveeeeiiiiieeee e 202
5.2.2 1/O Interface CONSIAEIAtiONSccceiiiiiiieiiiie et sre e sneeas 204
ST = (o= o £ o o = 205
8.1 EXCEPHON CIASSES ...ueiiiiiiie ittt ettt ettt sttt e eae e e aee e e aabe e e st e e e nbe e e asbe e e aaeeeesabeeesabeeesnaeas 206
B.1.1 PreciSe EXCEPLONSoiiiiiiiiiee e e e 208
B.1.2 SYNCIIONIZALION oottt e e st e e e s b e e e e e e s rnebeeeeeaans 208
6.1.2.1 Context SYNChronization ... 208
6.1.2.2 Execution SYNChronizationcoceeiiiiiiiiei e 209
6.1.2.3 Synchronous/Precise EXCEPLIONScooiiiiiiiiiiiiii i 209
6.1.2.4 ASynchronous EXCEPIONSooueiiiiiiiii e 210
6.1.3 IMpPrecise EXCEPLONS ..oooviiieieicire aenaes 211
6.1.3.1 Imprecise Exception Status DeSCHPLONuvviiiiiiiiee e 211
6.1.3.2 Recoverability of Imprecise Floating-Point EXCeptionsccccooviiiiiiie e 212
6.1.4 Partially Executed INSTUCHIONScooiiiiiiiiii e 213
T I o= o 1o T o o 1P 213
6.2 EXCEPLON PrOCESSINGciieiieiiieiee ettt e e e e e e e bt e e s e n b e e e e e e nbe e e e e nres 215
6.2.1 Enabling and Disabling EXCEPLIONScoiiiiiiiiiiiiie e 219
6.2.2 Steps for EXCeption ProCESSINGcouiiiiiiiiiiiiiie ittt 219
6.2.3 Returning from an Exception Handler ..ot 220
6.3 ProCESS SWILCHING ..c..ueiiiiiiie ittt e e e e ra bt e e s ab e e e sate e e sabee e sabeeeeneeas 220
6.4 EXCeption DefiNItiONS ..o 221
6.4.1 System Reset Exception (0X00T00)eeeiiiiiiieieiiiieiee ettt e e s e e sreeee e e 222
6.4.2 Machine Check Exception (0X00200)ccceieiiuurmmmriereeeeeessssenrreeeeeeeeaeeesssssnnnnnneeeeeeeeaeeann 223
6.4.3 DSI EXception (OX00300)cceiiiiieiieeiitiieeeseitieeeeessteeeeessaseeeeessstaeeeesssseseeessanseeeeesanssseesesanns 224
6.4.4 Data Segment Exception (OX00380)cceiuiiiiuiiiiiieeaiieeerieeeeseeesseeeeseeesssee e sabeeesnreessreeeas 227
6.4.5 I1S] EXception (OX00400)cooiiiiiiieeeiiiiieee e eiiiee e e ettt e e e e asbe e e e s st et e e e s s rnbeee e e sanbeeeeeeaanneeeeeeaan 228
6.4.6 Instruction Segment EXception (X0480)occuuiiiiiiiiiiiie et 229
6.4.7 External Interrupt (OX00500)cccuveiieeiiiiiieeeiiieee e e ettt ee e s et e e e s sttt e e e e s sateeeesssseeeeesannseeeeeeanns 230
6.4.8 Alignment Exception (OX00B00)cceeeiiueiaiieieaiieeateeeesieeessieeessseeeesieeessseeesssseesssseessnseesn 230
6.4.8.1 Integer Alignment EXCEPLIONSooiiiiiiii e 232
6.4.8.2 Little-Endian Mode Alignment EXCEPLIONSouiiiiiiiiiiiiiiiiiiieeeee e 233
6.4.8.3 Interpretation of the DSISR as Set by an Alignment EXceptioncccccceveviiieeennne. 233
6.4.9 Program Exception (0X00700)c.ceeiiueiiiiieiiieeeeitieeertteesssreessiseessseeeessesssnseeesaseeessseessseesns 235
6.4.10 Floating-Point Unavailable Exception (0X00800)ccccureiiriiiiieeeiiiiieee e siieeeeeesieeee e 237
6.4.11 Decrementer Exception (0X00900)ceeeeiiiiiumieiieiieeeeeeeeesseereeee e e e e e e e e e s s ssnnnnnneeeeeeeeeeeaean 237
6.4.12 System Call Exception (OX00C00)cuueieeiiiiiieeeeiiieeeeessitiee e e s stieeeessssrreeesssreeeeesssnseeeeseanns 238
6.4.13 Trace EXception (OXO0DO00)cciceieiirereiieeaaieeeeatteeateeessteeeesseeessseeeesaseessneeeessseeesssesssnseeaans 239
6.4.14 Performance Monitor Exception (OXO0F00)oocueiiiiiiiiieieiiiiiee e 240
7. Memory Managementccooiiiiiiiiiissssssssssssnsss s ssssssssssssssnnns 241
8 BT/ L == (B =R 242
7.2 MIMU OVEIVIBW ..ttt ittt et ettt ettt ettt e st et e st e e s sb e e e ket e e bt e e e aseee e s be e e eabe e e amn e e e aabeeeanbeeesneeennnes 244
7.2.1 MemOrY AAArESSING ..ueeeeieiiiiei ettt e et e s s s e e e e s ne e e e n e e e e e s annneeee s 245
7.2.1.1 Effective Addresses in 32-Bit MOcccooiiiiiiiiiii e 245
7.2.1.2 Predefined Physical Memory LOCAtIONScoiiiiiiiiiiiiiiieee e 246
pemTOC.fm.3.0 Contents

July 15, 2005 Page 7 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

7.2.2 MMU OrganiZatiOnc.eeeiiiieiiiiieeiiee ettt ettt sabe e e s be e e s ene e e e nneesneeeesnnee s 246
7.2.3 Address Translation MeChaniSIMSccuuiiiiiiiiiee e e e 248
7.2.4 Memory Protection FaCIlItIESc..eeiiiiiiii e 250
7.2.5 Page History INfOrmationcooo i 251
7.2.6 General Flow of MMU Address Translationcccooiiieiiiieiniiie e 251
7.2.6.1 Real Addressing Mode SeleCtionooceii i 251
7.2.6.2 Page Address Translation Selection ... 252

7.2.7 MMU EXCEPIONS SUMMAIY ..oeeiiieiiiiietiiie e e e e e e e et ee e e e e e e e e e e s s te e e e eeeaaeeeessnannnenrnneeees 255
7.2.8 MMU Instructions and Register SUMMANYcccoiiiiiiiiieiiiie e 257
7.2.9 TLB Entry INValIdAtIONcccoiiuiiiiiiiee e 258

7.3 Real AAdressing MOGE ...t e e e e e e e e e e as 259
7.4 Memory SEgMENt MOEIcooiiiiiiiiiie e nnr e s anr e e 260
7.4.1 Recognition of Addresses in SEgMENLScooiiiiiiiiiiiie e 260
7.4.2 Page Address Translation OVEIVIEWoiiiiiiiiiiiiii ettt 260
7.4.2.1 Segment Lookaside Buffer (SLB)occuuiiiiiiiii e 262
7.4.2.2 Page Table Entry (PTE) Definition and Formatcccooooiiiiiiiiii e 263

7.4.3 Page History RECOIAINGcooiiiiiiiiiiiie ettt 265
7.4.3.1 ReferenCed Bil ...t e e 265
7.4.3.2 Changed Bituueiiiiiiiiiie e e e e e e e e e e e e e n e eeees 266
7.4.3.3 Scenarios for Referenced and Changed Bit Recordingccccoceveiiiinien e 267
7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates 268

7.4.4 Page Memory ProteCiON ...t 268
7.4.5 Page Address Translation SUMMANY ... 271

7.5 Hashed Page TabIESoooiiiiiiiiie et e e e e e s e e e e 273
7.5.1 Page Table Definitionooiiiiii e 274
7.5.1.1 SDR1 Register Definitionccoiiiiiiiiiii ittt 275
7.5.1.2 Page Table SIzZe ... e 276
7.5.1.3 Page Table Hashing FUNCHONSoooii i 277
7.5.1.4 Translation Lookaside BUffer (TLB)ccooiiuiiiiiiiiiiie e 279
7.5.1.5 Page Table Address GENErationcccoouiiriiieiiiiiie et 279
7.5.1.6 Page Table Structure SUMMANYc.ooiiiiiiiiii e e 281
7.5.1.7 Page Table Structure EXamPIeooceuiiiiiiiiii et 281
7.5.1.8 PTEG Address Mapping EXampPleooviiiiiiiiiiiiee e 284

7.5.2 Page Table Search ProCeSS ...ttt ettt be e s be e sne e eaes 287
7.5.2.1 Flow for Page Table Search Operationcccoiiiiiiiiiiii e 287

7.5.3 Page Table UPAatesoooi it e e e e e e e 289
7.5.3.1 Adding a Page Table ENtryooeiiiiiie e 290
7.5.3.2 Modifying a Page Table ENtry ... 290
7.5.3.3 Deleting a Page Table ENtry ... 292

A NS T o T U T o = (= 292

7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementations 292
7.6.1 Segment Register Manipulation Instructions in the 64-Bit Bridgeccccoeveviiieiiiieeenienn. 293
7.6.2 64-Bit Bridge Implementation of Segment Register Instructionccocceiiiiiiins 294
7.6.2.1 Move from Segment RegiSter—mISrcooooiiiiiiiiiee e 294
7.6.2.2 Move from Segment Register IndireCt—mfSrincccoeiiiiiiii e 295
7.6.2.3 Move to Segment RegiSter—mISToooiiiiiiiiiiii e 296
7.6.2.4 Move to Segment Register Indirect—mtsrin ..., 297
Contents pemTOC.fm.3.0

Page 8 of 657 July 15, 2005

====%= Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

8. INSTrUCTION Set ... ————————— 299
8.1 INSrUCHION FOIMALS ..o s e e e a e e anes 299
8.1.1 SPlit-Field NOTAtIONcoiiiiiii et e e 300

8.1.2 INSrUCHION FIEIAS ..o e e e s s e e s ennnee e e e e 300

8.1.3 Notation and CONVENLIONSeiiiiiiiiiiieiee ettt eeneeeeas 302

8.1.4 CompULAtION MOTESeiiiiiieiiie ettt et e e st e e st e e e sabe e e sabee e ebeeaans 305

8.2 POWEIPC INSIIUCHION SEL ..o e 306
Appendix A. PowerPC Instruction Set Listingscccccmmeeemmmeessssssssssnsssssssssssssssennes 545
A.1 Instructions Sorted by MNEMONICcooiiiiecee e e e e e e e e e e e reeeeeees 545
A.2 Instructions Sorted bY OPCOUEciiiieiiiiiiieie e e e e e e e e s ee e e e e e e e e e s e e nnnnrneeeees 553
A.3 Instructions Grouped by Functional Categoriesceiiiiiiiiiiiie i 561
A.4 InStructions Sorted DY FOIMooi it et r e e ae e 573

F N [U Ty (o] g I Tt =Y 1= Lo USSR 585
Appendix B. Multiple-Precision Shiftscccccccrmmmmmmmmnssssssssssssseeens 593
B.1 MUltiple-PreciSion SHiftScciiiiiiiiiiiieee e e e e e e e e e e s ren e e e e e e aeeeen 594
Appendix C. Floating-Point Modelsccccciiiiiiiiiimmimnnsssessseesss s ssesssssssses 597
C.1 Execution Model for IEEE OPErationscouiiieiiiiiiciiiiiiieis et eee e e e arnee e e e e e 597
C.2 Execution Model for Multiply-Add Type INStrUCLIONScceviieeiiiiiiiieeee e 599
C.3 Floating-Point CONVEISIONScciiiiiiiiieiiie ettt b e sae e ene e e e san e e e snn e e e s neeas 600
C.3.1 Conversion from Floating-Point Number to Floating-Point Integerccccoiiiiiiiinienens 600

C.3.2 Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word 600

C.3.3 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word ... 601

C.3.4 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word 601

C.3.5 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word 602

C.3.6 Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number 602

C.3.7 Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number ... 602

C.3.8 Conversion from Signed Fixed-Point Integer Word to Floating-Point Number 603

C.3.9 Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number 603

C.4 Floating-Point MOGEIScooiiiiiiiieiee ettt a e e e et e e e sabe e e sbeeesneeas 603
C.4.1 Floating-Point Round to Single-Precision Modelcccciiiiiiiiiiiiii e 603

C.4.2 Floating-Point Convert to Integer Modelcoooiiiiiiiiii e 609

C.4.3 Floating-Point Convert from Integer Model ..o 612

C.5 Floating-Point SEIECHION ..ottt e et e s sbe e e sbee e e neeas 614
C.5.1 COMPAISON 10 ZEIO . ..eiiiieiie ittt ettt et ettt e e sa e e st e e e sabe e e sabe e e anbe e e sabeeeanbeaesbeeaans 614

C.5.2 Minimum and MaXimMUIMoooiiiiiiieeeiiiieee e esiree e e s sriee e e s s ssteeeeessnseeeeessasseeeessanssseeessassneessanes 614

C.5.3 Simple If-Then-Else CONSIIUCHONSccoocuiiiiiiiiiiee et 615

O3 S O N o) (=Y PRSP 615

C.6 Floating-Point Load INSTIUCIONSeiiiiiiiiiii e 616
C.7 Floating-Point Store INSIrUCLIONSeiiiiii e 617
Appendix D. Synchronization Programming Examplesccocccmirinicismmmnnnnnniinnes 619
D.1 General INfOrMAtIONc..uiiiiiiiiiie et e e e e e e e e e eas e e e s e nbeeeeeesnsseeeeeannnbenaeennnrees 619
D.2 Synchronization PrMITIVESooiiiiii e e 620
D.2.1 FetCh @and NO-OP ..ot e e e e e e e b e e e e e anes 620

B2 T (o g = T To [(o - SR 620

[B2 B =1 (o o = T To 17X [S 620
pemTOC.fm.3.0 Contents

July 15, 2005 Page 9 of 657

Programming Environments Manual for 64-Bit Microprocessors ====%Z
PowerPC RISC Microprocessor Family

D.2.4 FetCh @and ANDoooiiiiiiiie et e e e e e e 621

D.2.5 TESE AN S ..ottt st rb e et e e e ear et e s nr e e enn e e anre e e nanes 621

D.3 COMPAIE AN SWEAP ...eiiiuiiieiiiiaitieeitie e ettt e ateeaaateeesteeesabeeeaabeeaaabeeasaaeeeaabeeasasseesbeeesassessaseeasaseennns 621
D.4 Lock Acquisition @and REIEASEccuueiiiiiiiiiiiieie e 622
D.4.1 Lock Acquisition and IMport BArfierscueeeeiiiiieieoiiiee et 622

D.4.1.1 Acquire Lock and Import Shared MemOryccooieeiiiiieiiiee e 622

D.4.1.2 Obtain Pointer and Import Shared MemOrycooiiiiiiiiiiiii e 623

D.4.2 Lock Release and EXPOrt Barriers ... 623

D.4.2.1 Export Shared Memory and Release LOCKcccoiueriiiiiiiiiiiiiee e 623

D.4.2.2 Export Shared Memory and Release Lock using EIEIO or LYSYNCcccccoiviiennnen. 624

[=\ (=T =Y (o SRS 624

) I 1= G [Y= =Y 1T o OSSR 625
2 0\ o] =Y OSSR 626
Appendix E. Simplified MNE@MONICSccoiiremmimiiiiiemnnr s sssmnne s 627
= IS} 0] o Lo TP TOURRTUPR 627
E.2 Simplified Mnemonics for Subtract INStrUCIONSeiiiiiiiiii e 628
E.2.1 Subtract IMmMEdIAteooiiiii e 628

2 U | o) 4 - T P 628

E.3 Simplified Mnemonics for Compare INSrUCHONScceveiiiiiiieieeee e 628
E.3.1 Double-Word COMPATSONSccceieiiiiiiiceiiiiieeeeeeee e e eseseereeeeeeeaa e e e s s s s snseareeeeeeeaaeeessaaannssnnnees 629

[T2 110 (o I @01] o =T <o o < S 629

E.4 Simplified Mnemonics for Rotate and Shift INStructionsccceevverieii s 630
E.4.1 Operations 0n DoubIE WOIAScccuuuiiiiiiiiie e e et ee e e e e e e e s e e e e e e e e e s e s e nnnseaeeeeeeees 630

E.4.2 Operations 0N WOIASuuiiiiiiieiii it eee e e e e e s s seee e ee e e e e e e e e e s nanreeareeeaaaeeessasnnnnnreeaeees 631

E.5 Simplified Mnemonics for Branch INSrUCHONSooovviiiiiiiiieeee e 632
E.5.1 BO @nd Bl FIlUSueeiiiiiii ettt nanre e 632

E.5.2 Basic Branch MNEMONICSoooiiiiiiiiiiiiiiie e 632

E.5.3 Branch Mnemonics Incorporating Conditionscooouiiiiiiiiieni e 636

E.5.4 Branch PrediCtion ... e e 640

E.5.4.1 Examples of Branch PrediCtionouviiiiiiei it r e e e e 640

E.6 Simplified Mnemonics for Condition Register Logical INStructionscccccceviiiiiiiiieniie e 640
E.7 Simplified Mnemonics for Trap INSTIUCHIONScooiiiiiiiiiie e 641
E.8 Simplified Mnemonics for Special-Purpose RegiSters ..o 643
E.9 Recommended Simplified MNEMONICScoiiiiiiiiiiiiiee e 644
= T N (o R T o I (3 o] «) IR PSRRI 644

E.9.2 Load IMmediate (1)oceeeiiiiiee e e 644

[TR o= o o [0 | =TT (=) 644

E.9.4 MOVE REGISIE (M) it e e e e e e e s 645

E.9.5 Complement RegiSter (NOL)oooi i e 645

E.9.6 Move to/from Condition Register (Mter/mfer) ..o, 645
Appendix F. Glossary of Terms and Abbreviationsccoeecmmiiiiiinsscmnnnnncscsennens 647
=T =] oo T o T 657
Contents pemTOC.fm.3.0

Page 10 of 657

July 15, 2005

é;—é-??: Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
List of Tables
Table i. Acronyms and Abbreviated TEIMScoiiiiie e e e e e e e e s e e eeeeas 26
Table ii. Terminology CONVENTIONS ccouiiiiiiiiiiiie ettt st be e s be e s st e e e saee e e eabe e e snbe e e saneeeennes 28
Table iii. Instruction Field CONVENTIONSooiiiiiiiie e e 28
Table 2-1. Bit Settings for CRO Field Of CRcoiiii e 46
Table 2-2. Bit Settings for CR1 Field 0f CR ... e 46
Table 2-3. CRn Field Bit Settings for Compare INSrUCLIONScc.uiiiiiiiiiiie e e 47
Table 2-4. FPSCR Bit SEHINGSeeiiiiiiiiii e s e e e et e s e e e 48
Table 2-5. Floating-Point Result FIags in FPSCR ...t 50
Table 2-6. XER Bit DefiNItIONScoiiiiiiiii e e 51
Table 2-7. MSR Bit SEHINGS ...cooiieeiii e e e e e e e e et ee e e s e nneeas 61
Table 2-8. Floating-Point Exception Mode BilSeeiiiiiiiiii e 62
Table 2-9. State of MSR @t POWET UDouiiiiiiiiii ittt e e e e e e e e e s e e e e e e e e e e e s s annrnaeneeees 63
Table 2-10. SDRT Bit SELNGS ...t et e s et e e e e e abee e e s enneeas 64
Table 2-11. ASR Bit SEHINGS ..coiiiiiiiiie et e b e e b e e e sab e e e sae e e e anbee e snes 65
Table 2-12. ASR Bit Settings—64-Bit BriAdgecccuiiiiiiiiiiie et neeas 66
Table 2-13. Conventional Uses of SPRGO-SPRG3ouiiiiiii e e 67
Table 2-14. DABR-—BIt SEHNGScooueeiiiiiiiieie ettt rbe e e st e e e sab e e e ane e e e anbeeeenees 72
Table 2-15. External Access Register (EAR)—DBIt Settingsoocveieiiiiiiii e, 73
Table 2-16. Data AcCeSS SYNChIONIZAIONuiiiiiiiie e e 75
Table 2-17. Instruction Access SYNChrONIZAtIONcoiiiiiiiiiie e 76
Table 3-1. Memory Operand AlIGNMENT ..o e st e e s e e e e e baee e e e enneeas 79
Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalarscccccceeviineenn. 84
Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Modecccccooiiiiiinnnen. 89
Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Modeccccvvvvvieeennnn. 920
Table 3-5. IEEE FIoating-Point FIeldS ...t 93
Table 3-6. Biased EXPONent FOMALooo i 94
Table 3-7. Recognized Floating-Point NUMDErSooii e 95
Table 3-8. FPSCR Bit SettingS—RN Fieldoiiiieiie e e e 101
Table 3-9. FPSCR Bit SEHHNGSeoiiiiiiiiiiiiie ettt st rabe e s e e e e sabe e e e neeeenbeeaaes 104
Table 3-10. Floating-Point Result Flags — FPSCRIFPRF] ...ocooiiiiiiieieee e 106
Table 3-11. MSR[FEO] and MSR[FE1] Bit Settings for FP EXCEPiONSccevvveeiiiiiieeeeeee e 108
Table 3-12. Additional Actions Performed for Invalid FP Operationscccccccooiieiiniieinienn e 112
Table 3-13. Additional Actions Performed for Zero DiVidecccooiiiiiiiiiiiiie e 113
Table 3-14. Additional Actions Performed for Overflow Exception Conditionccccovviiieeiiiniiienenenne. 115
Table 3-15. Target Result for Overflow Exception Disabled Casecccceviiiiiiieiiiien e 115
Table 3-16. Actions Performed for Underflow CONAItiONSccceiiiiiiiiiiie e 116
Table 4-1. Integer Arithmetic INSITUCHIONScooiiiii i e e e 128
Table 4-2. Integer Compare INSIFUCTIONScoiiiiiiiiiie ittt be et e e s be e e sbee e enbeaenes 133
pemLOT.fm.3.0 List of Tables

July 15, 2005 Page 11 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-3. Integer Logical INSIUCHIONScoiiiiiiiiiiieeee et 133
Table 4-4. Integer Rotate INSITUCIONSoiiiiiiii e 136
Table 4-5. Integer Shift INSTTUCHONSeiiiiie e e b 138
Table 4-6. Floating-Point Arithmetic INStrUCHIONSooi i 140
Table 4-7. Floating-Point Multiply-Add INSTIUCTIONScoiiiiiiiiiiie e 142

Table 4-8. Floating-Point Rounding and Conversion INSrUCtIONScceioiiiiiiieie et 144
Table 4-9. CR Bit SEHINGSviiiiiiiiii et e e s e be e anr e 145
Table 4-10. Floating-Point Compare INSITUCTIONScoiiiiiiiiiii e 145
Table 4-11. Floating-Point Status and Control Register INStructionscccoeveiiiiiiinii e 146
Table 4-12. Floating-Point Move INSITUCHIONSoooiieieeee e 147
Table 4-13. Integer Load INSIIUCHONSeiiiiiiiiiiie e e e e e 151

Table 4-14. Integer Store INSIIUCTIONSooiuiiiiiiie ittt st sab e s sbe e e ae e e e sareeennes 153
Table 4-15. Integer Load and Store with Byte-Reverse INStructionscccoviiiiiieeiiine e 154
Table 4-16. Integer Load and Store Multiple INSIrUCHIONScccoiiiiiiiiiiiiie e 155
Table 4-17. Integer Load and Store String INSIrUCHIONSoiiiiiiiiiii e e 156
Table 4-18. Floating-Point Load INSIIUCLIONScoioiiiiiiiiiiice e 158
Table 4-19. Floating-Point Store INSITUCTIONSooiiiiiiiii e 159
Table 4-20. BO Operand ENCOTINGSuiiiiiiiiiiieiiiee ettt ettt e bt sbe e sbe e e sbe e e s be e e s saeeeennes 166
Table 4-21. “a” and “t” Bits of the BO Fieldc.oii i e 166
Table 4-22. BH Field ENCOAINGSueiiiiiiiiiieie ettt e e e e e e e e e e e s n e 167
Table 4-23. Branch INSIIUCHONSt e e e e e e e e e e e e e s 169
Table 4-24. Condition Register Logical INSrUCHIONSeeiiuiiiiiiiieiiee et 170
Table 4-25. Trap INSTIUCLIONSueeiiiiieiei e s s s s e e e e e e e e e e e e aeeeeeeeeeeeeeeessnensnnnnn i ans 171

Table 4-26. System Linkage INStruction—UISAoo e 171

Table 4-27. Move to/from Condition Register INStruCtioNScoooiiiiiiiiiie e 172
Table 4-28. Move to/from Special-Purpose Register Instructions (UISA)ccoevviiiiiiiiiiieeeeeeee 172
Table 4-29. Memory Synchronization INStructionsS—UISA ... 174
Table 4-30. Move from Time Base INSTIUCHONc.eiiiiiiiiiiee e 176
Table 4-31. User-Level TBR ENcCodings (VEA) ..ottt e 176
Table 4-32. Supervisor-Level TBR Encodings (VEA) ..o 177
Table 4-33. Memory Synchronization INStructionS—VEA ... 177
Table 4-34. User-Level Cache INSTTUCHONSc.eiiiiiiiiee e e e 179
Table 4-35. External Control INSTIUCHONSo..euiiiiie e 182
Table 4-36. System Linkage INStruCtionS—OEAoooiiiiiiii e e 183
Table 4-37. Move to/from Machine State Register INStructionsccccceiiiiiiiiii e 184
Table 4-38. Move to/from Special-Purpose Register Instructions (OEA)cccveiiiiiiiieiiiiiieec e 185
Table 4-39. Segment Register Manipulation INStruCtioNSccooiiiiiiiiiiiie e 186
Table 4-40. Lookaside Buffer Management INStrUCHIONScooiiiiiiiiiiiiiii e 187
Table 5-1. Combinations of W, |, @and M BitScoouuuuiiiiiiiiiee e e e e e e e e eeaaaas 201

List of Tables pemLOT.fm.3.0

Page 12 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 6-1. PowerPC Exception ClassifiCatioNScoooiiiiiiii i 206
Table 6-2. Exceptions and ConditioNS—OVEIVIEWuuiiiiiiieeiii i e e e e e e e s ss e e e eee e e e e e sssnnnrenes 206
Table 6-3. IEEE Floating-Point Program Exception Mode BitSccccoiiiiiiiiiiiiii e 212

Table 6-4. EXCEPON PHOMTIESccoiiiee ettt e e e r e e e e e e e e e e e e s e e nannrenes 214
Table 6-5. MSR Bit SEHINGS ...cciiiiiiii et e e e e e e e e s b e e e e nreeas 217
Table 6-6. MSR Setting DU t0 EXCEPLONooiiiiiiiiiieiie ettt sttt e e b e e enreeees 221

Table 6-7. System Reset Exception—Register SEttingscoociiiiiiiiiiii e 222
Table 6-8. Machine Check Exception—Register Setlingscccceviiiiiiiii e 224
Table 6-9. DSI Exception—Register SEHINGScoiiiiiiiiieiii e 226
Table 6-10. Data Segment Exception—Register Settingsccvviiiiiiiiiiie e 227
Table 6-11. ISI Exception—Register SEHINGScooiiiiiii i 228
Table 6-12. Instruction Segment Exception—Register Settings ..o 229
Table 6-13. External Interrupt—Register SEtHNGSoooiiiiiiiii e 230
Table 6-14. Alignment Exception—Register SettiNgscvevei i 231

Table 6-15. DSISR(15-21) Settings to Determine Misaligned INStructionccoocoviiiininiiinin s 234
Table 6-16. Program Exception—Register SetiNgscooiiiiiiiiiiii e 236
Table 6-17. Floating-Point Unavailable Exception—Register Settingsccccoviiiiiiiiie e, 237
Table 6-18. Decrementer Exception—Register Settingsoo i 238
Table 6-19. System Call Exception—Register SEtNGScccoiciiiiiiiiiiiie e 238
Table 6-20. Trace Exception—Register SEHNGSoooiiiiiiiii i 239
Table 7-1. MMU FEatures SUMMAIYcoiiiiiiiiiie it eeee et ettt et e e ste e s sbe e e sabeeesabeeseanbeesanseesanbeaanns 243
Table 7-2. Predefined Physical Memory LOCAtIONSc.ciiiiiiiiiiie e 246
Table 7-3. Access Protection Options fOr PAgescoooiiiiiiiiiiiiiie et 250
Table 7-4. Translation Exception CONAItIONScooiiiiiiiiiiiie et 256
Table 7-5. Other MMU Exception CONAItIONSoccuiiiiiiiiiiiie et 256
Table 7-6. Instruction Summary—Control MIMUouiiiiiiiiie e e e e e e e e e e e s sannrnnes 258
Table 7-7. SLB Entry Bit Description — 64-bit Implementationsccccciiiiiiii e, 262
Table 7-8. PTE Bit DEfiNItIONSooiiiiiiiieiii ettt e e e e e e s neeeenreeeaes 264
Table 7-9. Table Search Operations to Update History BitSccccuiimiiiiiiiie e 265
Table 7-10. Model for Guaranteed R and C Bit SEttingscooocuiiiiiiiii e 267
Table 7-11. Access Protection Control With KeYcooiiiiiiiiii e 269
Table 7-12. Exception Conditions for Key and PP Combinationsccccccvveeee i 269
Table 7-13. Access Protection Encoding of PP Bits for Kg = ‘0" and Kp = 1" ... 270
Table 7-14. SDR1 Register Bit SEHINGScociiiiiiiiiii e 275
Table 7-15. Minimum Recommended Page Table Sizes ... 277
Table 7-16. Contents of rD after Executing MESK ... 294
Table 7-17. Contents of rD after EXeCUting MESTcooiiiiiiiii e 295
Table 7-18. SLB Entry selected DY SRoooiiiiiiiee ettt e e er e e e e e e e e e s nnrenes 296
Table 7-19. SLB Entry Selected by Bits [32-35] Or FB ... 297
pemLOT.fm.3.0 List of Tables

July 15, 2005

Page 13 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 8-1. Split-Field Notation and CONVENTIONScuiiiiiiiiieiiiiiiie e 300
Table 8-2. Instruction Syntax CONVENTIONSccoiiiiiiiiiiiiieeie e e e e e e e e e e e e rnaeees 300
Table 8-3. Notation and CONVENTIONScocuiiiiiiiiiiie ettt be e s be e e s sareeennes 302
Table 8-4. Instruction Field CONVENTIONSccoiciiiiiiiiiiiie et be e s 304
Table 8-5. Precedence RUIESoooo i e e e e 305
Table 8-6. ENcodings Of the TH Fieldoooo i 340
Table 8-7. fres OPerand VAIUESooouiiiiiiiiiiiii ettt s e e e et e e e e s abee e e e s snbe e e e e ennnreeeeeennees 381
Table 8-8. frsqrte Operand VAIUESouiiiiiiiieiiiiiiciiee e ee e sse e e e e e e e e e s s e e eeee e e e e s enanrenneees 384
Table 8-9. frsqrt with Special Operand ValUEscoooiiiiiiiiiiiii e 387
Table 8-10. frsqrts with Special Operand ValUESocciiiiiiiiiiiiiie e 388
Table 8-11. PowerPC UISA SPR Encodings for MESPIooiiiiiiiiiiie e 437
Table 8-12. PowerPC OEA SPR Encodings for MESPIooiiiiiiiiiiii e e 438
Table 8-13. TBR ENcodings for MIEDcocoiiiiii e e 441
Table 8-14. PowerPC UISA SPR Encodings fOr MESPEoooiiiiiiiiiiiiiie e 450
Table 8-15. PowerPC OEA SPR Encodings for MESPIcoiiiiiiiiiiii et 451
Table A-1. Complete Instruction List Sorted by MNEMONICcceoviiiiiiiiiiiieiee e 545
Table A-2. Complete Instruction List Sorted by OpCOdeoooiiiiiiiiiiiiiieiie e 553
Table A-3. Integer ArithmetiC INSIFUCHIONScoiii oo 561
Table A-4. Integer Compare INSIIUCIONScoiiiiiiiiiie ettt st st e s be e e s be e e s saeeeennes 562
Table A-5. Integer LogiCal INSTIUCTIONSciiiiiiiiiiiiie e e e e e e e e e s 562
Table A-6. Integer Rotate INSrUCHIONSooiiiiiiiiie e 563
Table A-7. Integer Shift INSTIUCHONSeeiiiii e e 563
Table A-8. Floating-Point Arithmetic INSTrUCHIONScoiiiiiiii e 564
Table A-9. Floating-Point Multiply-Add INSTIUCLIONScoiiiiiiiiiiie e 564
Table A-10. Floating-Point Rounding and Conversion INStructionscccceeeiieiiiiin e 565
Table A-11. Floating-Point Compare INSITUCIONScoiiiiiiiiiiii e 565
Table A-12. Floating-Point Status and Control Register INStructions ..o 565
Table A-13. Integer Load INSIIUCHIONSooiiiiiiiiiiii e 566
Table A-14. Integer Store INSIUCHIONSooiiiiiiii e e 567
Table A-15. Integer Load and Store with Byte Reverse INStructionsc..cccooveiiiiiini e 567
Table A-16. Integer Load and Store Multiple INStruUCtioNScoooiiiiiiiiiiii e 567
Table A-17. Integer Load and Store String INSrUCIONSoviiiiiiiiiiiie e 568
Table A-18. Memory Synchronization INStrUCHIONSooiiiiiii i 568
Table A-19. Floating-Point Load INSrUCHIONSoocueiiiiiiieiie e 568
Table A-20. Floating-Point Store INSIrUCIONSoiueiiiiii e 569
Table A-21. Floating-Point Move INSTIUCHIONSoocueiiiiii e 569
Table A-22. BranCh INSTIUCHIONS ...t e e e e e e e e ee e e e e e e e e e s s annnsrneeees 569
Table A-23. Condition Register Logical INSIrUCHONScooiiiiiiiiiiiei e e 570
Table A-24. System Linkage INSIIUCLIONSc..uuiiiiiiiiii e 570
Table A-25. Trap INSTIUCTIONScoiiiiee ettt e e e e e e e e e e e e s sanbe b beeer e e e e e e e e e s annnrenneees 570
Table A-26. Processor Control INSIUCHIONScoiiiiiiiiiii e 571
List of Tables pemLOT.fm.3.0

Page 14 of 657 July 15, 2005

é;—é-??: Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
Table A-27. Cache Management INSrUCIONScocuiiiiiiiiiiie et 571
Table A-28. Segment Register Manipulation INStruCtions ..o, 572
Table A-29. Lookaside Buffer Management INStrUCIONSccoouiiiiiiiiiiiie e 572
Table A-30. External Control INSTTUCHIONSooiiiiiiiiieeee e e e e e e e e e s e snnenes 572
LI o) (=T B B B o T o PO PPPTPRPTPRIN 573
LI Lo Lo e 72 B o T oSSR 573
L= L) [N e 1 T T @ o o PRSP 573
LI Lo L= e 7 S I o g o PRSI 574
L= L) [N e LT I 1 T o T o PRSP RR 575
LI o) L= e 1 TR o T 1 o USRS 576
Lo Lo A R o 1 o PP PPPPPRPTOPIN 580
LI Lo Lo 1 TR o o o o PSS 581
Table A-B9. XFL-FOIM ..ttt e e e e e e e e ettt et e e e e e e e e e s s e aanbebeeeeeeeeeaaeeesaaannnrenes 581
LI o) L= TR T o ¢ o o SRS 581
LI L) [N B (@ o o o PRSP SR 582
LI Lo Lo 2 o T 1 o SRR 583
Lo Lo TR 1V o T o 4 PP PPPPPRPTORIN 584
LI Lo Lo B 1Y I o o o SRS 584
Table A-45. MDS-FOIM ...t e e et e e e e et e e e e e s s bee e e e e snbbeeeeeesteeeeeesnsbeeeeeanreeas 584
Table A-46. PowerPC INStruction Set LEgENTccueiiiiiiiiiie et 585
Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit MOAE)cevveviiiiiiiie e 594
Table C-1. Interpretation of G, R, and X BitS ...c.ceeiiiiiiiieee e e e 597
Table C-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Modelccccccoeierernnnnn. 598
Table C-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model 599
Table C-4. COMPATSON 10 ZETOueiiiiiiiiiiee ettt e e e et e e e e e st e e e e e sasbee e e e esnteeeeeeasteeeeesasreeeeeannseeas 614
Table C-5. Minimum and MaXimUM ... iee e e e e e e e e s s eeereeeeeaeeeeessaansnseeaneeeeaaneeseesaannnnes 614
Table C-6. SIMPIE [f-TREN-EISEcooiiiieiiiei et e et e e et e e e e ent e e e e e snbeeeeeenreeas 615
Table E-1. Condition Register Bit and Identification Symbol Descriptionscccooooiiiiiiii i, 627
Table E-2. Simplified Mnemonics for Double-Word Compare INStructionscccccccvveviiiieneeenciiee e, 629
Table E-3. Simplified Mnemonics for Word Compare INStruCtionscccooiiiiiiiiiiiiiiieiieee e 629
Table E-4. Double-Word Rotate and Shift INSTTUCHIONScooiiiiiiiiie e 630
Table E-5. Word Rotate and Shift INStrUCHIONS ..o e 631
Table E-6. Simplified Branch MNEMONICScouiiiiiiiiiieiiiiiee e criee et e et e e e e sreee e e e e sbee e e e s nreeeeeeenreeas 633
Table E-7. Simplified Branch Mnemonics for be and bea Instructions without Link Register Update 634
Table E-8. Simplified Branch Mnemonics for belr and becelr Instructions without Link Register Update ... 634
Table E-9. Simplified Branch Mnemonics for bel and bela Instructions with Link Register Update 635
Table E-10. Simplified Branch Mnemonics for belrl and beetrl Instructions with Link Register Update 635
Table E-11. Standard Coding for Branch COoNditioNScoiiiiiiiiiiiii e 636
Table E-12. Simplified Branch Mnemonics with Comparison Conditionsccccoevceii e 636
Table E-13. Simplified Branch Mnemonics for be and bea Instructions without Comparison Conditions and
Link Register UPAatingoouiiiiiiiieiie ettt e e e e e e 637
pemLOT.fm.3.0 List of Tables

July 15, 2005 Page 15 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table E-14.

Table E-15.

Table E-16.

Table E-17.
Table E-18.
Table E-19.
Table E-20.
Table E-21.

List of Tables

Page 16 of 657

Simplified Branch Mnemonics for belr and bectr Instructions without Comparison Conditions and
Link Register Updating
Simplified Branch Mnemonics for bel and bela Instructions with Comparison Conditions and Link
Register Update
Simplified Branch Mnemonics for belrl and becetl Instructions with Comparison Conditions and

Link RegiSter UPAteoociiiiiiiiiiie et e e 639
Condition Register Logical MNEMONICSccoiiiiiiiiiiiiiie et 640
Standard Codes for Trap INSIUCHIONScooiiiiiiiii i 641
TrAP MNEMONICS ...eeiiiiiiieeee ettt e e e ra et e e e s b bttt e e e aab e et e e s ebbe e e e e e aabeeeeessanbeeeeeens 642
TO Operand Bit ENCOTINGccuveiiiiiieiiiie ittt seneas 643
Simplified MNemMONICS fOr SPRScoiiiiiiii e 643
pemLOT.fm.3.0

July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Figures

Figure 1-1. Programming Model—PowerPC RegiStersooiiiiiiiiiiiie e e 34
Figure 1-2. Big-Endian Byte and Bit Orderingccoooueii ittt s e s saeee e 35
Figure 2-1. UISA Programming Model—User-Level RegiSters ... 42
Figure 2-2. General-Purpose RegiSters (GPRS)coiiiiiiiiiiiiiie e 44
Figure 2-3. Floating-Point Registers (FPRS)oiii e 45
Figure 2-4. Condition REGISLEr (CR)oieiiiiiiiiiiee et e s bt e e e e sabe e e e e e e nbee e e e eaneeas 45
Figure 2-5. Floating-Point Status and Control Register (FPSCR)coooiiiiiiiiii e, 48
Figure 2-6. XER REQISIEr ...t e e s e e e e e e b e e e e e e neeas 50
Figure 2-7. LiNK REGISTEr (LR) .eeeiiieiiiei ettt ettt e e et e e e et e e e e e nbe e e e e eaneeas 51

Figure 2-8. Count RegiSter (CTR)eiiii it e e e e e e e e s abe e e e e e aneeas 52
Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Baseccccooviiiiiiiiieiiinnen, 54
Figure 2-10. TiMe BaSE (TB) ..eiiiiiiiiiiiiiiitiiie ettt ettt e e e sttt e e e s bt e e e e s nbe e e e e s annteeeeeeannreeeeeennneeas 55
Figure 2-11. OEA Programming Model—All REQISIEISuueiiiiiiiee e 58
Figure 2-12. Machine State Register (MSR)ouiiiiiiii et r e b seee e s eaeeeeas 60
Figure 2-13. Processor Version Register (PVR)cooiiiiiiiii ettt 64
o UL =2 S DL O U UPR 64
Figure 2-15. Address Space RegiSter (ASR)ouiiiiiiii ittt et b e s be e snte e s saneeeas 65
Figure 2-16. Address Space Register (ASR)—64-Bit Bridgecccceeoiiiiiieiiiiiiee et e 66
Figure 2-17. Data Address Register (DAR) ... e 67
Figure 2-18. SPRGO-SPRGS ... oottt sttt e et e s rbe e e s s bt e e aate e e aabe e e sabeaesnseesabeeesanteesanseaann 67
FIgure 2-19. DSISR ...ttt e e bt e e r et e e s et e s st e e anr et e sane e e e anee e e anneesanneenanneeen 68
Figure 2-20. Machine Status Save/Restore Register 0 (SRRO)oeiiiiiiiiiiii e 68
Figure 2-21. Machine Status Save/Restore Register 1 (SRR1)ooiiiiiiiiii e 69
Figure 2-22. Decrementer RegiSter (DEC)oocuuiiiiiiiiiie ettt e e e e 70
Figure 2-23. Data Address Breakpoint Register (DABR)oooiiiiiiii e 71

Figure 2-24. External Access Register (EAR) ..ottt 73
Figure 3-1. C Program Example—Data SIructure Scoo i 80
Figure 3-2. Big-Endian Mapping Of STFUCLUIE Scooioiiiiieeeeeeee ettt bbb 81

Figure 3-3. Little-Endian Mapping of STrUCIUIE Scuoiiiiei et 82

Figure 3-4. Little-Endian Mapping of Structure S —Alernate VIewccccoiiiiiiiiniieciee e 83
Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystemcccocceiiiiieniinnnen. 84
Figure 3-6. Munged Little-Endian Structure S as Seen by ProCESSOrccceoiiiiiiiiiiiiiee et 85
Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05coocvieriieeiniie e 86
Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem 87
Figure 3-9. Floating-Point Single-Precision FOrMALtc.coo it 93
Figure 3-10. Floating-Point Double-Precision FOrmatcooiiiiiiiie e 93
Figure 3-11. Approximation 1o Real NUMDEIScooiiiiiiiii e 94
Figure 3-12. Format for Normalized NUMDEIScooiiiiiiiii e e 95
pemLOF.fm.3.0 List of Figures

July 15, 2005 Page 17 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-13. Format for Zero NUMDEISoooiiiiiiiiiiiee ettt e e e 96
Figure 3-14. Format for Denormalized NUMDEISuuiiiiiiiiiiiie ettt 96
Figure 3-15. Format for Positive and Negative INfinitieSooooiiiiiiiiii e 97
Figure 3-16. FOrmMat fOr NGNSooi et re e e nr e s e e e nneeeeee 97
Figure 3-17. Representation of Generated QNaANcoccoiiiiiiiiiiie e 98
Figure 3-18. Single-Precision Representation in an FPRc.ooiiiiiii e 100
Figure 3-19. Relation 0f Z1 @nd Z2 ...t 101

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modesccccooiiiiiiiiiiiiie e 102
Figure 3-21. Rounding FIags inN FPSCR ...ttt ettt s be e e snee e 103
Figure 3-22. Floating-Point Status and Control Register (FPSCR)ccoooiiiiiiiiiieeee e 103
Figure 3-28. Initial Flow for Floating-Point Exception Conditionsccccoviiiiiiiiniiiie e 110
Figure 3-24. Checking of Remaining Floating-Point Exception Conditionsccocoiiiiiiiiiiiiiiieieniees 114
Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Storesccccceueeene 148
Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Storescccceeevvceieviiiieee e 149
Figure 4-3. Register Indirect Addressing for Integer Loads/StOrescccccveveerieiniciiiecee e 150
Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point Loads/Stores 157
Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Storesccccovcieeeennnnnne. 157
Figure 4-6. Branch Relative AAAreSSINGgccooiiiiiiiiiiiiie et 161

Figure 4-7. Branch Conditional Relative AJAreSSingccooceiiiiiieiiiie et 162
Figure 4-8. Branch 10 ADSOIULE AAAIrESSINGeeeiiiiiiiiiiiiiitie et e e e e e e e e e e e e e e e 162
Figure 4-9. Branch Conditional to Absolute AAAreSSINGccueiiiiiiiiiiieiiie et eee s 163
Figure 4-10. Branch Conditional to Link Register AdAreSSiNgcococeeeiiiieiiiee i 164
Figure 4-11. Branch Conditional to Count Register AddreSSingccoocciieieiiiiiiiee e 165
Figure 6-1. Machine Status Save/Restore RegiSter 0cooiiiiiiiiiiiiie et 216
Figure 6-2. Machine Status Save/Restore RegisSter 1ooiiiiiiiii i 216
Figure 6-3. Machine State Register (MSR) ... e 216
Figure 7-1. MMU Conceptual BIOCK DIiagramooceiiiiiiiiiiie ittt e e e e e 247
Figure 7-2. Address Translation TYPEScoii it e e e e 249
Figure 7-3. General Flow of Address Translation (Real Addressing Mode)ccoccociiiiiiieneinnciiee e, 252

Figure 7-4. General Flow of Page Address Translation ... 253
Figure 7-5. Location of Segment DESCIPIOrScoiciiiiiiiiiiiii ettt 254
Figure 7-6. Page Address Translation OVEIVIEWcoiiiiiiiiiiiiiiiee et 261

FIQUIE 7-7. SLB ENTIY oottt e e e e e e s bt e e e e e ab e e e e e e enbe e e e e enbeeeeeeaanees 262

Figure 7-8. Page Table ENntry FOrMAtoooo it 264
Figure 7-9. Memory Protection Violation FIOW for Pages ..o 271

Figure 7-10. Page Address Translation FIOW—TLB Hitcooooiiiiiiii e 272

Figure 7-11. Page Memory Protection Violation Conditions for Page Address Translationccc.c.c.... 273
Figure 7-12. Page Table DefiNitioNSooiiiiiiiie et e e e e 274
Figure 7-13. SDR1 Register FOrMAloooi i 275
List of Figures pemLOF.fm.3.0

Page 18 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 7-13. SDR1 Register FOIMALc.cuiiiiiiieiie ettt e ne e s 275
Figure 7-14. Hashing Functions for Page Tables (4KB page Siz€)ccccceiiiiieieiiiiiieie e 278
Figure 7-15. Generation of Addresses for Page Tables ..ot 280
Figure 7-16. Example Page Table STrUCIUIEcoo i 283
Figure 7-17. Example Primary PTEG Address Generationccccceeeiiiieeiiiiiiene e 285
Figure 7-18. Example Secondary PTEG Address Generationcccoeiiiiieiiiiiieniieeeeee e 286
Figure 7-19. Page Table SEaArch FIOWociii ittt s 288
Figure 7-20. GPR Contents for mfsr and MfSFinccccciiiiiccmmiininnrness s sssnes 295
Figure 7-21. GPR Contents for mtsr and MESKINcccviicemiiininir s s s 296
Figure 8-1. INStruCtion DESCIIPTIONceiiiiiiieii ittt et e s e e e s s e e e e s snreeeeeanes 306
Figure C-1. IEEE 64-Bit EXECULION MOTEIcouiiiieiiiiiie ettt e e e e e e e enes 597
Figure C-2. Multiply-Add 64-Bit EXeCUtION MOGEIcoiiiiiiiiiiiiiie e 599
pemLOF.fm.3.0 List of Figures

July 15, 2005 Page 19 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

THIS PAGE INTENTIONALLY LEFT BLANK

List of Figures pemLOF.fm.3.0
Page 20 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

About This Book

The primary objective of this manual is to help programmers provide software that is compatible across the
family of PowerPC™ processors. Because the PowerPC Architecture is designed to be flexible to support a
broad range of processors, this book provides a general description of features that are common to PowerPC
processors and indicates those features that are optional or that may be implemented differently in the design
of each processor.

This book describes the PowerPC Architecture from the perspective of the 64-bit architecture. For information
that pertains only to the 32-bit architecture refer to the PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors. To locate any published errata or updates for this manual, refer to
the world-wide web at http://www.ibm.com/powerpc. For programmers working with a specific processor, this
book should be used in conjunction with the user’s manual for that processor.

This manual distinguishes between the three levels, or programming environments, of the PowerPC Architec-
ture, which are as follows:

* PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level software should conform.

¢ PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the Pow-
erPC Architecture, defines additional user-level functionality that falls outside typical user-level software
requirements.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

* PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Refer to Section 1.1.2 on page 32 for additional information on the PowerPC Architecture levels.

Temporary 64-Bit Bridge

The OEA defines optional features to simplify the migration of 32-bit operating systems to a 64-bit imple-
mentations.

It is important to note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that can cause a floating-point exception are defined by
the UISA, while the exception mechanism itself is defined by the OEA.

This book does not attempt to replace the PowerPC Architecture specification (version 2.01), which defines
the architecture from the perspective of the three programming environments and which remains the defining
manual for the PowerPC Architecture.

For ease in reference, this book and the processor user's manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers
and instructions (for all three environments) and progressing to more specialized topics such as the cache,
exception, and memory management models. As such, chapters may include information from multiple levels
of the architecture; for example, the discussion of the cache model uses information from both the VEA and
the OEA.

pemO_preface.fm.3.0 About This Book
July 15, 2005 Page 21 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

It is beyond the scope of this manual to describe individual PowerPC processors. It must be kept in mind that
each PowerPC processor may be unique in its implementation of the PowerPC Architecture.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation. For more information contact your sales representative
or visit our web site at: http://www.ibm.com/powerpc.

Audience

This manual is intended for system software and hardware developers and application programmers who
want to develop 64-bit products using IBM’s 64-bit PowerPC processors. It is assumed that the reader under-
stands operating systems, microprocessor system design, and the basic principles of RISC processing.

Organization

Following is a summary and a brief description of the major sections of this manual:

* Chapter 1, “Overview,"is useful for those who want a general understanding of the features and functions
of the PowerPC Architecture. This chapter describes the flexible nature of the PowerPC Architecture defi-
nition and provides an overview of how the PowerPC Architecture defines the register set, operand con-
ventions, addressing modes, instruction set, cache model, exception model, and memory management
model.

* Chapter 2, “PowerPC Register Set," is useful for software engineers who need to understand the Pow-
erPC programming model for the three programming environments and the functionality of the PowerPC
registers.

* Chapter 3, “Operand Conventions," describes PowerPC conventions for storing data in memory, including
information regarding alignment, single and double-precision floating-point conventions, and big and little-
endian byte ordering.

» Chapter 4, “Addressing Modes and Instruction Set Summary," provides an overview of the PowerPC
addressing modes and a description of the PowerPC instructions. Instructions are organized by function.

e Chapter 5, “Cache Model and Memory Coherency," provides a discussion of the cache and memory
model defined by the VEA and aspects of the cache model that are defined by the OEA.

e Chapter 6, “Exceptions," describes the exception model defined in the OEA.

* Chapter 7, “Memory Management," provides descriptions of the PowerPC address translation and mem-
ory protection mechanism as defined by the OEA.

» Chapter 8, “Instruction Set," functions as a handbook for the PowerPC instruction set. Instructions are
sorted by mnemonic. Each instruction description includes the instruction formats and an individualized
legend that provides such information as the level(s) of the PowerPC Architecture in which the instruction
may be found and the privilege level of the instruction.

* Appendix A, “PowerPC Instruction Set Listings," lists all the PowerPC instructions. Instructions are
grouped according to mnemonic, opcode, function, and form.

* Appendix B, “Multiple-Precision Shifts," describes how multiple-precision shift operations can be pro-
grammed as defined by the UISA.

About This Book pem0O_preface.fm.3.0
Page 22 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* Appendix C, “Floating-Point Models," gives examples of how the floating-point conversion instructions
can be used to perform various conversions as described in the UISA.

* Appendix D, “Synchronization Programming Examples," gives examples showing how synchronization
instructions can be used to emulate various synchronization primitives and how to provide more complex
forms of synchronization.

* Appendix E, “Simplified Mnemonics," provides a set of simplified mnemonic examples and symbols.

e This manual also includes a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual, as well as
general information about the PowerPC Architecture.

General Information
The following documentation provides useful information about the PowerPC Architecture and computer
architecture in general:

* The following books are available via many online bookstores.

— The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by
International Business Machines, Inc.1994.
Note: This book has been superseded with the PowerPC Architecture Books I-lll, Version 2.01 and
is available at www.ibm.com/powerpc.

— PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

* Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way,
Reading, MA, 01867.

¢ PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919 East
Hillsdale Boulevard, Suite 400, Foster City, CA, 94404.

pemO_preface.fm.3.0 About This Book
July 15, 2005 Page 23 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

¢ User's manuals—These books provide details about individual PowerPC implementations and are
intended to be used in conjunction with The Programming Environments Manual. Chapter 1, Overview is
equivalent to previously released Technical Summaries.

* Addenda/errata to user's manuals—Because some processors have follow-on parts, an addendum may
be provided that describes the additional features and changes to functionality of the follow-on part.
These addenda are intended for use with the corresponding user’s manuals.

* Programming environments manuals (PEM)—These books provide information about resources defined
by the PowerPC Architecture that are common to PowerPC processors. There are several PEM versions
available, this version of the PEM which describes the 64-bit PowerPC Architecture; the PowerPC Micro-
processor Family: The Programming Environments for 32-Bit Microprocessors that describes only the 32-
bit model; and the PowerPC Microprocessor Family: Alti Vec™" Technology Programming Environments
Manual which describes the vector/SIMD architecture.

* Datasheets—Datasheets provide specific data regarding bus timing; signal behavior; and AC, DC, and
thermal characteristics, as well as other design considerations for each PowerPC implementation.

* PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPRPPCPRG-01 is a concise
reference that includes the register summary, memory control model, exception vectors, and the Pow-
erPC instruction set.

* PowerPC Quick Reference Guide: This brochure is a Quick Reference Guide to IBM's portfolio of indus-
try-leading PowerPC technology. It includes highlights and specifications for the PowerPC 405, PowerPC
440, PowerPC 750, and PowerPC 970 based standard products.

* Book I: PowerPC User Instruction Set Architecture (Version 2.01)—This book defines the instructions, reg-
isters, etc., typically used by application programs (for example, Branch, Load, Store, and Arithmetic
instructions; general purpose and floating-point registers). All Book | facilities and instructions are non-
privileged (are available in problem state).

* Book Il: PowerPC Virtual Environment Architecture (Version 2.01)-This book defines the storage model
(caches, storage access ordering, etc.) and related instructions, such as the instructions used to manage
caches and to synchronize storage accesses when storage is shared among programs running on differ-
ent processors. All Book Il facilities and instructions are non-privileged, but they are typically used via
operating-system-provided library subroutines, which application programs call as needed.

* Book lll: PowerPC Operating Environment Architecture (Version 2.01) —This book defines the privileged
facilities and related instructions (address translation, storage protection, interruptions, etc.). Nearly all
Book lll facilities and instructions are privileged. (Those that are non-privileged are described also in
Book | or Il, but only at the level needed by application programmers.)

* Application notes—These short documents contain useful information about specific design issues useful
to programmers and engineers working with PowerPC processors.

¢ Documentation for support chips.
For a current list of PowerPC documentation, refer to the world-wide web at http://wwwibm.com/chips. Addi-

tional literature on PowerPC implementations is being released to the web as new processors become avail-
able.

About This Book pem0O_preface.fm.3.0
Page 24 of 657 July 15, 2005

Conventions

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

This manual uses the following notational conventions:

mnemonics

italics

0x0

0b0

rA, rB

rD

frA, frB, frC
frD

n

REGIFIELD]

0000

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bectrx.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR
Used to express an undefined numerical value

Abbreviations or acronyms for registers are shown in uppercase text. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-
endian mode enable bit in the machine state register.

In certain contexts, such as a signal encoding, this indicates a don’t care.
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written
to as either ones or zeroes, they are always read as zeros.

Temporary 64-Bit Bridge

Text that pertains to the optional 64-bit bridge defined by the OEA is presented with a box, as shown

here.

Additional conventions used with instruction encodings are described in Table 8-2 on page 300. Conventions
used for pseudocode examples are described in Table 8-3 on page 302.

pem0O_preface.fm.3.0

July 15, 2005

About This Book
Page 25 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this manual. Note that the meanings for some
acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may not be
intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term
ALU
ASR
BIST
BPU
BUID
CR
CTR
DABR
DAR
DEC
DSISR
DTLB
EA
EAR
ECC
FIFO
FPECR
FPR
FPSCR
FPU
GPR
IEEE®
ITLB

L2
LIFO
LR
LRU
LSB
Isb

Isq
MERSI

About This Book
Page 26 of 657

Meaning

Arithmetic logic unit

Address space register

Built-in self test

Branch processing unit

Bus unit ID

Condition register

Count register

Data address breakpoint register

Data address register

Decrementer register

Register used for determining the source of a DSI exception
Data translation lookaside buffer
Effective address

External access register

Error checking and correction
First-in-first-out

Floating-point exception cause register
Floating-point register

Floating-point status and control register
Floating-point unit

General-purpose register

Institute of Electrical and Electronics Engineers
Instruction translation lookaside buffer
Integer unit

Secondary cache

Last-in-first-out

Link register

Least recently used

Least-significant byte

Least-significant bit

Least-significant quad word

Modified/exclusive/reserved/shared/invalid—cache coherency protocol

pem0O_preface.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

msq Most-significant quad word

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIMD Single instruction stream, multiple data streams

SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRRO Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

B Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded — memory attribute bits
XER Register used primarily for indicating conditions such as carries and overflows for integer operations
pemO_preface.fm.3.0 About This Book

July 15, 2005 Page 27 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Terminology Conventions

Table iilists certain terms used in this manual that differ from the architecture terminology conventions.

Table ii. Terminology Conventions

The Architecture Specification
Data storage interrupt (DSI)
Extended mnemonics

Instruction storage interrupt (ISI)
Interrupt

Privileged mode (or privileged state)
Problem mode (or problem state)
Real address

Relocation

Storage (locations)

Storage (the act of)

Swizzling

This Manual

DSI exception
Simplified mnemonics
I1SI exception
Exception
Supervisor-level privilege
User-level privilege
Physical address
Translation

Memory

Access

Doubleword swap

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification
BA, BB, BT

BF, BFA

D

DS

FLM

FRA, FRB, FRC, FRT, FRS
FXM

RA, RB, RT, RS

SI

u

ul

/N

About This Book
Page 28 of 657

Equivalent to:

crbA, crbB, crbD (respectively)
crfD, crfS (respectively)

d

ds

FM

frA, frB, frC, frD, frS (respectively)
CRM

rA, rB, rD, rS (respectively)
SIMM

IMM

UIMM

0...0 (shaded)

pem0O_preface.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1. Overview

The PowerPC Architecture provides a software model that ensures software compatibility among implemen-
tations of the PowerPC family of microprocessors. In this manual, and in other PowerPC documentation as
well, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that complies with the
specifications defined by the architecture.

general defines the following:

¢ Instruction set—The instruction set specifies the families of instructions (such as load/store, integer arith-
metic, and floating-point arithmetic instructions), the specific instructions, and the forms used for encod-
ing the instructions. The instruction set definition also specifies the addressing modes used for accessing
memory.

* Programming model—The programming model defines the register set and the memory conventions,
including details regarding the bit and byte ordering, and the conventions for how data (such as integer
and floating-point values) are stored.

¢ Memory model—The memory model defines the size of the address space and of the subdivisions of that
address space. It also defines the ability to configure pages of memory with respect to caching, byte
ordering (big or little-endian), coherency, and various types of memory protection.

* Exception model—The exception model defines the common set of exceptions and the conditions that
can generate those exceptions. The exception model specifies characteristics of the exceptions, such as
whether they are precise or imprecise, synchronous or asynchronous, and maskable or nonmaskable.
The exception model defines the exception vectors and a set of registers used when exceptions are
taken. The exception model also provides memory space for implementation-specific exceptions. (Note
that exceptions are referred to as interrupts in the architecture specification.)

* Memory management model—The memory management model defines how memory is partitioned, con-
figured, and protected. The memory management model also specifies how memory translation is per-
formed, the real, virtual, and physical address spaces, special memory control instructions, and other
characteristics. (Physical address is referred to as real address in the architecture specification.)

* Time-keeping model—The time-keeping model defines facilities that permit the time of day to be deter-
mined and the resources and mechanisms required for supporting time-related exceptions.

These aspects of the PowerPC Architecture are defined at different levels of the architecture, and this chapter
provides an overview of those levels—the user instruction set architecture (UISA), the virtual environment
architecture (VEA), and the operating environment architecture (OEA).

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 29 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.1 PowerPC Architecture Overview

The PowerPC Architecture takes advantage of recent technological advances in such areas as process tech-
nology, compiler design, and reduced instruction set computing (RISC) microprocessor design. It provides
software compatibility across a diverse family of implementations, primarily single-chip microprocessors,
intended for a wide range of systems, including battery-powered personal computers; embedded controllers;
high-end scientific and graphics workstations; and multiprocessing, microprocessor-based mainframes. To
provide a single architecture for such a broad assortment of processor environments, the PowerPC Architec-
ture is both flexible and scalable.

The flexibility of the PowerPC Architecture offers many price/performance options. Designers can choose
whether to implement architecturally-defined features in hardware or in software. For example, a processor
designed for a high-end workstation has a greater need for the performance gained from implementing
floating-point normalization and denormalization in hardware than a battery-powered, general-purpose
computer might.

The PowerPC Architecture is scalable to take advantage of continuing technological advances—for example,
the continued miniaturization of transistors makes it more feasible to implement more execution units and a
richer set of optimizing features without being constrained by the architecture.

The PowerPC Architecture defines the following features:

» Separate 32-entry register files for integer and floating-point instructions. The general-purpose registers
(GPRs) hold source data for integer arithmetic instructions, and the floating-point registers (FPRs) hold
source and target data for floating-point arithmetic instructions.

* Instructions for loading and storing data between the memory system and either the FPRs or GPRs.

* Uniform-length instructions to allow simplified instruction pipelining and parallel processing instruction
dispatch mechanisms.

* Nondestructive use of registers for arithmetic instructions in which the second, third, and sometimes the
fourth operand, typically specify source registers for calculations whose results are typically stored in the
target register specified by the first operand.

* A precise exception model (with the option of treating floating-point exceptions imprecisely).
* Floating-point support that includes IEEE-754 floating-point operations.

¢ A flexible architecture definition that allows certain features to be performed in either hardware or with
assistance from implementation-specific software depending on the needs of the processor design.

¢ The ability to perform both single and double-precision floating-point operations.

¢ User-level instructions for explicitly storing, flushing, and invalidating data in the on-chip caches. The
architecture also defines special instructions (cache block touch instructions) for speculatively loading
data before it is needed, reducing the effect of memory latency.

* Definition of a memory model that allows weakly-ordered memory accesses. This allows bus operations
to be reordered dynamically, which improves overall performance and in particular reduces the effect of
memory latency on instruction throughput.

e Support for separate instruction and data caches (Harvard architecture) and for unified caches.
* Support for both big and little-endian addressing modes.

e Support for 64-bit addressing.

Overview pem1_overview.fm.3.0
Page 30 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

This chapter provides an overview of the major characteristics of the PowerPC Architecture in the order in
which they are addressed in this book:

* Reqgister set and programming model
¢ Instruction set and addressing modes
¢ Cache implementations

* Exception model

* Memory management

1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC Architecture is a 64-bit architecture with a 32-bit subset. It is important to distinguish the
following modes of operations:

¢ 64-bit implementations/64-bit mode—The PowerPC Architecture provides 64-bit addressing, 64-bit inte-
ger data types, and instructions that perform arithmetic operations on those data types, as well as other
features to support the wider addressing range. The processor is configured to operate in 64-bit mode by
setting the MSR[SF] bit.

¢ 64-bit implementations/32-bit mode—For compatibility with 32-bit implementations, 64-bit implementa-
tions can be configured to operate in 32-bit mode by clearing the MSR[SF] bit. In 32-bit mode, the effec-
tive address is treated as a 32-bit address, condition bits, such as overflow and carry bits, are set based
on 32-bit arithmetic (for example, integer overflow occurs when the result exceeds 32 bits), and the count
register (CTR) is tested by branch conditional instructions following conventions for 32-bit implementa-
tions. All applications written for 32-bit implementations will run without modification on 64-bit processors
running in 32-bit mode.

1.1.1.1 Temporary 64-Bit Bridge

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating system
to the 64-bit architecture. This bridge allows 64-bit implementations to use a simpler memory management
model to access 32-bit effective address space. Processors that implement this bridge may implement
resources, such as instructions, that are not supported, and in some cases not permitted by the 64-bit archi-
tecture.

For processors that implement the address translation portion of the bridge, segment descriptors take the
form of the STEs defined for 64-bit MMUs; however, only 16 STEs are required to define the entire 4-Gbyte
address space. Like 32-bit implementations, the effective address space is entirely defined by 16 contiguous
256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment registers as is defined for the
32-bit MMU, the 16 STEs are implemented and are maintained in 16 SLB entries.

These resources are described more fully in Section 7.6 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations. These resources are not to be considered a permanent part of the
PowerPC Architecture.

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 31 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.1.2 Levels of the PowerPC Architecture

The PowerPC Architecture is defined in three levels that correspond to three programming environments,
roughly described from the most general, user-level instruction set environment, to the more specific, oper-
ating environment. This layering of the architecture provides flexibility, allowing degrees of software compati-
bility across a wide range of implementations. For example, an implementation such as an embedded
controller will support the user instruction set, whereas it may be impractical for it to adhere to the memory
management, exception, and cache models.

The three levels of the PowerPC Architecture are defined as follows:

¢ PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level (referred to as problem state in the architecture specification) software should conform.
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to the UISA.

¢ PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality that
falls outside typical user-level software requirements. The VEA describes the memory model for an envi-
ronment in which multiple devices can access memory, defines aspects of the cache model, defines
cache control instructions, and defines the time base facility from a user-level perspective. The icon
shown in the margin identifies text that is relevant with respect to the VEA.

¢ PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as
privileged state in the architecture specification) resources typically required by an operating system. The
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level, but may not neces-
sarily adhere to the OEA level; likewise, implementations that conform to the OEA level are also guaranteed
to conform to the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC application programs.
However, there may be different versions of the VEA and OEA than those described here. For example,
some devices, such as embedded controllers, may not require some of the features as defined by this VEA
and OEA, and may implement a simpler or modified version of those features.

The general-purpose PowerPC microprocessors comply both with the UISA and with the VEA and OEA
discussed here. In this book, these three levels of the architecture are referred to collectively as the PowerPC
Architecture. The distinctions between the levels of the PowerPC Architecture are maintained clearly
throughout this manual, using the conventions described in the Section Conventions on page 25.

1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC Architecture defines those parameters necessary to ensure compatibility among PowerPC
processors, but also allows a wide range of options for individual implementations. These are as follows:

* The PowerPC Architecture defines some facilities (such as registers, bits within registers, instructions,
and exceptions) as optional.

* The PowerPC Architecture allows implementations to define additional privileged special-purpose regis-
ters (SPRs), exceptions, and instructions for special system requirements (such as power management
in processors designed for very low-power operation).

Overview pem1_overview.fm.3.0
Page 32 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

¢ There are many other parameters that the PowerPC Architecture allows implementations to define. For
example, the PowerPC Architecture may define conditions for which an exception may be taken, such as
alignment conditions. A particular implementation may choose to solve the alignment problem without
taking the exception.

¢ Processors may implement any architectural facility or instruction with assistance from software (that is,
they may trap and emulate) as long as the results (aside from performance) are identical to that specified
by the architecture.

* Some parameters are defined at one level of the architecture and defined more specifically at another.
For example, the UISA defines conditions that may cause an alignment exception, and the OEA specifies
the exception itself.

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC Architecture, there are many aspects of the
processor design, typically relating to the hardware implementation, that the PowerPC Architecture does not
define, such as the following:

¢ System bus interface signals—Although numerous implementations may have similar interfaces, the
PowerPC Architecture does not define individual signals or the bus protocol. For example, the OEA
allows each implementation to determine the signal or signals that trigger the machine check exception.

¢ Cache design—The PowerPC Architecture does not define the size, structure, the replacement algorithm,
or the mechanism used for maintaining cache coherency. The PowerPC Architecture supports, but does
not require, the use of separate instruction and data caches. Likewise, the PowerPC Architecture does
not specify the method by which cache coherency is ensured.

* The number and the nature of execution units—The PowerPC Architecture is a reduced instruction set
computing (RISC) architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput. However, the PowerPC
Architecture does not define the internal hardware details of implementations. For example, one proces-
sor may execute load and store operations in the integer unit, while another may execute these instruc-
tions in a dedicated load/store unit.

¢ Other internal microarchitecture issues—The PowerPC Architecture does not prescribe which execution
unit is responsible for executing a particular instruction; it also does not define details regarding the
instruction fetching mechanism, how instructions are decoded and dispatched, and how results are writ-
ten back. Dispatch and write-back may occur in-order or out-of-order. Also while the architecture specifies
certain registers, such as the GPRs and FPRs, implementations can implement register renaming or
other schemes to reduce the impact of data dependencies and register contention.

1.2 The PowerPC Architectural Models

This section provides overviews of aspects defined by the PowerPC Architecture, following the same order as
the rest of this book. The topics include the following:

* PowerPC registers and programming model

¢ PowerPC operand conventions

¢ PowerPC instruction set and addressing modes
* PowerPC cache model

¢ PowerPC exception model

* PowerPC memory management model

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 33 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.2.1 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for computational instructions. Source
operands for these instructions are accessed from the architected registers or are provided as immediate
values embedded in the instruction. The three-register instruction format allows specification of a target
register distinct from two source operand registers. This scheme allows efficient code scheduling in a highly
parallel processor. Load and store instructions are the only instructions that transfer data between registers
and memory. The PowerPC registers are shown in Figure 1-1.

Figure 1-1. Programming Model—PowerPC Registers

/f USER MODEL—UISA
e 32 General-Purpose Registers (GPRs)
* 32 Floating-Point Registers (FPRs)
¢ Condition Register (CR)

* Fixed-Point Exception Register (XER)
* Link Register (LR)
Count Register (CTR)

¢ Floating-Point Status and Control Register (FPSCR)

)

USER MODEL—VEA
* Time Base Facility (TBU and TBL) (For reading)

N

_

SUPERVISOR MODEL—OEA

\\

Configuration Registers
* Machine State Register (MSR)
* Processor Version Register (PVR)

Memory Management Registers
* SDR1
* Address Space Register (ASR)

Exception Handling Registers
¢ Data Address Register (DAR)
* DSISR
* Save and Restore Registers (SRR0/SRR1)
¢ Software Use SPRs (SPRG0-SPRGS3)
¢ Floating-Point Exception Cause Register (FPECF{)1

Miscellaneous Registers
* Time Base Facility (TBU and TBL) (For writing)
* Decrementer Register (DEC)
« Data Address Breakpoint Register (DABR)'
* Processor Identification Register (PIR)’
 External Access Register (EAR)’
* Control Register (CTRL)
* Instruction Address Breakpoint Register (IABR)?

~

/

1. Optional
2. Implementation specific register

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each implementation may have its own unique set of hardware implementation
(HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege:

* Supervisor mode—used exclusively by the operating system. Resources defined by the OEA can be

accessed only by supervisor-level software.

» User mode—used by the application software and operating system software. (Only resources defined by
the UISA and VEA can be accessed by user-level software.)

Overview
Page 34 of 657

pem1_overview.fm.3.0

July 1

5, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

These two levels govern the access to registers, as shown in Figure 1-1. The division of privilege allows the
operating system to control the application environment (providing virtual memory and protecting operating
system and critical machine resources). Instructions that control the state of the processor, the address trans-
lation mechanism, and supervisor registers can be executed only when the processor is operating in super-
visor mode.

» User Instruction Set Architecture Registers—All UISA registers can be accessed by all software with
either user or supervisor privileges. These registers include the 32 general-purpose registers (GPRs) and
the 32 floating-point registers (FPRs), and other registers used for integer, floating-point, and branch
instructions.

¢ Virtual Environment Architecture Registers—The VEA defines the user-level portion of the time base
facility, which consists of the two 32-bit time base registers. These registers can be read by user-level
software, but can be written to only by supervisor-level software.

¢ Operating Environment Architecture Registers—SPRs defined by the OEA are used for system-level
operations such as memory management, exception handling, and time-keeping.

The PowerPC Architecture also provides room in the SPR space for implementation-specific registers, typi-
cally referred to as HID registers. Individual HIDs are not discussed in this manual.
1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC Architecture—user instruction set architecture
(UISA) and virtual environment architecture (VEA). These conventions define how data is stored in registers
and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the option of operating in
either big or little-endian mode. Big-endian byte ordering is shown in Figure 1-2.

Figure 1-2. Big-Endian Byte and Bit Ordering

MSB

Byte 0 Byte 1 /\/ | Byte N (max) |

Big-Endian Byte Ordering

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) and ILE (exception
little-endian mode). The LE bit specifies whether the processor is configured for big-endian or little-endian
mode; the ILE bit specifies the mode when an exception is taken by being copied into the LE bit of the MSR.
A value of ’0’ specifies big-endian mode and a value of 1 specifies little-endian mode.

Note: Little endian mode is optional. If the processor does not support little endian mode, then MSR[LE] and
MSR[ILE] are treated as reserved.

Refer to Section 3.1.2 Byte Ordering for details on big-endian and little-endian modes.

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 35 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands may be bytes, halfwords, words, or doublewords, or for the load/store string/multiple
instructions, a sequence of bytes or words. The address of a multiple-byte memory operand is the address of
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned.

1.2.2.3 Floating-Point Conventions

The PowerPC Architecture adheres to the IEEE-754 standard for floating-point arithmetic:

¢ Double-precision arithmetic instructions may have single or double-precision operands but always pro-
duce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision values and always pro-
duce single-precision results. Single-precision values are stored in double-precision format in the FPRs—
these values are rounded such that they can be represented in 32-bit, single-precision format (as they are
in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types, permitting decoding to occur in parallel with operand accesses. This fixed instruc-
tion length and consistent format greatly simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set

Although these categories are not defined by the PowerPC Architecture, the PowerPC instructions can be
grouped as follows:

* Integer instructions—These instructions are defined by the UISA. They include computational and logical
instructions. For example, integer arithmetic instructions, integer compare instructions, logical instruc-
tions, and integer rotate and shift instructions.

¢ Floating-point instructions—These instructions, defined by the UISA, include floating-point computational
instructions, as well as instructions that manipulate the floating-point status and control register (FPSCR).
For example, floating-point arithmetic instructions, floating-point multiply/add instructions, floating-point
compare instructions, floating-point status and control instructions, floating-point move instructions, and
optional floating-point instructions.

¢ Load/store instructions—These instructions, defined by the UISA, include integer and floating-point load
and store instructions. For example, integer load and store instructions, integer load and store with byte
reverse instructions, integer load and store multiple instructions, integer load and store string instructions,
and floating-point load and store instructions.

Overview pem1_overview.fm.3.0
Page 36 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The UISA also provides a set of load/store with reservation instructions (lwarx/Idarx and stwcex./stdex.)
that can be used as primitives for constructing atomic memory operations in multiprocessing environ-
ments. These are grouped under synchronization instructions.

Synchronization instructions—The UISA and VEA define instructions for memory synchronizing, espe-
cially useful for multiprocessing. For example, load and store with reservation instructions (these UISA-
defined instructions provide primitives for synchronization operations such as test and set, compare and
swap, and compare memory). The synchronization instruction (sync) is useful for synchronizing load and
store operations on a memory bus that is shared by multiple devices. The Enforce In-Order Execution of
I/O (eieio) instruction provides an ordering function for the effects of load and store operations executed
by a processor.

Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. The UISA defines numerous
instructions that control the program flow, including branch, trap, and system call instructions, as well as
instructions that read, write, or manipulate bits in the condition register. The OEA defines two flow control
instructions that provide system linkage (sc, rfid). These instructions are used for entering and returning
from supervisor level.

Processor control instructions—These instructions are used for synchronizing memory accesses and
managing caches and translation lookaside buffers (TLBs). These instructions include move to/from spe-
cial-purpose register instructions (mtspr and mfspr).

Memory/cache control instructions—These instructions provide control of caches, SLBs, and TLBs. The
VEA defines several cache control instructions. The OEA defines several memory control instructions.

External control instructions—The VEA defines two optional instructions (eciwx, ecowx) for use with
special input/output devices.

Temporary 64-Bit Bridge

* The 64-bit bridge allows several instructions to be used in 64-bit implementations that are otherwise
defined for use in 32-bit implementations only. These include the following:

— Move to Segment Register (mtsr) and Move to Segment Register Indirect (mtsrin)
— Move from Segment Register (mfsr) and Move from Segment Register Indirect (mfsrin)
All four of these instructions are implemented as a group and are never implemented individually.

Attempting to execute one of these instructions on a 64-bit implementation on which these instruc-
tions are not supported causes program exception.

Note: This grouping of the instructions does not indicate which execution unit executes a particular instruc-
tion or group of instructions. This is not defined by the PowerPC Architecture.

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 37 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the processor when
executing a memory access or branch instruction or when fetching the next sequential instruction. Unless
address translation is disabled, this address is converted by the MMU to the appropriate physical address.

Note: The architecture specification uses only the term effective address and not logical address.

The PowerPC Architecture supports the following simple addressing modes for memory access instructions:
* EA = (rAl0O) (register indirect)
* EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
* EA = (rAl0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for PowerPC proces-
sors. The PowerPC Architecture does not define hardware aspects of cache implementations. For example,
some PowerPC processors may have separate instruction and data caches (Harvard architecture), while
others have a unified cache.

The PowerPC Architecture allows implementations to control the following memory access modes on a page
basis:

¢ Write-back/write-through mode

* Caching-inhibited mode

e Memory coherency

* Guarded/not guarded against speculative accesses
Coherency is maintained on a cache block basis, and cache control instructions perform operations on a
cache block basis. The size of the cache block is implementation-dependent. The term cache block should

not be confused with the notion of a block in memory, which is described in Section 1.2.6 PowerPC Memory
Management Model.

The VEA portion of the PowerPC Architecture defines several instructions for cache management. These can
be used by user-level software to perform such operations as touch operations (which cause the cache block
to be speculatively loaded), and operations to store, flush, or clear the contents of a cache block.

Overview pem1_overview.fm.3.0
Page 38 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change to supervisor state
as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, information about the state of the processor is saved to various registers and the processor
begins execution at an address (exception vector) predetermined for each type of exception. Exception
handler routines begin execution in supervisor mode. The PowerPC exception model is described in detail in
Chapter 6, Exceptions.

Note: Some aspects regarding exception conditions are defined at other levels of the architecture. For exam-
ple, floating-point exception conditions are defined by the UISA, whereas the exception mechanism is defined
by the OEA.

The PowerPC Architecture requires that exceptions be handled in program order (excluding the optional
floating-point imprecise modes and the reset and machine check exception); therefore, although a particular
implementation may recognize exception conditions out of order, they are handled strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction
stream, including any that have not yet begun to execute, are required to complete before the exception is
taken. Any exceptions caused by those instructions must be handled first. Likewise, exceptions that are asyn-
chronous and precise are recognized when they occur, but are not handled until all instructions currently
executing successfully complete processing and report their results.

The OEA supports four types of exceptions:

¢ Synchronous, precise

¢ Synchronous, imprecise

* Asynchronous, maskable

* Asynchronous, nonmaskable

1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the PowerPC OEA. The
primary functions of the MMU in a PowerPC processor are to translate logical (effective) addresses to phys-
ical addresses for memory accesses and I/O accesses (most I/O accesses are assumed to be memory-
mapped), and to provide access protection on a block or page basis.

Note: Many aspects of memory management are implementation-dependent. The description in Chapter 7,
Memory Management describes the conceptual model of a PowerPC MMU; however, PowerPC processors
may differ in the specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction accesses and
data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large
page whose size is implementation dependent (2° where 13 < p < 28). The MMU of 64-bit PowerPC proces-
sors uses an interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of
physical addresses that are < 62 bits in length. Table 7-1 MMU Features Summary summarizes the features
of PowerPC MMUs for 64-bit implementations.

pem1_overview.fm.3.0 Overview
July 15, 2005 Page 39 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Two types of accesses generated by PowerPC processors require address translation: instruction accesses,
and data accesses to memory generated by load and store instructions. The address translation mechanism
is defined in terms of segment tables and page tables used by PowerPC processors to locate the logical-to-

physical address mapping for instruction and data accesses. The segment information translates the logical

address to an interim virtual address, and the page table information translates the virtual address to a phys-
ical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page table entries on-chip. Although their exact characteristics are not specified by the architecture, the
general concepts that are pertinent to the system software are described. Similarly, 64-bit implementations
contain segment lookaside buffers (SLBs) on-chip that contain recently-used segment table entries, however
the PowerPC Architecture does not define the exact characteristics for SLBs.

Temporary 64-Bit Bridge

The 64-bit bridge provides resources that may make it easier for a 32-bit operating system to migrate to
a 64-bit processor. The nature of these resources are largely determined by the fact that in a 32-bit
address space, only 16 segment descriptors are required to define all 4 Gbytes of memory. That is,
there are sixteen 256 Mbyte segments, as is the case in the 32-bit architecture description.

1.3 Changes to this Manual

This manual reflects changes made to the PowerPC Architecture, Version 2.01.

Overview pem1_overview.fm.3.0
Page 40 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2. PowerPC Register Set

This chapter describes the register organization defined by the three levels of the PowerPC Architecture:

¢ User instruction set architecture (UISA)
¢ Virtual environment architecture (VEA), and
* Operating environment architecture (OEA).

The PowerPC Architecture defines register-to-register operations for all computational instructions. Source
data for these instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a target register distinct
from the two source registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

Note: The handling of reserved bits in any register is implementation-dependent. Software is permitted to
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns ‘0’ if
the value last written to the bit was ‘0’ and returns an undefined value (may be ‘0’ or ‘1’) otherwise. This
means that even if the last value written to a reserved bit was ‘1, reading that bit may return ‘0’.

2.1 Overview of the PowerPC UISA Registers

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user or supervisor-level
instructions (the architecture specification refers to user-level and supervisor-level as problem state and priv-
ileged state respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are
accessed as instruction operands. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax of the instruction
operand to access the register (for example, the number used to access the XER is SPR 1).

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 41 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-1. UISA Programming Model—User-Level Registers

SUPERVISOR MODEL — OEA

’ USER MODEL (UISA) \ Configuration Registers
General-Purpose Floating-Point Machine State Register ProcessorRVe:jsg)nI Register 1
Registers Registers (Read Only)
MSR (64/32) PVR (32) SPR 287
GPRO (64) FPRO (64)
Memory Management Registers
GPR1 (64) FPRT (64) yHanag g
[] []
. ® SDR1
° L)
GPR31 (64) FPR31 (64) SDR1 (64/32) | SPR 25
Address Space Register !
Condition Register’
ASR (64) SPR 280
CR (32) . . .
Exception Handling Registers
Floating-Point Status Data Address Register DSISR'
and Control Register
DAR (64) [SPR19 DSISR (32) |SPR 18
FPSCR (32) .
SPRGs Save and Restore Registers
XER Register SPRGO (64) |SPR 272 SRRO (64/32) | SPR 26
SPRG1 (64) |SPR 273 SRR1 (64/32) |SPR 27
XER (64) SPR 1 . . .
SPRG2 (64) |SPR 274 Floating-Point Exception
Link Register SPRG3 (64/) |SPR 275 Cause Register (Optional)
FPECR SPR 1022
LR (64) SPR 8
Miscellaneous Registers
Count Register Time Base Facility ' Data Address Breakpoint
(For Writing) Register (Optional)
CTR (64) SPR9 TBL (32) SPR 284 SABR PR
4 101
k) TBU (32) SPR 285 (64) 013
D ter 1 External Access Register
ecrementer (Optional) !
USER MODEL DEC (32) SPR 22 EAR (32) SPR 282

VEA
Time Base Facility !
(For Reading)

Processor Identification

TBR 268
TBR 269

TBL (32)
TBU (32)

1. These registers are on 64-bit implementations only.
2. These registers are implementation dependent.

Register (Optional)
PIR

SPR 1023

3. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

PowerPC Register Set
Page 42 of 657

pem2_regset.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The user-level registers can be accessed by all software with either user or supervisor privileges. The
user-level registers are:

General-purpose registers (GPRs). The general-purpose register file consists of 32 GPRs designated as
GPRO0-GPR31. The GPRs serve as either the data source or the destination registers for all integer
instructions and provide data for generating addresses. For more information see Section 2.1.1 General-
Purpose Registers (GPRs) on page 44.

Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs designated as FPRO—
FPR31; these registers serve as either the data source or the destination for all floating-point instructions.
While the floating-point model includes data objects of either single or double-precision floating-point for-
mat, the FPRs only contain data in double-precision format. For more information, see Section 2.1.2
Floating-Point Registers (FPRs) on page 44.

Condition register (CR). The condition register is a 32-bit register that is divided into eight 4-bit fields,
CRO-CRY7. This register stores the results of certain arithmetic operations and provides a mechanism for
testing and branching. For more information, see Section 2.1.3 Condition Register (CR) on page 45.

Floating-point status and control register (FPSCR). The floating-point status and control register contains
all floating-point exception signal bits, exception summary bits, exception enable bits, and rounding con-
trol bits needed for compliance with the IEEE 754 standard. For more information, see Section 2.1.4
Floating-Point Status and Control Register (FPSCR) on page 47.

Note: The architecture specification refers to exceptions as interrupts.

Fixed point exception register (XER). The fixed point exception register indicates overflows and carry con-
ditions for integer operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5 XER Register (XER) on page 50.

Link register (LR). The link register provides the branch target address for the Branch Conditional to Link
Register (belrx) instructions, and can optionally be used to hold the effective address of the instruction
that follows a branch with link update instruction in the instruction stream, typically used for loading the
return pointer for a subroutine. For more information, see Section 2.1.6 Link Register (LR) on page 51.

Count register (CTR). The count register holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
Branch Conditional to Count Register (becetrx) instructions. For more information, see Section 2.1.7
Count Register (CTR) on page 52.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 43 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor's 32 GPRs shown in Figure 2-2. These registers are 64-bit regis-
ters. The GPRs are accessed as either source or destination registers in the instruction syntax.

Figure 2-2. General-Purpose Registers (GPRs)

GPRO
GPR1

GPR31

2.1.2 Floating-Point Registers (FPRs)

The PowerPC Architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers are
accessed as either source or destination registers for floating-point instructions. Each FPR supports the
double-precision floating-point format. Every instruction that interprets the contents of an FPR as a floating-
point value uses the double-precision floating-point format for this interpretation.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and, with the excep-
tion of compare instructions, place the result into a FPR. Information about the status of floating-point opera-
tions is placed into the FPSCR and in some cases, into the CR after the completion of instruction execution.
For information on how the CR is affected for floating-point operations, see Section 2.1.3 Condition Register
(CR).

Instructions to load and to store floating-point double precision values transfer 64 bits of data between
memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-precision floating-point
values from memory, convert them to double-precision floating-point format, and place them in the target
floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-point values from a
floating-point register, convert them to single-precision floating-point format, and place them in the target
memory location.

Instructions for single and double-precision arithmetic operations accept values from the FPRs in double-
precision format. For instructions of single-precision arithmetic and store operations, all input values must be
representable in single-precision format; otherwise, the results placed into the target FPR (or the memory
location) and the setting of status bits in the FPSCR and in the condition register (if the instruction’s record bit,
Rec, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be regarded as infinitely
precise and with unbounded exponent range. This intermediate result is normalized or denormalized if
required, and then rounded to the destination format. The final result is then placed into the target FPR in the
double-precision format or in fixed-point format, depending on the instruction. Refer to Section 3.3 Floating-
Point Execution Models—UISA on page 92 for more information.

PowerPC Register Set pem2_regset.fm.3.0
Page 44 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-3. Floating-Point Registers (FPRs)

FPRO
FPR1

FPR31

2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations and provides a
mechanism for testing and branching. The bits in the CR are grouped into eight 4-bit fields, CRO-CR7, as
shown in Figure 2-4.

Figure 2-4. Condition Register (CR)

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 34 7 8 11 12 15 16 19 20 23 24 27 28 31

The CR fields can be set in one of the following ways:
» Specified fields of the CR can be set from a GPR by using the mterf and mtocrf instruction.
* The contents of the XER[0-3] can be moved to another CR field by using the merf instruction.
* A specified field of the XER can be copied to a specified field of the CR by using the merxr instruction.
* A specified field of the FPSCR can be copied to a specified field of the CR by using the mcrfs instruction.

¢ Logical instructions of the condition register can be used to perform logical operations on specified bits in
the condition register.

* CRO can be the implicit result of an integer instruction.
¢ CR1 can be the implicit result of a floating-point instruction.

* A specified CR field can indicate the result of either an integer or floating-point compare instruction.

Note: Branch instructions are provided to test individual CR bits.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 45 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is, when Rc =’1"),
and for addic., andi., and andis., the first three bits of CRO are set by an algebraic comparison of the result
to zero; the fourth bit of CRO is copied from XER[SO]. For integer instructions, CR bits [0-3] are set to reflect
the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined, the value placed
into the first three bits of CRO is undefined. The stwcx. and stdex. instructions also set the CRO field.

Table 2-1. Bit Settings for CRO Field of CR

CRO Bit Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not zero).
2 Zero (EQ)—This bit is set when the result is zero or when a stwex. or stdex. successfully completes.
3 Summary overflow (SO)—This is a copy of the final state of XER[SO] at the completion of the instruction.

Note: If overflow occurs, CRO may not reflect the true (infinitely precise) result. CRO bits [0-2] are undefined
if Rc = 1 for the mulhw, mulhwu, divw, and divwu instructions.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (Rc =1), CR1 (bits [4-7]
of the CR) is copied from bits [0—3] of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4 Floating-Point Status and Control Register (FPSCR). The bit
settings for the CR1 field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1 Bit Description

4 Floating-point exception summary (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the
instruction.

5 Floating-point enabled exception summary (FEX)—This is a copy of the final state of FPSCR[FEX] at the comple-
tion of the instruction.

6 Floating-point invalid operation exception summary (VX)—This is a copy of the final state of FPSCR[VX] at the
completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion of the
instruction.

PowerPC Register Set pem2_regset.fm.3.0

Page 46 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the comparison, the bits of
the specified field are interpreted as shown in Table 2-3.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRnBit! |Description 2

Less than or floating-point less than (LT, FL).
0 For integer compare instructions: rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

Greater than or floating-point greater than (GT, FG).
1 For integer compare instructions: rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

Equal or floating-point equal (EQ, FE).
2 For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

Summary overflow or floating-point unordered (SO, FU).
3 For integer compare instructions: This is a copy of the final state of XER[SO] at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a Number (NaN).

Notes:

1. Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO-CR7.
2. For a complete description of instruction syntax conventions, refer to Table 8-2 on page 300.

2.1.4 Floating-Point Status and Control Register (FPSCR)

The Floating-Point Status and Control Register (FPSCRY), shown in Figure 2-5, is used for:
¢ Recording exceptions generated by floating-point operations
* Recording the type of the result produced by a floating-point operation
» Controlling the rounding mode used by floating-point operations
» Enabling or disabling the reporting of exceptions (that is, invoking the exception handler)

Bits [0-23] are status bits. Bits [24—31] are control bits. Status bits in the FPSCR are updated at the comple-
tion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid operation exception
summary (VX), the exception condition bits in the FPSCR (bits [3—12] and [21-23]) are sticky. Once set,
sticky bits remain set until they are cleared by the relevant mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not listed among the
FPSCR bits directly affected by the various instructions.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 47 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

D Reserved
VXIDI VXZDZ ————— VXSOFT
VXISI VXIMZ _ VXSQRT
VXSNAN VXVC VXCVI
FX|FEX| VX |OX| UX| ZX| XX FR| FI FPRF 0 VE|OE|UE|ZE | XE| NI RN
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1920 21 22 23 24 25 26 27 28 29 30 31

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Bit(s)

10

11

12

13

Name

FX

FEX

VX

OX

Ux
ZX

XX

VXSNAN

VXISI

VXIDI

VXzZDZ

VXIMZ

VXVC

FR

PowerPC Register Set
Page 48 of 657

Description

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FPSCRIFX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from ‘0’
to ‘1’. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a
sticky bit.

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) A (OX & OE) A (UX & UE) A (ZX & ZE) A (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 113.

Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.
Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.

FPSCR[XX] is the sticky version of FPSCRI[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:

* [f the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCRI[FI].

¢ If the instruction does not affect FPSCRIFI], the value of FPSCR[XX] is unchanged.

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

Floating-point invalid operation exception for « — . This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

Floating-point invalid operation exception for « + <. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

Floating-point invalid operation exception for « * 0. This is a sticky bit. See Invalid Operation Exception Condli-
tion on page 111.

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 111.

Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

pem2_regset.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s)

14

15-19

20

21

22

23
24
25

26
27
28

29

30-31

Name

Fl

FPRF

VXSOFT

VXSQRT

VXCVI

VE

OE

UE
ZE
XE

NI

RN

pem2_regset.fm.3.0

July 15, 2005

Description

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and
FPSCR[XX], see the description of the FPSCR[XX] bit.

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set
this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the
FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is less
than, greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.
Reserved

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the merfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid
Operation Exception Condition on page 111.

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.

Note: If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation
Exception Condition on page 111.

Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

|IEEE floating-point overflow exception enable.
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

|IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.
IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.
Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, the result produced is zero (retaining the sign of the denormalized number). Any other effects
associated with setting this bit are described in the user's manual for the implementation (the effects are imple-
mentation-dependent).

Note: When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be
approximate, and performance for these operations may be better, more predictable, or less data-dependent
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may
return O instead of a denormalized number, and may return a large number instead of an infinity.

Floating-point rounding control. See Section 3.3.5 Rounding.

00 Round to nearest

01 Round toward zero

10 Round toward +infinity
11 Round toward —infinity

PowerPC Register Set
Page 49 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits [15-19].

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits [15-19]) Result Value CI
esult Value Class

(¢} < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 —Infinity

0 1 0 0 0 —Normalized number

1 1 0 0 0 —Denormalized number
1 0 0 1 0 —Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number
0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

2.1.5 XER Register (XER)

The fixed-point exception register (XER) is a 64-bit, user-level register and is described in Figure 2-6 and
Table 2-6.

Figure 2-6. XER Register

|:| Reserved

0000 0000 0000 0000 0000 0000 0000 0000 | SO|OV|CA 0 0000 0000 0000 0000 O Byte count
0 31 32 33 34 35 56 57 63

The bit definitions for XER, shown in Table 2-6, are based on the operation of an instruction considered as a
whole, not on intermediate results. For example, the result of the Subtract from Carrying (subfcx) instruction
is specified as the sum of three values. This instruction sets bits in the XER based on the entire operation, not
on an intermediate sum.

PowerPC Register Set pem2_regset.fm.3.0
Page 50 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-6. XER Bit Definitions

Bit(s) Name |Description
0-31 - Reserved.

Summary overflow. The summary overflow bit [SO] is set whenever an instruction (except mtspr) sets the overflow
bit [OV]. Once set, the [SO] bit remains set until it is cleared by an mtspr instruction (specifying the XER) or an

32 SO |merxr instruction. It is not altered by compare instructions, nor by other instructions (except mtspr to the XER, and
mcrxr) that cannot overflow. Executing an mtspr instruction to the XER, supplying the values zero for [SO] and one
for [OV], causes [SO] to be cleared and [OV] to be set.

Overflow. The overflow bit [OV] is set to indicate that an overflow has occurred during execution of an instruction.
Add, subtract from, and negate instructions having OE =1’ set the [OV] bit if the carry out of the msb is not equal
to the carry out of the msb + 1, and clear it otherwise. Multiply low and divide instructions having OE =1’ set the

33 ov [OV] bit if the result cannot be represented in 64 bits (mulld, divd, divdu) or in 32 bits (mullw, divw, divwu), and
clear it otherwise. The [OV] bit is not altered by compare instructions, nor by other instructions that cannot overflow
(except mtspr to the XER, and mcrxr).
Carry. The carry bit [CA] is set during execution of the following instructions:
* Add carrying, subtract from carrying, add extended, and subtract from extended instructions set [CA] if there is
a carry out of the msb, and clear it otherwise.
34 CA » Shift right algebraic instructions set [CA] if any 1-bits have been shifted out of a negative operand, and clear it
otherwise.
The [CA] bit is not altered by compare instructions, nor by other instructions that cannot carry (except shift right
algebraic, mtspr to the XER, and mcrxr).
35-56 — Reserved
57-63 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx) or Store String

Word Indexed (stswx) instruction.

2.1.6 Link Register (LR)

The link register (LR) is a 64-bit register that supplies the branch target address for the Branch Conditional to
Link Register (bclrx) instructions, and in the case of a branch with link update instruction, can be used to hold
the logical address of the instruction that follows the branch with link update instruction (for returning from a
subroutine). The format of LR is shown in Figure 2-7.

Figure 2-7. Link Register (LR)

Branch Address

0 63

Note: Although the two least-significant bits can accept any values written to them, they are ignored when
the LR is used as an address. Both conditional and unconditional branch instructions include the option of
placing the logical address of the instruction following the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8. Prefetching instruc-
tions along the target path (loaded by an mtspr instruction) is possible provided the link register is loaded
sufficiently ahead of the branch instruction (so that any branch prediction hardware can calculate the branch
address). Additionally, PowerPC processors can prefetch along a target path loaded by a branch and link
instruction.

Note: Some PowerPC processors may keep a stack of the LR values most recently set by branch with link
update instructions. To benefit from these enhancements, use of the link register should be restricted to the
manner described in Section 4.2.4.2 Conditional Branch Control.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 51 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.1.7 Count Register (CTR)

The count register (CTR) is a 64-bit register that can hold a loop count that can be decremented during
execution of branch instructions that contain an appropriately coded BO field. If the value in CTR is 0 before
being decremented, it is -1 afterward; (OXFFFF_FFFF_FFFF_FFFF (264— 1). The CTR can also provide the
branch target address for the Branch Conditional to Count Register (becetrx) instruction. The CTR is shown in
Figure 2-8.

Figure 2-8. Count Register (CTR)

CTR

0 63

Prefetching instructions along the target path is also possible provided the count register is loaded sufficiently
ahead of the branch instruction (so that any branch prediction hardware can calculate the correct value of the
loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying SPR 9. In branch
conditional instructions, the BO field specifies the conditions under which the branch is taken. The first four
bits of the BO field specify how the branch is affected by or affects the CR and the CTR. The encoding for the
BO field is shown in Table 4-20 BO Operand Encodings.

PowerPC Register Set pem2_regset.fm.3.0
Page 52 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those defined by the
UISA. The PowerPC VEA register set can be accessed by all software with either user or supervisor-level
privileges. Figure 2-9 provides a graphic illustration of the PowerPC VEA register set. Note that the following
programming model is similar to that found in Figure 2-1, with the additional PowerPC VEA registers.

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists of two 32-bit regis-
ters—time base upper (TBU) and time base lower (TBL).

Note: The time base registers can be accessed by both user and supervisor-level instructions. In the context
of the VEA, user-level applications are permitted read-only access to the TB. The OEA defines supervisor-
level access to the TB for writing values to the TB. See Section 2.3.11 Time Base Facility (TB)—OEA for
more information.

In Figure 2-9 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 53 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base

SUPERVISOR MODEL - OEA

f/ USER MODEL \\

UISA Configuration Registers
General-Purpose Registers Machine State Register Processor Version Register ! (Read Only)
GPRO (64) MSR (64) PVR (32) SPR 287
GPR1 (64) Memory Management Registers
[]
° SDR1
d SDR1 (64) |SPR25
GPR31 (64)
Address Space Register
Floating-Point Registers ASR (64) SPR 280
FPRO (64) Exception Handling Registers
FPR1 (64) Data Address Register DSISR '
: DAR (64) SPR 19 DSISR (32) SPR 18
L)
Save and Restore Registers
FPR31 (64) il SRRO (64) | SPR2
SPRGO (64) |SPR 272 0(64) 6
Condition Register SPRG1 (64) |SPR 273 SRR1(64) |SPR27
CR (32) SPRG2 (64) |SPR 274 Floating-Point Exception
SPRG3 (64) |SPR 275 Cause Register (Optional)
Floating-Point Status FPECR SPR 1022
and Control Register !
Miscellaneous Registers
FPSCR (32) Time Base Facility ’ Data Address Breakpoint
(For Writing) Register (Optional)

TBL (32) |SPR284

T80 32 | SPR 285 DABR (64) |SPR 1013

x
m
=
X
(1]
Q
[7]
-
(]
=

XER (64) SPR 1 .
External Access Register

Decrementer ’ (Optional) |

Link Register DEC (32) [SPR22 EAR (32) |SPR282

LR (64/32) SPR 8 Processor Identification

Register (Optional)

Count Register PIR SPR 1023

&CTR (64/32) [SPR9 /
USER MODEL
VEA

Time Base Facility '
(For Reading)

TBL (32) TBR 268

\ TBU (32) | TBR 269 J

1. These registers are 32-bit registers only.
2. These registers are implementation dependent.
3. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

PowerPC Register Set pem2_regset.fm.3.0
Page 54 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit unsigned integer that is
incremented periodically. Each increment adds '1’ to the low-order bit (bit[31] of TBL). The frequency at
which the counter is incremented is implementation-dependent.

Figure 2-10. Time Base (TB)

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

Note: The TB increments until its value becomes OxFFFF_FFFF_FFFF_FFFF (264— 1). At the next incre-
ment its value becomes 0x0000_0000_0000_0000. There is no exception or explicit indication when this
occurs.

The period of the time base depends on the driving frequency. The TB is implemented such that the following
requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time base is updated
and other frequencies, such as the processor clock. The TB update frequency is not required to be constant;
however, for the system software to maintain time of day and operate interval timers, one of two things is
required:

* The system provides an implementation-dependent exception to software whenever the update fre-
quency of the time base changes and a means to determine the current update frequency; or

¢ The system software controls the update frequency of the time base.

Note: If the operating system initializes the TB to some reasonable value and the update frequency of the TB
is constant, the TB can be used as a source of values that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically increasing (except
when the TB wraps from 264 _1to 0). If a trace entry is recorded each time the update frequency changes,
the sequence of TB values can be postprocessed to become actual time values.

However, successive readings of the time base may return identical values due to implementation-dependent
factors such as a low update frequency or initialization.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 55 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. The following sections discuss reading the time base in
64-bit modes. For specific details on using the mftb instruction, see Chapter 8, Instruction Set. For informa-
tion on writing the time base, see Section 2.3.11.1 Writing to the Time Base.

2.2.1.1 Reading the Time Base

The contents of the time base may be read into a GPR by mftb. To read the contents of the TB into register
rD, execute the following instruction:
mftb rD

The above example uses the simplified mnemonic (referred to as extended mnemonic in the architecture
specification) form of the mftb instruction (equivalent to mftb rA,268). Using this instruction copies the entire
time base (TBU Il TBL) into rA. Reading the time base has no effect on the value it contains or the periodic
incrementing of that value.

Note: If the simplified mnemonic form mftbu rA (equivalent to mftb rA,269) is used, the contents of TBU are
copied to the low-order 32 bits of rA, and the high-order 32 bits of rA are cleared (0 || TBU).

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for converting the current
value in the time base to time of day is also implementation-dependent.

In a system in which the update frequency of the time base may change over time, it is not possible to convert
an isolated time base value into time of day. Instead, a time base value has meaning only with respect to the
current update frequency and the time of day that the update frequency was last changed. Each time the
update frequency changes, either the system software is notified of the change via an exception, or else the
change was instigated by the system software itself. At each such change, the system software must
compute the current time of day using the old update frequency, compute a new value of ticks-per-second for
the new frequency, and save the time of day, time base value, and tick rate. Subsequent calls to compute
time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:
¢ Time of day at beginning of current epoch
¢ Time base value at beginning of current epoch
¢ Time base update frequency

¢ Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three inputs would be
constant.

PowerPC Register Set pem2_regset.fm.3.0
Page 56 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of PowerPC registers.
Figure 2-11 shows a graphic representation of the entire PowerPC register set—UISA, VEA, and OEA. In
Figure 2-11 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any attempt to access
these SPRs with user-level instructions results in a supervisor-level exception. Some SPRs are implementa-
tion-specific. In some cases, not all of a register’s bits are implemented in hardware.

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR encoding, it takes
(depending on the implementation) an illegal instruction program exception, a privileged instruction program
exception, or the results are boundedly undefined. See Section 6.4.9 Program Exception (0x00700) for more
information.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 57 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-11. OEA Programming Model—AIl Registers

r

USER MODEL
UISA

General-Purpose Registers

T
GPR1 (64)

[]

. SDR1
GPR31 (64) SDR1 (64)

Floating-Point Registers

Floating-Point Status
and Control Register '

FPSCR (32)
(For Writing)

Time Base Facility 1

(For Reading)

TBR 268°
TBR 269

TBL (32)
TBU (32)

SUPERVISOR MODEL — OEA

Machine State Register

Memory Management Registers

SPR 25

Exception Handling Registers

FPRO (64) Data Address Register DSISR '
FPR1 (64)
= DAR (64) SPR 19 DSISR (32) |SPR 18
: SPRGs Save and Restore Registers
SPRGO (64) | SPR 272 SRRO (64) |SPR26
SRR1 (64) |[SPR27
Condition Register SPRG1 (64) | SPR273
oR (32 SPRG2 (64) | SPR 274 Floating-Point Exception
(32) SPRG3 (64) | SPR 275 Cause Register (Optional)

Time Base Facility

XER Register TBL (32) SPR 284
TBU (32 SPR 285 DABR (64) |SPR 1013
XER (64) SPR 1 (32)
Decrementer ! External A¢1:cess Register
Link Register (Optional)
DEC(32) | SPR22 EAR (32) |SPR 282
LR (64) SPR 8 o
Processor Identification
Count Register Register (Optional)
CTR (64) SPR 9
USER MODEL
VEA

Configuration Registers
Processor Version Register ! (Read Only)

PVR (32) |SPR 287

Address Space Register 2
ASR (64) SPR 280

FPECR SPR 1022
Miscellaneous Registers

Data Address Breakpoint
Register (Optional)

1. These registers are 32-bit registers only.
2. These registers are on 64-bit implementations only.
3. TBR268 is read as a 64-bit value

PowerPC Register Set
Page 58 of 657

pem2_regset.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The PowerPC OEA supervisor-level registers are:
» Configuration registers which include:

— Machine state register (MSR). The MSR defines the state of the processor. The MSR can be modi-
fied by the Move to Machine State Register (mtmsrd [or mtmsr]), System Call (sc¢), and Return from
Interrupt Doubleword (rfid) instructions. It can be read by the Move from Machine State Register
(mfmsr) instruction. For more information, see Section 2.3.1 Machine State Register (MSR).

— Processor version register (PVR). The PVR is a read-only register that identifies the version (model)
and revision level of the PowerPC processor. For more information, see Section 2.3.2 Processor Ver-
sion Register (PVR).

* Memory management registers which include:

— SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical address
translation. For more information, see Section 2.3.3 SDR1. (Note that physical address is referred to
as real address in the architecture specification.)

— Address space register (ASR). The ASR holds the physical address of the segment table. It is found
only on 64-bit implementations. For more information, see Section 2.3.4 Address Space Register
(ASR).

¢ Exception handling registers which include:

— Data address register (DAR). A data address register (DAR) is set to the effective address generated
by the a DSI or an alignment exception. For more information, see Section 2.3.5 Data Address Regis-
ter (DAR).

— SPRGO0-SPRG3. The SPRG0O-SPRG3 registers are provided for operating system use. For more
information, see Section 2.3.6 Software Use SPRs (SPRG0-SPRGS3).

— DSISR. The DSISR defines the cause of DSI and alignment exceptions. For more information, refer
to Section 2.3.7 Data Storage Interrupt Status Register (DSISR).

— Machine status save/restore register 0 (SRR0). The SRRO register is used to save machine status on
exceptions and to restore machine status when an rfid instruction is executed. For more information,
see Section 2.3.8 Machine Status Save/Restore Register 0 (SRRO).

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to save machine status on
exceptions and to restore machine status when an rfid instruction is executed. For more information,
see Section 2.3.9 Machine Status Save/Restore Register 1 (SRR1).

— Floating-point exception cause register (FPECR). This optional register is used to identify the cause
of a floating-point exception.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 59 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* Miscellaneous registers which include:

Time base (TB). The TB is a 64-bit structure that maintains the time of day and operates interval tim-
ers. The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note
that the time base registers can be accessed by both user and supervisor-level instructions. For more
information, see Section 2.3.11 Time Base Facility (TB)—OEA and Section 2.2 PowerPC VEA Regis-
ter Set—Time Base’”

Decrementer register (DEC). The DEC register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay; the frequency is a sub-
division of the processor clock. For more information, see Section 2.3.12 Decrementer Register
(DEC).

External access register (EAR). This optional register is used in conjunction with the eciwx and
ecowx instructions. Note that the EAR register and the eciwx and ecowx instructions are optional in
the PowerPC Architecture and may not be supported in all PowerPC processors that implement the
OEA. For more information about the external control facility, see Section 4.3.4 External Control
Instructions.

Data address breakpoint register (DABR). This optional register is used to control the data address
breakpoint facility. Note that the DABR is optional in the PowerPC Architecture and may not be sup-
ported in all PowerPC processors that implement the OEA. For more information about the data
address breakpoint facility, see Section 6.4.3 DSI Exception (0x00300).

Processor identification register (PIR). This optional register is used to hold a value that distinguishes
an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 64-bit register (see Figure 2-12) and defines the state of the processor.
When an exception occurs, the contents of the MSR register are saved in SRR1. A new set of bits are loaded
into the MSR as determined by the exception. The MSR can also be modified by the mtmsrd (or mtmsr), sc,
and rfid instructions. It can be read by the mfmsr instruction.

Figure 2-12. Machine State Register (MSR)

|:| Reserved
SF 000 0000 ... 0000 0 POW| 0 (ILE(EE|PR|FP ME|FEO|SE|BE[FE1| 0 0 [IR|DR| 0 |PMM|RI|LE
0 1 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
PowerPC Register Set pem2_regset.fm.3.0

Page 60 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-7 shows the bit definitions for the MSR.

Table 2-7. MSR Bit Settings

Bit(s)

3-44

45

46

47

48

49

50

51

52

53

54

55

Name

SF

ISF

POW

ILE

EE

PR

FP

ME

FEO

SE

BE

FE1

pem2_regset.fm.3.0

July 15, 2005

Description

Sixty-four bit mode

0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.
Reserved

Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or
32-bit mode for the context established by the exception.

Note: If the temporary bridge function is not implemented, this bit is treated as reserved.
Reserved

Power management enable

0 Power management disabled (normal operation mode)

1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function is not implemented, this
bit is treated as reserved.

Reserved

This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception
occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-
tion.

External interrupt enable

0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer
exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

Privilege level

0 The processor can execute both user and supervisor-level instructions.

1 The processor can only execute user-level instructions.

Note: Any instruction or event that set MSR[PR] also sets MSR[EE], MSR][IR], and MSR[DR].

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores,
and moves.
1 The processor can execute floating-point instructions.

Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

Note: The only instruction that can alter MSR[ME] is the rfid instruction.

Floating-point exception mode O (see Table 2-8).

Single-step trace enable (Optional)
0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of the next
instruction (unless that instruction is rfid, which is never trace). Successful completion means that
the instruction caused no other interrupt.

Note: If the function is not implemented, this bit is treated as reserved.

Branch trace enable (Optional)
0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution of a branch
instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.

Floating-point exception mode 1 (See Table 2-8).

PowerPC Register Set
Page 61 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-7. MSR Bit Settings (Continued)

Bit(s

56
57

58

59

60

61

62

63

)

Name

DR

PMM

RI

LE

Description
Reserved
Reserved

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 7, Memory Management.

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 7, Memory Management.

Reserved

Performance monitor mark. This bit is part of the optional performance monitor facility. If the performance
monitor facility is not implemented or does not use this bit, then this bit is treated as reserved.

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.

1 Exception is recoverable.

For more information, see Chapter 6, Exceptions.

This is part of the optional little-endian facility. If the little-endian facility is implemented, then the bit has the
following meaning:

0 The processor runs in big-endian mode.

1 The processor runs in little-endian mode.

If the little-endian facility is not implemented or does not use this bit, then this bit is treated as reserved.

The floating-point exception mode bits [FEO—FE1] are interpreted as shown in Table 2-8.

Table 2-8. Floating-Point Exception Mode Bits

FEO

0

PowerPC Register Set

Page 62 of 657

FE1 Mode
0 Floating-point exceptions disabled
1 Floating-point imprecise nonrecoverable
0 Floating-point imprecise recoverable
1 Floating-point precise mode

pem2_regset.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
Table 2-9 indicates the initial state of the MSR at power up.

Table 2-9. State of MSR at Power Up

Bit Name Default Value
0 SF 1
1 _ Unspecified’
2 ISF Unspecified'
(Temporary 64-Bit Bridge)
3-44 — Unspecified'
45 POW 0
46 — Unspecified'
47 ILE 0
48 EE 0
49 PR 0
50 FP 0
51 ME 0
52 FEO 0
53 SE 0
54 BE 0
55 FE1 0
56 — Unspecified'
57 — Unspecified'
58 IR 0
59 DR 0
60 — Unspecified!
61 PMM Unspecified'
62 RI 0
63 LE 0

Note:

1. Unspecified can be either ‘0’ or ’1’
2. 1is typical, but might be ‘0’

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register which contains a value identifying the
specific version (model) and revision level of the PowerPC processor (see Figure 2-13). The contents of the
PVR can be copied to a GPR by the mfspr instruction. Read access to the PVR is supervisor-level only; write
access is not provided.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 63 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 2-13. Processor Version Register (PVR)

Version Revision

0 15 16 31

The PVR distinguishes between processors that differ in attributes that might affect software. It contains two
16-Dbit fields:

¢ Version (bits [0—15])—A 16-bit number that uniquely identifies a particular processor version. This num-
ber can be used to determine the version of a processor; it might not distinguish between different end
product models if more than one model uses the same processor.

* Revision (bits [16—31])—A 16-bit number that distinguishes between various releases of a particular ver-
sion (that is, an engineering change level). The value of the revision portion of the PVR is implementa-
tion-specific. The processor revision level is changed for each revision of the device.

2.3.3 SDR1

The SDR1 is a 64-bit register that is shown in Figure 2-14.
Figure 2-14. SDR1

|:| Reserved

00 HTABORG 0000 0000 0000 O HTABSIZE
0 12 45 46 58 59 63

The SDR1 bits are described in Table 2-10.

Table 2-10. SDR1 Bit Settings

Bits Name Description

0-1 — Reserved

2-45 HTABORG Physical base address of page table
46-58 — Reserved
59-63 HTABSIZE Encoded size of page table (used to generate mask)

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table.
Therefore, the page table is constrained to lie on a 218-byte (256 Kbytes) boundary at a minimum. At least 11
bits from the hash function are used to index into the page table. The page table must consist of at least 256
Kbytes (2! PTEGs of 128 bytes each).

The page table can be any size 2" where 18<n<46. As the table size is increased, more bits are used from
the hash to index into the table and the value in HTABORG must have more of its low-order bits equal to 0.
The HTABSIZE field in SDR1 contains an integer value that determines how many bits from the hash are
used in the page table index. This number must not exceed 28. HTABSIZE is used to generate a mask of the
form 0b00...011...1; that is, a string of O bits followed by a string of 1-bits. The 1-bits determine how many

PowerPC Register Set pem2_regset.fm.3.0
Page 64 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

additional bits (beyond the minimum of 11) from the hash are used in the index. The HTABORG must have
this same number of low-order bits equal to 0. See Figure 7-17 Example Primary PTEG Address Generation
for an example of the primary PTEG address generation in a 64-bit implementation.

Example:

Suppose that the page table is 16,384 (214), 128-byte PTEGs, for a total size of 22! bytes (2 Mbytes). Note
that a 14-bit index is required. Eleven bits are provided from the hash initially, so three additional bits from the
hash must be selected. The value in HTABSIZE must be 3 and the value in HTABORG must have its low-
order three bits (bits [43-45] of SDR1) equal to 0. This means that the page table must begin on a

28+ 11+7 = 221 _ 5 Mbytes boundary.

On implementations that support a virtual address size of only 64 bits, software should set the HTABSIZE
field to a value that does not exceed 25. Because the high-order 16 bits of the VSID must be zeros for these
implementations, the hash value used in the page table search will have the high-order three bits either all
zeros (primary hash) or all ones (secondary hash). If HTABSIZE > 25, some of these hash value bits will be
used to index into the page table, resulting in certain PTEGs never being searched.

For more information, refer to Chapter 7, Memory Management.

2.3.4 Address Space Register (ASR)

The ASR is a 64-bit special purpose register provided for operating system use and can be used to point to a
segment register. On earlier PowerPC implementations and on 64-bit PowerPC implementations, bits[0-51]
of the ASR contained the high-order 52 bits of the 64-bit real address of the segment table, and bit[63] of the
ASR indicated whether the specified segment table should (bit[63] = ‘1’) or should not (bit[63] = ‘0’) be
searched by the processor when doing address translation.

Figure 2-15. Address Space Register (ASR)

0 63
The bits of the ASR are described in Table 2-11.

Table 2-11. ASR Bit Settings

Bits Name Description
0-63 - Reserved
pem2_regset.fm.3.0 PowerPC Register Set

July 15, 2005 Page 65 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Temporary 64-Bit Bridge

Some 64-bit processors implement optional features that simplify the conversion of an operating system
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows the
option of defining bit[63] as ASR[V], the STABORG field valid bit.

If the ASRI[V] bit is implemented and is set, the ASR[STABORG] field is valid and functions are as
described for the 64-bit architecture. However, if the ASR[V] bit is implemented and ASR[V] and
MSR[SF] are cleared, an operating system can use 16 SLB entries similarly to the way 32-bit implemen-
tations use the segment registers, which are otherwise not supported in the 64-bit architecture. Note
that if ASR[V] = 0, a reference to a nonexistent address in the STABORG field does not cause a
machine check exception.

The ASR, with the optional V bit implemented, is shown in Figure 2-16.

Figure 2-16. Address Space Register (ASR)—64-Bit Bridge

|:| Reserved
STABORG 0000 0000 000 Vv
0 51 52 62 63
The bits of the ASR, including the optional V bit, are described in Table 2-12.
Table 2-12. ASR Bit Settings—64-Bit Bridge

Bits Name Description

0-51 STABORG Physical address of segment table
52-62 — Reserved

STABORG field valid (V =’1") or invalid (V = 0).
63 \% Note that the [V] bit of the ASR is optional. If the function is not implemented, this bit is

treated as reserved, except that it is assumed to be set for address translation.

PowerPC Register Set pem2_regset.fm.3.0
Page 66 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

2.3.5 Data Address Register (DAR)

The DAR is a 64-bit register and is shown in Figure 2-17.

Figure 2-17. Data Address Register (DAR)

DAR

The effective address generated by a memory access instruction is placed in the DAR if the access causes
an exception (for example, an alignment exception). If the exception occurs in a 64-bit implementation oper-
ating in 32-bit mode, the high-order 32 bits of the DAR are cleared. For information, see Chapter 6, Excep-

tions.

2.3.6 Software Use SPRs (SPRG0-SPRG3)

SPRGO0-SPRG3 are 64-bit registers which are provided for general operating system use, such as
performing a fast state save or for supporting multiprocessor implementations. The formats of SPRG0—-
SPRG3 are shown in Figure 2-18.

Figure 2-18. SPRGO-SPRG3

SPRGO

SPRG1

SPRG2

SPRG3

Table 2-13 provides a description of conventional uses of SPRGO through SPRGS3.

Table 2-13. Conventional Uses of SPRGO-SPRG3

Register Description

SPRGO Software may load a unique physical address in this register to identify an area of memory reserved for use by the
first-level exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the content of a GPR.
That GPR then can be loaded from SPRGO and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

This register may be used by the operating system as needed.

It is optional whether SPRG3 can be read in user mode. On implementations that provide this ability, SPRG3 may

be used for information, such as a “thread-id”, that the operating system makes available to application programs.

On implementations for which SPRG3 can be read in user mode, operating systems must ensure that no sensitive
SPRG3 data are left in SPRG3 when a user mode program is dispatched, and operating systems for secure systems must

ensure that SPRG3 cannot be used to implement a “covert channel” between user mode programs. These require-

ments can be satisfied by clearing SPRG3 before passing control to a program that will run in user mode.

On such implementations, SPRG3 can be used “orthogonally” for both the purpose described for it above and the

purpose described for SPRG1. If this is done, SPRG1 can be used for some other purpose.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 67 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.3.7 Data Storage Interrupt Status Register (DSISR)

The 32-bit data storage interrupt status register (DSISR), shown in Figure 2-19, identifies the cause of the
DSI, machine check, data segment, and alignment exceptions.

Figure 2-19. DSISR

DSISR

0 31

DSISR bits may be treated as reserved in a given implementation if they are specified as being set either to 0
or to an undefined value for all interrupts that set the DSISR (including implementation-dependent setting, for
example, by the Machine Check interrupt or by implementation-specific interrupts).

For information about bit settings, see Section 6.4.3 DSI Exception (0x00300) and Section 6.4.8 Alignment
Exception (0x00600).
2.3.8 Machine Status Save/Restore Register 0 (SRRO0)

The SRRO is a 64-bit register that is used to save the effective address on exceptions (interrupts) and return
to the interrupted program when an rfid instruction is executed. It also holds the EA for the instruction that
follows the System Call (sc) instruction. The format of SRRO is shown in Figure 2-20.

Figure 2-20. Machine Status Save/Restore Register 0 (SRRO0)

|:| Reserved

SRRO 00

0 61 62 63

When an exception occurs, SRRO is set to point to an instruction such that all prior instructions have
completed execution and no subsequent instruction has begun execution. In the case of an error exception
the SRRO register is pointing at the instruction that caused the error. When an rfid instruction is executed, the
contents of SRRO are copied to the next instruction address (NIA)—the 64 or 32-bit address of the next
instruction to be executed. The instruction addressed by SRR0O may not have completed execution,
depending on the exception type. SRRO addresses either the instruction causing the exception or the imme-
diately following instruction. The instruction addressed can be determined from the exception type and status
bits.

If the exception occurs in 32-bit mode of a 64-bit implementation, the high-order 32 bits of the NIA are
cleared, NIA[32—61] are set from SRR0[32-61], and the two least significant bits of NIA are cleared.

Note: In some implementations, every instruction fetch performed while MSR[IR] =1’ , and every instruction
execution requiring address translation when MSR[DR] =1’ , may modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of individual exceptions in
Chapter 6, Exceptions.

PowerPC Register Set pem2_regset.fm.3.0
Page 68 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.3.9 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit which is used to save exception status and the machine status register when an rfid
instruction is executed. The format of SRR1 is shown in Figure 2-21.

Figure 2-21. Machine Status Save/Restore Register 1 (SRR1)

SRR1

0

When an exception occurs, bits [33—36] and [42—47] of SRR1 are loaded with exception-specific information
and bits. The remaining bits of SRR1 are defined as reserved. An implementation may define one or more of
these bits, and in this case, may also cause them to be saved from MSR on an exception and restored to
MSR from SRR1 on a rfid.

Note: In some implementations, every instruction fetch when MSR[IR] =1, and every instruction execution
requiring address translation when MSR[DR] =1’ , may modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions in Chapter 6,
“Exceptions.”

2.3.10 Floating-Point Exception Cause Register (FPECR)

The FPECR register may be used to identify the cause of a floating-point exception.

Note: The FPECR is an optional register in the PowerPC Architecture and may be implemented differently
(or not at all) in the design of each processor. The user's manual of a specific processor will describe the
functionality of the FPECR, if it is implemented in that processor.

2.3.11 Time Base Facility (TB)—OEA

As described in Section 2.2 PowerPC VEA Register Set—Time Base, the time base (TB) provides a long-
period counter driven by an implementation-dependent frequency. The VEA defines user-level read-only
access to the TB. Writing to the TB is reserved for supervisor-level applications such as operating systems
and boot-strap routines. The OEA defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations may initialize the TB
with a known value; however, there is no guarantee of automatic initialization of the TB when the processor is
reset. The TB runs continuously after start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2 PowerPC VEA Register
Set—Time Base on page 53.
2.3.11.1 Writing to the Time Base

Note: Writing to the TB is reserved for supervisor-level software.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 69 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB, respectively. The
simplified mnemonics listed above are for the mtspr instruction; see Appendix E Simplified Mnemonics for
more information. The mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit registers;
setting one leaves the other unchanged. It is not possible to write the entire 64-bit time base in a single
instruction.

The instructions for writing the time base are not dependent on the implementation or mode. Thus, code
written to set the TB on a 32-bit implementation will work correctly on a 64-bit implementation running in
either 32 or 64-bit mode.

The TB can be written by a sequence such as:

lwz rx,upper #load 64-bit value for
lwz ry, lower # TB into rx and ry
1i rz,0

mttbl rz #force TBL to 0

mttbu rx #set TBU

mttbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed, loading 0 into TBL
prevents the possibility of a carry from TBL to TBU while the time base is being initialized.

For information on reading the time base, refer to Section 2.2.1 Reading the Time Base on page 56.

2.3.12 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-22, is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. The DEC frequency is based
on the same implementation-dependent frequency that drives the time base.

Figure 2-22. Decrementer Register (DEC)

DEC

2.3.12.1 Decrementer Operation
The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes through zero. The
DEC satisfies the following requirements:

¢ The operation of the time base and the DEC are coherent (that is, the counters are driven by the same
fundamental time base).

* Loading a GPR from the DEC has no effect on the DEC.
» Storing the contents of a GPR to the DEC replaces the value in the DEC with the value in the GPR.

¢ Whenever bit[0] of the DEC changes from 0 to 1, a decrementer exception request is signaled. Multiple
DEC exception requests may be received before the first exception occurs; however, any additional
requests are canceled when the exception occurs for the first request.

 If the DEC is altered by software and the content of bit [0] is changed from 0 to 1, an exception request is
signaled.

PowerPC Register Set pem2_regset.fm.3.0
Page 70 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Note: In systems that change the Time Base update frequency for purposes such as power management,
the Decrementer input frequency will also change. Software must be aware of this in order to set interval tim-
ers.

2.3.12.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both of which are
supervisor-level when they refer to the DEC. Using a simplified mnemonic for the mtspr instruction, the DEC
may be written from GPR rA with the following:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA with the following:
mfdec rA

2.3.12.3 Data Address Compare

The Data Address Compare mechanism provides a means of detecting load and store accesses to a virtual
page. The Data Address Compare mechanism is controlled by the Address Compare Control Register
(ACCR), and by a bit in each Page Table Entry (PTE[AC]).

Note: The Data Address Compare mechanism does not apply to instruction fetches, or to data accesses in
real addressing mode (MSR[DR] = 0).

2.3.13 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR. The DABR is a 64-
bit register. However, if the data address breakpoint facility is implemented, it is recommended, but not
required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated doubleword. The
address comparison is done on an effective address, and is done independent of whether address translation
is enabled or disabled. The data address breakpoint mechanism applies to data accesses only. It does not
apply to instruction fetches.

The DABR is shown in Figure 2-23.

Figure 2-23. Data Address Breakpoint Register (DABR)

DAB BT|DW[DR
0 60 61 62 63
Table 2-14 describes the fields in the DABR.
pem2_regset.fm.3.0 PowerPC Register Set

July 15, 2005 Page 71 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 2-14. DABR—Bit Settings

Bits
Name Description
64 Bit
0-60 DAB Data address breakpoint
61 BT Breakpoint translation enable
62 DW Data write enable
63 DR Data read enable

A data address breakpoint match is detected for a load or store instruction if the three following conditions are
met for any byte accessed:

e EA[0-60] = DABR[DAB]
* MSR[DR] = DABR[BT]
¢ Instruction is a store and DABR[DW] =1’ , or the instruction is a load and DABR[DR] ='1".

Note: In 32-bit mode the high-order 32 bits of the effective address are treated as zeros for the purpose of
detecting a match.

If the above conditions are satisfied, a match also occurs for eciwx and ecowx. For the purpose of deter-
mining whether a match occurs, eciwx is treated as a load, and ecowx is treated as a store.
Even if the above conditions are satisfied, it is undefined whether a match occurs in the following cases:

* A store string instruction (stwex. or stdcx.) in which the store is not performed

* Aload or store string instruction (Iswx or stswx) with a zero length

* A dcbz instruction. For the purpose of determining whether a match occurs, dcbz is treated as a store.

The cache management instructions other than debz never cause a match. If debz causes a match, some or
all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3 DSI Exception (0x00300) for more information on
the data address breakpoint facility.

If a match occurs, some or all of the bytes of the memory operand may have been accessed; however, if a
store or ecowx instruction causes the match, the memory operand is not altered if the instruction is one of the
following:

¢ any store instruction that causes an atomic access
* ecowx

Note: The data address breakpoint mechanism does not apply to instruction fetches. If a data address
breakpoint match occurs for a load instruction for which any byte of the memory operand is in memory that is
both caching inhibited and guarded, or for an eciwx instruction, it may not be safe for software to restart the
instruction.

PowerPC Register Set pem2_regset.fm.3.0
Page 72 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

2.3.14 External Access Register (EAR)

The external access register (EAR) is an optional 32-bit SPR that controls access to the external control
facility and identifies the target device for external control operations. The external control facility provides a
means for user-level instructions to communicate with special external devices. The EAR is shown in
Figure 2-24.

Figure 2-24. External Access Register (EAR)

|:| Reserved

E 000 0000 0000 0000 0000 0000 00 RID

0 1 25 26 31
Table 2-15 describes the fields in the external access register.

Table 2-15. External Access Register (EAR)—Bit Settings

Bits Name Description
Enable bit
1 Enabled
0 E 0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the specified external operation.
If the bit is cleared, an eciwx or ecowx instruction causes a DSI exception.

1-25 - Reserved
26-31 RID Resource id

The high-order bits of the resource ID (RID) field beyond the width of the RID supported by a particular imple-
mentation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and External Control
Out Word Indexed (ecowx) instructions, which are described in Chapter 8, Instruction Set. Although access
to the EAR is supervisor-level, the operating system can determine which tasks are allowed to issue external
access instructions and when they are allowed to do so. The bit settings for the EAR are described in

Table 2-15. Interpretation of the physical address transmitted by the eciwx and ecowx instructions and the
32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC OEA, but is determined
by the target device. The data access of eciwx and ecowx is performed as though the memory access mode
bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx instruction could
be used to send the translated physical address of a buffer containing graphics data to the graphics device.
The eciwx instruction could be used to load status information from the graphics adapter.

This register can also be accessed by using the mtspr and mfspr instructions. Synchronization requirements
for the EAR are shown in Table 2-16 Data Access Synchronization and Table 2-17 Instruction Access
Synchronization.

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 73 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.3.15 Processor Identification Register (PIR)
The PIR register is used to differentiate between individual processors in a multiprocessor environment.

Note: The PIR is an optional register in the PowerPC Architecture and may be implemented differently (or
not at all) in the design of each processor. The user’'s manual of a specific processor will describe the func-
tionality of the PIR, if it is implemented in that processor.

2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers

Changing the value in certain system registers, and invalidating SLB and TLB entries, can cause alteration of
the context in which data addresses and instruction addresses are interpreted, and in which instructions are
executed. An instruction that alters the context in which data addresses or instruction addresses are inter-
preted, or in which instructions are executed, is called a context-altering instruction. The context synchroniza-
tion required for context-altering instructions is shown in Table 2-16 for data access and Table 2-17 for
instruction fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system reset or nonrecover-
able machine check) can be used instead of a context-synchronizing instruction. In the tables, if no software
synchronization is required before (after) a context-altering instruction, the synchronizing instruction before
(after) the context-altering instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and executed in the context that existed before the alter-
ation. A synchronizing instruction after the context-altering instruction ensures that all instructions after that
synchronizing instruction are fetched and executed in the context established by the alteration. Instructions
after the first synchronizing instruction, up to and including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no instructions that are
affected by any of the context alterations, no software synchronization is required within the sequence.

Note: Some instructions that occur naturally in the program, such as the rfid at the end of an exception han-
dler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the MSR[POW] or
MSRILE] bits; see Table 2-16 and Table 2-17), because mtmsrd (or mtmsr) is execution synchronizing. No
software synchronization is required before most of the other alterations shown in Table 2-17, because all
instructions before the context-altering instruction are fetched and decoded before the context-altering
instruction is executed (the processor must determine whether any of the preceding instructions are context
synchronizing).

PowerPC Register Set pem2_regset.fm.3.0
Page 74 of 657 July 15, 2005

Table 2-16. Data Access Synchronization

Instruction/Event
Exception
rfid
sc
Trap
mtmsrd (SF)
mtmsrd (or mtmsr) (ILE)
mtmsrd (or mtmsr) (PR)
mtmsrd (or mtmsr) (DR)
mtmsrd (or mtmsr) (LE)
mtsr [or mtsrin]
mtspr (ACCR)
mtspr (SDR1)
mtspr (DABR)
mtspr (EAR)
slbie
slbia
slbmte
tibie
tibiel
tibia
Store (PTE)

Note: Refer to Section 2.3.16.1 on page 77 for explanation of notes.

pem2_regset.fm.3.0
July 15, 2005

Required Prior

None

None

None

None

None

None

None

None

Context-synchronizing instruction
Context-synchronizing instruction
ptesync

Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction

none

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Required After

None

None

None

None

None

None

None

None

Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
Context-synchronizing instruction
ptesync

Context-synchronizing instruction

{ptesync, CSI}

Notes

W W w w

13
7,9
7,9

8,9

PowerPC Register Set
Page 75 of 657

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
For information on instruction access synchronization requirements, see Table 2-17.

Table 2-17. Instruction Access Synchronization

Instruction/Event Required Prior Required After Notes
Exception None None
rfid None None
sc None None
Trap None None
mtmsrd (SF) None None 3,10
mtmsrd (or mtmsr) (ILE) None None 3
mtmsrd (or mtmsr) (EE) None None 2,3
mtmsrd (or mtmsr) (PR) None None 3, 11
mtmsrd (or mtmsr) (FP) None None 3
?lltEn(\)stl'__dEgo)r mtmsr) None None 3
mtmsrd (or mtmsr) (SE, BE) |None None 3
mtmsrd (or mtmsr) (IR) None None 3, 11
mtmsrd (or mtmsr) (RI) None None 3
mtmsrd (or mtmsr) (LE) — — 1,3
mtsr [or mtsrin] None Context-synchronizing instruction 11
mtspr (SDR1) ptesync Context-synchronizing instruction 5,6
mtspr (DEC) None None 12
mtspr (CTRL) None None
slbie None Context-synchronizing instruction
slbia None Context-synchronizing instruction
slbmte None Context-synchronizing instruction 11,13
tibie None Context-synchronizing instruction 7,9
tibiel None Context-synchronizing instruction 7,9
tibia None Context-synchronizing instruction 7
Store (PTE) none {ptesync, CSI] 8,9

Note: Refer to Section 2.3.16.1 on page 77 for explanation of notes.

PowerPC Register Set pem2_regset.fm.3.0
Page 76 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

2.3.16.1 Notes for Table 2-16 and Table 2-17

1.

Synchronization requirements for changing from one endian mode to the other using the mtmsr([d]
instruction are implementation-dependent.

. The effect of changing the EE bit is immediate, even if the mtmsr[d] instruction is not context synchroniz-

ing (i.e., even if L="1").
¢ If an mtmsr[d] instruction sets the [EE] bit to ‘0’, neither an External interrupt nor a Decrementer
interrupt occurs after the mtmsr[d] is executed.

¢ If an mtmsr[d] instruction changes the [EE] bit from 0 to 1 when an External, Decrementer, or higher
priority exception exists, the corresponding interrupt occurs immediately after the mtmstr([d] is exe-
cuted, and before the next instruction is executed in the program that set [EE] to ‘1.

For software that will run on processors that comply with earlier versions of the architecture, a context
synchronizing instruction is required after the mtmsr{[d] instruction.

Synchronization requirements for changing the Data Address Breakpoint Register are implementation-
dependent.

5. SDR1 must not be altered when MSR[DR] = ‘1’ or MSRJ[IR] = ‘1’ ; if it is, the results are undefined.

6. A ptesync instruction is required before the mtspr instruction because (a) SDR1 identifies the Page

Table and thereby the location of Reference and Change bits, and (b) on some implementations, use of
SDR1 to update Reference and Change bits may be independent of translating the virtual address. (For
example, an implementation might identify the PTE in which to update the Reference and Change bits in
terms of its offset in the Page Table, instead of its real address, and then add the Page Table address
from SDR1 to the offset to determine the real address at which to update the bits.) To ensure that Refer-
ence and Change bits are updated in the correct Page Table, SDR1 must not be altered until all Refer-
ence and Change bit updates associated with address translations that were performed, by the processor
executing the mtspr instruction, before the mtspr instruction is executed have been performed with
respect to that processor. A ptesync instruction guarantees this synchronization of Reference and
Change bit updates, while neither a context synchronizing operation nor the instruction fetching mecha-
nism does so.

For data accesses, the context synchronizing instruction before the tlbie, tibiel, or tlbia instruction
ensures that all preceding instructions that access data storage have completed to a point at which they
have reported all exceptions they will cause. The context synchronizing instruction after the tlbie, tibiel,
or tlbia instruction ensures that storage accesses associated with instructions following the context syn-
chronizing instruction will not use the TLB entry(s) being invalidated. (If it is necessary to order storage
accesses associated with preceding instructions, or Reference and Change bit updates associated with
preceding address translations, with respect to subsequent data accesses, a ptesync instruction must
also be used, either before or after the tlbie, tibiel, or tibia instruction.

The notation “{ ptesync,CSI}” denotes an instruction sequence. Other instructions may be interleaved
with this sequence, but these instructions must appear in the order shown.

No software synchronization is required before the Store instruction because (a) stores are not performed
out-of-order and (b) address translations associated with instructions preceding the Store instruction are
not performed again after the store has been performed). These properties ensure that all address trans-
lations associated with instructions preceding the Store instruction will be performed using the old con-
tents of the PTE.

The ptesync instruction after the Store instruction ensures that all searches of the Page Table that are
performed after the ptesync instruction completes will use the value stored (or a value stored subse-
quently). The context synchronizing instruction after the ptesync instruction ensures that any address

pem2_regset.fm.3.0 PowerPC Register Set
July 15, 2005 Page 77 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

10.

11.

12.

13.

PowerPC Register Set
Page 78 of 657

translations associated with instructions following the context synchronizing instruction that were per-
formed using the old contents of the PTE will be discarded, with the result that these address translations
will be performed again and, if there is no corresponding TLB entry, will use the value stored (or a value
stored subsequently).

There are additional software synchronization requirements for the tlbie instruction in multiprocessor
environments. In a multiprocessor system, if software locking is used to help ensure that the require-
ments are satisfied, the isync instruction near the end of the lock acquisition sequence may naturally pro-
vide the context synchronization that is required before the alteration.

The alteration must not cause an implicit branch in effective address space. Thus, when changing
MSRI[SF] from 1 to 0, the mtmsrd instruction must have an effective address that is less than 2%2 - 4. Fur-
thermore, when changing MSR[SF] from 0 to 1, the mtmsrd instruction must not be at effective address
2324,

The alteration must not cause an implicit branch in real address space. Thus the real address of the con-
text-altering instruction and of each subsequent instruction, up to and including the next context synchro-
nizing instruction, must be independent of whether the alteration has taken effect.

The elapsed time between the contents of the Decrementer becoming negative and the signaling of the
corresponding exception is not defined.

If an slbmte instruction alters the mapping, or associated attributes, of a currently mapped ESID, the slb-
mte must be preceded by an slbie (or slbia) instruction that invalidates the existing translation. This
applies even if the corresponding entry is no longer in the SLB (the translation may still be in implementa-
tion-specific address translation lookaside information). No software synchronization is needed between
the slbie and the slbmte, regardless of whether the index of the SLB entry (if any) containing the current
translation is the same as the SLB index specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruction replaces a valid SLB entry with a mapping of a dif-
ferent ESID (for example, to satisfy an SLB miss). However, the slbie is needed later if and when the
translation that was contained in the replaced SLB entry is to be invalidated.

pem2_regset.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3. Operand Conventions

This chapter describes the operand conventions as they are represented in two levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA) and virtual environment architecture (VEA). Detailed
descriptions are provided of conventions used for storing values in registers and memory, accessing
PowerPC registers, and representing data in these registers in both big and little-endian modes. Additionally,
the floating-point data formats and exception conditions are described. Refer to Appendix C Floating-Point
Models for more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively starting with 0.
Each number is the address of the corresponding byte. Memory operands may be bytes, halfwords, words, or
doublewords, or, for the load and store multiple and the load and store string instructions, a sequence of
bytes or words. The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and their significance to
the PowerPC Architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. Instructions are always four bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in Table 3-1.
(Although not permitted as memory operands, quad words are shown because quad-word alignment is desir-
able for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Address [60-63] (if aligned)
Byte 8 bits XXXX
Halfword 2 bytes xxx0
Word 4 bytes xx00
Doubleword 8 bytes x000
Quadword 16 bytes 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment may affect
performance. For single-register memory access instructions, the best performance is obtained when
memory operands are aligned.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 79 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be unnecessary. The order of bits
or groups of bits within the smallest addressable unit of memory is irrelevant, because nothing can be
observed about such order. Order matters only when scalars, which the processor and programmer regard
as indivisible quantities, can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and scalars are
composed of one or more sequential bytes. Many scalars are halfwords, words, or doublewords, which
consist of groups of bytes. When a word-length scalar (32-bit) is moved from a register to memory, the scalar
occupies four consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte
addresses with respect to the value of the scalar: which byte contains the highest-order 8 bits of the scalar,
which byte contains the next highest-order 8 bits, and so on.

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-endian and little-
endian. The PowerPC Architecture supports both big and little-endian byte ordering. The default byte
ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address while the
least-significant byte (LSB) is stored at the highest (or ending) address. This is called big-endian because the
big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting) address while the most-
significant byte is stored at the highest (or ending) address. This is called little-endian because the little end of
the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one array of charac-
ters (a string). The value presumed to be in each structure element is shown in hexadecimal in the comments
(except for the character array, which is represented by a sequence of characters, each enclosed in single
quote marks).

Figure 3-1. C Program Example—Data Structure S

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 doubleword */
char * c¢; /* 0x3132_3334 word */
char al71; /* 'L','M','N','O','P','Q','R'" array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} S;

The data structure Sis used throughout this section to demonstrate how the bytes that comprise each
element (a, b, ¢, d, e, and f) are mapped into memory.

Operand Conventions pem3_operand_conv.fm.3.0
Page 80 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in hexadecimal
below each byte. The content of each byte, as shown in the preceding C programming example, is shown in
hexadecimal and, for the character array, as characters enclosed in single quote marks.

Note: The most-significant byte of each scalar is at the lowest address.

Figure 3-2. Big-Endian Mapping of Structure S

Contents 11 12 13 14 (x) (x) (x) (x)
Address 00 01 02 03 04 05 06 07
Contents 21 22 23 24 25 26 27 28
Address 08 09 0A 0B ocC oD OE OF
Contents 31 32 33 34 N ‘M ‘N’ ‘o
Address 10 1 12 13 14 15 16 17
Contents ‘P’ ‘Q ‘R’ (x) 51 52 (x) (x)
Address 18 19 1A 1B 1C 1D 1E 1F
Contents 61 62 63 64 (x) (x) (x) (x)
Address 20 21 22 23 24 25 26 27

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in the map in order to
align the scalars on their proper boundaries—four bytes between elements a and b, one byte between
elements d and e, and two bytes between elements e and f.

Note: The padding is dependent on the compiler; it is not a function of the architecture.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 81 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.1.3.2 Little-Endian Mapping
Figure 3-3 shows the structure, S, using little-endian mapping.

Note: The least-significant byte of each scalar is at the lowest address.

Figure 3-3. Little-Endian Mapping of Structure S

Contents

Address

Contents

Address

Contents

Address

Contents

Address

Contents

Address

00

28

08

34

64

20

13

01

27

09

33

11

19

63

21

12

02

26

0A

32

12

1A

62

22

11

03

25

0B

31

13

()
1B

61

23

04

24

oC

14

52

1C

24

()
05

23

oD

15

51

1D

(x)
25

()
06

22

OE

16

(x)
1E

()
26

(x)
07

21

OF

17

()
1F

(x)
27

Figure 3-3 shows the sequence of doublewords laid out with addresses increasing from left to right. Program-
mers familiar with little-endian byte ordering may be more accustomed to viewing doublewords laid out with
addresses increasing from right to left, as shown in Figure 3-4. This allows the little-endian programmer to
view each scalar in its natural byte order of MSB to LSB. However, to demonstrate how the PowerPC Archi-
tecture provides both big and little-endian support, this section uses the convention of showing addresses

increasing from left to right, as in Figure 3-3.

Operand Conventions

Page 82 of 657

pem3_operand_conv.fm.3.0

July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

Contents (x) (x) (x) (x) 11 12 13 14
Address 07 06 05 04 03 02 01 00
Contents 21 22 23 24 25 26 27 28
Address OF OE oD oC 0B 0A 09 08
Contents ‘o’ ‘N’ ‘M ‘v 31 32 33 34
Address 17 16 15 14 13 12 11 10
Contents (x) (x) 51 52 (x) ‘R ‘Q ‘P’
Address 1F 1E 1D 1C 1B 1A 19 18
Contents (x) (x) (x) (x) 61 62 63 64
Address 27 26 25 24 23 22 21 20

3.1.4 PowerPC Byte Ordering

The PowerPC Architecture supports both big and little-endian byte ordering. The default byte ordering is big-
endian. The code sequence used to switch from big to little-endian mode may differ among processors.

The PowerPC Architecture defines two bits in the MSR for specifying byte ordering—LE (little-endian mode)
and ILE (interrupt little-endian mode). The LE bit specifies the endian mode in which the processor is
currently operating and ILE specifies the mode to be used when an exception handler is invoked. That is,
when an exception occurs, the ILE bit (as set for the interrupted process) is copied into MSRI[LE] to select the
endian mode for the context established by the exception. For both bits, a value of 0 specifies big-endian
mode and a value of 1 specifies little-endian mode.

The PowerPC Architecture also provides load and store instructions that reverse byte ordering. These
instructions have the effect of loading and storing data in the endian mode opposite from that which the
processor is operating. See Section 4.2.3.4 Integer Load and Store with Byte-Reverse Instructions for more
information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, Addressing Modes and Instruction Set Summary describes the effective address calculation for
the load and store instructions. For processors in little-endian mode, the effective address is modified before
being used to access memory. The three low-order address bits of the effective address are exclusive-ORed
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in
Table 3-2. This address modification is called ‘munging’.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 83 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Note: Although the process is described in the architecture, the actual term ‘munging’ is not defined or used
in the specification. However, the term is commonly used to describe the effective address modifications nec-
essary for converting big-endian addressed data to little-endian addressed data.

Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalars

Data Width (Bytes) Effective Address Modification
8 No change
4 XOR with 0b100
2 XOR with 0b110
1 XOR with Ob111

The munged physical address is passed to the cache or to main memory, and the specified width of the data
is transferred (in big-endian order—that is, MSB at the lowest address, LSB at the highest address) between
a GPR or FPR and the addressed memory locations (as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-endian, when in
fact they are stored in big-endian order, but at different byte addresses within doublewords. Only the address
is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure S is placed in
memory as shown in Figure 3-5.

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem

Contents (x) (x) (x) (x) 11 12 13 14
Address 00 01 02 03 04 05 06 07
Contents 21 22 23 24 25 26 27 28
Address 08 09 0A 0B oC (o]n} OE OF
Contents ‘o’ ‘N’ ‘™ ‘L 31 32 33 34
Address 10 11 12 13 14 15 16 17
Contents (x) (x) 51 52 (x) ‘R’ ‘Q ‘P’
Address 18 19 1A 1B 1C 1D 1E 1F
Contents (x) (x) (x) (x) 61 62 63 64
Address 20 21 22 23 24 25 26 27
Operand Conventions pem3_operand_conv.fm.3.0

Page 84 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family
Note: The mapping shown in Figure 3-5 is not a true little-endian mapping of the structure S. However,
because the processor munges the address when accessing memory, the physical structure S shown in
Figure 3-5 appears to the processor as the structure S shown in Figure 3-6.

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07
Contents 28 27 26 25 24 23 22 21
Address 08 09 0A 0B oC oD OE OF
Contents 34 33 32 31 ‘r ‘™M ‘N’ ‘o
Address 10 1 12 13 14 15 16 17
Contents ‘P’ ‘Q ‘R 52 51

Address 18 19 1A 1B 1C 1D 1E 1F
Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

As seen by the program executing in the processor, the mapping for the structure S (Figure 3-6) is identical to
the little-endian mapping shown in Figure 3-3. However, from outside of the processor, the addresses of the
bytes making up the structure S are as shown in Figure 3-5. These addresses match neither the big-endian
mapping of Figure 3-2 nor the true little-endian mapping of Figure 3-3. This must be taken into account when
performing I/O operations in little-endian mode; this is discussed in Section 3.1.4.6 PowerPC Input/Output
Data Transfer Addressing in Little-Endian Mode.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 85 of 657

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar is aligned on a
boundary equal to a multiple of its length. Figure 3-7 shows a true little-endian mapping of the four-byte word
0x1112_1314, stored at address 05.

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

Contents 14 13 12
Address 00 01 02 03 04 05 06 07
Contents 11

Address 08 09 0A 0B oC oD OE OF

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored at address 0x05, the
next byte (0x13) is stored at address 0x06, the third byte (0x12) is stored at address 0x07, and the most-
significant byte (Ox11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store instruction with a
misaligned effective address, it may take an alignment exception. In this case, a single-register load or store
instruction means any of the integer load/store, load/store with byte-reverse, floating-point load/store
(including stfiwx) instructions, and Load And Reserve and Store Conditional.

The Load and Store with Byte Reversal instructions have the effect of loading or storing data in the opposite
endian mode from that in which the processor is running. Data is loaded or stored in little-endian order if the
processor is running in big-endian mode, and in big-endian order if the processor is running in little-endian
mode.

PowerPC processors in little-endian mode are not required to invoke an alignment exception when such a
misaligned access is attempted. The processor may handle some or all such accesses without taking an
alignment exception.

The PowerPC Architecture requires that halfwords, words, and doublewords be placed in memory such that
the little-endian address of the lowest-order byte is the effective address computed by the load or store
instruction; the little-endian address of the next-lowest-order byte is one greater, and so on. (Load And
Reserve and Store Conditional differ somewhat from the rest of the instructions in that neither the implemen-
tation nor the system alignment error handler is expected to handle these four instructions correctly if their
operands are not aligned.) However, because PowerPC processors in little-endian mode munge the effective
address, the order of the bytes of a misaligned scalar must be as if they were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is stored to address
0x05, the address is XORed with Ob111 to become 0x02. When the next byte (0x13) is stored to address
0x06, the address is XORed with Ob111 to become 0x01. When the third byte (0x12) is stored to address
0x07, the address is XORed with Ob111 to become 0x00. Finally, when the most-significant byte (0x11) is
stored to address 0x08, the address is XORed with 0b111 to become OxOF. Figure 3-8 shows the misaligned
word, stored by a little-endian program, as seen by the memory subsystem.

Operand Conventions pem3_operand_conv.fm.3.0
Page 86 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem

Contents 12 13 14

Address 00 01 02 03 04 05 06 07
Contents 11
Address 08 09 0A 0B oC oD OE OF

Note: The misaligned word in this example spans two doublewords. The two parts of the misaligned word
are not contiguous as seen by the memory system. An implementation may support some but not all mis-
aligned little-endian accesses. For example, a misaligned little-endian access that is contained within a dou-
bleword may be supported, while one that spans doublewords may cause an alignment exception.

3.1.4.3 Nonscalars

The PowerPC Architecture has two types of instructions that handle nonscalars (multiple instances of
scalars):

¢ |Load and store multiple instructions
* Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging cannot be used.
These types of instructions cause alignment exception conditions when the processor is executing in little-
endian mode. Although string accesses are not supported, they are inherently byte-based operations, and
can be broken into a series of word-aligned accesses.

3.1.4.4 Page Tables

The layout of the page table in memory is independent of endian mode. A given byte in the page table must
be accessed using an effective address appropriate to the mode of the executing program (for example, the
high-order byte of a Page Table Entry must be accessed with an effective address ending with 0b000 in big-
endian mode, and with an effective address ending with Ob111 in little-endian mode).

3.1.4.5 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch and execute
instructions as if the current instruction address is incremented by four for each sequential instruction. When
operating in little-endian mode, the instruction address is munged as described in Section 3.1.4.1 Aligned
Scalars in Little-Endian Mode for fetching word-length scalars; that is, the instruction address is XORed with
0b100. A program is thus an array of little-endian words with each word fetched and executed in order (not
including branches).

All instruction addresses visible to an executing program are the effective addresses that are computed by
that program, or, in the case of the exception handlers, effective addresses that were or could have been
computed by the interrupted program. These effective addresses are independent of the endian mode.
Examples for little-endian mode include the following:

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 87 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* An instruction address placed in the link register by branch and link operation, or an instruction address
saved in an SPR when an exception is taken, is the address that a program executing in little-endian
mode would use to access the instruction as a word of data using a load instruction.

* An offset in a relative branch instruction reflects the difference between the addresses of the branch and
target instructions, where the addresses used are those that a program executing in little-endian mode
would use to access the instructions as data words using a load instruction.

* Atarget address in an absolute branch instruction is the address that a program executing in little-endian
mode would use to access the target instruction as a word of data using a load instruction.

¢ The memory locations that contain the first set of instructions executed by each kind of exception handler
must be set in a manner consistent with the endian mode in which the exception handler is invoked. Thus,
if the exception handler is to be invoked in little-endian mode, the first set of instructions comprising each
kind of exception handler must appear in memory with the instructions within each doubleword reversed
from the order in which they are to be executed.

3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory subsystem recog-
nize the same byte as byte 0. However, this is not true for a PowerPC system running in little-endian mode
because of the munged address bits when the processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed as if the bytes trans-
ferred were accessed one at a time, using the little-endian address modification appropriate for the single-
byte transfers (that is, the lowest order address bits must be XORed with 0b111). This does not mean that I/0
operations in little-endian PowerPC systems must be performed using only one-byte-wide transfers. Data
transfers can be as wide as desired, but the order of the bytes within doublewords must be as if they were
fetched or stored one at a time. That is, for a true little-endian 1/0 device, the system must provide a mecha-
nism to munge and unmunge the addresses and reverse the bytes within a doubleword (MSB to LSB).

However, not all I/O done on PowerPC systems is for large areas of storage as described above. I/0 can be
performed with certain devices merely by storing to or loading from addresses that are associated with the
devices (the terms “memory-mapped 1/0” and “programmed 1/O” or “P1O” are used for this). For such PIO
transfers, care must be taken when defining the addresses to be used, for these addresses are subject to the
effective address modification shown in Table 3-2 Little Endian Effective Address Modifications for Individual
Aligned Scalars. A Load or Store instruction that maps to a control register on a device may require that the
value loaded or stored have its bytes reversed; if this is required, the Load and Store with Byte Reversal
instructions can be used. Any requirement for such byte reversal for a particular /O device register is inde-
pendent of whether the PowerPC system is running in big-endian or little-endian mode.

Similarly, the address sent to an I/0O device by an eciwx or ecowx instruction is subject to the effective
address modification shown in Table 3-2.

Operand Conventions pem3_operand_conv.fm.3.0
Page 88 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.2 Effect of Operand Placement on Performance—VEA

The PowerPC VEA states that the placement (location and alignment) of operands in memory affects the
relative performance of memory accesses. The best performance is guaranteed if memory operands are
aligned on natural boundaries. For more information on memory access ordering and atomicity, refer to
Section 5.1 The Virtual Environment.

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Table 3-3 and Table 3-4 with respect to the
placement of memory operands.

The performance of accesses varies depending on:

¢ Operand size

* Operand alignment

* Endian mode (big-endian or little-endian)
* Crossing no boundary

» Crossing a cache block boundary

¢ Crossing a virtual page boundary

¢ Crossing a segment boundary

Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing
Size Byte Alignment None Cache Block Virtual Page' Segment
Integer
8 Optimal — — —
8 byte 4 Good Good Good Poor
<4 Good Good Good Poor
4 Optimal — — —
4 byte <4 Good Good Good Poor
2 Optimal — — —
2 byte <2 Good Good Good Poor
1 byte 1 Optimal — — —
Imw, 4 Good Good Good Poor
stmw <4 Poor Poor Poor Poor
String — Good Good Good Poor
Floating Point
8 Optimal — — —
8 byte 4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 Optimal — — —
4 byte <4 Poor Poor Poor Poor

Note:

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor.
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or
caching inhibited, performance is likely to be poor.

Table 3-4 applies when the processor is in little-endian mode.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 89 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing
Size Byte Alignment None Cache Block Virtual Page' Segment
Integer
8 Optimal — — —
8 byte 4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 Optimal — — —
4 byte <4 Good Good Poor Poor
2 Optimal — — —
2 byte <2 Good Good Poor Poor
1 byte 1 Optimal — — —
Floating Point
8 Optimal — — —
8 byte 4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 Optimal — — —
4 byte <4 Poor Poor Poor Poor

Note:

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor.
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or
caching inhibited, performance is likely to be poor.

The load/store multiple and the load/store string instructions are supported only in big-endian mode. The
load/store multiple instructions are defined by the PowerPC Architecture to operate only on aligned operands.
The load/store string instructions have no alignment requirements.

Operand Conventions pem3_operand_conv.fm.3.0
Page 90 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.2.2 Instruction Restart

In this section the “load instruction” includes the cache management and other instructions that are stated in
the instruction descriptions to be “treated as a load,” and similarly for “store instruction.” The following instruc-
tions are never restarted after having accessed any portion of the memory operand (unless the instruction
causes a “data address compare match” or a “data address breakpoint match”).

1. Store instruction that causes an atomic access.

2. Load instruction that causes an atomic access to memory that is both caching inhibited and guarded.

Any other load or store instruction may be partially executed and then aborted after having accessed a
portion of the memory operand, and then re-executed (i.e., restarted, by the processor or the operating
system). If an instruction is partially executed, the contents of registers are preserved to the extent that the
correct result will be produced when the instruction is re-executed.

There are many events which might cause a load or store instruction to be restarted. For example, a hard-
ware error may cause execution of the instruction to be aborted after part of the access has been performed,
and the recovery operation could then cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially executed, the contents of the instruction pointer indicate
that the instruction has not been executed, however the contents of some registers may have been altered
and some bytes within the memory operand may have been accessed. The following are examples of an
instruction being partially executed and altering the program state even though it appears that the instruction
has not been executed.

1. Load multiple, load string: some registers in the range of registers to be loaded may have been altered.
2. Any store instruction, debz: some bytes of the memory operand may have been altered.

3. Any floating point load instruction: the target register (frD) may have been altered.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 91 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC Architecture: computational and
non computational. The computational instructions consist of those operations defined by the IEEE-754 stan-
dard for 32 and 64-bit arithmetic (those that perform addition, subtraction, multiplication, division, extracting
the square root, rounding conversion, comparison, and combinations of these) and the multiply-add and
reciprocal estimate instructions defined by the architecture. The non computational floating-point instructions
consist of the floating-point load, store, and move instructions. While both the computational and non compu-
tational instructions are considered to be floating-point instructions governed by the MSR[FP] bit (that allows
floating-point instructions to be executed), only the computational instructions are considered floating-point
operations throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept double-precision
operands. The guidelines are as follows:

¢ Double-precision arithmetic instructions may have single-precision operands but always produce double-
precision results.

* Single-precision arithmetic instructions require all operands to be single-precision and always produce
single-precision results.

For arithmetic instructions, conversion from double to single-precision must be done explicitly by software,
while conversion from single to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the following execution models to ensure that iden-
tical results are obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and
NaNs follow conventions described in the following sections. Appendix C Floating-Point Models has addi-
tional detailed information on the execution models for IEEE operations, as well as the other floating-point
instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted
exponent value in the following examples when the corresponding exception enable bit is 1 (exceptions are
referred to as interrupts in the architecture specification):

¢ Underflow during multiplication using a denormalized operand

* Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format

The PowerPC UISA defines the representation of a floating-point value in two different binary, fixed-length
formats. The format is a 32-bit format for a single-precision floating-point value or a 64-bit format for a double-
precision floating-point value. The single-precision format may be used for data in memory. The double-preci-
sion format can be used for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The layout of the single-
precision format is shown in Figure 3-9; the layout of the double-precision format is shown in Figure 3-10.

Operand Conventions pem3_operand_conv.fm.3.0
Page 92 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-9. Floating-Point Single-Precision Format

S EXP FRACTION

0 1 8 9 31
Figure 3-10. Floating-Point Double-Precision Format

S EXP FRACTION

0 1 11 12 63

Values in floating-point format consist of three fields:

* S (sign bit)

* EXP (exponent + bias)

* FRACTION (fraction)
If only a portion of a floating-point data item in memory is accessed, as with a load or store instruction for a
byte or halfword (or word in the case of floating-point double-precision format), the value affected depends on

whether the PowerPC system is using big or little-endian byte ordering, which is described in Section 3.1.2
Byte Ordering.

Note: Big-endian mode is the default.

For numeric values, the significand consists of a leading implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is a 1 for normalized numbers and a 0 for denormalized numbers and is the first
bit to the left of the binary point. Values representable within the two floating-point formats can be specified by
the parameters listed in Table 3-5.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023
Maximum exponent (unbiased) +127 +1023
Minimum exponent (unbiased) -126 -1022
Format width 32 bits 64 bits
Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits
Fraction width 23 bits 52 bits
Significand width 24 bits 53 bits

The true value of the exponent can be determined by subtracting 127 for single-precision numbers and 1023
for double-precision numbers. This is shown in Table 3-6.

Note: Two exponent values are reserved to represent special-case values. Setting all bits indicates that the
value is an infinity or NaN and clearing all bits indicates that the number is either zero or denormalized.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 93 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-6. Biased Exponent Format

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)

1..... 11 Reserved for infinities and NaNs

11..... 10 +127 +1023
11..... 01 +126 +1022
10..... 00 1 1
01..... 11 0 0
01..... 10 -1 -1
00..... 01 -126 -1022
00..... 00 Reserved for zeros and denormalized numbers

3.3.1.1 Value Representation

The PowerPC UISA defines numeric and nonnumeric values representable within single and double-preci-
sion formats. The numerical values are approximations to the real numbers and include the normalized
numbers, denormalized numbers, and zero values. The nonnumeric values representable are the positive
and negative infinities and the Not a Numbers (NaNs). The positive and negative infinities are adjoined to the
real numbers, but are not numbers themselves, and the standard rules of arithmetic do not hold when they
appear in an operation. They are related to the real numbers by order alone. It is possible, however, to define
restricted operations among numbers and infinities as defined below. The relative location on the real number
line for each of the defined numerical entities is shown in Figure 3-11. Tiny values include denormalized
numbers and all numbers that are too small to be represented for a particular precision format; they do not
include zero values.

Figure 3-11. Approximation to Real Numbers

A
4

\4

Tiny Tiny

—co ’ -NORM

—-DENORM ‘ ‘ +DENORM ‘ +NORM ‘ +o0

| ‘ | A A I | |

A

\4

Unrepresentable, small numbers

The positive and negative NaNs are encodings that convey diagnostic information such as the representation
of uninitialized variables and are not related to the numbers, +oo, or each other by order or value.

Table 3-7 describes each of the floating-point formats.

Operand Conventions pem3_operand_conv.fm.3.0
Page 94 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value
0 Maximum X Nonzero NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 X +Normalized
0 0 0 Nonzero +Denormalized
0 0 X Zero +0
1 0 X Zero -0
1 0 0 Nonzero —Denormalized
1 0 < Exponent < Maximum 1 X —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real numbers. Three
categories of numbers are supported—normalized numbers, denormalized numbers, and zero values.
3.3.1.3 Normalized Numbers (tNORM)

The values for normalized numbers have a biased exponent value in the range:
* 1 to 254 in single-precision format

* 110 2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (-1)® x 2F x (1.fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand composed of a
leading unit bit (implied bit) and a fractional part. The format for normalized numbers is shown in Figure 3-12.

Figure 3-12. Format for Normalized Numbers

MIN < E)((E';(,BQEES)T <MAX FRACTION = ANY BIT PATTERN

T SIGN BIT,0OR 1

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 95 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The ranges covered by the magnitude (M) of a normalized floating-point number are approximated in the
following decimal representation:

Single-precision format:
1.2x10738 <M < 3.4x10%8

Double-precision format:
2.2x1073%8 < M < 1.8x10%%8

3.3.1.4 Zero Values (10)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in Figure 3-13. Zeros
can have a positive or negative sign. The sign of zero is ignored by comparison operations (that is, compar-
ison regards +0 as equal to —0). Arithmetic with zero results is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described in the Invalid Operation
Exception Condition on page 111. Rounding a zero only affects the sign (+0).

Figure 3-13. Format for Zero Numbers

EX'?S,’X%’E‘E; 0 FRACTION =0’

T SIGN BIT,00OR 1

3.3.1.5 Denormalized Numbers (+DENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The format for denor-
malized numbers is shown in Figure 3-14.

Figure 3-14. Format for Denormalized Numbers

EXPONENT =0’ FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

T SIGN BIT,0 OR 1

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized numbers. They are
values in which the implied unit bit is zero. Denormalized numbers are interpreted as follows:

DENORM = (-1) x 2EMiN x (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (—126 for single-precision,
—1022 for double-precision).

Operand Conventions pem3_operand_conv.fm.3.0
Page 96 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.3.1.6 Infinities (1<)

These are values that have the maximum biased exponent value of 255 in the single-precision format, 2047
in the double-precision format, and a zero fraction value. They are used to approximate values greater in
magnitude than the maximum normalized value. Infinity arithmetic is defined as the limiting case of real arith-
metic, with restricted operations defined among numbers and infinities. Infinities and the real numbers can be
related by ordering in the affine sense:

—oo < every finite number < +e

The format for infinities is shown in Figure 3-15.

Figure 3-15. Format for Positive and Negative Infinities

EXPONENT = MAXIMUM
(BIASED) FRACTION =0’

T SIGN BIT, 0 OR 1

Arithmetic using infinite numbers is always exact and does not signal any exception, except when an excep-
tion occurs due to the invalid operations as described in Invalid Operation Exception Condition on page 111.

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for NaNs is shown in
Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather, it is simply another bit in the NaN. If
the highest-order bit of the fraction field is a zero, the NaN is a signaling NaN; otherwise it is a quiet NaN
(QNaN).

Figure 3-16. Format for NaNs

EXPONENT = MAXIMUM FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

T SIGN BIT (ignored)

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform arithmetic opera-
tions on infinities or NaNs, when the invalid operation exception is disabled (FPSCR[VE] =’0’). Quiet NaNs
propagate through all operations, except floating-point round to single-precision, ordered comparison, and
conversion to integer operations, and signal exceptions only for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can thus be preserved through a sequence of operations
and used to convey diagnostic information to help identify results from invalid operations.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 97 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

When a QNaN results from an operation because an operand is a NaN or because a QNaN is generated due
to a disabled invalid operation exception, the following rule is applied to determine the QNaN to be stored as
the result:

If (frA) is a NaN
Then f£rD <« (£frA)
Else if (frB) is a NaN
Then if instruction is frsp
Then £rD « (£rB) [0-34]|](29)0
Else f£frD <« (£frB)
Else if (£frC) is a NaN
Then £rD « (£xC)
Else if generated QNaN
Then £rD < generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the operand specified
by frB is a NaN (if the instruction specifies an frB operand), that NaN is stored as the result, with the low-
order 29 bits cleared (if the instruction is frspx). Otherwise, if the operand specified by frC is a NaN (if the
instruction specifies an frC operand), that NaN is stored as the result. Otherwise, if a QNaN is generated by a
disabled invalid operation exception, that QNaN is stored as the result. If a QNaN is to be generated as a
result, the QNaN generated has a sign bit of zero, an exponent field of all ones, and a highest-order fraction
bit of one with all other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN (i.e., 0x7FF8_0000_0000_0000). This is shown in Figure 3-17.

Figure 3-17. Representation of Generated QNaN

111..1 1000....0

T SIGN BIT (ignored)

A double-precision NaN is considered to be representable in single format if and only if the low-order 29 bits
of the double-precision NaN's fraction are zero.

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the operation does not yield
an exception. These rules apply even when the operands or results are zero (0) or +eo:

¢ The sign of the result of an addition operation is the sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of the result of an addition operation is the same as
the sign of the operands. The sign of the result of the subtraction operation, x —y, is the same as the sign
of the result of the addition operation, x + (-y).

When the sum of two operands with opposite sign, or the difference of two operands with the same sign,
is exactly zero, the sign of the result is positive in all rounding modes except round toward negative infin-
ity (—), in which case the sign is negative.

¢ The sign of the result of a multiplication or division operation is the XOR of the signs of the source oper-
ands.

* The sign of the result of a round to single-precision or convert to/from integer operation is the sign of the
source operand.

Operand Conventions pem3_operand_conv.fm.3.0
Page 98 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

¢ The sign of the result of a square root or reciprocal square root estimate operation is always positive,
except that the square root of —0 is —0 and the reciprocal square root of —0 is —infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplication operation and then to
the addition/subtraction operation (one of the source operands to the addition/subtraction operation is the
result of the multiplication operation).

3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx) instruction may require
normalization and/or denormalization. When an intermediate result consists of a sign bit, an exponent, and a
nonzero significand with a zero leading bit, the result must be normalized (and rounded) before being stored
to the target.

A number is normalized by shifting its significand left and decrementing its exponent by one for each bit
shifted until the leading significand bit becomes one. The guard and round bits are also shifted, with zeros
shifted into the round bit; see Appendix C.1 Execution Model for IEEE Operations on page 597 for informa-
tion about the guard and round bits. During normalization, the exponent is regarded as if its range was unlim-
ited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the minimum value

that can be represented in the format specified for the result, this value is referred to as ‘tiny’ and the stored
result is determined by the rules described in Underflow Exception Condition on page 116. These rules may
involve denormalization. The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:
* As the result of an arithmetic or Floating Round to Single-Precision (frspx) instruction or
¢ As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while denormalization is the
process of coercing the exponent into the target format's range.

In denormalization, the significand is shifted to the right while the exponent is incremented for each bit shifted
until the exponent equals the format’s minimum value. The result is then rounded. If any significand bits are
lost due to the rounding of the shifted value, the result is considered inexact. The sign of the number does not
change and an Underflow Exception is signaled, see Underflow Exception Condition on page 116.

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and memory. For double-
precision format data, the data is not altered during the move. For single-precision data, the format is
converted to double-precision format when data is loaded from memory into an FPR. A format conversion
from double to single-precision is performed when data from an FPR is stored as single-precision. These
operations do not cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-precision format.

Floating-point single-precision formats are obtained by using the following four types of instructions:

* Load floating-point single-precision instructions—These instructions access a single-precision operand in
single-precision format in memory, convert it to double-precision, and load it into an FPR. Floating-point
exceptions do not occur during the load operation.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 99 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* Floating Round to Single-Precision (frspx) instruction—The frspx instruction rounds a double-precision
operand to single-precision, checking the exponent for single-precision range and handling any excep-
tions according to respective enable bits in the FPSCR. The instruction places that operand into an FPR
as a double-precision operand. For results produced by single-precision arithmetic instructions and by
single-precision loads, this operation does not alter the value.

¢ Single-precision arithmetic instructions—These instructions take operands from the FPRs in double-pre-
cision format, perform the operation as if it produced an intermediate result correct to infinite precision
and with unbounded range, and then force this intermediate result to fit in single-precision format. Status
bits in the FPSCR and in the condition register are set to reflect the single-precision result. The result is
then converted to double-precision format and placed into an FPR. The result falls within the range sup-
ported by the single-precision format.

Source operands for these instructions must be representable in single-precision format. Otherwise, the
result placed into the target FPR and the setting of status bits in the FPSCR, and in the condition register
if update mode is selected, are undefined.

» Store floating-point single-precision instructions—These instructions convert a double-precision operand
to single-precision format and store that operand into memory. If the operand requires denormalization in
order to fit in single-precision format, it is automatically denormalized prior to being stored. No exceptions
are detected on the store operation (the value being stored is effectively assumed to be the result of an
instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (Ifs), Floating Round to Single-Precision (frspx), or single-
precision arithmetic instruction is stored in an FPR, the low-order 29 fraction bits are zero. This is shown in
Figure 3-18.

Figure 3-18. Single-Precision Representation in an FPR

Bit 35 j

S EXP D XXX00000. 0000

The frspx instruction allows conversion from double to single-precision with appropriate exception checking
and rounding. This instruction should be used to convert double-precision floating-point values (produced by
double-precision load and arithmetic instructions, and by fcfid) to single-precision values before storing them
into single-format memory elements or using them as operands for single-precision arithmetic instructions.
Values produced by single-precision load and arithmetic instructions can be stored directly, or used directly
as operands for single-precision arithmetic instructions, without being preceded by an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse is true only if the
double-precision value can be represented in single-precision format. Some implementations may execute
single-precision arithmetic instructions faster than double-precision arithmetic instructions. Therefore, if
double-precision accuracy is not required, using single-precision data and instructions might speed opera-
tions in some implementations.

Operand Conventions pem3_operand_conv.fm.3.0
Page 100 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC Architecture (except the
optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal Square Root Estimate (frsqrtex)
instructions) produce an intermediate result considered to be infinitely precise and with unbounded exponent
range. This intermediate result is normalized or denormalized if required, and then rounded to the destination
format. The final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded result differs from the
infinitely precise value with unbounded range (same as the definition of ‘inexact’). In the PowerPC Architec-
ture this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or the operand of a
conversion operation. If Z can be represented exactly in the target format, then the result in all rounding
modes is exactly Z. If Z cannot be represented exactly in the target format, let Z1 and Z2 be the next larger
and next smaller numbers representable in the target format that bound Z; then Z1 or Z2 can be used to
approximate the result in the target format.

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.

Figure 3-19. Relation of Z1 and Z2

By incrementing least significant bit of Z

Infinitely precise value

By truncating after least significant bit

A
A4

Negative values <« » Positive values

Four rounding modes are available through the floating-point rounding control field (RN) in the FPSCR. See
Section 2.1.4 Floating-Point Status and Control Register (FPSCR). These are encoded as shown in
Table 3-8.

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the b.est. .approx‘imation (Z1 or Z2). In case of a tie, choose the one that is
even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward —infinity Choose Z2.

See Appendix C.1 Execution Model for IEEE Operations on page 597 for a detailed explanation of rounding.
Rounding occurs before an overflow condition is detected. This means that while an infinitely precise value
with unbounded exponent range may be greater than the greatest representable value, the rounding mode
may allow that value to be rounded to a representable value. In this case, no overflow condition occurs.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 101 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

However, the underflow condition is tested before rounding. Therefore, if the value that is infinitely precise
and with unbounded exponent range falls within the range of unrepresentable values, the underflow condition
occurs. The results in these cases are defined in Underflow Exception Condition on page 116. Figure 3-20
shows the selection of Z1 and Z2 for the four possible rounding modes that are provided by FPSCR[RN].

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes
Z is infinitely precise
result or operand

Z flts otherwise

target format
Z2 <Z<Z1 | per Figure 3-19
frD A
.
FPSCR[RN] =

otherwise (round toward O

FPSCR[RN] = 1 1 otherwise
(round toward —)

Z>0
frD «—2Z2 1 frD «Z1 frD « 22

FPSCR[RN] = FPSCR[RN] = 10
(round to nearest) (round toward +eo)
frD « Best apprOX|mat|on (Z1 or Z2)
If tie, choose even (Z1 or Z2 with least frD <2
significant bit 0)

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI, according to whether the
rounded result is inexact (FI) and whether the fraction was incremented (FR) as shown in Figure 3-21. If the
rounded result is inexact, Fl is set and FR may be either set or cleared. If rounding does not change the
result, both FR and Fl are cleared. The optional fresx and frsqrtex instructions set Fl and FR to undefined
values; other floating-point instructions do not alter FR and FI.

Operand Conventions pem3_operand_conv.fm.3.0
Page 102 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-21. Rounding Flags in FPSCR

< Z,ound IS rounded result)

Y

otherwise Zround = Z

Fl <0
FR<O0 O
fraction

otherwise

incremented
/ \

3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC Architecture are the only instructions that can cause floating-
point enabled exceptions (subsets of the program exception).

In the processor, floating-point program exceptions are signaled by condition bits set in the floating-point
status and control register (FPSCR) as described in this section and in Chapter 2, “PowerPC Register Set.”
These bits correspond to those conditions identified as IEEE floating-point exceptions and can cause the
system floating-point enabled exception error handler to be invoked. Handling for floating-point exceptions is
described in Section 6.4.9 Program Exception (0x00700).

The FPSCR is shown in Figure 3-22.

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

|:| Reserved
VXIDI VXzZDz —— VXSOFT
VXIS ——— — VXIMZ ——— VXSQRT
VXSNAN VXVC — VXCVI
FX|FEX|VX]| OX| UX| ZX [XX FR| FI FPRF 0 VE|OE|UE[(ZE|XE|NI| RN
01 2 383 4 5 6 7 8 9 10 11 12 13 14 15 1920 21 22 23 24 25 26 27 28 29 30 31
A listing of FPSCR bit settings is shown in Table 3-9.
pem3_operand_conv.fm.3.0 Operand Conventions

July 15, 2005 Page 103 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-9. FPSCR Bit Settings

Bit(s) Name Description

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from 0

0 FX to 1. The merfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a sticky
bit.
Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception

1 FEX conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits

(FEX = (VX & VE) A (OX & OE) A (UX & UE) A (ZX & ZE) N (XX & XE)). The merfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
2 VX exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 113.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.

FPSCR[XX] is the sticky version of FPSCRI[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:

6 XX ¢ If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCRIFI].
¢ If the instruction does not affect FPSCRIFI], the value of FPSCR[XX] is unchanged.
Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
7 VXSNAN | ..
tion on page 111.
8 VXIS Floating-point invalid operation exception for e — <. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.
9 VXIDI Floating-point invalid operation exception for « + <. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.
10 VXZDZ Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Invalid Operation Exception Condi-

tion on page 111.

VXIMZ Floating-point invalid operation exception for - x 0. This is a sticky bit. See Invalid Operation Exception Condi-

" tion on page 111.

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-

12 VXVC tion Condition on page 111.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.
Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the

14 Fl intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and
FPSCR[XX], see the description of the FPSCR[XX] bit.

Operand Conventions pem3_operand_conv.fm.3.0

Page 104 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s)

15-19

20

21

22

23
24
25

26
27
28

29

30-31

Name

FPRF

VXSOFT

VXSQRT

VXCVI

VE

OE

UE
ZE
XE

NI

RN

Description

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set
this bit with the FPCC bits to indicate the class of the result as shown in Table 3-10.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the
FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is less
than, greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.
Reserved

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid
Operation Exception Condition on page 111.

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.

Note: If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation
Exception Condition on page 111.

Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

|IEEE floating-point overflow exception enable.
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

|IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.
IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.
Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, then the result produced is zero (retaining the sign of the denormalized number). Any other
effects associated with setting this bit are described in the user's manual for the implementation (the effects
are implementation-dependent).

Note: When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be
approximate, and performance for these operations may be better, more predictable, or less data-dependent
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may
return O instead of a denormalized number, and may return a large number instead of an infinity.

Floating-point rounding control. See Section 3.3.5 Rounding.
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005

Page 105 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-10illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits [15-19] (the FPRF field).

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits [15-19]) Result Value CI
esult Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 —Infinity

0 1 0 0 0 —Normalized number

1 1 0 0 0 —Denormalized number
1 0 0 1 0 —Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number
0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

The following conditions that can cause program exceptions are detected by the processor. These conditions
may occur during execution of computational floating-point instructions. The corresponding bits set in the
FPSCR are indicated in parentheses:

* Invalid operation exception condition (VX)

— SNaN condition (VXSNAN)

— Infinity — infinity condition (VXISI)

— Infinity + infinity condition (VXIDI)

— Zero =+ zero condition (VXZD2Z)

— Infinity x zero condition (VXIMZ)

— Invalid compare condition (VXVC)

— Software request condition (VXSOFT)

— Invalid integer convert condition (VXCVI)
— Invalid square root condition (VXSQRT)

These exception conditions are described in Invalid Operation Exception Condition on page 111.

» Zero divide exception condition (ZX). These exception conditions are described in Zero Divide Exception
Condition on page 112.

* Overflow Exception Condition (OX). These exception conditions are described in Overflow Exception
Condition on page 115.

¢ Underflow Exception Condition (UX). These exception conditions are described in Underflow Exception
Condition on page 116.

* Inexact Exception Condition (XX). These exception conditions are described in Inexact Exception Condi-
tion on page 117.

Each floating-point exception condition and each category of invalid IEEE floating-point operation exception
condition has a corresponding exception bit in the FPSCR which indicates the occurrence of that condition.
Generally, the occurrence of an exception condition depends only on the instruction and its arguments (with
one deviation, described below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of the IEEE floating-

Operand Conventions pem3_operand_conv.fm.3.0
Page 106 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

point enable bits in the FPSCR which govern those exception conditions. If no governing enable bit is set to 1,
the instruction delivers a default result. Otherwise, specific condition bits and the FX bit in the FPSCR are set
and instruction execution is completed by suppressing or delivering a result. Finally, after the instruction
execution has completed, a nonzero FX bit in the FPSCR causes a program exception if either FEO or FE1 is
set in the MSR (invoking the system error handler). The values in the FPRs immediately after the occurrence
of an enabled exception do not depend on the FEO and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point instruction (except
mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to change from 0 to 1, or by mtfsfi,
mtfsf, and mtfsb1 instructions that explicitly set one of these bits. FPSCR[FEX] is set when any of the excep-
tion condition bits is set and the exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following cases:

¢ The inexact exception condition bit (FPSCR[XX]) may be set with the overflow exception condition bit
(FPSCRI[OX])).

* The inexact exception condition bit (FPSCR[XX]) may be set with the underflow exception condition bit
(FPSCRIUX]).

* The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with invalid IEEE
floating-point operation exception condition bit (e x 0) (FPSCR[VXIMZ]) for multiply-add instructions.

* The invalid operation exception condition bit (SNaN) may be set with the invalid IEEE floating-point oper-
ation exception condition bit (invalid compare) (FPRSC[VXVC]) for compare ordered instructions.

¢ The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with the invalid IEEE
floating-point operation exception condition bit (invalid integer convert) (FPSCR[VXCV]I]) for convert-to-
integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that there is no possi-
bility that one of the operands is lost:

¢ Enabled invalid IEEE floating-point operation

* Enabled zero divide
For the remaining kinds of exception conditions, a result is generated and written to the destination specified

by the instruction causing the exception condition. The result may depend on whether the condition is
enabled or disabled. The kinds of exception conditions that deliver a result are the following:

¢ Disabled invalid IEEE floating-point operation
¢ Disabled zero divide

* Disabled overflow

* Disabled underflow

* Disabled inexact

* Enabled overflow

* Enabled underflow

¢ Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the action taken when
they are detected.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 107 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The IEEE standard specifies the handling of exception conditions in terms of traps and trap handlers. In the
PowerPC Architecture, an FPSCR exception enable bit being set causes generation of the result value spec-
ified in the IEEE standard for the trap enabled case—the expectation is that the exception is detected by soft-
ware, which will revise the result. An FPSCR exception enable bit of 0 causes generation of the default result
value specified for the trap disabled (or no trap occurs or trap is not implemented) case—the expectation is
that the exception will not be detected by software, which will simply use the default result. The result to be
delivered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a default value and not to notify
software, is obtained by clearing all FPSCR exception enable bits and using ignore exceptions mode (see
Table 3-11). In this case the system floating-point enabled exception error handler is not invoked, even if
floating-point exceptions occur. If necessary, software can inspect the FPSCR exception bits to determine
whether exceptions have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit must be set and
a mode other than ignore exceptions mode must be used. In this case the system floating-point enabled
exception error handler is invoked if an enabled floating-point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an enabled floating-
point exception occurs is controlled by MSR bits [FEQ] and [FE1] as shown in Table 3-11. (The system
floating-point enabled exception error handler is never invoked if the appropriate floating-point exception is
disabled.)

Table 3-11. MSR[FEOQ] and MSR[FE 1] Bit Settings for FP Exceptions

FEO FE1 | Description

Ignore exceptions mode—Floating-point exceptions do not cause the program exception error handler to be

0 0 invoked.

Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at some point at or
beyond the instruction that caused the exception. It may not be possible to identify the offending instruction or the

data that caused the exception. Results from the offending instruction may have been used by or affected subse-

quent instructions executed before the exception handler was invoked.

Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled exception handler is
invoked at some point at or beyond the instruction that caused the exception. Sufficient information is provided to
1 0 the exception handler that it can identify the offending instruction and correct any faulty results. In this mode, no
results caused by the offending instruction have been used by or affected subsequent instructions that are exe-
cuted before the exception handler is invoked. Running in this mode might cause a degradation in performance.

Precise mode—The system floating-point enabled exception error handler is invoked precisely at the instruction
that caused the enabled exception. The architecture ensures that all instructions logically residing before the
excepting instruction have completed and no instruction after the excepting instruction has been executed. Run-
ning in this mode might cause a degradation in performance.

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence of any invoca-
tions of the floating-point enabled exception handler, due to instructions initiated before the FPSCR instruc-
tion. This forcing has no effect in ignore exceptions mode and is superfluous for precise mode.

In all cases, the question of whether a floating-point result is stored, and what value is stored, is governed by
the FPSCR exception enable bits, and is not affected by the value of the FEO and FE1 bits. For the best
performance across the widest range of implementations, the following guidelines should be considered:

* [f the IEEE default results are acceptable to the application, FEO and FE1 should be cleared (ignore
exceptions mode). All FPSCR exception enable bits should be cleared.

¢ If the IEEE default results are unacceptable to the application, an imprecise mode should be used with
the FPSCR enable bits set as needed.

Operand Conventions pem3_operand_conv.fm.3.0
Page 108 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* Ignore exceptions mode should not, in general, be used when any FPSCR exception enable bits are set.

* Precise mode may degrade performance in some implementations, perhaps substantially, and therefore
should be used only for debugging and other specialized applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point exception conditions (invalid
operation and divide by zero conditions). In any of these cases of floating-point exception conditions, if the
FPSCRIFEX] bit is set (implicitly) and MSR[FEO-FE1] # ‘00’, the processor takes a program exception
(floating-point enabled exception type). Refer to Chapter 6, Exceptions for more information on exception
processing. The actions performed for each floating-point exception condition are described in greater detail
in the following sections.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 109 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

Check for FP Computational
FP Exception Conditions Instructions

/£\ Invalid Operand

otherwise Exception Condition

/

/

Perform Actions per Invalid Operation
Exception Condition on page 111

(FPSCR[FEX] = 1) and

otherwise (MSR[FEO-FE1] # 00)
Take FP Enabled
2610 Divide Program Exception

otherwise Exception Cond|t|on

(for Invalid Operation)
Perform Actions per Zero Divide Exception
Condition on page 112
/é\ (FPSCRIFEX] = 1) &
otherwise (MSR[FEO-FE1] # 00)

Take FP Enabled
Execute InStrUCthn, Program Exception
X < Intermediate Result

(Infinitely Precise and with Unbounded Range) (for Zero Divide)

x = (0) or (xo) otherwise

—

* Xxgounp < Rounded x (per FPSCR[RN])

Check for Overflow, Underflow, and

* D —Xgounp) Inexact Exception Conditions (see Figure 3-24)
¢ Set FPSCRIFI, FR, FPRF] appropriately
Continue Instruction
Execution
Operand Conventions pem3_operand_conv.fm.3.0

Page 110 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Invalid Operation Exception Condition
An invalid operation exception occurs when an operand is invalid for the specified operation. The invalid oper-
ations are as follows:

* Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

e For add or subtract operations, magnitude subtraction of infinities (co — o)

» Division of infinity by infinity (co + o)

¢ Division of zero by zero (0 + 0)

e Multiplication of infinity by zero (e x 0)

¢ Ordered comparison involving a NaN (invalid compare)

e Square root or reciprocal square root of a negative, nonzero number (invalid square root)

Note: If the implementation does not support the optional floating-point square root or floating-point

reciprocal square root estimate instructions, software can simulate the instruction and set the
FPSCR[VXSQRT] bit to reflect the exception.

* Integer convert involving a number that is too large in magnitude to be represented in the target format, or
involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition that is not neces-

sarily associated with the execution of a floating-point instruction. For example, it might be set by a program
that computes a square root if the source operand is negative. This allows PowerPC instructions not imple-

mented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via FPSCR[VXSOFT],
(regardless of the value of FPSCRI[VE]), the following actions are taken:

¢ One or two invalid operation exception condition bits is set

FPSCR[VXSNAN] (if SNaN)

FPSCR[VXISI] (if o0 — o)

FPSCRI[VXIDI] (if o0 + o)
FPSCR[VXZDZ] (if0+0)

FPSCR[VXIMZ] (if = x 0)

FPSCR[VXVC] (if invalid comparison)
FPSCR[VXSOFT] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

¢ If the operation is a compare,
FPSCRIFR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

¢ If software explicitly requests the exception,
FPSCRIFR, Fl, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

There are additional actions performed that depend on the value of FPSCR[VE]. These are described in
Table 3-12.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 111 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 3-12. Additional Actions Performed for Invalid FP Operations

Action Performed

Invalid Operation Result Category
FPSCRI[VE] ="1’ FPSCRI[VE] ="0’

frD Unchanged QNaN
Arithmetic or floating-point round to single | FPSCRI[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Set for QNaN

frD[0-63] Unchanged mi positive 64-bit integer
Convert to 64-bit integer
(positive number or +co) FPSCRIFR, Fl] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

rD[0-63] Unchanged \l\//;c;ste negative 64-bit integer
Convert to 64-bit integer
(negative number, NaN, or —) FPSCRIFR, Fl] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

frD[0-31] Unchanged Undefined

Most positive 32-bit integer

Convert to 32-bit integer frD[32-63] Unchanged valuep ’
(positive number or +c)

FPSCRIFR, Fl] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

frD[0-31] Unchanged Undefined

Most negative 32-bit integer

Convert to 32-bit integer frD[32-63] Unchanged value ’ ’
(negative number, NaN, or —)

FPSCRI[FR, Fl] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined
Al cases FPSCRIFEX] Implicitly set Unchanged

(causes exception)

Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero divisor value and a
finite, nonzero dividend value or when an floating reciprocal estimate single (fres) or a floating reciprocal
square root estimate (frsqrte) instruction is executed with a zero operand value.
The corresponding result is infinity, where the sign is the sign of the source value, as follows:

* 1/+0.0 — +

* 1/-0.0 - -

e 1/(J/40.0) = +oo

e 1/(4-0.0) > -o0
When a zero divide condition occurs, the following actions are taken:

e Zero divide exception condition bit is set FPSCR[ZX] ="1".
¢ FPSCRIFR, Fl] are cleared.

Operand Conventions pem3_operand_conv.fm.3.0
Page 112 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Additional actions depend on the setting of the zero divide exception condition enable bit, FPSCR[ZE], as
described in Table 3-13.

Table 3-13. Additional Actions Performed for Zero Divide

Action Performed

Result Category
FPSCRI[ZE] ="1’ FPSCRI[ZE] ='0’
+eo (sign determined by XOR of the signs of the
frD Unchanged operands)
FPSCRI[FEX] Implicitly set (causes exception) Unchanged
FPSCRI[FPRF] Unchanged Set to indicate +e

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected after the floating-
point instruction has executed and an infinitely precise result with unbounded range has been computed.
Figure 3-24 shows the flow for the detection of these conditions and is a continuation of Figure 3-23. As in the
cases of invalid operation, or zero divide conditions, if the FPSCR[FEX] bit is implicitly set as described in
Table 3-9 and MSR[FEO-FE1] # 00, the processor takes a program exception (floating-point enabled excep-
tion type). Refer to Chapter 6, Exceptions for more information on exception processing. The actions
performed for each of these floating-point exception conditions (including the generated result) are described
in greater detail in the following sections.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 113 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

Check for Overflow, (from Figure 3-23)
Underflow, and Inexact

l

XNORM <— Normalized x
(xnorwm Infinitely Precise and with Unbounded Range)

XNORM i8S tiny otherwise
FPSCRIUE] = ; ‘
(underflow disabled) otherwise ‘ Xrounp < Rounded xyorm (per FPSCRIRN]) ‘
- |
* Xpenorm < Denormalized Xnom otherwise magnitude of X,oung > Magnitude of
* Round xpenorw (Per FPSCRIRN]) - largest finite number in result precision
o frD « XROUND ¢ Rounded XDENORM (overflow)
. e frD < X;ound |
® INexact ¢ XROUND * XDENORM * inexact « x #X
* If ‘inexact’, FPSCR[UX] « 1 ROUND # “NORM FPSCR[OX] « 1
. FPSCR[UX] «—1 . N otherwise FPSCR[OE] =0
e FPSCRIFEX] =1 (implicitly) (overflow disabled)
® XADJUST %Ad] EXp of XNORM Per Table 3-14 /
* Round xap,yst (Per FPSCR[RN]) « FPSCRIFEX] =1 (implicitly) j
* frD < xgounp ¢ Rounded xap,yst ¢ Adjust Exponent per Table 3-14
¢ inexact « x X) FPSCR[XX] « 1
ROUND ADJUST o frD « XROUND (ad]USted)

* inexact <~ XgRouND # XNORM

¢ Get default fromTable 3-15
e frD « default

otherwise inexact = 1 * FPSCRIFI] « 1

¢ FPSCR[FR] « undefined

A A

|
FPSCR[XX] «1 (inexact)

/é\ FPSCRIXE] = 0

/otherwise (inexact disabled)
~

FPSCRIFEX] = 1 (implicitly)

Set FPSCR[FPRF] appropriately

If (FPSCRI[FEX] = 1) & (MSR[FEO-FE1] # 00),
then take FP Program Exception;
otherwise, continue

Operand Conventions pem3_operand_conv.fm.3.0
Page 114 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the exponent range

been unbounded) is greater than the magnitude of the largest finite number of the specified result precision.
Regardless of the setting of the overflow exception condition enable bit of the FPSCR, the overflow exception
condition bit is set FPSCR[OX] ="1".

Additional actions are taken that depend on the setting of the overflow exception condition enable bit of the

FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Condition

Double-precision arithmetic
instructions

Single-precision arithmetic and
frspx instruction

All cases

Result Category

Exponent of normalized
intermediate result

Exponent of normalized
intermediate result

frD

FPSCR[XX]
FPSCRIFEX]
FPSCRIFPRF]

FPSCRIFI]
FPSCRIFR]

Action Performed

FPSCRIOE] = '1’

Adjusted by subtracting 1536

Adjusted by subtracting 192

Rounded result
(with adjusted exponent)

Set if rounded result differs from
intermediate result

Implicitly set (causes exception)
Set to indicate £normal number

Reflects rounding

Reflects rounding

FPSCRIOE] = '0’

Default result per Table 3-15

Set

Unchanged

Set to indicate x or
+normal number

Set
Undefined

When the overflow exception condition is disabled (FPSCR[OE] =’0’) and an overflow condition occurs, the
default result is determined by the rounding mode bit (FPSCR[RN]) and the sign of the intermediate result as

shown in Table 3-15.

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCRI[RN]

Round to nearest

Round toward zero

Round toward +infinity

Round toward —infinity

pem3_operand_conv.fm.3.0
July 15, 2005

Sign of Intermediate Result

Positive
Negative
Positive
Negative
Positive
Negative
Positive

Negative

frD
+Infinity

—Infinity

Format’s largest finite positive number

Format’s most negative finite number

+Infinity

Format's most negative finite number

Format’s largest finite positive number

—Infinity

Operand Conventions
Page 115 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Underflow Exception Condition

The underflow exception condition is defined separately for the enabled and disabled states:
¢ Enabled—Underflow occurs when the intermediate result is tiny.

» Disabled—Underflow occurs when the intermediate result is tiny and the rounded result is inexact.
In this context, the term ‘tiny’ refers to a floating-point value that is too small to be represented for a par-
ticular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero intermediate result value
computed as though it had infinite precision and unbounded exponent range is less in magnitude than the
smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared (FPSCR[UE] ='0’
), the intermediate result is denormalized (see Section 3.3.3 Normalization and Denormalization) and
rounded (see Section 3.3.5 Rounding) before being stored in an FPR. In this case, if the rounding causes the
delivered result value to differ from what would have been computed were both the exponent range and
precision unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Action Performed

Condition Result Category
FPSCRIUE] ="71’ FPSCRIUE] =0’
Double-precision arithmetic Exponent of normalized interme- | , .. .
instructions diate result Adjusted by adding 1536 o

Single-precision arithmetic and | Exponent of normalized interme- Adjusted by adding192 .

frspx instructions diate result
frD Rounded result (with adjusted Denormalized and rounded
exponent) result
Set if rounded result differs from | Set if rounded result differs from
FPSCRIXX] intermediate result intermediate result
Set only if tiny and inexact after
FPSCRIUX] Set denormalization and rounding
All cases
FPSCRIFPRF] Set to indicate +normalized Set to indicate +denormalized
number number or +zero
FPSCRI[FEX] Implicitly set (causes exception) | Unchanged
FPSCRIFI] Reflects rounding Reflects rounding
FPSCRIFR] Reflects rounding Reflects rounding

Note: The FR and Fl bits in the FPSCR allow the system floating-point enabled exception error handler,
when invoked because of an underflow exception condition, to simulate a trap disabled environment. That is,
the FR and FI bits allow the system floating-point enabled exception error handler to unround the result, thus
allowing the result to be denormalized.

Operand Conventions pem3_operand_conv.fm.3.0
Page 116 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

Inexact Exception Condition

The inexact exception condition occurs when one of two conditions occur during rounding:

* The rounded result differs from the intermediate result assuming the intermediate result exponent range
and precision to be unbounded. (In the case of an enabled overflow or underflow condition, where the
exponent of the rounded result is adjusted for those conditions, an inexact condition occurs only if the sig-
nificand of the rounded result differs from that of the intermediate result.)

¢ The rounded result overflows and the overflow exception condition is disabled.

When an inexact exception condition occurs, the following actions are taken independent of the setting of the
inexact exception condition enable bit of the FPSCR:

¢ Inexact exception condition bit in the FPSCR is set FPSCR[XX] ="1".

* The rounded or overflowed result is placed into the target FPR.

* FPSCRI[FPRF] is set to indicate the class and sign of the result.
In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set, and an inexact

condition exists, then the FPSCR[FEX] bit is implicitly set, causing the processor to take a floating-point
enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have greater latency
than enabling other types of floating-point exception conditions.

pem3_operand_conv.fm.3.0 Operand Conventions
July 15, 2005 Page 117 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

THIS PAGE INTENTIONALLY LEFT BLANK

Operand Conventions pem3_operand_conv.fm.3.0
Page 118 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4. Addressing Modes and Instruction Set Summary

This chapter describes instructions and addressing modes defined by the three levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA), virtual environment architecture (VEA), and operating envi-
ronment architecture (OEA). These instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 4.2.1 Integer Instructions.

* Floating-point instructions—These include floating-point arithmetic instructions, as well as instructions
that affect the floating-point status and control register (FPSCR). For more information, see Section 4.2.2
Floating-Point Instructions.

* Load and store instructions—These include integer and floating-point load and store instructions. For
more information, see Section 4.2.3 Load and Store Instructions.

¢ Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. For more information, see
Section 4.2.4 Branch and Flow Control Instructions.

¢ Processor control instructions—These instructions are used for synchronizing memory accesses and
managing of caches, TLBs, and the segment registers. For more information, see Section 4.2.5 Proces-
sor Control Instructions—UISA, Section 4.3.1 Processor Control Instructions—VEA, and Section 4.4.2
Processor Control Instructions—OEA.

* Memory synchronization instructions—These instructions control the order in which memory operations
are completed with respect to asynchronous events, and the order in which memory operations are seen
by other processors or memory access mechanisms. For more information, see Section 4.2.6 Memory
Synchronization Instructions—UISA, and Section 4.3.2 Memory Synchronization Instructions—VEA.

* Memory control instructions—These include cache management instructions (user-level and supervisor-
level), segment register manipulation instructions, and translation lookaside buffer management instruc-
tions. For more information, see Section 4.3.3 Memory Control Instructions—VEA, and Section 4.4.3
Memory Control Instructions—OEA.

Note: User-level and supetrvisor-level are referred to as problem state and privileged state, respectively,
in the architecture specification.

¢ External control instructions—These instructions allow a user-level program to communicate with a spe-
cial-purpose device. For more information, see Section 4.3.4 External Control Instructions.

This grouping of instructions does not necessarily indicate the execution unit that processes a particular
instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, halfword, word, and doubleword operands. Floating-point instructions
operate on single-precision and double-precision floating-point operands. The PowerPC Architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, halfword, word, and doubleword
operand fetches and stores between memory and a set of 32 general-purpose registers (GPRs). It also
provides for word and doubleword operand fetches and stores between memory and a set of 32 floating-point
registers (FPRs). The FPRs and GPRs are 64 bits wide in all PowerPC implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load and store instructions.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 119 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The description of each instruction includes the mnemonic and a formatted list of operands. PowerPC-
compliant assemblers support the mnemonics and operand lists. To simplify assembly language program-
ming, a set of simplified mnemonics (referred to as extended mnemonics in the architecture specification)
and symbols is provided for some of the most frequently-used instructions; see Appendix E Simplified
Mnemonics, for a complete list of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation of the three levels of
the PowerPC Architecture—UISA, VEA, and OEA; Section 4.2 PowerPC UISA Instructions discusses the
UISA instructions, followed by Section 4.3 PowerPC VEA Instructions that discusses the VEA instructions
and Section 4.4 PowerPC OEA Instructions that discusses the OEA instructions. See Section 1.1.2 Levels of
the PowerPC Architecture for more information about the various levels defined by the PowerPC Architec-
ture.

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of computation
modes, memory addressing, synchronization, and the PowerPC exception summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of asynchronous
events or program exceptions. The execution of a sequence of instructions may be interrupted by an excep-
tion caused by one of the instructions in the sequence, or by an asynchronous event.

Note: The architecture specification refers to exceptions as interrupts.

For exceptions to the sequential execution model, refer to Chapter 6, Exceptions. For information about the
synchronization required when using store instructions to access instruction areas of memory, refer to
Section 4.2.3.3 Integer Store Instructions and Section 5.1.5.2 Instruction Cache Instructions. For information
regarding instruction fetching, and for information about guarded memory refer to Section 5.2.1.5 Guarded
Attribute (G).

4.1.2 Computation Modes

The general-purpose and floating-point registers, and some special-purpose registers (SPRs) are 64 bits
long, with an effective address of 64 bits. All 64-bit implementations have two modes of operation: 64-bit
mode (which is the default) and 32-bit mode. The mode controls how the effective address is interpreted, how
condition bits are set, and how the count register (CTR) is tested by branch conditional instructions. All
instructions provided for 64-bit implementations are available in both 64 and 32-bit modes.

The machine state register bit [0], MSR[SF], is used to choose between 64 and 32-bit modes. When
MSRI[SF = ‘0’, the processor runs in 32-bit mode, and when MSR[SF] = "1’ the processor runs in the default
64-bit mode.

In both 64-bit mode (the default) and 32-bit mode of a 64-bit implementation, instructions that set a 64-bit
register affect all 64 bits, and the value placed into the register is independent of mode. In both modes, effec-
tive address computations use all 64 bits of the relevant registers (GPRs, LR, CTR, etc.), and produce a
64-bit result; however, in 32-bit mode (MSR[SF] ='0’), only the low-order 32 bits of the computed effective
address are used to address memory.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 120 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.1.3 Classes of Instructions

PowerPC instructions belong to one of the following three classes:

¢ Defined
¢ lllegal
* Reserved

Note: While the definitions of these terms are consistent among the PowerPC processors, the assignment of
these classifications is not. For example, an instruction that is specific to 64-bit implementations is considered
defined for 64-bit implementations, but illegal for 32-bit implementations.

The class is determined by examining the primary opcode, and the extended opcode if any. If the opcode, or
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, the instruction is illegal.

In future versions of the PowerPC Architecture, instruction codings that are now illegal may become defined
(by being added to the architecture) or reserved (by being assigned to one of the special purposes). Likewise,
reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could have been
achieved by executing an arbitrary sequence of instructions, starting in the state the machine was in before
executing the given instruction. Boundedly undefined results for a given instruction may vary between imple-
mentations, and between different executions on the same implementation.

4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and OEA. Defined
instructions are guaranteed to be supported in all PowerPC implementations. The only exceptions are
instructions that are defined only for 64-bit implementations, instructions that are defined only for 32-bit imple-
mentations, and optional instructions, as stated in the instruction descriptions in Chapter 8, Instruction Set. A
PowerPC processor may invoke the illegal instruction error handler (part of the program exception handler)
when an unimplemented PowerPC instruction is encountered so that it may be emulated in software, as
required.

A defined instruction can have preferred and/or invalid forms, as described in the following sections.

Preferred Instruction Forms

A defined instruction may have an instruction form that is preferred (that is, the instruction will execute in an
efficient manner). Any form other than the preferred form will take significantly longer to execute. The
following instructions have preferred forms:

» Condition register logical instructions

¢ Load/store multiple instructions

* Load/store string instructions

¢ Or immediate instruction (preferred form of no-op)

* Move to condition register fields instruction

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 121 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands, excluding the
opcodes and reserved fields, are coded incorrectly in a manner that can be deduced by examining only the
instruction encoding (primary and extended opcodes). Attempting to execute an invalid form of an instruction
either invokes the illegal instruction error handler (a program exception) or yields boundedly-undefined
results. See Chapter 8, Instruction Set, for individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a reserved bit (shown as
‘0’) is coded as ‘1°.
The following instructions have invalid forms identified in their individual instruction descriptions:

¢ Branch conditional instructions

¢ Load/store with update instructions

¢ Load multiple instructions

* Load string instructions

¢ Load/store floating-point with update instructions

Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following categories:
¢ General-purpose instructions—fsqrt and fsqrts
¢ Graphics instructions—fres, frsqrte, and fsel
» External control instructions—eciwx and ecowx

* Lookaside buffer management instructions—slbia, slbie, tibia, tibie, tibiel, and tibsync (with conditions,
see Chapter 8, Instruction Set for more information)

TEMPORARY 64-BIT BRIDGE

The optional 64-bit bridge facility has three other categories of optional instructions for 64-bit implemen-
tations. These are described in greater detail in Section 7.6 Migration of Operating Systems from 32-Bit
Implementations to 64-Bit Implementations and summarized below:

e 32-bit segment register support instructions—mtsr, mtsrin, mfsr, and mfsrin
* 32-bit system linkage instructions—mtmsr

Any attempt to execute an optional instruction that is not provided by the implementation will cause the illegal
instruction error handler to be invoked. Exceptions to this rule are stated in the instruction descriptions found
in Chapter 8, Instruction Set.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 122 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.1.3.3 lllegal Instruction Class

lllegal instructions can be grouped into the following categories:

¢ Instructions that are not implemented in the PowerPC Architecture. These opcodes are available for
future extensions of the PowerPC Architecture; that is, future versions of the PowerPC Architecture may
define any of these instructions to perform new functions. The following primary opcodes are defined as
illegal but may be used in future extensions to the architecture:

1,4,5,6, 56, 57, 60, 61

Note: Opcode 4 may be used by the vector instructions as described in the PowerPC Microprocessor
Family: AltiVec Technology Programming Environments Manual.

¢ All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Appendix A.2 Instructions Sorted by Opcode and Section 4.1.3.4 Reserved Instructions. The
following primary opcodes have unused extended opcodes.

19, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63

* An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the
probability that an attempt to execute data or uninitialized memory invokes the illegal instruction error
handler (a program exception).

Note: If only the primary opcode consists of all zeros, the instruction is considered a reserved instruction, as
described in Section 4.1.3.4 Reserved Instructions.

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a program exception)
but has no other effect. See Section 6.4.9 Program Exception (0x00700) for additional information about
illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal instructions are available for
further additions to the PowerPC Architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC Architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (a program exception). See Section 6.4.9 Program Exception (0x00700) for addi-
tional information about illegal instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the PowerPC Architecture.

2. Implementation-specific instructions used to conform to the PowerPC Architecture specifications. For
example, the implementation specific instruction tlbiel, (the processor local form of the TLB Invalidate) for
the PowerPC 970FX microprocessor.

3. The instruction with primary opcode 0, when the instruction does not consist entirely of binary zeros and
the extended opcode:
256 Service Processor “Attention.”

4. Any other implementation-specific instructions that are not defined in the UISA, VEA, or OEA.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 123 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte. Within words bytes are numbered from left to right.

Memory operands may be bytes, halfwords, words, or doublewords, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The
PowerPC Architecture supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian; see Section 3.1.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32 or 64-bit sum computed by the processor when executing a memory
access or branch instruction or when fetching the next sequential instruction. For a memory access instruc-
tion, if the sum of the effective address and the operand length exceeds the maximum effective address, the
memory operand is considered to wrap around from the maximum effective address through effective
address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 64 or 32-bit unsigned binary arith-
metic. A carry from bit [0] is ignored. The 64-bit current instruction address and next instruction address are
not affected by a change from 32-bit mode to the default 64-bit mode, but a change from the default 64-bit
mode to 32-bit mode causes the high-order 32 bits to be cleared.

In the default 64-bit mode, the entire 64-bit result comprises the 64-bit effective address. The effective
address arithmetic wraps around from the maximum address, 264 _ 1, to address 0.

When a 64-bit implementation executes in 32-bit mode (MSR[SF] = ’0’), the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose of addressing memory. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by load with update and store with update instructions. The high-order
32 bits of the 64-bit effective address are cleared for the purpose of fetching instructions, and whenever a
64-bit effective address is placed into the LR by branch instructions having link register update option enabled
(LK field, bit 31, in the instruction encoding = 1). The high-order 32 bits of the 64-bit effective address are
cleared in SPRs when an exception error handler is invoked. In the context of addressing memory, the effec-
tive address arithmetic appears to wrap around from the maximum address, 232 _ 1, to address 0.

Treating the high-order 32 bits of the effective address as zero effectively truncates the 64-bit effective
address to a 32-bit effective address, such as would have been generated on a 32-bit implementation.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 124 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

In 64-bit implementations (including 32-bit mode in 64-bit implementations), the three low-order bits of the
calculated effective address may be modified by the processor before accessing memory if the PowerPC
system is operating in little-endian mode. See Section 3.1.2 Byte Ordering for more information about little-
endian mode.

Load and store operations have three categories of effective address generation that depend on the oper-
ands specified:

* Register indirect with immediate index mode

¢ Register indirect with index mode

* Register indirect mode
See Section 4.2.3.1 Integer Load and Store Address Generation for a detailed description of effective
address generation for load and store operations.
Branch instructions have three categories of effective address generation:

¢ Immediate addressing
¢ Link register indirect
¢ Count register indirect

See Section 4.2.4.1 Branch Instruction Address Calculation for a detailed description of effective address
generation for branch instructions.

Branch instructions can optionally load the link register (LR) with the next sequential instruction address
(current instruction address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions

The synchronization described in this section refers to the state of activities within the processor that is
performing the synchronization. Refer to Section 6.1.2 Synchronization for more detailed information about
other conditions that can cause context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt Doubleword (rfid), and Instruction Synchronize (isync) instruc-
tions perform context synchronization by allowing previously issued instructions to complete before
continuing with program execution. These instructions will flush the instruction prefetch queue and start
instruction fetching from memory in the context established after all preceding instructions have completed
execution.

1. No higher priority exception exists (s¢) and dispatching is halted.
2. All previous instructions have completed to a point where they can no longer cause an exception.

3. Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

4. The instructions at the target of the branch of s¢, rfid and those following the isync instruction execute in
the context established by these instructions. For the isync instruction the instruction fetch queue must
be flushed and instruction fetching restarted at the next sequential instruction. Both sc¢, and rfid execute
like a branch and the flushing and refetching is automatic.

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the
context established by the operation.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 125 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second
item described above (that is, the conditions described in the second item apply to the completion of sync
and ptesync). The sync, ptesync, and mtmsrd instructions are examples of execution-synchronizing
instructions.

The isync instruction is concerned mainly with the instruction stream in the processor on which it is executed,
whereas, sync is looking outward towards the caches and memory and is concerned with data arriving at
memory where it is visible to other processors in a multiprocessor environment. (e.g., cache block store,
cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context synchronizing operation,
an execution synchronizing instruction need not ensure that the instructions following it execute in the context
established by that instruction. This new context becomes effective sometime after the execution synchro-
nizing instruction completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error conditions in an
orderly way. The exception model is defined by the OEA. There are two kinds of exceptions—those caused
directly by the execution of an instruction and those caused by an asynchronous event. Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

¢ An attempt to execute an illegal instruction causes the illegal instruction (program exception) error han-
dler to be invoked. An attempt by a user-level program to execute the supervisor-level instructions listed
below causes the privileged instruction (program exception) handler to be invoked.

The PowerPC Architecture provides the following supervisor-level instructions: mfmsr, mfspr, mfsr,
mfsrin, mtmsr, mtmsrd, mtspr, mtsr, mtsrin, rfid, slbia, slbie, slbmfee, silbmfev, slbmte, tibia, tibie,
tibiel, and tibsync (defined by OEA).

Note: The privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

¢ The execution of a defined instruction using an invalid form causes either the illegal instruction error han-
dler or the privileged instruction handler to be invoked.

¢ The execution of an optional instruction that is not provided by the implementation causes the illegal
instruction error handler to be invoked.

¢ An attempt to access memory in a manner that violates memory protection, or an attempt to access
memory that is not available (page fault), causes the DSI exception handler or ISI exception handler to be
invoked.

* An attempt to access memory with an effective address alignment that is invalid for the instruction causes
the alignment exception handler to be invoked.

e The execution of an sc instruction permits a program to call on the system to perform a service, by caus-
ing a system call exception handler to be invoked.

* The execution of a trap instruction invokes the program exception trap handler.

* The execution of a floating-point instruction when floating-point instructions are disabled invokes the float-
ing-point unavailable exception handler.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 126 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

* The execution of an instruction that causes a floating-point exception that is enabled invokes the floating-
point enabled exception handler.

Exceptions caused by asynchronous events are described in Chapter 6, Exceptions.

4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level instruction set (excluding
a few user-level cache-control, synchronization, and time base instructions), user-level registers, program-
ming model, data types, and addressing modes. This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions

The integer instructions consist of the following:
* Integer arithmetic instructions
* Integer compare instructions
* Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs. Integer
arithmetic, shift, rotate, and string move instructions may update or read values from the XER, and the condi-
tion register (CR) fields may be updated if the Rc bit of the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is explicitly identified
as performing an unsigned operation. For example, Multiply High-Word Unsigned (mulhwu) and Divide Word
Unsigned (divwu) instructions interpret both operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer arithmetic instruction,
addic., set CR bits [0-3] (CRO0) to characterize the result of the operation. In the default 64-bit mode, CRO is
set to reflect a signed comparison of the 64-bit result to zero. In 32-bit mode (of 64-bit implementations), CRO
is set to reflect a signed comparison of the low-order 32 bits of the result to zero.

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze, always set the XER bit [CA], to reflect the carry out of bit [0] in the default 64-bit mode
and out of bit [32] in 32-bit mode (of 64-bit implementations). Integer arithmetic instructions with the overflow
enable (OE) bit set in the instruction encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to
reflect an overflow of the result. Except for the multiply low and divide instructions, these integer arithmetic
instructions reflect the overflow of the 64-bit result in the default 64-bit mode and overflow of the low-order
32-bit result in 32-bit mode; however, the multiply low and divide instructions (mulld, mullw, divd, divw,
divdu, and divwu) with o suffix cause XER[SO] and XER[OV] to reflect overflow of the 64-bit result (mulld,
divd, and divdu) and overflow of the low-order 32-bit result (mullw, divw, and divwu).

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit [CA] might delay
the execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are set, they characterize the value placed in the target
register.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 127 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.1.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax | Operation
Add Immediate addi rD,rA,SIMM The sum (rAl0) + SIMM is placed into rD.
égﬁtg‘gmed'ate addis rD,rA,SIMM The sum (FAIO) + (SIMM Il 0x0000) is placed into rD.
The sum (rA) + (rB) is placed into rD.
add Add
add add. Add with CR Update. The dot suffix enables the update of the
Add add. rD,rA,rB CR. _ .
addo addo Add with Overflow Enabled. The o suffix enables the overflow bit
addo. [OV]in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit [OV] in the XER.
The sum = (rA) + (rB) +1 is placed into rD.
subf Subtract From
subf subf. Subtract from with CR Update. The dot suffix enables the update
of the CR.
subf.
Subtract From rD,rA,rB subfo Subtract from with Overflow Enabled. The o suffix enables the
subfo . ;
subfo overflow bit [OV] in the XER.

’ subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit [OV]in
the XER.

Add Immediate addic ¢D.rA.SIMM The sum (rA) + SIMM is placed into rD. The dot suffix enables the update
Carrying addic. Y of the CR. XER bit [CA] is altered.
Subtract from
Immediate subfic rD,rA,SIMM The sum = (rA) + SIMM + 1 is placed into rD. XER bit [CA] is altered.
Carrying
The sum (rA) + (rB) is placed into rD. XER bit [CA] is altered.
addc Add Carrying
addc addc. Add Carrying with CR Update. The dot suffix enables the update
. addc. of the CR.
Add Carrying addco rD,rA,rB addco Add Carrying with Overflow Enabled. The o suffix enables the
addco overflow bit [OV] in the XER.

’ addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit [OV]in
the XER.

The sum = (rA) + (rB) + 1 is placed into rD. XER bit [CA] is altered.
subfc Subtract from Carrying
subfc subfe. Subtract from Carrying with CR Update. The dot suffix enables
Subtract from subfc. the update of the CB. . .
Carryi rD,rA,rB subfco Subtract from Carrying with Overflow. The o suffix enables the
arrying subfco . .
subfco overflow bit [OV] in the XER.
’ subfco. Subtract from Carrying with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow bit
[OV]in the XER.
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 128 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic
adde
Add adde.
Extended addeo
addeo.
subfe
Subtract from subfe.
Extended subfeo
subfeo.
addme
Add to Minus One |addme.
Extended addmeo
addmeo.
Sub ¢ subfme
ubtract from
Minus One sub:me.
Extended subfmeo
subfmeo.
addze
Add to Zero addze.
Extended addzeo
addzeo.

pem4_instr_Set.fm.3.0
July 15, 2005

Operand Syntax

rD,rA,rB

rD,rA,rB

rD,rA

rD,rA

rD,rA

Operation

The sum (rA) + (rB) + XER[CA] is placed into rD. XER bit [CA] is altered.
adde Add Extended

adde. Add Extended with CR Update. The dot suffix enables the update
of the CR.

addeo Add Extended with Overflow. The o suffix enables the overflow
bit [OV] in the XER.

addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit [OV]in
the XER.

The sum = (rA) + (rB) + XER[CA] is placed into rD.

subfe Subtract from Extended

subfe. Subtract from Extended with CR Update. The dot suffix enables
the update of the CR.

subfeo Subtract from Extended with Overflow. The o suffix enables the
overflow bit [OV] in the XER.

subfeo. Subtract from Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
[OV] bit in the XER.

The sum (rA) + XER[CA] added to OxFFFF_FFFF_FFFF_FFFF is placed

into rD. XER bit [CA] is altered.

addme Add to Minus One Extended

addme. Add to Minus One Extended with CR Update. The dot suffix
enables the update of the CR.

addmeoAdd to Minus One Extended with Overflow. The o suffix enables
the overflow bit [OV] in the XER.

addmeo.Add to Minus One Extended with Overflow and CR Update. The
o. suffix enables the update of the CR and enables the overflow
[OV] bit in the XER.

The sum = (rA) + XER[CA] added to OxFFFF_FFFF_FFFF_FFFF is
placed into rD. XER bit [CA] is altered.

subfme Subtract from Minus One Extended

subfme.Subtract from Minus One Extended with CR Update. The dot suf-
fix enables the update of the CR.

subfmeoSubtract from Minus One Extended with Overflow. The o suffix
enables the overflow bit [OV] in the XER.

subfmeo.Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of the CR and enables
the overflow bit [OV] in the XER.

The sum (rA) + XER[CA] is placed into rD. XER bit [CA] is altered.
addze Add to Zero Extended

addze. Add to Zero Extended with CR Update. The dot suffix enables the
update of the CR.

addzeo Add to Zero Extended with Overflow. The o suffix enables the
overflow bit [OV] in the XER.

addzeo. Add to Zero Extended with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
[OV]in the XER.

Addressing Modes and Instruction Set Summary
Page 129 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The sum = (rA) + XER[CA] is placed into rD.
subfze Subtract from Zero Extended
subfze subfze. Subtract from Zero Extended with CR Update. The dot suffix
Subtract from Zero | subfze. enables the update of the CR.
Extended subfzeo rD,rA subfzeo Subtract from Zero Extended with Overflow. The o suffix enables
the overflow bit [OV] in the XER.

subfzeo.Subtract from Zero Extended with Overflow and CR Update. The
o. suffix enables the update of the CR and enables the overflow
bit [OV] in the XER.

subfzeo.

The sum = (rA) + 1 is placed into rD.

neg Negate
heg neg. Negate with CR Update. The dot suffix enables the update of the
neg. rD,rA CR.
nego nego Negate with Overflow. The o suffix enables the overflow bit [OV]
nego. in the XER.

nego. Negate with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit [OV] in the XER.

Negate

The low-order bits of the 128-bit product (rA) x SIMM are placed into rD.

This instruction can be used with mulhdx or mulhwx to calculate a full
mulli rD,rA,SIMM 128-bit (or 64-bit) product.

The low-order 32 bits of the product are the correct 32-bit product for 32-
bit mode in 64-bit implementations.

Multiply Low
Immediate

The -bit product (rA) x (rB) is placed into register rD. The 32-bit operands

are the contents of the low-order 32 bits of rA and of rB.

This instruction can be used with mulhwx to calculate a full 64-bit product.

The low-order 32 bits of the product are the correct 32-bit product for 32-

bit mode in 64-bit implementations.

mullw Multiply Low

rD,rA,rB mullw. Multiply Low with CR Update. The dot suffix enables the update

of the CR.

mullwo Multiply Low with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

mullwo. Multiply Low with Overflow and CR Update. The o. suffix enables
the update of the condition register and enables the overflow bit
(OV) in the XER.

mullw
mullw.
mullwo
mullwo.

Multiply Low

The low-order 64 bits of the 128-bit product (rA) x (rB) are placed into rD.
mulld Multiply Low Doubleword
mulld mulld. Multiply Low Doubleword with CR Update. The dot suffix enables
Multiply Low mulld. the update of the CR.
Doubleword mulldo rO,rA,rB mulldo Multiply Low Doubleword with Overflow. The o suffix enables the
overflow bit [OV] in the XER.

mulldo. Multiply Low Doubleword with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow bit
[OV]in the XER.

mulldo.

The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into the low-order 32 bits of rD. The value in the high-order 32 bits
rD,rA,rB of rD is undefined.
mulhw. mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables the
update of the CR.

Multiply High Word ™MW

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 130 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Multiply High mulhd
Doubleword mulhd. rD,rA,rB

Multiply High Word | mulhwu

Unsigned mulhwu. rD,rA,rB
Multiply High
Doubleword mulhdu rD,rA,rB
Unsigned mulhdu.
divw
Divide Word divw. rD,rArB
divwo
divwo.

pem4_instr_Set.fm.3.0
July 15, 2005

Operation

The high-order 64 bits of the 128-bit product (rA) x (rB) are placed into

register rD. Both operands and the product are interpreted as signed inte-

gers.

mulld Multiply High Doubleword

mulld. Multiply High Doubleword with CR Update. The dot suffix enables
the update of the CR.

The contents of rA and of rB are interpreted as 32-bit unsigned integers.

The 64-bit product is formed. The high-order 32 bits of the 64-bit product

are placed into the low-order 32 bits of rD. The value in the high-order 32

bits of rD is undefined.

mulhwu Multiply High Word Unsigned

mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

The high-order 64 bits of the 128-bit product (rA) x (rB) are placed into

register rD.

mulhdu Multiply High Word Unsigned

mulhdu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

The 64-bit dividend is the signed value of the low-order 32 bits of rA. The

64-bit divisor is the signed value of the low-order 32 bits of rB. The low-

order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of

rD. The contents of the high-order 32 bits of rD are undefined. The

remainder is not supplied as a result.

divw Divide Word

divw. Divide Word with CR Update. The dot suffix enables the update
of the CR.

divwo Divide Word with Overflow. The o suffix enables the overflow bit
[OV]in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit [OV] in the
XER.

Addressing Modes and Instruction Set Summary
Page 131 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
divd Divide Doubleword

di"d divd. Divide Doubleword with CR Update. The dot suffix enables the
Divide Doubleword d!"d' rD,rA,rB u;.Jd.ate of the CR.] _

divdo divdo Divide Doubleword with Overflow. The o suffix enables the over-

divdo. flow bit [OV] in the XER.

divdo. Divide Doubleword with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit [OV]in
the XER.

The 64-bit dividend is the zero-extended value in the low-order 32 bits of
rA. The 64-bit divisor is the zero-extended value in the low-order 32 bits of
rB. The low-order 32 bits of the 64-bit quotient are placed into the low-
order 32 bits of rD. The contents of the high-order 32 bits of rD are unde-
fined. The remainder is not supplied as a result.

Divide Word g:zaz divwu Divide Word Unsigned
Ulr:/sli enedor .) rD,rA,rB divwu. Divide Word Unsigned with CR Update. The dot suffix enables
9 d!kuo the update of the CR.
divwuo. divwuo Divide Word Unsigned with Overflow. The o suffix enables the
overflow bit [OV] in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
[OV]in the XER.
The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
. divdu Divide Word Unsigned
divdu divdu. Divide Word Unsigned with CR Update. The dot suffix enables
Divide Double- divdu. the update of the CR.
;) rD,rA,rB
word Unsigned divduo divduo Divide Word Unsigned with Overflow. The o suffix enables the
divduo. overflow bit [OV] in the XER.

divduo. Divide Word Unsigned with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an addi instruction
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided
in which the third operand is subtracted from the second operand. See Appendix E Simplified Mnemonics for
examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents of
register rB. The comparison is signed for the empi and emp instructions, and unsigned for the empli and
cmpl instructions. Table 4-2 summarizes the integer compare instructions.

The PowerPC UISA specifies that the value in the L field determines whether the operands are treated as 32
or 64-bit values. If the L field is ‘0’ the operand length is 32 bits, and if it is ‘1’ the operand length is 64 bits.
The simplified mnemonics for integer compare instructions, as shown in Appendix E Simplified Mnemonics
correctly set or clear the ‘L’ value in the instruction encoding rather than requiring it to be coded as a numeric
operand. When operands are treated as 32-bit signed quantities, bit [32] of (rA) and (rB) is the sign bit.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 132 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of the designated CR
field, and clear the other two. XER[SQ] is copied into bit [3] of the CR field.

Table 4-2. Integer Compare Instructions

Name

Compare
Immediate

Compare

Compare Logical
Immediate

Compare Logical

Mnemonic

cmpi

cmp

cmpli

cmpl

Operand Syntax

crfD,L,rA,SIMM

crfD,L,rA,rB

crfD,L,rA,UIMM

crfD,L,rA,rB

Operation

The value in register rA (rA[32-63] sign-extended to 64 bits if L = ‘0’) is
compared with the sign-extended value of the SIMM operand, treating the
operands as signed integers. The result of the comparison is placed into
the CR field specified by operand crfD.

The value in register rA (rA[32-63] if L =’0’) is compared with the value in
register rB (rB[32-63] if L =’0’), treating the operands as signed integers.
The result of the comparison is placed into the CR field specified by oper-
and crfD.

The value in register rA (rA[32-63] zero-extended to 64 bits if L = ‘0’) is
compared with 0x0000_0000_0000 Il UIMM, treating the operands as
unsigned integers. The result of the comparison is placed into the CR field
specified by operand crfD.

The value in register rA (rA[32-63] if L =’0’) is compared with the value in
register rB (rB[32-63] if L ='0’), treating the operands as unsigned inte-
gers. The result of the comparison is placed into the CR field specified by
operand crfD.

The crfD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise the target
CR field must be specified in the instruction erfD field, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix E Simplified

Mnemonics.

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on -bit operands. Logical instruc-
tions with the CR updating enabled (uses dot suffix) and instructions andi. and andis. set CR field CRO

(bits [0 to 2]) to characterize the result of the logical operation. In the default 64-bit mode, these fields are set
as if the 64-bit result were compared algebraically to zero. In 32-bit mode of a 64-bit implementation, these
fields are set as if the sign-extended low-order 32 bits of the result were algebraically compared to zero.
Logical instructions without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix E Simplified Mnemonics for simplified mnemonic examples for integer logical operations.

Table 4-3. Integer Logical Instructions

Name

AND Immediate

AND Immediate
Shifted

OR Immediate

Mnemonic

andi.

andis.

ori

pem4_instr_Set.fm.3.0

July 15, 2005

Operand Syntax

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

Operation

The contents of rS are ANDed with 0x0000_0000_0000 Il UIMM and the
result is placed into rA.

The CR is updated.

The content of rS are ANDed with 0x0000_0000 Il UIMM Il 0x0000 and
the result is placed into rA.

The CR is updated.

The contents of rS are ORed with 0x0000_0000_0000 Il UIMM and the
result is placed into rA.

The preferred no-op is ori 0,0,0

Addressing Modes and Instruction Set Summary
Page 133 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-3. Integer Logical Instructions (Continued)

Name

OR Immediate
Shifted

XOR Immediate

XOR Immediate
Shifted

AND

OR

XOR

NAND

NOR

Equivalent

AND with
Complement

OR with
Complement

Extend Sign Byte

Mnemonic

oris

Xori

xoris

and
and.

or
or.

Xxor
Xor.

nand
nand.

nor
nor.

eqv
eqv.

andc
andc.

orc
orc.

extsb
extsb.

Operand Syntax

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS

Addressing Modes and Instruction Set Summary

Page 134 of 657

Operation

The contents of rS are ORed with 0x0000_0000 Il UIMM [l 0x0000 and
the result is placed into rA.

The contents of rS are XORed with 0x0000_0000_0000 Il UIMM and the
result is placed into rA.

The contents of rS are XORed with 0x0000_0000 Il UIMM [l 0x0000 and
the result is placed into rA.

The contents of rS are ANDed with the contents of register rB and the
result is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update of the
CR.

The contents of rS are ORed with the contents of rB and the result is
placed into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

The contents of rS are XORed with the contents of rB and the result is
placed into rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the
CR.

The contents of rS are ANDed with the contents of rB and the one’s com-
plement of the result is placed into rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.
Note: nandx, with rS = rB, can be used to obtain the one's complement.

The contents of rS are ORed with the contents of rB and the one’s com-
plement of the result is placed into rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the
CR.

Note: norx, with rS = rB, can be used to obtain the one's complement.

The contents of rS are XORed with the contents of rB and the comple-
mented result is placed into rA.

eqv Equivalent

eqv. Equivalent with CR Update. The dot suffix enables the update of
the CR.

The contents of rS are ANDed with the one’s complement of the contents
of rB and the result is placed into rA.

andc AND with Complement

andc. AND with Complement with CR Update. The dot suffix enables
the update of the CR.

The contents of rS are ORed with the complement of the contents of rB
and the result is placed into rA.

orc OR with Complement

orc. OR with Complement with CR Update. The dot suffix enables the
update of the CR.

The contents of the low-order eight bits of rS are placed into the low-order
eight bits of rA. Bit [56] of rS is placed into the remaining high-order bits of
rA.

extsb Extend Sign Byte

extsb. Extend Sign Byte with CR Update. The dot suffix enables the
update of the CR.

pem4_instr_Set.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of the low-order 16 bits of rS are placed into the low-order
16 bits of rA. Bit [48] of rS is placed into the remaining high-order bits of
Extend Sign extsh FASS rA.
Halfword extsh. ’ extsh Extend Sign Half-word
extsh. Extend Sign Half-word with CR Update. The dot suffix enables
the update of the CR.

The contents of the low-order 32 bits of rS are placed into the low-order
32 bits of rA. Bit [32] of rS is placed into the remaining high-order bits of

) extsw rA.
Extend Sign Word extsw. rArS extsw Extend Sign Word
extsw. Extend Sign Word with CR Update. The dot suffix enables the
update of the CR.
A count of the number of consecutive zero bits starting at bit [32] of rS is
placed into rA. This number ranges from 0 to 32, inclusive.
Count Leading cntlzw rAFS If Rc =1’ (dot suffix), LT is cleared in CRO.
Zeros Word cntlzw. ’ cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix
enables the update of the CR.
A count of the number of consecutive zero bits starting at bit [0] of rS is
placed into rA. This number ranges from 0 to 64, inclusive.
Count Leading cntlzd ArS If Rc =1’ (dot suffix), LT is cleared in CRO.
Zeros Doubleword | cntlzd. ’ cntlzd Count Leading Zeros Doubleword

cntlzd. Count Leading Zeros Doubleword with CR Update. The dot suffix
enables the update of the CR.

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to
a GPR. The rotation operations rotate a 64-bit quantity left by a specified number of bit positions. Bits that exit
from position 0 enter at position .

Two types of rotation operation are supported:

1. ROTL64 or rotate64 — the value rotated is the given 64-bit value. The rotate64 operation is used to rotate
a given 64-bit quantity.

2. ROTL32 or rotate32 — the value rotated consists of two copies of bits [32-63] of the given 64-bit value,
one copy in bits [0-31] and the other in bits [32-63]. The rotate32 operation is used to rotate a given 32-bit
quantity.

The rotate and shift instructions employ a mask generator. The mask is 64 bits long and consists of ‘1 bits
from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’ bits elsewhere. The values of Mstart
and Mstop range from 0 to . If Mstart > Mstop, the ‘1’ bits wrap around from position to position 0. Thus the
mask is formed as follows:

if Mstart < Mstop then
mask[mstart-mstop] = ones
mask[all other bits] = zeros
else
mask[mstart—] = ones
mask[0—mstop] = ones
mask[all other bits] = zeros

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 135 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

It is not possible to specify an all-zero mask. The use of the mask is described in the following sections.

If CR updating is enabled, rotate and shift instructions set CRO[0-2] according to the contents of rA at the
completion of the instruction. Rotate and shift instructions do not change the values of XER[OV] and
XER[SO] bits. Rotate and shift instructions, except algebraic right shifts, do not change the XER[CA] bit.

See Appendix E Simplified Mnemonics for a complete list of simplified mnemonics that allows simpler coding
of often-used functions such as clearing the leftmost or rightmost bits of a register, left justifying or right justi-
fying an arbitrary field, and simple rotates and shifts.

Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the
target register under control of a mask (if a mask bit is ‘1’ the associated bit of the rotated data is placed into
the target register, and if the mask bit is O the associated bit in the target register is unchanged), or ANDed
with a mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by a left-rotation of
64 - n, where nis the number of bits by which to rotate right. It also allows right-rotation of the contents of the
low-order 32 bits of a register to be performed by a left-rotation of 32 - n, where nis the number of bits by
which to rotate right.

The integer rotate instructions are summarized in Table 4-4

Table 4-4. Integer Rotate Instructions

Name Mnemonic Operand Syntax | Operation

The contents of rS are rotated left by the number of bits specified by oper-

and SH. A mask is generated having ’1’ bits from the bit specified by oper-
Rotate Left . and MB through bit [63] and 0 bits elsewhere. The rotated data is ANDed
Doubleword ridicl rA,rS,SH,MB with the generated mask and the result is placed into register rA.

Immediate then | ridicl. ridicl Rotate Left Doubleword Immediate then Clear Left

Clear Left . . .
ridicl. Rotate Left Doubleword Immediate then Clear Left with CR
Update. The dot suffix enables the update of the CR.
The contents of ¢S are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from bit [0] through the bit
Rotate Left di specified by operand ME and 0 bits elsewhere. The rotated data is ANDed
:Doublg_wordh ridicr rA,rS,SH,ME with the generated mask and the result is placed into register rA.
Crrllggt: é?gtﬁtt en ridicr. ridicr Rotate Left Doubleword Immediate then Clear Right
ridicl. Rotate Left Doubleword Immediate then Clear Right with CR
Update. The dot suffix enables the update of the CR.
The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having ’1’ bits from the bit specified
Rotate Left by operand MB through bit [63 — SH], and 0 bits elsewhere. The rotated
Doubleword ridic ArS.SH.MB data is ANDed with the generated mask and the result is placed into regis-
Immediate then ridic. FAFs,on, ter rA.
Clear ridic Rotate Left Doubleword Immediate then Clear

ridic. Rotate Left Doubleword Immediate then Clear with CR Update.
The dot suffix enables the update of the CR.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 136 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-4. Integer Rotate Instructions (Continued)

Name

Rotate Left Word
Immediate then
AND with Mask

Rotate Left
Doubleword then
Clear Left

Rotate Left
Doubleword then
Clear Right

Rotate Left Word
then AND with
Mask

Rotate Left Word
Immediate then
Mask Insert

Rotate Left
Doubleword
Immediate then
Mask Insert

Mnemonic

rlwinm
rlwinm.

ridcl
ridcl.

rider
ridcr.

rlwnm
rlwnm.

rlwimi
rlwimi.

ridimi
ridimi.

pem4_instr_Set.fm.3.0

July 15, 2005

Operand Syntax

rA,rS,SH,MB,ME

rA,rS,rB,MB

rA,rS,rB,ME

rA,rS,rB,MB,ME

rA,rS,SH,MB,ME

rA,rS,SH,MB

Operation

The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having "1’ bits from the bit specified
by operand MB + 32 through the bit specified by operand ME + 32 and 0
bits elsewhere. The rotated data is ANDed with the generated mask and
the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask

rlwinm. Rotate Left Word Immediate then AND with Mask with CR
Update. The dot suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having ’1’
bits from the bit specified by operand MB through bit [63] and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.

ridel Rotate Left Doubleword then Clear Left

ridcl. Rotate Left Doubleword then Clear Left with CR Update. The dot
suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having '1’
bits from bit [0] through the bit specified by operand ME and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.

rider Rotate Left Doubleword then Clear Right

ridcr. Rotate Left Doubleword then Clear Right with CR Update. The
dot suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-
and in the low-order five bits of rB. A mask is generated having ’1’ bits
from the bit specified by operand MB + 32 through the bit specified by
operand ME + 32 and 0 bits elsewhere. The rotated word is ANDed with
the generated mask and the result is placed into rA.

rlwnm Rotate Left Word then AND with Mask

rlwnm. Rotate Left Word then AND with Mask with CR Update. The dot
suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having '1’ bits from the bit specified by oper-
and MB + 32 through the bit specified by operand ME + 32 and 0 bits
elsewhere. The rotated word is inserted into rA under control of the gener-
ated mask.

rlwimi Rotate Left Word Immediate then Mask

rlwimi. Rotate Left Word Immediate then Mask Insert with CR Update.
The dot suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB through [63 — SH] (the bit specified by SH), and 0 bits elsewhere.
The rotated data is inserted into rA under control of the generated mask.
rldimi Rotate Left Word Immediate then Mask

rldimi. Rotate Left Word Immediate then Mask Insert with CR Update.
The dot suffix enables the update of the CR.

Addressing Modes and Instruction Set Summary
Page 137 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics
(shown in Appendix E Simplified Mnemonics) are provided to make coding of such shifts simpler and easier
to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by 2". The setting of
XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix B Multiple-Precision Shifts.

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Name Mnemonic Operand Syntax |Operation

The contents of rS are shifted left the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 0 are lost. Zeros are sup-
. d plied to the vacated positions on the right. The result is placed into rA.
Shift Left s rA,rS,rB Shift amounts from 64 to 127 give a zero result.
Doubleword sld. sld Shift Left Doubleword

sld. Shift Left Doubleword with CR Update. The dot suffix enables the
update of the CR.

The contents of the low-order 32 bits of rS are shifted left the number of
bits specified by operand in the low-order six bits of rB. Bits shifted out of
position 32 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into the low-order 32 bits of rA. The value
Shift Left Word slw rA,rS,rB in the high-order 32 bits of rA is cleared, and shift amounts from 32 to 63
slw. give a zero result.
slw Shift Left Word

slw. Shift Left Word with CR Update. The dot suffix enables the
update of the CR.

The contents of rS are shifted right the number of bits specified by the low-

order seven bits of rB. Bits shifted out of position 63 are lost. Zeros are

supplied to the vacated positions on the left. The result is placed into rA.
rA,rS,rB Shift amounts from 64 to 127 give a zero result.

srd Shift Right Doubleword

srd. Shift Right Doubleword with CR Update. The dot suffix enables
the update of the CR.

Shift Right srd
Doubleword srd.

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by the low-order six bits of rB. Bits shifted out of position 63
are lost. Zeros are supplied to the vacated positions on the left. The 32-bit
result is placed into the low-order 32 bits of rA. The value in the high-order
Shift Right Word > rA,rS,rB 32 bits of rA is cleared to zero, and shift amounts from 32 to 63 give a zero
Srw. result.
srw Shift Right Word

srw. Shift Right Word with CR Update. The dot suffix enables the
update of the CR.

The contents of rS are shifted right the number of bits specified by oper-
and SH. Bits shifted out of position 63 are lost. Bit [0] of rS is replicated to
o fill the vacated positions on the left. The result is placed into rA. XER[CA]
Shift Right , is set if rS contains a negative number and any '1’ bits are shifted out of
Algebraic sradl rA.rS.SH position 63; otherwise XER[CA] is cleared. An operand SH of zero causes
Doubleword sradi. T rA to be loaded with the contents of rS and XER[CA] to be cleared to zero.
Immediate sradi Shift Right Algebraic Doubleword Immediate

sradi. Shift Right Algebraic Doubleword Immediate with CR Update.
The dot suffix enables the update of the CR.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 138 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

Table 4-5. Integer Shift Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by operand SH. Bits shifted out of position 63 are lost. Bit

Shift Right . [32] of rS is replicated to fill the vacated positions on the left. The 32-bit
it g srawi e ; -
Algebraic Word . rA,rS,SH result is sign extended and placed into the low-order 32 bits of rA.
Immediate srawl. srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of the CR.
The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Bit [0] of rS is
Shift Right replicated to fill the vacated positions on the left. The result is placed into
Algebraic srad rArS,rB rA.
Doubleword srad. srad Shift Right Algebraic Doubleword

srad. Shift Right Algebraic Doubleword with CR Update. The dot suffix
enables the update of the CR.

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by the low-order six bits of rB. Bits shifted out of position 63
L are lost. Bit [32] of rS is replicated to fill the vacated positions on the left.
Shift Right sraw rArS,rB The 32-bit result is placed into the low-order 32 bits of rA.

Algebraic Word ' sraw. sraw Shift Right Algebraic Word

sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of the CR.

4.2.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
* Floating-point arithmetic instructions
* Floating-point multiply-add instructions
* Floating-point rounding and conversion instructions
¢ Floating-point compare instructions
* Floating-point status and control register instructions

* Floating-point move instructions

Note: MSR[FP] must be set in order for any of these instructions (including the floating-point loads and
stores) to be executed. If MSR[FP] = '0’ when any floating-point instruction is attempted, the floating-point
unavailable exception is taken (see Section 6.4.10 Floating-Point Unavailable Exception (0x00800)). See
Section 4.2.3 Load and Store Instructions for information about floating-point loads and stores.

The PowerPC Architecture supports a floating-point system as defined in the IEEE-754 standard, but requires
software support to conform with that standard. Floating-point operations conform to the IEEE-754 standard,
with the exception of operations performed with the fmadd, fres, fsel, and frsqrte instructions, or if software
sets the non-IEEE mode bit [NI] in the FPSCR. Refer to Section 3.3 Floating-Point Execution Models—UISA,
for detailed information about the floating-point formats and exception conditions. Also, refer to

Appendix C Floating-Point Models for more information on the floating-point execution models used by the
PowerPC Architecture.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 139 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name

Floating Add

(Double-
Precision)

Floating Add
Single

Floating Subtract

(Double-
Precision)

Floating Subtract
Single

Floating Multiply
(Double-Precision)

Floating Multiply
Single

Floating Divide
(Double-Precision)

Mnemonic

fadd
fadd.

fadds
fadds.

fsub
fsub.

fsubs
fsubs.

fmul
fmul.

fmuls
fmuls.

fdiv
fdiv.

Operand Syntax

frD,frA,frB

frD,frA,frB

frD,frA,frB

frD,frA,frB

frD,frA,frC

frD,frA,frC

frD,frA,frB

Addressing Modes and Instruction Set Summary

Page 140 of 657

Operation

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fadd Floating Add (Double-Precision)

fadd. Floating Add (Double-Precision) with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is added to the floating-point

operand in register frB. If the most significant bit of the resultant signifi-

cand is not a one, the result is normalized. The result is rounded to the tar-

get precision under control of the floating-point rounding control field RN

of the FPSCR and placed into register frD.

fadds Floating Add Single

fadds. Floating Add Single with CR Update. The dot suffix enables the
update of the CR.

The floating-point operand in register frB is subtracted from the floating-

point operand in register frA. If the most significant bit of the resultant sig-

nificand is not 1, the result is normalized. The result is rounded to the tar-

get precision under control of the floating-point rounding control field RN

of the FPSCR and placed into register frD.

fsub Floating Subtract (Double-Precision)

fsub. Floating Subtract (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

fsubs Floating Subtract Single

fsubs. Floating Subtract Single with CR Update. The dot suffix enables
the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmul Floating Multiply (Double-Precision)

fmul. Floating Multiply (Double-Precision) with CR Update. The dot suf-
fix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmuls Floating Multiply Single

fmuls. Floating Multiply Single with CR Update. The dot suffix enables
the update of the CR.

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.

fdiv Floating Divide (Double-Precision)

fdiv. Floating Divide (Double-Precision) with CR Update. The dot suf-
fix enables the update of the CR.

pem4_instr_Set.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.
frD,frA,frB fdivs Floating Divide Single

fdivs. Floating Divide Single with CR Update. The dot suffix enables the
update of the CR.

Floating Divide fdivs
Single fdivs.

The square root of the floating-point operand in register frB is placed into

. register frD.

Floating Square tgqrt fsqrt Floating Square Root (Double-Precision)

Root frD,frB) . .

(Double-Precision) fsqrt. fsqrt. Floating Square Root (Double-Precision) with CR Update. The

dot suffix enables the update of the CR.

Note: This instruction is optional.
The square root of the floating-point operand in register frB is placed into
register frD.

Floating Square fsqrts f1D.frB fsqrts Floating Square Root Single

Root Single fsqrts. fsqrts. Floating Square Root Single with CR Update. The dot suffix
enables the update of the CR.

Note: This instruction is optional.

A single-precision estimate of the reciprocal of the floating-point operand
in register frB is placed into frD. The estimate placed into frD is correct to
a precision of one part in 256 of the reciprocal of frB.

frD,frB fres Floating Reciprocal Estimate Single

fres. Floating Reciprocal Estimate Single with CR Update. The dot suf-
fix enables the update of the CR.

Note: This instruction is optional.

Floating Recipro- | fres
cal Estimate Single |fres.

A double-precision estimate of the reciprocal of the square root of the
floating-point operand in register frB is placed into frD. The estimate
placed into frD is correct to a precision of one part in 32 of the reciprocal

Floating Recipro- frsqrte of the square root of frB.
Ezltiiqaﬁre Root frsqrte. frD,frB frsqrte Floating Reciprocal Square Root Estimate

frsqrte. Floating Reciprocal Square Root estimate with CR Update. The
dot suffix enables the update of the CR.

Note: This instruction is optional.

The floating-point operand in frA is compared to the value zero. If the

operand is greater than or equal to zero, frD is set to the contents of frC. If

the operand is less than zero or is a NaN, frD is set to the contents of frB.

The comparison ignores the sign of zero (that is, regards ‘+0’ as equal
Floating Select fsel fiDfrAfrcfrB8 100

fsel Floating Select

fsel. Floating Select with CR Update. The dot suffix enables the

update of the CR.

Note: This instruction is optional.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 141 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Status bits are set as follows:

¢ Overflow, underflow, and inexact exception bits, the [FR] and [FI] bits, and the FPRF field are set based
on the final result of the operation, and not on the result of the multiplication.

¢ Invalid operation exception bits are set as if the multiplication and the addition were performed using two
separate instructions (fmuls, followed by fadds or fsubs). That is, multiplication of infinity by zero or of
anything by an SNaN, and/or addition of an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax | Operation

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added

Floating Multiply- ¢ 44 to this intermediate result.

?;:uble_Precision) fmadd. fDAANCHB fmadd Floating Multiply-Add (Double-Precision)
fmadd. Floating Multiply-Add (Double-Precision) with CR Update. The
dot suffix enables the update of the CR.
The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
Floating Multiply- | fmadds to this intermediate result.
Add Single fmadds. fDAANCHB fmadds Floating Multiply-Add Single

fmadds.Floating Multiply-Add Single with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
fmsub FD-frAfrC.frB tracted from this intermediate result.
fmsub. FOITAITGIT fmsub Floating Multiply-Subtract (Double-Precision)

fmsub. Floating Multiply-Subtract (Double-Precision) with CR Update.
The dot suffix enables the update of the CR.

Floating Multiply-
Subtract

(Double-Precision)

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
i ioly- | f b tracted from this intermediate result.
Floating Multiply- - Tmsubs frD,frA frC,frB . . .
Subtract Single fmsubs. fmsubs Floating Multiply-Subtract Single

fmsubs.Floating Multiply-Subtract Single with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added

Floating Negative ¢ - 44 to this intermediate result.

%ﬂﬂg:‘é’_?i‘iision) fnmadd. fOANCHB fimadd Floating Negative Multiply-Add (Double-Precision)
fnmadd.Floating Negative Multiply-Add (Double-Precision) with CR
Update. The dot suffix enables update of the CR.
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 142 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The floating-point operand in register frA is multiplied by the floating-point
. . operand in register frC. The floating-point operand in register frB is added
Floating Negative |¢,madds to this intermediate result.
'\S"it‘]g'l‘;'y' Add fnmadds. fDMAFCHB fmaddsFloating Negative Multiply-Add Single
fnmadds.Floating Negative Multiply-Add Single with CR Update. The dot
suffix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
fnmsub tracted from this intermediate result.
fnmsub. frO,frAfrC,frB fnmsub Floating Negative Multiply-Subtract (Double-Precision)
fnmsub.Floating Negative Multiply-Subtract (Double-Precision) with CR
Update. The dot suffix enables the update of the CR.

Floating Negative
Multiply- Subtract

(Double-Precision)

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-

Floating Negative | ¢, msubs tracted from this intermediate result.

“Sniﬁgllzly- Subtract fnmsubs. frD,frAfrC,frB fnmsubsFloating Negative Multiply-Subtract Single

fnmsubs.Floating Negative Multiply-Subtract Single with CR Update. The
dot suffix enables the update of the CR.

For more information on multiply-add instructions, refer to Appendix C.2 Execution Model for Multiply-Add
Type Instructions.

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit
double-precision floating-point number to a 32-bit signed integer number.

The PowerPC Architecture defines bits [0-31] of floating-point register frD as undefined when executing the
Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round toward Zero
(fetiwz) instructions. The floating-point rounding instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in Appendix C Floating-
Point Models.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 143 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax | Operation

The floating-point operand in frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into frD.

frD,frB frsp Floating Round to Single-Precision

frsp. Floating Round to Single-Precision with CR Update. The dot suf-
fix enables the update of the CR.

Floating Round to | frsp
Single-Precision |frsp.

The 64-bit signed integer operand in frB is converted to an infinitely pre-
cise floating-point integer. The result of the conversion is rounded to dou-
Floating Convert ¢csig ble-precision using the rounding mode specified by FPSCR[RN] and

from Integer . frD,frB placed into register frD.
Doubleword fefid. fefid Floating Convert from Integer Doubleword
fefid. Floating Convert from Integer Doubleword with CR Update. The
dot suffix enables the update of the CR.
The floating-point operand in register frB is converted to a 64-bit signed

. integer, using the rounding mode specified by FPSCR[RN], and placed in

::I?atmg Convertto ¢.4iq D18 frD.
Soi%?erword fctid. ro,ir fctiw Floating Convert to Integer Doubleword
fctiw. Floating Convert to Integer Doubleword with CR Update. The dot
suffix enables the update of the CR.

. The floating-point operand in register frB is converted to a 64-bit signed
Floating Convert to fctid integer, using the rounding mode Round toward Zero and placed in frD.
wéig?/\:i'ldjﬁoggljr;d fzt:d: frD,frB fctidz Floating Convert to Integer Doubleword with Round toward Zero
toward Zero) fctidz. Floating Convert to Integer Doubleword with Round toward Zero

with CR Update. The dot suffix enables the update of the CR.

The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode specified by FPSCR[RN], and placed in
Floating Convert to | fctiw the low-order 32 bits of frD. Bits [0-31] of frD are undefined.

Integer Word fctiw. frD,frB fctiw Floating Convert to Integer Word

fctiw. Floating Convert to Integer Word with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frB is converted to a 32-bit signed
. integer, using the rounding mode Round toward Zero, and placed in the
Floating Convertto | ¢ iz low-order 32 bits of frD. Bits [0-31] of frD are undefined.

Integer Word with fctiwz. frD,frB fctiwz Floating Convert to Integer Word with Round toward Zero

Round toward Zero i . . .
fctiwz. Floating Convert to Integer Word with Round toward Zero with
CR Update. The dot suffix enables the update of the CR.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 144 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers and the comparison
ignores the sign of zero (that is ‘+0’ = *-0’). The comparison can be ordered or unordered. The comparison
sets one bit in the designated CR field and clears the other three bits. The floating-point condition code
(FPCC) in bits [16—19] of the floating-point status and control register (FPSCR) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.

Table 4-9. CR Bit Settings

Bit Name Description
0 FL (frA) < (frB)
1 FG (frA) > (frB)
2 FE (frA) = (frB)
3 FU (frA) ? (frB) (unordered)

Note: A result of “unordered” indicates that at least one of operations of the comparison was a NaN.

The floating-point compare instructions are summarized in Table 4-10.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax | Operation

Floating Compare fompu cHD.frAfrB The floating-point operand in frA is compared to the floating-point operand
Unordered P e in frB. The result of the compare is placed into erfD and the FPCC.
Floating Compare fempo crfD frA frB The floating-point operand in frA is compared to the floating-point operand

Ordered in frB. The result of the compare is placed into erfD and the FPCC.

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed. In particular:

¢ All exceptions caused by the previously initiated instructions are recorded in the FPSCR before the
FPSCR instruction is initiated.

» All invocations of the floating-point exception handler caused by the previously initiated instructions have
occurred before the FPSCR instruction is initiated.

* No subsequent floating-point instruction that depends on or alters the settings of any FPSCR bits
appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR instructions.

The FPSCR instructions are summarized in Table 4-11.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 145 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax | Operation

The contents of the FPSCR are placed into bits [32—63] of frD. Bits [0-31]
of frD are undefined.

Move from FPSCR m:: frD mffs Move from FPSCR
) mffs. Move from FPSCR with CR Update. The dot suffix enables the
update of the CR.
Move to Condition The contents of FPSCR field specified by operand crS are copied to the
Register from mcrfs crfD,crfS CR field specified by operand crfD. All exception bits copied (except FEX
FPSCR and VX bits) are cleared in the FPSCR.

The contents of the IMM field are placed into FPSCR field crfD. The con-
tents of FPSCRI[FX] are altered only if crfD ="0’.

crfD,IMM mtfsfi Move to FPSCR Field Immediate

mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot suffix
enables the update of the CR.

Move to FPSCR mtfsfi
Field Immediate mtfsfi.

Bits [32—63] of frB are placed into the FPSCR under control of the field
mask specified by FM. The field mask identifies the 4-bit fields affected.
Let ibe an integer in the range 0-7. If FM[/] = ‘1", FPSCR field i (FPSCR
bits 4xi through 4xi+3) is set to the contents of the corresponding field of
Move to FPSCR mtfsf FM.frB the low-order 32 bits of frB.
Fields mtfsf. The contents of FPSCRIFX] are altered only if FM[0] = 1.
mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables
the update of the CR.

The FPSCR bit location specified by operand crbD is cleared.
Bits [1, 2] (FEX and VX) cannot be reset explicitly.

crbD mtfsb0 Move to FPSCR Bit [0]

mtfsb0. Move to FPSCR Bit [0] with CR Update. The dot suffix enables
the update of the CR.

Move to FPSCR mtfsb0
Bit 0 mtfsbO.

The FPSCR bit location specified by operand crbD is set.
Bits [1, 2] (FEX and VX) cannot be set explicitly.

crbD mtfsb1 Move to FPSCR Bit [1]

mtfsb1. Move to FPSCR Bit [1] with CR Update. The dot suffix enables
the update of the CR.

Move to FPSCR | mtfsb1
Bit 1 mtfsb1.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 146 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit (bit [0]) as described
for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs, and fnabs instructions may alter the
sign bit of a NaN. The floating-point move instructions do not modify the FPSCR. The CR update option in
these instructions controls the placing of result status into CR1. If the CR update option is enabled, CR1 is
set; otherwise, CR1 is unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

Table 4-12. Floating-Point Move Instructions

Name Mnemonic Operand Syntax | Operation
The contents of frB are placed into frD.
Floating Move fmr §rD.frB fmr Floating Move Register
Register fmr. ’ fmr. Floating Move Register with CR Update. The dot suffix enables

the update of the CR.

The contents of frB with bit [0] inverted are placed into frD.
fneg fD.fB fneg Floating Negate

fneg. fneg. Floating Negate with CR Update. The dot suffix enables the
update of the CR.

Floating Negate

The contents of frB with bit [0] cleared are placed into frD.

Floating Absolute | fabs frD.frB fabs Floating Absolute Value

Value fabs. fabs. Floating Absolute Value with CR Update. The dot suffix enables
the update of the CR.

The contents of frB with bit [0] set are placed into frD.

Floating Negative | fnabs ftD.frB fnabs Floating Negative Absolute Value

Absolute Value | fnabs. fnabs. Floating Negative Absolute Value with CR Update. The dot suffix
enables the update of the CR.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can occur out
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load
and store instructions, which consist of the following:

* Integer load instructions

* Integer store instructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

¢ Floating-point load instructions

¢ Floating-point store instructions

* Memory synchronization instructions

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 147 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index
mode (register contents + immediate), register indirect with index mode (register contents + register
contents), or register indirect mode (register contents only). See Section 4.1.4.2 Effective Address Calcula-
tion for information about calculating effective addresses.

Note: In some implementations, operations that are not naturally aligned may suffer performance degrada-
tion. Refer to Section 6.4.8.1 Integer Alignment Exceptions for additional information about load and store
address alignment exceptions.
Register indirect addressing for integer loads and stores is discussed in the following sections:

¢ Register Indirect with Immediate Index Addressing for Integer Loads and Stores

* Register Indirect with Index Addressing for Integer Loads and Stores

* Register Indirect Addressing for Integer Loads and Stores

Register Indirect with Immediate Index Addressing for Integer Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended, and added to the contents of a general-purpose register specified in the instruction (rA operand) to
generate the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the
immediate index (d operand) in place of the contents of r0. The option to specify rA or 0 is shown in the
instruction descriptions as (rAl0).

Figure 4-1 shows how an effective address is generated when using register indirect with immediate index
addressing.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores

0 56 1011 15 16 31
Instruction Encoding: | Opcode | rD/rS rA d
0 47 48 63
Sign Extension d
Yes
v
No g
0 63 0 63
GPR (rA) Effective Address
0 63 A
Store .| Memory
GPR (rD/rS) . Load Interface
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 148 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Register Indirect with Index Addressing for Integer Loads and Stores

Instructions using this addressing mode cause the contents of two general-purpose registers (specified as
operands rA and rB) to be added in the generation of the effective address. A zero in place of the rA operand
causes a zero to be added to the contents of the general-purpose register specified in operand rB (or the
value zero for Iswi and stswi instructions). The option to specify rA or 0 is shown in the instruction descrip-
tions as (rAl0).

Figure 4-2 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

0 56 1011 1516 31
D Reserved Instruction Encoding: ‘ Opcode ‘ rD/rS ‘ rA ‘ rB ‘ Subopcode ‘ 0‘
0 63
GPR (rB)
Yes n l
>+
No
0 63 0 63
GPR (rA) Effective Address
0 63 N
Store ,| Memory
GPR (rD/rS) . Load Interface
pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary

July 15, 2005 Page 149 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the general-purpose register specified by the rA
operand as the effective address. A zero in the rA operand causes an effective address of zero to be gener-
ated. The option to specify rA or 0 is shown in the instruction descriptions as (rAl0).

Figure 4-3 shows how an effective address is generated when using register indirect addressing.

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

0 56 10 11 1516 31
|:| Reserved Instruction Encoding: | Opcode rD/rS rA NB Subopcode 0
Y
Yes 0 63
rA=0? »00000000000000000000000000000000
No
0 v 63
GPR (rA)
0 v 63
> Effective Address
\4
063
Store .| Memory
GPR (rD/rS) . Load Interface
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 150 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, halfword, word, or doubleword addressed by the effective address
(EA) is loaded into rD. Many integer load instructions have an update form, in which rA is updated with the
generated effective address. For these forms, if rA # 0 and rA # rD (otherwise invalid), the EA is placed into
rA and the memory element (byte, halfword, word, or doubleword) addressed by the EA is loaded into rD.

Note: The PowerPC Architecture defines load with update instructions with operand rA =0 or rA =D as
invalid forms.

The default byte and bit ordering is big-endian in the PowerPC Architecture; see Section 3.1.2 Byte Ordering
for information about little-endian byte ordering.

Note: In some implementations of the architecture, the load algebraic instructions (lha, lhax, lwa, lwax) and
the load with update (Ibzu, Ibzux, lhzu, Ihzux, lhau, lhaux, lwaux, Idu, Idux) instructions may execute with
a greater latency than other types of load instructions. Moreover, the load with update instructions might take
longer to execute in some implementations than the corresponding pair of a nonupdate load followed by an
add instruction to update the register.

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Name Mnemonic Operand Syntax |Operation
Load Bvte and The EA is the sum (rAlO) + d. The byte in memory addressed by the EA is
Zero Y Ibz rD,d(rA) loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.
Load Bvte and The EA is the sum (rAlO) + (rB). The byte in memory addressed by the EA
Y Ibzx rD,rA,rB is loaded into the low-order eight bits of rD. The remaining bits in rD are
Zero Indexed cleared

The EA is the sum (rA) + d. The byte in memory addressed by the EA is
Ibzu rD,d(rA) loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Byte and
Zero with Update

Load Byte and The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
Zero with Update | lbzux rD,rA,rB loaded into the low-order eight bits of rD. The remaining bits in rD are
Indexed cleared. The EA is placed into rA.
The EA is the sum (rAl0) + d. The halfword in memory addressed by the
;Z?c()j Halfword and lhz rD,d(rA) EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

The EA is the sum (rAl0) + (rB). The halfword in memory addressed by the
lhzx rD,rA,rB EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Halfword and
Zero Indexed

The EA is the sum (rA) + d. The halfword in memory addressed by the EA
lhzu rD,d(rA) is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Halfword and
Zero with Update

Load Halfword and The EA is the sum (rA) + (rB). The halfword in memory addressed by the

Zero with Update | lhzux rD,rA,rB EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Indexed cleared. The EA is placed into rA.

Load Halfword The EA is the sum (rAl0) + d. The halfword in memory addressed by the

Algebraic lha rD,d(rA) EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

9 filled with a copy of the most significant bit of the loaded halfword.

Load Halfword The EA is the sum (rAl0) + (rB). The halfword in memory addressed by the

lhax rD,rA,rB EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

Algebraic Indexed filled with a copy of the most significant bit of the loaded halfword.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 151 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

Load Halfword The EA is the sum (rA) + d. The halfword in memory addressed by the EA

- is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
[gebraic with |Inau rD.d(rA) with a copy of the most significant bit of the loaded halfword. The EA is
P placed into rA.
Load Halfword The EA is the sum (rA) + (rB). The halfword in memory addressed by the
Algebraic with lhaux rD,rArB EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are

filled with a copy of the most significant bit of the loaded halfword. The EA

Update Indexed is placed into rA.

The EA is the sum (rAl0) + d. The word in memory addressed by the EA is
lwz rD,d(rA) loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared.

Load Word and
Zero

The EA is the sum (rAl0) + (rB). The word in memory addressed by the EA
lwzx rD,rA,rB is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared.

Load Word and
Zero Indexed

The EA is the sum (rA) + d. The word in memory addressed by the EA is
lwzu rD,d(rA) loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared. The EA is placed into rA.

Load Word and
Zero with Update

Load Word and The EA is the sum (rA) + (rB). The word in memory addressed by the EA
Zero with Update | lwzux rD,rA,rB is loaded into the low-order 32 bits of rD. The remaining bits in the high-
Indexed order 32 bits of rD are cleared. The EA is placed into rA.

The EA is the sum (rAl0) + (dsll’'00’). The word in memory addressed by

Load Word Iwa rD,ds(rA) the EA is loaded into the low-order 32 bits of rD. The remaining bits in the
Algebraic ’ high-order 32 bits of rD are filled with a copy of the most significant bit of
the loaded word.
The EA is the sum (rAlO) + (rB). The word in memory addressed by the EA
Load Word Iwax (D.rA.rB is loaded into the low-order 32 bits of rD. The remaining bits in the high-
Algebraic Indexed i order 32 bits of rD are filled with a copy of the most significant bit of the
loaded word.
Load Word The EA is the sum (rA) + (rB). The word in memory addressed by the EA
Algebraic with Iwaux (D.rA.rB is loaded into the low-order 32 bits of rD. The remaining bits in the high-
U gdate Indexed e order 32 bits of rD are filled with a copy of the most significant bit of the
P loaded word. The EA is placed into rA.
The EA is the sum (rAlO) + (dslI’00’). The doubleword in memory
Load Doubleword | Id rD,ds(rA) addressed by the EA is loaded into rD.
Load Doubleword ldx (D.rA.rB The EA is the sum (rAl0) + (rB). The doubleword in memory addressed by
Indexed e the EA is loaded into rD.
Load Doubleword Idu rD,ds(rA) The EA is the sum (rA) + (dslI’00’). The doubleword in memory addressed
with Update ’ by the EA is loaded into rD. The EA is placed into rA.
Load Doubleword . .
; The EA is the sum (rA) + (rB). The doubleword in memory addressed by
with Update Idux rD,rA,rB the EA is loaded into rD. The EA is placed into rA.
Indexed
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 152 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

4.2.3.3 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, halfword, word, or doubleword in
memory addressed by the EA (effective address). Many store instructions have an update form, in which rA is
updated with the EA. For these forms, the following rules apply:

e If rA £ 0, the effective address is placed into rA.

e If rS =rA, the contents of register rS are copied to the target memory element, then the generated EA is
placed into rA (rS).

In general, the PowerPC Architecture defines a sequential execution model. However, when a store instruc-
tion modifies a memory location that contains an instruction, software synchronization (isync)is required to
ensure that subsequent instruction fetches from that location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate system library
program before attempting to execute the modified instructions to ensure that the modifications have taken
effect with respect to instruction fetching.

The PowerPC Architecture defines store with update instructions with rA =’0’ as an invalid form. In addition,
it defines integer store instructions with the CR update option enabled (Rc field, bit [31], in the instruction
encoding = ‘1) to be an invalid form. Table 4-14 provides a summary of the integer store instructions.

Table 4-14. Integer Store Instructions

Name Mnemonic Operand Syntax | Operation

The EA is the sum (rAl0) + d. The contents of the low-order eight bits of rS

Store Byte stb rS,d(rA) are stored into the byte in memory addressed by the EA.

The EA is the sum (rAlO) + (rB). The contents of the low-order eight bits of

Store Byte Indexed stbx rS,rA,rB rS are stored into the byte in memory addressed by the EA.
Store Bvte with The EA is the sum (rA) + d. The contents of the low-order eight bits of rS
U datey stbu rS,d(rA) are stored into the byte in memory addressed by the EA. The EA is placed
P into rA.
Store Bvte with The EA is the sum (rA) + (rB). The contents of the low-order eight bits of
Y stbux rS,rA,rB rS are stored into the byte in memory addressed by the EA. The EA is

Update Indexed placed into rA.

The EA is the sum (rAl0) + d. The contents of the low-order 16 bits of rS

Store Halfword sth rS,d(rA) are stored into the halfword in memory addressed by the EA.
Store Halfword sthx rS.rA.rB The EA is the sum (rAl0) + (rB). The contents of the low-order 16 bits of
Indexed e rS are stored into the halfword in memory addressed by the EA.

The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are

Store Halfword sthu rS,d(rA) stored into the halfword in memory addressed by the EA. The EA is

with Update placed into rA.
Store Halfword The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS
with Update sthux rS,rA,rB are stored into the halfword in memory addressed by the EA. The EA is
Indexed placed into rA.

The EA is the sum (rAl0) + d. The contents of the low-order 32 bits of rS
Store Word stw rS,d(rA) are stored into the word in memory addressed by the EA.
Store Word stwx rS.rA.rB The EA is the sum (rAl0) + (rB). The contents of the low-order 32 bits of
Indexed e rS are stored into the word in memory addressed by the EA.
Store Word with The EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are
Undate stwu rS,d(rA) stored into the word in memory addressed by the EA. The EA is placed

P into rA.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary

July 15, 2005 Page 153 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-14. Integer Store Instructions (Continued)

Name

Store Word with
Update Indexed

Store Doubleword

Store Doubleword
Indexed

Store Doubleword
with Update

Store Doubleword
with Update
Indexed

Mnemonic

stwux

std

stdx

stdu

stdux

Operand Syntax

rS,rA,rB

rS,ds(rA)

rS,rA,rB

rS,ds(rA)

rS,rA,rB

Operation

The EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS
are stored into the word in memory addressed by the EA. The EA is
placed into rA.

The EA is the sum (rAl0) + (dsll’'00’). The contents of rS are stored into
the doubleword in memory addressed by the EA.

The EA is the sum (rAl0O) + (rB). The contents of rS are stored into the
doubleword in memory addressed by the EA.

The EA is the sum (rA) + (dslI’00’). The contents of rS are stored into the
doubleword in memory addressed by the EA. The EA is placed into rA.

The EA is the sum (rA) + (rB). The contents of rS are stored into the dou-
bleword in memory addressed by the EA. The EA is placed into rA.

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in some PowerPC imple-
mentations, load byte-reverse instructions might have a greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a PowerPC system oper-
ating with little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see Section 3.1.2 Byte Ordering.

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name

Load Halfword
Byte-Reverse
Indexed

Load Word Byte-
Reverse Indexed

Store Halfword
Byte- Reverse
Indexed

Store Word Byte-
Reverse Indexed

Mnemonic

lhbrx

lwbrx

sthbrx

stwbrx

Operand Syntax

rD,rA,rB

rD,rA,rB

rS,rA,rB

rS,rA,rB

Addressing Modes and Instruction Set Summary

Page 154 of 657

Operation

The EA is the sum (rAlO) + (rB). The high-order eight bits of the halfword
addressed by the EA are loaded into the low-order eight bits of rD. The
next eight higher-order bits of the halfword in memory addressed by the
EA are loaded into the next eight lower-order bits of rD. The remaining rD
bits are cleared.

The EA is the sum (rAlO) + (rB). Bits [0-7] of the word in memory
addressed by the EA are loaded into the low-order eight bits of rD.

Bits [8—15] of the word in memory addressed by the EA are loaded into
bits [48-55] of rD. Bits [16-23] of the word in memory addressed by the
EA are loaded into bits [40—-47] of rD. Bits [24—31] of the word in memory
addressed by the EA are loaded into bits [32—39] of rD. The remaining
bits in rD are cleared.

The EA is the sum (rAlO) + (rB). The contents of the low-order eight bits of
rS are stored into the high-order eight bits of the halfword in memory
addressed by the EA. The contents of the next lower-order eight bits of rS
are stored into the next eight higher-order bits of the halfword in memory
addressed by the EA.

The effective address is the sum (rAlO) + (rB). The contents of the low-
order eight bits of rS are stored into bits [0—7] of the word in memory
addressed by EA. The contents of the next eight lower-order bits of rS are
stored into bits [8—15] of the word in memory addressed by the EA. The
contents of the next eight lower-order bits of rS are stored into bits [16-23]
of the word in memory addressed by the EA. The contents of the next
eight lower-order bits of rS are stored into bits [24—31] of the word
addressed by the EA.

pem4_instr_Set.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple
and store multiple instructions may have operands that require memory accesses crossing a 4-Kbyte page
boundary. As a result, these instructions may be interrupted by a DSI exception associated with the address
translation of the second page. Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that the low-order byte of
GPR31 is loaded from or stored into the last byte of an aligned quad word in memory; if the effective address
is not correctly aligned, it may take significantly longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an Imw or stmw
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for
more information.

The PowerPC Architecture defines the load multiple word (Imw) instruction with rA in the range of registers to
be loaded, including the case in which rA =’0’ as an invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax |Operation
voad Multipla Imw rD,d(rA) The EA is the sum (FAIO) + d. n = (32 — rD).
3\}3?3 Multiple | symw rS,d(rA) The EA is the sum (FAIO) + d. n= (32 — rS).

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from regis-
ters to memory without concern for alignment. These instructions can be used for a short move between arbi-
trary memory locations or to initiate a long move between misaligned memory fields. However, in some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.

Table 4-17 summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or ¢S = ‘4’ or ‘5’, and the last register
loaded or stored is less than or equal to ‘12’

In some PowerPC implementations operating with little-endian byte order, execution of a load or string
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for
more information.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 155 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax | Operation

Load String Word | rD,rANB The EA is (rAl0).

Immediate

Load String Word .

Indexed Iswx rD,rA,rB The EA is the sum (rAlO) + (rB).
Store String Word . .

Immediate stswi rS,rA,NB The EA is (rAlO).

Store String Word | gy rS,rAB The EA is the sum (FAI0) + (rB).

Indexed

Load string and store string instructions may involve operands that are not word-aligned. As described in
Section 6.4.8 Alignment Exception (0x00600), a misaligned string operation suffers a performance penalty
compared to an aligned operation of the same type. A nonword-aligned string operation that crosses a
doubleword boundary is also slower than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode.
The following sections discuss index addressing for floating-point loads and stores:

* Register Indirect with Immediate Index Addressing for Floating-point Loads and Stores

* Register Indirect with Index Addressing for Floating-point Loads and Stores

Register Indirect with Immediate Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended to 64 bits, and added to the contents of a GPR specified in the instruction (rA operand) to generate
the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the immediate
index (d operand) in place of the contents of r0. The option to specify rA or ‘0’ is shown in the instruction
descriptions as (rAl0).

Figure 4-4 shows how an effective address is generated when using register indirect with immediate index
addressing for floating-point loads and stores.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 156 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 4-4. Register Indirect (Contents) with Immediate Index Addressing for Floating-Point Loads/Stores

0 56 10 11 1516 31
Instruction Encoding: | Opcode | frD/frS rA d
0 47 48 63
Sign Extension d
Yes
)4
>+
No
0 63 0 63
GPR (rA) Effective Address
0 63
Store ,| Memory
FPR (frD/frS) _ Load Access

Register Indirect with Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in operands rA and rB) to
generate the effective address. A zero in the rA operand causes a zero to be added to the contents of the
GPR specified in operand rB. This is shown in the instruction descriptions as (rAl0).

Figure 4-5 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

0 56 10 11 1516 20 21 30 31
I:l Reserved Instruction Encoding: | Opcode frD/frS rA rB Subopcode | 0
0 Y 63
GPR (rB)
Yes n
» +
No
0 63 0 63
GPR (rA) Effective Address
0 63 Y
Store »| Memory
FPR (frD/frS) B Load Access
pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary

July 15, 2005 Page 157 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The PowerPC Architecture defines floating-point load and store with update instructions (Ifsu, Ifsux, Ifdu,
Ifdux, stfsu, stfsux, stfdu, stfdux) with operand rA =0’ as invalid forms of the instructions. In addition, it
defines floating-point load and store instructions with the CR updating option enabled (Rc bit, bit [31] =’1’) to
be an invalid form.

The PowerPC Architecture defines that the FPSCR[UE] bit should not be used to determine whether denor-
malization should be performed on floating-point stores.
4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision operand
formats. Because the FPRs support only the floating-point double-precision format, single-precision floating-
point load instructions convert single-precision data to double-precision format before loading the operands

into the target FPR. This conversion is described fully in Appendix C.6 Floating-Point Load Instructions.
Table 4-18 provides a summary of the floating-point load instructions.

Note: The PowerPC Architecture defines load with update instructions with rA =’0’ as an invalid form.

Table 4-18. Floating-Point Load Instructions

Name Mnemonic Operand Syntax | Operation
The EA is the sum (rAl0) + d.
Load Floating- The word in memory addressed by the EA is interpreted as a floating-
Point Si Ifs frD,d(rA) o L ! . h :
oint Single point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.
) The EA is the sum (rAlO) + (rB).
Load Floating- . . .
. The word in memory addressed by the EA is interpreted as a floating-
Point Single Ifsx frD,rA,rB N L 4 . h >
Indexed point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.
The EA is the sum (rA) + d.
Load Floating- The word in memory addressed by the EA is interpreted as a floating-
Point Single with | Ifsu frD,d(rA) point single-precision operand. This word is converted to floating-point
Update double-precision format and placed into frD.
The EA is placed into the register specified by rA.
The EA is the sum (rA) + (rB).
Load Floating- The word in memory addressed by the EA is interpreted as a floating-
Point Single with | Ifsux frD,rA,rB point single-precision operand. This word is converted to floating-point
Update Indexed double-precision format and placed into frD.
The EA is placed into the register specified by rA.
Load Floatina- The EA is the sum (rAl0) + d.
; 9 Ifd frD,d(rA) The doubleword in memory addressed by the EA is placed into register
Point Double ftD
Load Floating- The EA is the sum (rAlO) + (rB).
Point Double Ifdx frD,rA,rB The doubleword in memory addressed by the EA is placed into register
Indexed frD.
Load Floati The EA is the sum (rA) + d.
oad Floating-) . . .
Point Double with | Ifdu frD,d(rA) ;I;rllje doubleword in memory addressed by the EA is placed into register
Update '
P The EA is placed into the register specified by rA.
Load Floati The EA is the sum (rA) + (rB).
oad Floating-
Point Double with | Ifdux fD,rArB The doubleword in memory addressed by the EA is placed into register

Update Indexed

Addressing Modes and Instruction Set Summary

Page 158 of 657

frD.
The EA is placed into the register specified by rA.

pem4_instr_Set.fm.3.0
July 15, 2005

4.2.3.9 Floating-Point Store Instructions

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

This section describes floating-point store instructions. There are three basic forms of the store instruction—
single-precision, double-precision, and integer. The integer form is supported by the stfiwx instruction.

Because the FPRs support only floating-point, double-precision format for floating-point data, single-precision
floating-point store instructions convert double-precision data to single-precision format before storing the
operands. The conversion steps are described fully in Appendix C.7 Floating-Point Store Instructions.

Table 4-19 provides a summary of the floating-point store instructions.

Note: The PowerPC Architecture defines store with update instructions with rA =’0’ as an invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name

Store Floating-
Point Single

Store Floating-
Point Single
Indexed

Store Floating-
Point Single with
Update

Store Floating-
Point Single with
Update Indexed

Store Floating-
Point Double

Store Floating-
Point Double
Indexed

Store Floating-
Point Double with
Update

Store Floating-
Point Double with
Update Indexed

Store Floating-
Point as Integer
Word Indexed

Mnemonic

stfs

stfsx

stfsu

stfsux

stfd

stfdx

stfdu

stfdux

stfiwx

pem4_instr_Set.fm.3.0

July 15, 2005

Operand Syntax

frS,d(rA)

frS,rA,rB

frS,d(rA)

frS,rA,rB

frS,d(rA)

frS,rA,rB

frS,d(rA)

frS,rA,rB

frS,rA,rB

Operation

The EA is the sum (rAlO) + d.

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is the sum (rAlO) + (rB).

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is the sum (rA) + d.

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is placed into rA.

The EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is placed into the rA.

The EA is the sum (rAl0) + d.

The contents of frS are stored into the doubleword in memory addressed
by the EA.

The EA is the sum (rAlO) + (rB).

The contents of frS are stored into the doubleword in memory addressed
by the EA.

The EA is the sum (rA) + d.

The contents of frS are stored into the doubleword in memory addressed
by the EA.

The EA is placed into rA.

The EA is the sum (rA) + (rB).

The contents of frS are stored into the doubleword in memory addressed
by EA.

The EA is placed into register rA.

The EA is the sum (rAlO) + (rB).

The contents of the low-order 32 bits of frS are stored, without conversion,
into the word in memory addressed by the EA.

Addressing Modes and Instruction Set Summary
Page 159 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR.
When the processor encounters one of these instructions, it can attempt to resolve the branch direction
immediately, or predict the branch direction and defer its resolution.

When the branch cannot be resolved immediately, it may be predicted based on the 'at' bits (as described in
Table 4-20 and Table 4-21), or by using dynamic prediction. At some point before the branch instruction can
complete, the branch direction will be resolved based on the value of the CR bit. If the prediction is correct,
the branch is considered completed and instruction fetching continues along the predicted path. If the predic-
tion is incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate
path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits (bits [62, 63]) of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following
addressing modes:

¢ Branch relative

* Branch conditional to relative address

¢ Branch to absolute address

¢ Branch conditional to absolute address

¢ Branch conditional to link register

¢ Branch conditional to count register

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is clearing the high-
order 32 bits of the target address.

Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by sign extending and
appending ‘00’ to the immediate displacement operand LI, and adding the resultant value to the current
instruction address. Branches using this addressing mode have the absolute addressing option disabled (AA
field, bit [30], in the instruction encoding = ‘0’). The link register (LR) update option can be enabled (LK field,
bit [31], in the instruction encoding = ‘1°). This option causes the effective address of the instruction following
the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative addressing
mode.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 160 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 4-6. Branch Relative Addressing

|:| Reserved
0 56 29 30 31
Instruction Encoding: 18 LI AA|LK
0 37 38 , 61 62 63
Sign Extension LI 0|0
0 63
Current Instruction Address
0 63

Branch Target Address

Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative addressing mode
generate the next instruction address by sign extending and appending ‘00’ to the immediate displacement
operand (BD) and adding the resultant value to the current instruction address. Branches using this
addressing mode have the absolute addressing option disabled (AA field, bit[30], in the instruction

encoding = ‘0’). The link register update option can be enabled (LK field, bit[31], in the instruction

encoding = ‘1°). This option causes the effective address of the instruction following the branch instruction to
be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch conditional relative
addressing mode.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 161 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 4-7. Branch Conditional Relative Addressing

0

56

10 11

15 16

30 31

Instruction Encoding: 16

BO

BI

BD

AA| LK

Condition
Met?

|:| Reserved

Next Sequential Instruction Address

Current Instruction Address

0 47 48 61 62 63
Sign Extension BD 0[O0
63 v
0
A 4
Branch Target Address

Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction address by sign
extending and appending ‘00’ to the LI operand. Branches using this addressing mode have the absolute
addressing option enabled (AA field, bit[30], in the instruction encoding = ‘1’). The link register update option
can be enabled (LK field, bit[31], in the instruction encoding =’1’). This option causes the effective address of
the instruction following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to absolute addressing

mode.

Figure 4-8. Branch to Absolute Addressing

Instruction Encoding:

0 56 29 30 31
18 LI AA LK

0 37 38 |, 61 62 63
Sign Extension LI 0/ 0
0 L 61 62 63
Branch Target Address 00

Addressing Modes and Instruction Set Summary

Page 162 of 657

pem4_instr_Set.fm.3.0
July 15, 2005

Branch Conditional to Absolute Addressing Mode

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

If the branch conditions are met, instructions that use the branch conditional to absolute addressing mode
generate the next instruction address by sign extending and appending ‘00’ to the BD operand. Branches
using this addressing mode have the absolute addressing option enabled (AA field, bit[30], in the instruction
encoding =’1’). The link register update option can be enabled (LK field, bit[31], in the instruction

encoding = “1’). This option causes the effective address of the instruction following the branch instruction to

be placed in the LR.

Figure 4-9 shows how the branch target address is generated when using the branch conditional to absolute

addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing

0 56 10 11

15 16

29 30 31

Instruction Encoding: 16 BO

BI

BD

AA| LK

Met?

Condition

63

Next Sequential Instruction Address

61 62 63

Sign Extension

BD

00

61 62 63

Branch Target Address

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary
Page 163 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates the next instruc-
tion address by using the contents of the LR and clearing the two low-order bits to zero. The result becomes

the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit[31], in the instruction encoding =1’). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is

done even if the branch is not taken.

Figure 4-10 shows how the branch target address is generated when using the branch conditional to link

register addressing mode.
Figure 4-10. Branch Conditional to Link Register Addressing

0 56 10 11 1516 20 21 30

31

Instruction Encoding: 19 BO BI 00000 16

LK

|:| Reserved

63

Condition
Met?

Next Sequential Instruction Address

0 1 61 62 63
LR olo
0 i 63

Branch Target Address

Addressing Modes and Instruction Set Summary
Page 164 of 657

pem4_instr_Set.fm.3.0

July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction generates the next
instruction address by using the contents of the count register (CTR) and clearing the two low-order bits to
zero. The result becomes the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit[31], in the instruction encoding = ‘1’). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is
done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch conditional to count
register addressing mode.

Figure 4-11. Branch Conditional to Count Register Addressing

0 56 1011 1516 20 21 30 31
Instruction Encoding: | 19 BO | B | 00000 528 |LK [] Reserved

Condition
Met?

Next Sequential Instruction Address

0 il 61 62 63
CTR 0fo0
0 | 63
Branch Target Address
pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary

July 15, 2005 Page 165 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is taken.
The encodings for the BO operands are shown in Table 4-20. M = ‘32’ in 32-bit mode (of a 64-bit implementa-
tion) and M = ‘0’ in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the
entire 64-bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

Table 4-20. BO Operand Encodings

BO Description

0000z Decrement the CTR, then branch if the decremented CTR[M-63] # ‘0’ and CR[BI] = ‘0’ (condition is false).
0001z Decrement the CTR, then branch if the decremented CTR[M-63] =’0’ and CR[BI] = ‘0’ (condition is false).
001at Branch if CR[BI] = 0 (false).

0100z Decrement the CTR, then branch if the decremented CTR[M-63] #'0’ and CR[BI] = "1’ (condition is true).
0101z Decrement the CTR, then branch if the decremented CTR[M-63] =’0’ and CR[BI] = '1’ (condition is true).
O11at Branch if CR[BI] =1’ (condition is true).

1a00t Decrement the CTR, then branch if the decremented CTR[M—-63] # ‘0’.

1a01t Decrement the CTR, then branch if the decremented CTR[M-63] ='0’.

1z1zz Branch always.

Note:

1. “Z” denotes a bit that is ignored.
2. The “a@” and “t” bits are used as described below.

The “a” and "t” bits of the BO field can be used by software to provide a hint about whether the branch is likely
to be taken or is likely not to be taken (see Table 4-21).

Table 4-21. “a” and “t” Bits of the BO Field

“a” " Hint
00 No hint is given
01 Reserved
10 Branch is very likely not to be taken
11 Branch is very likely to be taken

Note: Many implementations have dynamic mechanisms for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very accurate, and is likely to be overridden by any hint pro-
vided by the “at” bits, the “at” bits should be set to ‘00’ unless the static prediction implied by at="10’ or at="11’
is very likely to be correct.

For Branch Conditional to Link Register and Branch Conditional to Count Register instructions, the BH field
provides a hint about the use of the instruction, as shown in Table 4-22.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 166 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-22. BH Field Encodings

BH Hint

belr[l]: The instruction is a subroutine return

00 bectr(l]: The instruction is not a subroutine return; the target address is likely to be the same as the target
address used the preceding time the branch was taken.

belr[l]: The instruction is not a subroutine return; the target address is likely to be the same as the target
01 address used the preceding time the branch was taken.

bectr(l]: Reserved.
10 Reserved.

11 belr[l] and beetr[l]: The target address is not predictable.

Note: The hint provided by the BH field is independent of the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is likely to be taken).

The 5-bit Bl operand in branch conditional instructions specifies which of the 32 bits in the CR represents the
bit to test.

The 5-bit BO and Bl fields control whether the branch is taken.

When the branch instructions contain immediate addressing operands, the branch target addresses can be
computed sufficiently ahead of the branch execution and instructions can be fetched along the branch target
path (if the branch is predicted to be taken or is an unconditional branch). If the branch instructions use the
link or count register contents for the branch target address, instructions along the branch-taken path of a
branch can be fetched if the link or count register is loaded sufficiently ahead of the branch instruction execu-
tion.

Branching can be conditional or unconditional. The branch target address is first calculated from the contents
of the count or link register or from the branch immediate field. Optionally, a branch return address can be
loaded into the LR register (this sets the return address for subroutine calls). When this option is selected
(LK =’1") the LR is loaded with the effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch and link instruc-
tions, with the possible exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

¢ Obtaining the address of the next instruction—use the following form of branch and link:
bcl 20,31,%+4

e Loop counts:
Keep loop counts in the count register, and use one of the branch conditional instructions (LK =’0’) to
decrement the count and to control branching (for example, branching back to the start of a loop if the
decremented counter value is nonzero).

¢ Computed GOTOs, case statements, etc.:
Use the count register to hold the address to branch to, and use the beetr instruction with the link register
option disabled (LK = ‘0’ and BH = ‘11’ if appropriate) to branch to the selected address.

* Direct subroutine linkage—where A calls B and B returns to A. The two branches should be as follows:

— A calls B: use a branch instruction (bl, bcl) that enables the link register (LK =’1).

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 167 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

— B returns to A: use the bclr instruction with the link register option disabled (LK ='0’) (the return
address is in, or can be restored to, the link register).

¢ Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine that the programmer wants to call, here B, is in a dif-
ferent module from the caller: the binder inserts “glue” code to mediate the branch.) The three branches
should be as follows:

— A calls Glue: use a branch instruction (bl, bel) that sets the link register with the link register option
enabled (LK ="17).

— Gilue calls B: place the address of B in the count register, and use the beetr instruction with the link
register option disabled (LK = ‘0’).

— B returns to A: use the bclr instruction with the link register option disabled (LK ='0’) (the return
address is in, or can be restored to, the link register).

Function call:

Here A calls a function, the identity of which may vary from one instance of the call to another, instead of
calling a specific program B. This case should be handled using the conventions of the preceding two bul-
lets, depending on whether the call is direct or indirect, with the following differences.

— If the call is direct, place the address of the function into the count register, and use a bectrl instruc-
tion (LK =’1’) instead of a bl or bel instruction.

— For the becetr|l] instruction that branches to the function, use BH =11’ if appropriate.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 168 of 657 July 15, 2005

4.2.4.3 Branch Instructions

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-23 describes the branch instructions provided by the PowerPC processors.

Table 4-23. Branch Instructions

Name Mnemonic Operand Syntax

Branch ZT target_addr

bla

bc
Branch Conditional :;z? BO,Bl,target_addr

bcla

Branch Conditional | belr

to Link Register belrl BO,BI,BH

Branch Condi-

tional to Count beetr BO,BI,BH
becetrl

Register

pem4_instr_Set.fm.3.0
July 15, 2005

Operation

b Branch. Branch to the address computed as the sum of the
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.

bl Branch then Link. Branch to the address computed as the sum of

the immediate address and the address of the current instruction.
The instruction address following this instruction is placed into the
link register (LR).

bla Branch Absolute then Link. Branch to the absolute address spec-
ified. The instruction address following this instruction is placed
into the LR.

The Bl operand specifies the bit in the CR to be used as the condition of

the branch. The BO operand is used as described in Table 4-20.

bc Branch Conditional. Branch conditionally to the address com-
puted as the sum of the immediate address and the address of
the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the absolute
address specified.

cl Branch Conditional then Link. Branch conditionally to the address

computed as the sum of the immediate address and the address
of the current instruction. The instruction address following this
instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address following
this instruction is placed into the LR.

The Bl operand specifies the bit in the CR to be used as the condition of

the branch. The BO operand is used as described in Table 4-20. The BH

field is used as described in Table 4-22 and the branch target address is

LR[0-61] Il '00’, with the high-order 32 bits of the branch target address

cleared in the 32-bit mode of a 64-bit implementation.

belr Branch Conditional to Link Register. Branch conditionally to the
address in the LR.

belrl Branch Conditional to Link Register then Link. Branch condition-
ally to the address specified in the LR. The instruction address
following this instruction is then placed into the LR.

The Bl operand specifies the bit in the CR to be used as the condition of

the branch. The BO operand is used as described in Table 4-20. The BH

field is used as described in Table 4-22 and the branch target address is

CTR[0-61] Il ‘00’, with the high-order 32 bits of the branch target address

cleared in the 32-bit mode of a 64-bit implementation.

beetr Branch Conditional to Count Register. Branch conditionally to the
address specified in the count register.

beetrl Branch Conditional to Count Register then Link. Branch condi-
tionally to the address specified in the count register. The instruc-
tion address following this instruction is placed into the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] ='0’), the

instruction form is invalid.

Addressing Modes and Instruction Set Summary
Page 169 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols is provided for the
most frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other instruc-
tions. See Appendix E Simplified Mnemonics for a list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-24, and the Move Condition Register Field (mcrf)
instruction are also defined as flow control instructions.

Note: If the LR update option is enabled for any of these instructions, the PowerPC Architecture defines
these forms of the instructions as invalid.

Table 4-24. Condition Register Logical Instructions

Name

Condition Register
AND

Condition Register
OR

Condition Register
XOR

Condition Register
NAND

Condition Register
NOR

Condition Register
Equivalent

Condition Register
AND with
Complement

Condition Register
OR with
Complement

Move Condition
Register Field

Mnemonic

crand

cror

crxor

crnand

crnor

creqv

crandc

crorc

mcerf

Operand Syntax

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA, crbB

crbD,crbA, crbB

crbD,crbA, crbB

crfD,crfS

Addressing Modes and Instruction Set Summary

Page 170 of 657

Operation

The CR bit specified by crbA is ANDed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ORed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is XORed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ANDed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ORed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is XORed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by erbD.

The CR bit specified by crbA is ANDed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

The CR bit specified by crbA is ORed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

The contents of crfS are copied into crfD. No other condition register
fields are changed.

pem4_instr_Set.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-25 are provided to test for a specified set of conditions. If any of the
conditions tested by a trap instruction are met, the system trap handler is invoked. If the tested conditions are
not met, instruction execution continues normally. See Appendix E Simplified Mnemonics for a complete set
of simplified mnemonics.

Table 4-25. Trap Instructions

Name Mnemonic Operand Syntax | Operand Syntax

The contents of rA are compared with the sign-extended SIMM operand. If
tdi TO,rA,SIMM any bit in the TO operand is set and its corresponding condition is met by
the result of the comparison, the system trap handler is invoked.

Trap Doubleword
Immediate

The contents of the low-order 32 bits of rA are compared with the sign-
Trap Word Imme- . extended SIMM operand. If any bit in the TO operand is set and its corre-
. twi TO,rA,SIMM ; L -
diate sponding condition is met by the result of the comparison, the system trap
handler is invoked.

The contents of rA are compared with the contents of rB. If any bit in the
Trap Doubleword |td TO,rA,rB TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

The contents of the low-order 32 bits of rA are compared with the contents
of the low-order 32 bits of rB. If any bit in the TO operand is set and its cor-

Trap Word tw TOrArB responding condition is met by the result of the comparison, the system
trap handler is invoked.

4.2.4.7 System Linkage Instruction—UISA

Table 4-26 describes the System Call (sc) instruction that permits a program to call on the system to perform
a service. See Section 4.4.1 System Linkage Instructions—OEA for a complete description of the sc instruc-
tion.

Table 4-26. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax | Operation

This instruction calls the operating system to perform a service.

When control is returned to the program that executed the system call, the
content of the registers will depend on the register conventions used by
the program providing the system service. This instruction is context syn-

System Call se - chronizing as described in Section 4.1.5.1 Context Synchronizing Instruc-
tions.
See Section 4.4.1 System Linkage Instructions—OEA for a complete
description of the sc¢ instruction.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary

July 15, 2005 Page 171 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR), machine state
register (MSR), and special-purpose registers (SPRs). See Section 4.3.1 Processor Control Instructions—
VEA for the mftb instruction and Section 4.4.2 Processor Control Instructions—OEA for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions

Table 4-27 summarizes the instructions for reading from or writing to the condition register.

Table 4-27. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax | Operation

The contents of the low-order 32 bits of rS are placed into the CR under
Move to Condition qqntrol of thg f[eld mask specified.by opgrand CBM. The field mask iden-
Register Fields mtcrf CRM,rS tifies the 4-bit fields affected. Let i be an integer in the range 0-7. If

CRMI[i] =1, CRfield i (CR bits 4 x ithrough 4 x i + 3) is set to the contents
of the corresponding field of the low-order 32 bits of rS.

Move to Condition This form of th_e mtoc_rf instr_uctio_n is intended to replace the old form _
One Register mtocrf CRM.IS (mtcrf) of the |nstruct|qn which will eventua}lly be. phased out of the archi-
Fields ’ tecture. The new form is backward compatible with most processors that
comply with versions of the architecture that precede Version 2.01.
Move from mfcr D The contents of the CR are placed into the low-order 32 bits of rD. The
Condition Register contents of the high-order 32 bits of rD are cleared.
This form of the mfocrf instruction is intended to replace the old form
Move from One (mfcr) of the instruction which is being phased out of the architecture.
Condition Register | mfocrf rD,CRM The new form is backward compatible with most processors that comply
Field with versions of the architecture that precede Version 2.01.

Refer to page 434 for details.

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Figure 4-28 provides a brief description of the mtspr and mfspr instructions. For more detailed information
refer to Section 8 Instruction Set.

Table 4-28. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax |Operation

Move to Special- mtspr SPR.IS The value specified by rS are placed in the specified SPR. For 32-bit
Purpose Register P ’ SPRs, the low-order 32 bits of rS are placed into the SPR.

Move from The contents of the specified SPR are placed in rD. For 32-bit SPRs, the
Special-Purpose mfspr rD,SPR low-order 32 bits of rD receive the contents of the SPR. The high-order 32
Register bits of rD are cleared.
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 172 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system parameters and on the
processor's state when the instruction is issued. As a result, frequent use of this instruction may degrade
performance slightly. The eieio instruction may be more appropriate than sync for many cases.

The PowerPC Architecture defines the sync instruction with CR update enabled (Rc field, bit [31] = ‘1’) to be
an invalid form.

The concept behind the use of the lwarx, Idarx, stwex., and stdex. instructions is that a processor may load
a semaphore from memory, compute a result based on the value of the semaphore, and conditionally store it
back to the same location. Examples of these semaphore operations can be found in

Appendix D Synchronization Programming Examples. The lwarx instruction must be paired with an stwex.
instruction, and Idarx instruction with an stdex. instruction, with the same effective address specified by both
instructions of the pair. The only exception is that an unpaired stwex. or stdex. instruction to any (scratch)
effective address can be used to clear any reservation held by the processor. The conditional store is
performed based upon the existence of a reservation established by the preceding Iwarx or Idarx instruction.
If the reservation exists when the store is executed, the store is performed and a bit is set in the CR. If the
reservation does not exist when the store is executed, the target memory location is not modified and a bit is
cleared in the CR.

Note: The reservation granularity is implementation-dependent.

The Iwarx, Idarx, stwex., and stdex. primitives allow software to read a semaphore, compute a result based
on the value of the semaphore, store the new value back into the semaphore location only if that location has
not been modified since it was first read, and determine if the store was successful. If the store was
successful, the sequence of instructions from the read of the semaphore to the store that updated the sema-
phore appear to have been executed atomically (that is, no other processor or mechanism modified the
semaphore location between the read and the update), thus providing the equivalent of a real atomic opera-
tion. However, in reality, other processors may have read from the location during this operation.

The lwarx, Idarx,stwex., and stdex. instructions require the effective address to be aligned.

In general, the lwarx, Idarx, stwcx., and stdex. instructions should be used only in system programs, which
can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated with the reservation
can be changed by a subsequent lwarx or Idarx instruction. The conditional store is performed based upon
the existence of a reservation established by the preceding Iwarx or Idarx. instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth and fifth bullet
items) by one of the following:

¢ The processor holding the reservation executes another Iwarx or Idarx instruction; this clears the first
reservation and establishes a new one.

* The processor holding the reservation executes any stwex. or stdcx. instruction regardless of whether its
address matches that of the lwarx.

¢ Some other processor executes a store or debz to the same reservation granule, or modifies a refer-
enced or changed bit in the same reservation granule.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 173 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

¢ Some other processor executes a dcbtst, dcbst, or debf to the same reservation granule; whether the
reservation is cleared is undefined.

* Some other mechanism modifies a memory location in the same reservation granule.

Note: Exceptions do not clear reservations; however, system software invoked by exceptions may clear res-
ervations.

Table 4-29 summarizes the memory synchronization instructions as defined in the UISA. See Section 4.3.2
Memory Synchronization Instructions—VEA for details about additional memory synchronization (eieio and
isync) instructions.

Table 4-29. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax | Operation

Load Doubleword The EA is the sum (rAlO) + (rB). The doubleword in memory addressed by

and Reserve Idarx rD,rA B the EA is loaded into rD and the reservation is established.

Indexed

Load Word and The EA is the sum (rAlO) + (rB). The word in memory addressed by the
Reserve Indexed lwarx rD,rA,rB EA is loaded into the low-order 32 bits of rD. The contents of the high-

order 32 bits of rD are cleared.

The EA is the sum (rAlO) + (rB).

If a reservation exists and the effective address specified by the stdcx.
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the contents of rS are stored into the
doubleword in memory addressed by the EA, and the reservation is

Store Doubleword cleared.
Conditional stdcx. rS,rA,rB If a reservation exists but the effective address specified by the stdcx.
Indexed instruction is not the same as that specified by the load and reserve

instruction that established the reservation, the reservation is cleared, and
it is undefined whether the contents of rS are stored into the doubleword
in memory addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

The EA is the sum (rAlO) + (rB).

If a reservation exists and the effective address specified by the stwex.
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the low-order 32 bits of rS are stored
into the word in memory addressed by the EA, and the reservation is
cleared.

stwex. rS,rA,rB If a reservation exists but the effective address specified by the stwex.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and
it is undefined whether the low-order 32 bits of rS are stored into the word
in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Store Word Condi-
tional Indexed

Executing a sync instruction ensures that all instructions preceding the
sync instruction appear to have completed before the sync instruction
completes, and that no subsequent instructions are initiated by the pro-
cessor until after the sync instruction completes. When the sync instruc-

Synchronize sync L tion completes, all memory accesses caused by instructions preceding
the sync instruction will have been performed with respect to all other
mechanisms that access memory, on the L=0,1, and 2 variants of this
instruction.

See Chapter 8, Instruction Set for more information.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 174 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Note: The architecture is likely to be changed in the future to permit the reservation to be lost if a dcbf
instruction is executed on the processor holding the reservation. Therefore debf instructions should not be
placed between a load and reserve instruction and the subsequent store conditional instruction.

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most
frequently used operations (such as no-op, load immediate, load address, move register, and complement
register). Assemblers should provide the simplified mnemonics listed in Appendix E.9 Recommended Simpli-
fied Mnemonics. Programs written to be portable across the various assemblers for the PowerPC Architec-
ture should not assume the existence of mnemonics not described in this manual.

For a complete list of simplified mnemonics, see Appendix E Simplified Mnemonics.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 175 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions,
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA,
but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

The VEA defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 5, Cache Model and Memory Coherency for more information. Table 4-30 describes the
mftb instruction.

Simplified mnemonics are provided (See Appendix E.8 Simplified Mnemonics for Special-Purpose Registers)
for the mftb instruction so it can be coded with the TBR name as part of the mnemonic rather than requiring it
to be coded as an operand. The simplified mnemonics Move from Time Base (mftb) and Move from Time
Base Upper (mftbu) are variants of the mftb instruction rather than of the mfspr instruction. The mftb
instruction serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with
two operands as the basic form, and an mftb mnemonic with one operand as the simplified form.

The mftb simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR, and the
mftbu simplified mnemonic moves from the upper half of the time base (TBU) to a GPR.

Table 4-30. Move from Time Base Instruction

Name Mnemonic Operand Syntax |Operation

The TBR field denotes either time base lower or time base upper,
encoded as shown in Table 4-31 and Table 4-32. The contents of the des-

mftb rD, TBR ignated register are copied to rD. When reading TBU the high-order 32
bits of rD are cleared. When reading TBL the 64 bits of the time base are
copied to rD.

Move from Time
Base

Table 4-31 summarizes the time base (TBL/TBU) register encodings to which user-level access (using mftb)
is permitted (as specified by the VEA).

Table 4-31. User-Level TBR Encodings (VEA)

Decimal Value in TBR Field TBR[0-4] TBR[5-9] Register Name Description
268 01100 01000 TBL Time base lower (read-only)
269 01101 01000 TBU Time base upper (read-only)
Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0

Page 176 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-32 summarizes the TBL and TBU register encodings to which supervisor-level access (using mtspr)
is permitted.

Table 4-32. Supervisor-Level TBR Encodings (VEA)

Decimal Value in SPR Field SPR[0-4] SPR[5-9] Register Name Description
284 11100 01000 TBL! Time base lower (write only)
285 11101 01000 TBU' Time base upper (write only)
Note:

1. Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Chapter 5, Cache Model and Memory Coherency for additional informa-
tion about these instructions and about related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the hardware signaling
caused by a sync operation and perform the appropriate actions to guarantee that memory references that
may be queued internally to the second-level cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of I/O
(eieio) and Instruction Synchronize (isync) instructions; see Table 4-33. The number of cycles required to
complete an eieio instruction depends on system parameters and on the processor's state when the instruc-
tion is issued. As a result, frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to complete, discard all
prefetched instructions, and then branch to the next sequential instruction after isync (which has the effect of
clearing the pipeline of prefetched instructions).

Table 4-33. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Syntax |Operation
Enforce In-Order cieio . The eieio instruction provides an ordering function for the effects of loads
Execution of I/0 and stores executed by a processor.

Executing an isync instruction ensures that all previous instructions com-
plete before the isync instruction completes, although memory accesses
caused by those instructions need not have been performed with respect
to other processors and mechanisms. It also ensures that the processor

isync — initiates no subsequent instructions until the isync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, so
subsequent instructions will be fetched and executed in the context estab-
lished by the instructions preceding the isync instruction.

This instruction does not affect other processors or their caches.

Instruction
Synchronize

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 177 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.3.3 Memory Control Instructions—VEA

Memory control instructions include the following types:
¢ Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions

¢ Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. See Section 4.4.3
Memory Control Instructions—OEA for more information about supervisor-level cache, segment register
manipulation, and translation lookaside buffer management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip caches
if they are implemented. See Chapter 5, Cache Model and Memory Coherency for more information about
cache topics.

As with other memory-related instructions, the effect of the cache management instructions on memory are
weakly ordered. If the programmer needs to ensure that cache or other instructions have been performed
with respect to all other processors and system mechanisms, a sync instruction must be placed in the
program following those instructions.

Note: When data address translation is disabled (MSR[DR] = 0’), the Data Cache Block Clear to Zero
(debz) instruction allocates a cache block in the cache and might not verify that the physical address
(referred to as real address in the architecture specification) is valid. If a cache block is created for an invalid
physical address, a machine check condition may result when an attempt is made to write that cache block
back to memory. The cache block could be written back as a result of the execution of an instruction that
causes a cache miss and the invalid addressed cache block is the target for replacement or a Data Cache
Block Store (dcbst) instruction.

Table 4-34 summarizes the cache instructions defined by the VEA.

Note: These instructions are accessible to user-level programs.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 178 of 657 July 15, 2005

Table 4-34. User-Level Cache Instructions

Name Mnemonic

Data Cache Block

Touch dcbt rA,rB
Data Cache Block

Touch for Store | debtst rA,rB
Data Cache Block debz FAXB

Clear to Zero

pem4_instr_Set.fm.3.0
July 15, 2005

Operand Syntax

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operation

The EA is the sum (rAlO) + (rB).

This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon load from the addressed byte.
The hint is ignored if the block is caching inhibited or guarded.

The EA is the sum (rAlO) + (rB).

This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon store into the addressed byte.
The hint is ignored if the block is caching inhibited or guarded.

The EA is the sum (rAlO) + (rB).

If the cache block containing the byte addressed by the EA is in the data
cache, all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is not in the data
cache and the corresponding page is marked caching allowed (I =’0’), the
cache block is established in the data cache without fetching the block
from main memory, and all bytes of the cache block are cleared to zero.
If the page containing the byte addressed by the EA is marked caching
inhibited (WIM = *x1x’) or write-through (WIM = “1xx’), either all bytes of
the area of main memory that corresponds to the addressed cache block
are cleared to zero, or an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as
memory coherent (WIM = ‘xx1’) and the cache block exists in the caches
of other processors, memory coherence is maintained in those caches.
The dcbz instruction is treated as a store to the addressed byte with
respect to address translation, memory protection, referenced and
changed recording, and the ordering enforced by eieio or by the combina-
tion of caching-inhibited and guarded attributes for a page.

Addressing Modes and Instruction Set Summary
Page 179 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-34. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax

Data Cache Block

Store dcbst rA,rB

Data Cache Block

Flush dcbf rA,rB

Addressing Modes and Instruction Set Summary
Page 180 of 657

Operation

The EA is the sum(rAlO) + (rB).

If the cache block containing the byte addressed by the EA is located in a
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the data cache of any processor and
has been modified, the cache block is written to main memory.

If the cache block containing the byte addressed by the EA is located in a
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the data cache of this processor
and has been modified, the cache block is written to main memory.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

The EA is the sum (rAlO) + (rB).
The action taken depends on the memory mode associated with the tar-
get, and on the state of the block. The following list describes the action
taken for the various cases, regardless of whether the page or block con-
taining the addressed byte is designated as write-through or if it is in the
caching-inhibited or caching-allowed mode.
* Coherency required (WIM = ‘xx1’)
— Unmodified block—Invalidates copies of the block in the caches of
all processors.
— Modified block—Copies the block to memory. Invalidates copies
of the block in the caches of all processors.
— Absent block—If modified copies of the block are in the caches of
other processors, causes them to be copied to memory and invali-
dated. If unmodified copies are in the caches of other processors,
causes those copies to be invalidated.
* Coherency not required (WIM = ‘xx0’)
— Unmodified block—Invalidates the block in the processor’s cache.
— Modified block—Copies the block to memory. Invalidates the
block in the processor’s cache.
— Absent block—Does nothing.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.
The dcbf instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

pem4_instr_Set.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-34. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax

Instruction Cache

Block Invalidate 1©P rArB

Operation

The EA is the sum (rAlO) + (rB).

If the cache block containing the byte addressed by EA is located in a
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the instruction cache of any processor,
the cache block is made invalid in all such instruction caches, so that the
next reference causes the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the instruction cache of this proces-
sor, the cache block is made invalid in that instruction cache, so that the
next reference causes the cache block to be refetched.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

Note: The invalidation of the specified instruction cache block cannot be
assumed to have been performed with respect to the processor executing
the instruction until a subsequent isync instruction has been executed by
the processor. No other instruction or event has the corresponding effect.

Note: In response to the hint provided by dcbt and dcbtst, the processor may prefetch the specified block
into the data cache, or take other actions that reduce the latency of subsequent load or store instructions that

refer to the block.

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary
Page 181 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.3.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-purpose device.
Two instructions are provided and are summarized in Table 4-35.

Table 4-35. External Control Instructions

Name Mnemonic Operand Syntax | Operation

The EA is the sum (rAlO) + (rB).

A load word request for the physical address corresponding to the EA is
sent to the device identified by the EAR[RID] (bits [26—31]), bypassing the
cache. The word returned by the device is placed into the low-order 32
bits of rD. The value in the high-order 32 bits of rD is cleared to zero. The
EA sent to the device must be word-aligned.

This instruction is treated as a load from the addressed byte with respect
to address translation, memory protection, referenced and changed
recording, and the ordering performed by eieio.

This instruction is optional.

External Control In

Word Indexed eciwx rD,rA,rB

The EA is the sum (rAlO) + (rB).
A store word request for the physical address corresponding to the EA
and the contents of the low-order 32 bits of rS are sent to the device iden-
tified by EAR[RID] (bits [26—-31]), bypassing the cache. The EA sent to the
device must be word-aligned.
External Control This instruction is treated as a store to the addressed byte with respect to
Out Word Indexed | €€OWX rS,rA,rB address translation, memory protection, referenced and changed record-
ing, and the ordering performed by eieio. Software synchronization is
required in order to ensure that the data access is performed in program
order with respect to data accesses caused by other store or ecowx
instructions, even though the addressed byte is assumed to be caching-
inhibited and guarded.

This instruction is optional.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 182 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory management
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-36). The sc instruction is a user-level
instruction that permits a user program to call on the system to perform a service and causes the processor to
take an exception. The rfid instruction is supervisor-level instructions that are useful for returning from an
exception handler.

Table 4-36. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax |Operation

When executed, the effective address of the instruction following the sc
instruction is placed into SRRO. Bits [33—36 and 42—-47] of SRR1 are
cleared. Additionally, bits [48-55, 57-59,and 62—-63] of the MSR are
placed into the corresponding bits of SRR1. Depending on the implemen-
tation, additional bits of MSR may also be saved in SRR1. Then a system
System Call sc — call exception is generated. The exception causes the MSR to be altered
as described in Section 6.4 Exception Definitions.
The exception causes the next instruction to be fetched from offset
0x0000_0000_0000_0C00 from the physical base address determined by
the value of HIOR.

This instruction is context synchronizing.

Bits [0-2, 4-32, 37-41, 48-50, 52-57, 60-63] of SRR1 are placed into the
corresponding bits of the MSR. Depending on the implementation, addi-
tional bits of MSR may also be restored from SRR1.

If the new MSR value does not enable any pending exceptions, the next
instruction is fetched, under control of the new MSR value, from the
address SRRO[0-61] Il '00’ (default 64-bit mode) or (32)0 Il the low-order

Return from . 32 bits of SRRO 1 00 (32-bit mode of 64-bit implementations).

Interrupt rfid —))

Doubleword If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is gener-
ated; in this case, the value placed into SRRO (machine status
save/restore 0) by the exception processing mechanism is the address of
the instruction that would have been executed next had the exception not
occurred.

This is a supervisor-level instruction and is context-synchronizing.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 183 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and write to the MSR and
the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions

Table 4-37 summarizes the instructions used for reading from and writing to the MSR.

Table 4-37. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax |Operation

The MSR is set based on the contents of register rS and the L field.

L="0" The result of ORing bits [58] and [49] of register rS is placed into
MSRI[58]. The result of ORing bits [59] and [49] of register S is
placed into MSR[59]. Bits [32-47, 49-50, 52-57, 60-63] of register
rS are placed into the corresponding bits of the MSR. The high
order 32 bits of the MSR are unchanged.

L="1 Bits [48, 62] of rS are placed into the corresponding bits of the
MSR. The remaining bits of the MSR are unchanged.

This instruction is a supervisor-level instruction. If L="0" this instruction is

context synchronizing except with respect to alterations to the [LE] bit. If

L="1"this instruction is execution synchronizing; in addition, the alterations

of the [EE] and [RI] bits take effect as soon as the instruction completes.

Move to Machine

State Register mtmsr rSiL

The MSR is set based on the contents of register rS and the L field.

L='0’ The result of ORing bits [0] and [1] of register rS is placed into
MSRI0]. The result of ORing bits [59] and [49] of register rS is
placed into MSR[59]. Bits [1-2, 4-47, 49, 50, 52-57, 60-63] of reg-
ister rS are placed into the corresponding bits of the MSR. The
Move to Machine high order 32 bits of the MSR are unchanged.
State Register mtmsrd rS,L L="1" Bits [48, 62] of rS are placed into the corresponding bits of the
Doubleword MSR. The remaining bits of the MSR are unchanged.

This instruction is a supervisor-level instruction. If L =0’ this instruction is
context synchronizing except with respect to alterations to the [LE] bit. If
L =1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction com-
pletes.

Move from
Machine State mfmsr rD
Register

The contents of the MSR are placed into rD. This is a supervisor-level
instruction.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 184 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of the mtspr and mfspr instructions (see Table 4-38). For more detailed infor-
mation, see Chapter 8, Instruction Set. Simplified mnemonics are provided for the mtspr and mfspr instruc-
tions in Appendix E Simplified Mnemonics. For a discussion of context synchronization requirements when
altering certain SPRs, refer to Appendix D Synchronization Programming Examples.

Table 4-38. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax | Operation

The SPR field denotes a special-purpose register. The contents of rS are

placed into the designated SPR. For SPRs that are 32 bits long, the con-
mtspr SPR,rS tents of the low-order 32 bits of rS are placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as separate 32-bit

registers; setting one leaves the other unaltered.

Move to Special-
Purpose Register

Move from) . .
-~ The SPR field denotes a special-purpose register. The contents of the
gggfs'?elr Purpose mfspr rD,SPR designated SPR are placed into rD.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction encoding, with the high-order 5 bits appearing in bits [16—20] of the instruction encoding and
the low-order 5 bits in bits [11-15].

For information on SPR encodings (both user and supervisor-level), see Chapter 8, Instruction Set.

Note: There are additional SPRs specific to each implementation; for implementation-specific SPRs, see the
user’s manual for your particular processor.

4.4.3 Memory Control Instructions—OEA

Memory control instructions include the following types of instructions:
¢ Cache management instructions (supervisor-level and user-level)
¢ Segment register manipulation instructions

* Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3 Memory Control
Instructions—VEA for more information about user-level cache management instructions.

pem4_instr_Set.fm.3.0 Addressing Modes and Instruction Set Summary
July 15, 2005 Page 185 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

4.4.3.1 Segment Register Manipulation Instructions

The instructions listed in Table 4-39 allow software to associate effective segments 0 through 15 with any of
virtual segments 0 through 227- 1. SLB entries [0-15] serve as virtual Segment Registers, with SLB entry i
used to emulate Segment Register i. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB entry to a selected
GPR. These instructions operate completely independent of the MSR[IR] and MSR[DR] bit settings. Refer to
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers for serializa-
tion requirements and other recommended precautions to observe when manipulating the segment registers.

Table 4-39. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax |Operation
64-Bit Bridge The SLB entry specified by SR is loaded from register rS as described in

9 SRS Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this
Move to Segment misr o instruction is executed, otherwise the results are boundedly undefined.
Register This instruction is a supervisor-level instruction.
64-Bit Bridge The SLB entry specified by rB[32-35] is loaded from rS as described in

. S Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this

Move to Segment | misrin rS,rB instruction is executed, otherwise the results are boundedly undefined.

Register Indirect This is a supervisor-level instruction.

This instruction must be used only to read an SLB entry that was, or could

64-Bit Bridge have been, created by mtsr or mtsrin and has not subsequently been
- mfsr rD,SR invalidated. Otherwise the contents of register rD is undefined. Refer to
Move from Seg >
ment Register Section 8.2 PowerPC Instruction Set for details.
This instruction is a supervisor-level instruction.
64-Bit Bridge This instruction must be used only to read an SLB entry that was, or could
have been, created by mtsr or mtsrin and has not subsequently been
Move from Seg- | msrin rD,rB invalidated. Otherwise the contents of register rD is undefined. Refer to
ment Register Indi- Section 8.2 PowerPC Instruction Set for details.

rect This instruction is a supervisor-level instruction.

4.4.3.2 Translation and Segment Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page table entries (PTESs)
used by PowerPC processors to locate the logical-to-physical address mapping for a particular access.
These segment descriptors and PTEs reside in segment tables and page tables in memory, respectively.

All implementations have a segment lookaside buffer (SLB) to cache a portion of the segment table. For
performance reasons, most implementations have one or more translation lookaside buffers (TLB) to cache a
portion of the page table. As changes are made to the segment and page tables, it is necessary to maintain
coherence between these lookaside buffers and the translation tables.

This is done by invalidating SLB or TLB entries, or occasionally by invalidating the entire SLB or TLB, and
allowing the translation caching mechanism to refetch from the segment and page tables. For this purpose,
each implementation provides the SLB management instructions described in Table 4-40. Each implementa-
tion that has a TLB provides a means for invalidating a single TLB entry, and a means for invalidating the
entire TLB. If a processor does not implement a TLB, it treats the TLB managment instructions (also
described in Table 4-40) either as no-ops or as illegal instructions.

Refer to Chapter 7, Memory Management for more information about TLB operation. Table 4-40 summarizes
the operation of the SLB and TLB instructions.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 186 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-40. Lookaside Buffer Management Instructions

Name

SLB Invalidate All

SLB Invalidate
Entry

Mnemonic

slbia

slbie

SLB Move to Entry |slbmte

SLB Move from
Entry

SLB Move from

Entry ESID

TLB Invalidate
Entry

slbmfev

slbmfee

tibie

pem4_instr_Set.fm.3.0

July 15, 2005

Operand Syntax

rB

rS,rB

rS,rB

rS,rB

rB,L

Operation

For all SLB entries, except SLB entry 0, the V-bit in the entry is set to 0,
making the entry invalid, and all other fields undefined. SLB entry 0 is
undefined.

This is a supervisor-level instruction.
Note: slbia does not affect SLBs on other processors.

The Effective Segment ID (ESID) is rB[0-35]. The class is rB[36]. The
class value must be the same as the class value in the SLB entry that
translates the ESID, or the class value that was in the SLB entry that most
recently translated the ESID if the translation is no longer in the SLB. If the
class value is not the same, the results of translating effective addresses
for which EA[0-35] = ESID are undefined.

The only SLB entry that is invalidated is the entry that translates the spec-
ified ESID. slbie does not affect SLBs on other processors.

If this instruction is executed in 32-bit mode, rB[0:31] must be zeros.

This is a supervisor-level instruction.

Note: If the optional “bridge” facility is implemented, the move to segment
register instructions create SLB entries in which the class value = ‘0.

The SLB entry specified by rB[52-63] is loaded from register rS and from
the remainder of register rB.

This instruction cannot be used to invalidate an SLB entry.
This is a supervisor-level instruction.
For more information refer to Section 8.2 PowerPC Instruction Set.

If the SLB entry specified by bits [52-63] of register rB is valid (V ='1’), the
contents of the VSID, Ks, Kp, N, L, and C fields of the entry are placed into
register rS.

This is a supervisor-level instruction.

For more information refer to Section 8.2 PowerPC Instruction Set.

If the SLB entry specified by bits [52-63] of register rB is valid (V =’1"), the
contents of the ESID and V fields of the entry are placed into register rS.
This is a supervisor-level instruction.

For more information refer to Section 8.2 PowerPC Instruction Set.

The contents of rB specify the VPN of target TLB entries. See Section 8.2
PowerPC Instruction Set for further details. If L =’0’, target entries are for
4KB pages, otherwise large pages.

This instruction causes the target TLB entry to be invalidated in all proces-
sors.

The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio (or sync or ptesync).

When this instruction is executed MSR[SF] must be one, otherwise the
results are boundedly undefined.

This is a supervisor-level instruction and optional in the PowerPC Archi-
tecture.

Addressing Modes and Instruction Set Summary
Page 187 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 4-40. Lookaside Buffer Management Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of rB specify the VPN of target TLB entries. See Section 8.2
PowerPC Instruction Set for further details. If L =’0’, target entries are for
4KB pages, otherwise large pages.

TLB Invalidate Support of large pages for tibiel is optional.

Entry Local tibiel rBL To synchronize the completion of this processor local form of tibie, only a
ptesync is required.

rB[52-63] must be zero.
This is a supervisor-level instruction and optional.

All TLB entries are made invalid. The TLB is invalidated regardless of the
settings of MSRJ[IR] and MSR[DR].

TLB Invalidate All |tlbia — This instruction does not cause the entries to be invalidated in other pro-
cessors.

This is a supervisor-level instruction and optional.

Executing a tlbsync instruction ensures that all tibie instructions previ-
ously executed by the processor executing the tlbsync instruction have
completed on all processors.

The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio (or sync or ptesync).

tibsync should not be used to synchronize the completion of tibiel.

This is a supervisor-level instruction and optional.

TLB Synchronize |tlbsync —

Because the presence and exact semantics of the translation lookaside buffer management instructions is
implementation-dependent, system software should incorporate uses of the instruction into subroutines to
minimize compatibility problems.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.3.0
Page 188 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

5. Cache Model and Memory Coherency

This chapter summarizes the cache model as defined by the virtual environment architecture (VEA), as well
as the built-in architectural controls for maintaining memory coherency. This chapter describes the cache
control instructions and special concerns for memory coherency in single-processor and multiprocessor
systems. Aspects of the operating environment architecture (OEA) as they relate to the cache model and
memory coherency are also covered.

The PowerPC Architecture provides for relaxed memory coherency. Features such as write-back caching
and out-of-order execution allow software engineers to exploit the performance benefits of weakly-ordered
memory access. The architecture also provides the means to control the order of accesses for order-critical
operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache coherency. In this context,
a system could include other devices that access system memory, maintain independent caches, and func-
tion as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA defines this cacheable
unit as a block. Since the term ‘block’ is easily confused with the unit of memory addressed by the block
address translation (BAT) mechanism, this chapter uses the term ‘cache block’ to indicate the cacheable unit.
The size of the cache block can vary by instruction and by implementation. In addition, the unit of memory at
which coherency is maintained is called the coherence block. The size of the coherence block is also imple-
mentation-specific. However, the coherence block is often the same size as the cache block.

5.1 The Virtual Environment

The User Instruction Set Architecture (UISA) relies upon a memory space of 284 bytes for applications. The
VEA expands upon the memory model by introducing virtual memory, caches, and shared memory multipro-
cessing. Although many applications will not need to access the features introduced by the VEA, it is impor-
tant that programmers are aware that they are working in a virtual environment where the physical memory
may be shared by multiple processes running on one or more processors.

This section describes load and store ordering, atomicity, the cache model, memory coherency, and the VEA
cache management instructions. The features of the VEA are accessible to both user-level and supervisor-
level applications (referred to as problem state and privileged state, respectively, in the architecture specifica-
tion).

The mechanism for controlling the virtual memory space is defined by the OEA. The features of the OEA are
accessible to supervisor-level applications only (typically operating systems). For more information on the
address translation mechanism, refer to Chapter 7, Memory Management.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 189 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor systems. This
model provides an opportunity for significantly improved performance over a model that has stronger consis-
tency rules, but places the responsibility for access ordering on the programmer. When a program requires
strict access ordering for proper execution, the programmer must insert the appropriate ordering or synchro-
nization instructions into the program.

The order in which the processor performs memory accesses, the order in which those accesses complete in
memory, and the order in which those accesses are viewed as occurring by another processor may all be
different. A means of enforcing memory access ordering is provided to allow programs (or instances of
programs) to share memory. Similar means are needed to allow programs executing on a processor to share
memory with some other mechanism, such as an I/O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory accesses are
performed by separate instructions. First, if separate store instructions access memory that is designated as
both caching-inhibited and guarded, the accesses are performed in the order specified by the program. Refer
to Section 5.1.4 Memory Coherency and Section 5.2.1 Memory/Cache Access Attributes for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions, eieio and sync, are
provided that enable the program to control the order in which the memory accesses caused by separate
instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction (that is, by an
instruction for which multiple accesses are not atomic), and no means are provided for controlling that order.
Chapter 4, Addressing Modes and Instruction Set Summary contains additional information about the sync
and eieio instructions.

5.1.1.1 Enforce In-Order Execution of I/O Instruction

The eieio instruction permits the program to control the order in which loads and stores are performed when
the accessed memory has certain attributes, as described in Chapter 8, Instruction Set. For example, eieio
can be used to ensure that a sequence of load and store operations to an I/O device’s control registers
updates those registers in the desired order. The eieio instruction can also be used to ensure that all stores
to a shared data structure are visible to other processors before the store that releases the lock is visible to
them.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio
instruction have been performed with respect to system memory or coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is necessary to
synchronize memory with respect to other processors and mechanisms. This synchronization is accom-
plished by requiring programs to indicate explicitly in the instruction stream, by inserting a sync instruction,
that synchronization is required. Only when sync completes are the effects of all coherent memory accesses
previously executed by the program guaranteed to have been performed with respect to all other processors
and mechanisms that access those locations coherently.

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 190 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The sync instruction ensures that all the coherent memory accesses, initiated by a program, have been
performed with respect to all other processors and mechanisms that access the target locations coherently,
before its next instruction is executed. A program can use this instruction to ensure that all updates to a
shared data structure, accessed coherently, are visible to all other processors that access the data structure
coherently, before executing a store that will release a lock on that data structure. Execution of the sync
instruction does the following:

* Performs the functions described for the sync instruction in Section 4.2.6 Memory Synchronization
Instructions—UISA.

¢ Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, and dcbf instructions previ-
ously executed by the processor executing sync, have completed on such other processors as the mem-
ory/cache access attributes of the target locations require.

e Ensures that TLB invalidate operations previously executed by the processor executing the sync have
completed on that processor. The sync instruction does not wait for such invalidates to complete on other
processors.

¢ Ensures that memory accesses due to instructions previously executed by the processor executing the
sync are recorded in the R and C bits in the page table and that the new values of those bits are visible to
all processors and mechanisms; refer to Section 7.4.3 Page History Recording.

The sync instruction is execution synchronizing. It is not context synchronizing, and therefore need not
discard prefetched instructions.

For memory that does not require coherency, the sync instruction operates as described above except that
its only effect on memory operations is to ensure that all previous memory operations have completed, with
respect to the processor executing the sync instruction, to the level of memory specified by the
memory/cache access attributes (including the updating of R and C bits).

See Chapter 8, Instruction Set for a description of the sync instruction, including the L="1’ (lwsync) and
L="2’" (ptesync) variants.

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation. Atomic accesses are
thus serialized—each happens in its entirety in some order, even when that order is neither specified in the
program nor enforced between processors.
Only the following single-register accesses are guaranteed to be atomic:

* Byte accesses (all bytes are aligned on byte boundaries)

¢ Halfword accesses aligned on halfword boundaries

¢ Word accesses aligned on word boundaries

¢ Doubleword accesses aligned on doubleword boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the following instruc-
tions are not guaranteed to be atomic:

¢ Load and store instructions with misaligned operands
¢ Imw, stmw, Iswi, Iswx, stswi, or stswx instructions

¢ Any cache management instructions

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 191 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

The Idarx/stdcx. and lwarx/stwex. instruction combinations can be used to perform atomic memory refer-
ences. The Idarx instruction is a load from a doubleword—aligned location that has two side effects:

1. A reservation for a subsequent instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the memory location accessed
by the Idarx.

The stdcx. instruction is a store to a doubleword—aligned location that is conditioned on the existence of the
reservation created by Idarx and on whether the same memory location is specified by both instructions and
whether the instructions are issued by the same processor.

The lwarx and stwex. instructions are the word-aligned forms of the Idarx and stwex. instructions. To
emulate an atomic operation with these instructions, it is necessary that both Idarx and stdex. (or Iwarx and
stwex.) access the same memory location.

Note: When a reservation is made to a word in memory by the Iwarx or ldarx instruction, an address is
saved and a reservation is set. Both of these are necessary for the memory coherence mechanism, however,
some processors do not implement the address compare for the stwex. instruction. Only the reservation
needs to be established in order for the stwex./stdex. to be successful. This requires that exception handlers
clear reservations if control is passed to another program. Programmers should read the specifications for
each individual processor.

In a multiprocessor system, every processor (other than the one executing Idarx/stdcx. or Iwarx/stwex.) that
might update the location must configure the addressed page as memory coherency required. The
Idarx/stdcx. and Iwarx/stwex. instructions function in caching-inhibited, as well as in caching-allowed,
memory. If the addressed memory is in write-through mode, it is implementation-dependent whether these
instructions function correctly or cause the DSI exception handler to be invoked.

The Idarx/stdcx. and Iwarx/stwex. instruction combinations are described in Section 4.2.6 Memory
Synchronization Instructions—UISA and Chapter 8, Instruction Set.

5.1.3 Cache Model

The PowerPC Architecture does not specify the type, organization, implementation, or even the existence of
a cache. The standard cache model has separate instruction and data caches, also known as a Harvard
cache model. However, the architecture allows for many different cache types. Some implementations will
have a unified cache (where there is a single cache for both instructions and data). Other implementations
may not have a cache at all.

The function of the cache management instructions depends on the implementation of the cache(s) and the
setting of the memory/cache access modes. For a program to execute properly on all implementations, soft-
ware should use the Harvard model. In cases where a processor is implemented without a cache, the archi-
tecture guarantees that instructions affecting the nonimplemented cache will not halt execution.

Note: dcbz may cause an alignment exception on some implementations. For example, a processor with no
cache may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the icbi
instruction as a no-op. In this manner, programs written for separate instruction and data caches will run on
all compliant implementations.

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 192 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

5.1.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all devices
using the system. The VEA and OEA define coherency controls that facilitate synchronization, cooperative
use of shared resources, and task migration among processors. These controls include the memory/cache
access attributes, the sync and eieio instructions, and the ldarx/stdcx. and lwarx/stwex. instruction pairs.
Without these controls, the processor could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive overhead, particularly
in multiprocessor environments. For example, a processor performing a store operation in a strongly-ordered
system requires exclusive access to an address before making an update, to prevent another device from
using stale data.

The VEA defines a page as a unit of memory for which protection and control attributes are independently
specifiable. The OEA (supervisor level) specifies the size of a page as 4 Kbytes or a large page whose size is
implementation dependent.

Note: The VEA (user level) does not specify the page size.

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement these modes.
Refer to Section 5.2.1 Memory/Cache Access Attributes for more information. However, the VEA specifies
that at the user level, the operating system can be expected to provide the following attributes for each page
of memory:

¢ Write-through or write-back

* Caching-inhibited or caching-allowed

* Memory coherency required or memory coherency not required
¢ Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating system service.

Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache and also update
the data in main memory. The processor writes to the cache and through to main memory. Load operations
use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The processor may (but is not
required to) update main memory. Load and store operations use the data in the cache, if it is present. The
data in main memory does not necessarily stay consistent with that same location’s data in the cache. Many
implementations automatically update main memory in response to a memory access by another device (for
example, a snoop hit). In addition, the dcbst and debf instructions can be used to explicitly force an update of
main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 193 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and performs load and
store operations to main memory. When a page is designated as caching-allowed, the processor uses the
cache and performs load and store operations to the cache or main memory depending on the other
memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the memory/cache
access attribute for the page from caching-allowed to caching-inhibited. It is considered a programming error
if a caching-inhibited memory location is found in the cache. Software must ensure that the location has not
previously been brought into the cache, or, if it has, that it has been flushed from the cache. If the program-
ming error occurs, the result of the access is boundedly undefined.

Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location are serialized
with all stores to that same location by all other processors that also access the location coherently. This can
be implemented, for example, by an ownership protocol that allows at most one processor at a time to store
to the location. Moreover, the current copy of a cache block that is in this mode may be copied to main
storage any number of times, for example, by successive decbst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately to all other
processors and mechanisms. Only after a program has executed the sync instruction are the previous
storage accesses it executed guaranteed to have been performed with respect to all other processors and
mechanisms.

Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must ensure that the data
cache is consistent with main storage before changing the mode or allowing another device to access the
area.

Executing a dcbst or debf instruction specifying a cache block that is in this mode causes the block to be
copied to main memory if and only if the processor modified the contents of a location in the block and the
modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory coherency; therefore,
using memory coherency not required mode improves performance.
Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Out-of-Order Accesses to Guarded Memory
on page 203 for more information about out-of-order execution.

When a page is designated as guarded, instructions and data cannot be accessed out of order. Additionally,
if separate store instructions access memory that is both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. When a page is designated as not guarded, out-of-order
fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped /O devices.

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 194 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor and multi-
processor systems. When the memory/cache access attributes are changed, it is critical that the cache
contents reflect the new attribute settings. For example, if a page that had allowed caching becomes caching-
inhibited, the appropriate cache blocks should be flushed to leave no indication that caching had previously
been allowed.

Although coherency paradoxes are considered programming errors, specific implementations may attempt to
handle the offending conditions and minimize the negative effects on memory coherency. Bus operations that
are generated for specific instructions and state conditions are not defined by the architecture.

5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For implementations that
have a unified instruction/data cache, instruction cache control instructions are valid instructions, but may
function differently.

This section briefly describes the cache management instructions available to programs at the user privilege
level. Additional descriptions of coding the VEA cache management instructions is provided in Chapter 4,
Addressing Modes and Instruction Set Summary and Chapter 8, Instruction Set. In the following instruction
descriptions, the target is the cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified), memory, and 1/O data
transfers. To ensure consistency, aliased effective addresses (two effective addresses that map to the same
physical address) must have the same page offset.

Note: Physical address is referred to as real address in the architecture specification.

Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of software-initiated prefetch
hints. However, these instructions do not guarantee that a cache block will be fetched.

A program uses the dcbt instruction to request a cache block fetch before it is needed by the program. The
program can then use the data from the cache rather than fetching from main memory.

The dcbtst instruction behaves similarly to the dcbt instruction. A program uses dcbtst to request a cache
block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations caused by either
of the touch instructions. Additionally, memory accesses caused by these instructions are not necessarily
recorded in the page tables. If an access is recorded, then it is treated in a manner similar to that of a load
from the addressed byte. Some implementations may not take any action based on the execution of these
instructions, or they may prefetch the cache block corresponding to the effective address into their cache. For
information about the R and C bits, see Section 7.4.3 Page History Recording.

Both debt and debtst are provided for performance optimization. These instructions do not affect the correct
execution of a program, regardless of whether they succeed (fetch the cache block) or fail (do not fetch the
cache block). If the target block is not accessible to the program for loads, then no operation occurs.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 195 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Data Cache Block Set to Zero (debz) Instruction

The dcbz instruction clears a single cache block as follows:
* [f the target is in the data cache, all bytes of the cache block are cleared.

* [f the target is not in the data cache and the corresponding page is caching-allowed, the cache block is
established in the data cache (without fetching the cache block from main memory), and all bytes of the
cache block are cleared.

* If the target is designated as either caching-inhibited or write-through, then either all bytes in main mem-
ory that correspond to the addressed cache block are cleared, or the alignment exception handler is
invoked. The exception handler should clear all the bytes in main memory that correspond to the
addressed cache block.

¢ If the target is designated as coherency required, and the cache block exists in the data cache(s) of any
other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address translation, protec-
tion, referenced and changed recording, and the ordering enforced by eieio or by the combination of caching-
inhibited and guarded attributes for a page.

Refer to Chapter 6, Exceptions for more information about a possible delayed machine check exception that
can occur by using debz when the operating system has set up an incorrect memory mapping.

Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target cache block is in
main memory. The dcbst instruction executes as follows:

¢ Coherency required—If the target exists in the data cache of any processor and has been modified, the
data is written to main memory. Only one processor in a multiprocessor system should have possession
of a modified cache block.

* Coherency not required—If the target exists in the data cache of the executing processor and has been
modified, the data is written to main memory.

The PowerPC Architecture does not specify whether the modified status of the cache block is left unchanged
or is cleared (cleared implies valid-shared or valid-exclusive). That decision is left to the implementation of
individual processors. Either state is logically correct.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbst instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation (not as a store operation).

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 196 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Data Cache Block Flush (debf) Instruction
The action taken depends on the memory/cache access mode associated with the target, and on the state of
the cache block. The following list describes the action taken for the various cases:
» Coherency required
— Unmodified cache block—Invalidates copies of the cache block in the data caches of all processors.

— Modified cache block—Copies the cache block to memory. Invalidates the copy of the cache block in
the data cache of any processor where it is found. There should only be one modified cache block in
a coherency required multiprocessor system.

— Target block not in cache—If a modified copy of the cache block is in the data cache(s) of another
processor, debf causes the modified cache block to be copied to memory and then invalidated. If
unmodified copies are in the data caches of other processors, dcbf causes those copies to be invali-
dated.

¢ Coherency not required
— Unmodified cache block—Invalidates the cache block in the executing processor's data cache.

— Modified cache block—Copies the data cache block to memory and then invalidates the cache block
in the executing processor.

— Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a debf instruction is not necessarily recorded in the page tables. If the access
is recorded, then it is treated as a load operation (not as a store operation).

5.1.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory, or I/O data trans-
fers. Software must use the appropriate cache management instructions to ensure that instruction caches are
kept coherent when instructions are modified by the processor or by input data transfer. When a processor
alters a memory location that may be contained in an instruction cache, software must ensure that updates to
memory are visible to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst (update memory)

2. sync (wait for update)

3. icbi (invalidate copy in instruction cache)

4. isync (perform context synchronization)
Note: Most operating systems will provide a system service for this function. These operations are neces-
sary because the memory may be designated as write-back. Since instruction fetching may bypass the data

cache, changes made to items in the data cache may not otherwise be reflected in memory until after the
instruction fetch completes.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 197 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

For implementations used in multiprocessor systems, variations on this sequence may be recommended. For
example, in a multiprocessor system with a unified instruction/data cache (at any level), if instructions are
fetched without coherency being enforced, the preceding instruction sequence is inadequate. Because the
icbi instruction does not invalidate blocks in a unified cache, a debf instruction should be used instead of a
dcbst instruction for this case.

Instruction Cache Block Invalidate Instruction (icbi)

The icbi instruction executes as follows:

» Coherency required
If the target is in the instruction cache of any processor, the cache block is made invalid in all such pro-
cessors, so that the next reference causes the cache block to be refetched.

¢ Coherency not required
If the target is in the instruction cache of the executing processor, the cache block is made invalid in the
executing processor so that the next reference causes the cache block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data caches. The effective
address is computed, translated, and checked for protection violations as defined in Chapter 7, Memory
Management. If the target block is not accessible to the program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation. Implementations that have a unified cache treat the
icbi instruction as a no-op except that they may invalidate the target cache block in the instruction caches of
other processors (in coherency required mode).

Note: The invalidation of the specified instruction cache block cannot be assumed to have been performed
with respect to the processor executing the instruction until a subsequent isync instruction has been exe-
cuted by the processor. No other instruction or event has the corresponding effect.

Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions executed by a processor.
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed
before the isync instruction completes, except that memory accesses caused by those instructions need not
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched
and executed in the context established by the instructions preceding the isync instruction. The isync
instruction has no effect on other processors or on their caches.

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 198 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

5.2 The Operating Environment

The OEA defines the mechanism for controlling the memory/cache access modes introduced in

Section 5.1.4.1 Memory/Cache Access Modes. This section describes the cache-related aspects of the OEA
including the memory/cache access attributes, out-of-order execution, and the dcebi instruction. The features
of the OEA are accessible to supervisor-level applications only. The mechanism for controlling the virtual
memory space is described in Chapter 7, Memory Management.

The memory model of PowerPC processors provides the following features:
¢ Flexibility to allow performance benefits of weakly-ordered memory access

* A mechanism to maintain memory coherency among processors and between a processor and 1/0
devices controlled at the block and page level

* Instructions that can be used to ensure a consistent memory state

e Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance benefits of weak
ordering of memory accesses between processors or between processors and other external devices without
any additional complications. Memory coherency can be enforced externally by a snooping bus design, a
centralized cache directory design, or other designs that can take advantage of the coherency features of
PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from the view of the
programming model but may complete out of order with respect to the ultimate destination in the memory
hierarchy. Order is guaranteed at each level of the memory hierarchy for accesses to the same address from
the same processor. The dcbf, dcbst, eieio, icbi, isync, Idarx, lwarx, stdcx., stwex., sync, and tlbsync
instructions allow the programmer to ensure a consistent and ordered memory state.

5.2.1 Memory/Cache Access Attributes

All instruction and data accesses are performed under the control of the four memory/cache access
attributes:

¢ Write-through (W attribute)

» Caching-inhibited (I attribute)

¢ Memory coherency (M attribute)
* Guarded (G attribute)

These attributes are maintained in the PTEs by the operating system for each page. The operating system
stores the WIMG bits for each page into the PTEs in system memory as it sets up the page tables. The W and
| attributes control how the processor performing an access uses its own cache. The M attribute ensures that
coherency is maintained for all copies of the addressed memory location. When an access requires coher-
ency, the processor performing the access must inform the coherency mechanisms throughout the system
that the access requires memory coherency. The G attribute prevents out-of-order loading and prefetching
from the addressed memory location.

Note: The memory/cache access attributes are relevant only when an effective address is translated by the
processor performing the access. Also, not all combinations of settings of these bits are supported. The
attributes are not saved along with data in the cache (for cacheable accesses), nor are they associated with
subsequent accesses made by other processors.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 199 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Note: For data accesses performed in real addressing mode (MSR[DR] = ‘0’), the WIMG bits are assumed to
be ‘0011’ (the data is write-back, caching is enabled, memory coherency is enforced, and memory is
guarded). For instruction accesses performed in real addressing mode (MSRJ[IR] = ‘0’), the WIMG bits are
assumed to be ‘0001’ (the data is write-back, caching is enabled, memory coherency is not enforced, and
memory is guarded).

5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = ‘1°), if the data is in the cache, a store operation updates
the cached copy of the data. In addition, the update is written to the memory location. The definition of the
memory location to be written to (in addition to the cache) depends on the implementation of the memory
system but can be illustrated by the following examples:

* RAM—The store is sent to the RAM controller to be written into the target RAM.

* |/O device—The store is sent to the memory-mapped I/O controller to be written to the target register or
memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy that
is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the store instructions
are separated by a sync or eieio instruction. A store operation to a memory location designated as write-
through may cause any part of the cache block to be written back to main memory.

Accesses that correspond to W = ‘0’ are considered write-back. For this case, although the store operation is
performed to the cache, the data is copied to memory only when a copy-back operation is required. Use of
the write-back mode (W = ‘0’) can improve overall performance for areas of the memory space that are
seldom referenced by other processors or devices in the system.

Accesses to the same memory location using two effective addresses for which the W-bit setting differs meet
the memory-coherency requirements if the accesses are performed by a single processor. If the accesses
are performed by two or more processors, coherence is enforced by the hardware only if the write-through
attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (1)

If I="1°, the memory access is completed by referencing the location in main memory, bypassing the cache.
During the access, the addressed location is not loaded into the cache nor is the location allocated in the
cache.

It is considered a programming error if a copy of the target location of an access to caching-inhibited memory
is resident in the cache. Software must ensure that the location has not been previously loaded into the
cache, or if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited operations, except when
the accesses are separated by a sync instruction, or by an eieio instruction when the page is also designated
as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory location using two
effective addresses for which the I-bit setting differs must meet the requirement that a copy of the target loca-
tion of an access to caching-inhibited memory not be in the cache. Violation of this requirement is considered
a programming error; software must ensure that the location has not previously been brought into the cache

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 200 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

or, if it has, that it has been flushed from the cache. If the programming error occurs, the result of the access
is boundedly undefined. It is not considered a programming error if the target location of any other cache
management instruction to caching-inhibited memory is in the cache.

5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-enforced coherency is
relatively slow, and software is able to enforce the required coherency. When M="0’, there are no require-
ments to enforce data coherency. When M="1", the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware indication to the rest
of the system that the access is global. Other processors affected by the access must then respond to this
global access. For example, in a snooping bus design, the processor may assert some type of global access
signal. Other processors affected by the access respond and signal whether the data is being shared. If the
data in another processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some implementations may
ignore the M attribute for instruction accesses. In a single-processor (or single-cache) system, performance
might be improved by designating all pages as memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M-bit settings differ may
require explicit software synchronization before accessing the location with M = ‘1’ if the location has previ-
ously been accessed with M = ‘0’. Any such requirement is system-dependent. For example, no software
synchronization may be required for systems that use bus snooping. In some directory-based systems, soft-
ware may be required to execute debf instructions on each processor to flush all storage locations accessed
with M="0’ before accessing those locations with M="1".

5.2.1.4 W, I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The combinations where
WIM = “11x’ are not supported.

Note: Either a ‘0’ or ‘1’ setting for the G-bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, I, and M Bits

WIM Setting Meaning

The processor may cache data (or instructions).
000 A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

Data (or instructions) may be cached.
001 A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

Caching is inhibited.
010 The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 201 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 5-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning

Caching is inhibited.
011 The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.

100)
Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.
Data (or instructions) may be cached.

101 A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor enforces memory coherency for accesses it initiates.

5.2.1.5 Guarded Attribute (G)

When the guarded bit is set, the memory area (page) is designated as guarded. This setting can be used to
protect certain pages from read accesses made by the processor that are not dictated directly by the
program. If there are areas of physical memory that are not fully populated (in other words, there are holes in
the physical memory map within this area), this setting can protect the system from undesired accesses
caused by out-of-order load operations or instruction prefetches that could lead to the generation of the
machine check exception. Also, the guarded bit can be used to prevent out-of-order (speculative) load opera-
tions or prefetches from occurring to certain peripheral devices that produce undesired results when
accessed in this way.

Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the sequential execution
model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results will be needed by
an instruction that will be required by the sequential execution model. Whether the results are really needed
is contingent on everything that might divert the control flow away from the instruction, such as branch, trap,
system call, and return from interrupt instructions, and exceptions, and on everything that might change the
context in which the instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would otherwise be idle,
so the operation incurs little or no cost. If subsequent events such as branches or exceptions indicate that the
operation would not have been performed in the sequential execution model, the processor abandons any
results of the operation (except as described below).

Most operations can be performed out of order, as long as the machine appears to follow the sequential
execution model. Certain out-of-order operations are restricted, as follows.

» Stores — A store instruction may not be executed out of order in a manner such that the alteration of the
target location can be observed by other processors or mechanisms.

* Accessing guarded memory — The restrictions for this case are given in Out-of-Order Accesses to
Guarded Memory on page 203.

Cache Model and Memory Coherency pem5_cache.fm.3.0
Page 202 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

No error of any kind other than a machine check exception may be reported due to an operation that is
performed out of order, until such time as it is known that the operation is required by the sequential execu-
tion model. The only other permitted side effects (other than machine check) of performing an operation out
of order are the following:

* Referenced and changed bits may be set as described in Section 7.2.5 Page History Information.

* Nonguarded memory locations that could be fetched into a cache by in-order execution may be fetched
out of order into that cache.

Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not defective, and if
the effects of a single access to it are indistinguishable from the effects of multiple identical accesses to it.
Data and instructions can be fetched out of order from well-behaved memory without causing undesired side
effects.

Memory is said to be guarded if either:

(a) the G-bit is ’1” in the relevant PTE or

(b) the processor is in real addressing mode (MSRJ[IR] = ‘0’ or MSR[DR] = ‘0’ for instruction fetches or data
accesses respectively).

In case (b), all of memory is guarded for the corresponding accesses. In general, memory that is not well-
behaved should be guarded. Because such memory may represent an I/O device or may include locations
that do not exist, an out-of-order access to such memory may cause an I/O device to perform incorrect oper-
ations or may result in a machine check.

Note: If separate store instructions access memory that is both caching-inhibited and guarded, the accesses
are performed in the order specified by the program. If an aligned, elementary load or store to caching-inhib-
ited, guarded memory has accessed main memory and an external, decrementer, or imprecise-mode float-
ing-point enabled exception is pending, the load or store is completed before the exception is taken.

Out-of-Order Accesses to Guarded Memory

The circumstances in which guarded memory may be accessed out of order are as follows:

¢ Load instruction — If a copy of the target location is in a cache, the location may be accessed in the cache
or in main memory.

¢ Instruction fetch — In real addressing mode (MSRJIR] = ‘0’), an instruction may be fetched if any of the fol-
lowing conditions is met:

— The instruction is in a cache. In this case, it may be fetched from that cache.

— The instruction is in the same physical page as an instruction that is required by the sequential execu-
tion model or is in the physical page immediately following such a page.

If MSR[IR] = ‘1’, instructions may not be fetched from either no-execute segments or guarded memory. If
the effective address of the current instruction is mapped to either of these kinds of memory when
MSRI[IR] = ‘1’, an ISI exception is generated. However, it is permissible for an instruction from either of
these kinds of memory to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the operating system can
access an application's instruction segments as no-execute without having to invalidate them in the
instruction cache.

pemb5_cache.fm.3.0 Cache Model and Memory Coherency
July 15, 2005 Page 203 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Note: Software should ensure that only well-behaved memory is loaded into a cache, either by marking as
caching-inhibited (and guarded) all memory that may not be well-behaved, or by marking such memory cach-

ing-allowed (and guarded) and referring only to cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode (MSRJ[IR] = ‘0’), soft-
ware should ensure that this physical page and the next physical page contain only well-behaved memory.

5.2.2 I/0 Interface Considerations

Memory-mapped I/O interface operations are considered to address memory space and are therefore subject
to the same coherency control as memory accesses. Depending on the specific 1/O interface, the
memory/cache access attributes (WIMG) and the degree of access ordering (requiring eieio or sync instruc-

tions) need to be considered. This is the recommended way of accessing I/O.

Cache Model and Memory Coherency

Page 204 of 657

pem5_cache.fm.3.0

July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6. Exceptions

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism

by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-

tion). Exception conditions may be defined at other levels of the architecture. For example, the user instruc-

tion set architecture (UISA) defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of
external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur,
information about the state of the processor is saved to certain registers and the processor begins execution
at an address (exception vector) predetermined for each exception. Processing of exceptions begins in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition may
be determined by examining a register associated with the exception—for example, the DSISR and the
floating-point status and control register (FPSCR). Additionally, certain exception conditions can be explicitly
enabled or disabled by software.

The PowerPC Architecture requires that exceptions be taken in program order; therefore, although a partic-
ular implementation may recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially. Likewise, exceptions that
are asynchronous and precise are recognized when they occur, but are not handled until all instructions
currently in the execute stage successfully complete execution and report their results.

Note: Exceptions can occur while an exception handler routine is executing, and multiple exceptions can
become nested. It is up to the exception handler to save the appropriate machine state if it is desired to allow
control to ultimately return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to execute the instruc-
tion that caused the exception. Instruction execution continues until the next exception condition is encoun-
tered. This method of recognizing and handling exception conditions sequentially guarantees that the
machine state is recoverable and processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information stored in SRR0O and
SRR1 soon after the exception is taken to prevent this information from being lost due to another exception
being taken.

In this chapter, the following terminology is used to describe the various stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler; that is, the context is saved and the instruction at the appropriate vector offset is
fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. Excep-
tion handling is begun in supervisor mode (referred to as privileged state in the architecture
specification).

pem6_exceptions.fm.3.0 Exceptions

July 15, 2005 Page 205 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6.1 Exception Classes

As specified by the PowerPC Architecture, all exceptions can be described as either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events external to the
processor’s execution; synchronous exceptions are caused by instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception

Machine Check

Asynchronous/nonmaskabl
synchronous/nonmaskable System Reset

External interrupt

Asynchronous/maskable
Decrementer

Synchronous/Precise Instruction-caused exceptions, excluding floating-point imprecise exceptions

) Instruction-caused imprecise exceptions
Synchronous/Imprecise . o . .
(Floating-point imprecise exceptions)
Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The exception
vectors described in the table correspond to physical address locations, relative to address 0. Refer to
Section 7.2.1.2 Predefined Physical Memory Locations for a complete list of the predefined physical memory
areas. Remaining sections in this chapter provide more complete descriptions of the exceptions and of the
conditions that cause them.

Table 6-2. Exceptions and Conditions—Overview

Exception Type Vector Offset (hex) | Causing Conditions

The causes of system reset exceptions are implementation-dependent. If the conditions that
cause the exception also cause the processor state to be corrupted such that the contents of

System reset 00100 SRRO0 and SRR1 are no longer valid or such that other processor resources are so corrupted
that the processor cannot reliably resume execution, the copy of the RI bit copied from the
MSR to SRR1 is cleared.

The causes for machine check exceptions are implementation-dependent, but typically these
causes are related to conditions such as bus parity errors or attempting to access an invalid
physical address. Typically, these exceptions are triggered by an input signal to the processor.
Note: Not all processors provide the same level of error checking.

The machine check exception is disabled when MSR[ME] = '0’. If a machine check exception
Machine check 00200 condition exists and the ME bit is cleared, the processor goes into the checkstop state.

If the conditions that cause the exception also cause the processor state to be corrupted such

that the contents of SRRO and SRR1 are no longer valid or such that other processor

resources are so corrupted that the processor cannot reliably resume execution, the copy of

the Rl bit written from the MSR to SRR1 is cleared.

Note: The physical address is referred to as real address in the architecture specification.)

A DSI exception occurs when a data memory access cannot be performed for any of the rea-
sons described in Section 6.4.3 DSI Exception (0x00300). Such accesses can be generated
by load/store instructions, certain memory control instructions, and certain cache control
instructions.

DSI 00300

A Data Segment interrupt occurs if MSR[DR] = ’1’ and the translation of the effective address
Data Segment 00380 of any byte of the specified storage location is not found in the SLB. Refer to Section 6.4.4
Data Segment Exception (0x00380) for details.

An IS| exception occurs when an instruction fetch cannot be performed for a variety of reasons

151 00400 described in Section 6.4.5 ISI Exception (0x00400).

Exceptions pem6_exceptions.fm.3.0
Page 206 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 6-2. Exceptions and Conditions—Overview (Continued)

Exception Type

Instruction
Segment

External interrupt

Alignment

Program

Floating-point
unavailable

Decrementer

Reserved
Reserved

System call

Trace

Reserved

Performance
monitor

Reserved

Vector Offset (hex) | Causing Conditions

00480

00500

00600

00700

00800

00900

00A00
00B00
00C00

00D00

0OEO00-00FFF

00F00

01000-02FFF

pem6_exceptions.fm.3.0

July 15, 2005

An instruction segment exception occurs when no higher priority exception exists and next
instruction to be executed cannot be fetched because instruction address translation is
enabled (MSRJIR]=1) and the effective address cannot be translated to a virtual address.

An external interrupt is generated only when an external interrupt is pending (typically sig-
nalled by a signal defined by the implementation) and the interrupt is enabled (MSR[EE] ='1’).

An alignment exception may occur when the processor cannot perform a memory access for
reasons described in Section 6.4.8 Alignment Exception (0x00600).

Note: Animplementation is allowed to perform the operation correctly and not cause an align-
ment exception.

A program exception is caused by one of the following exception conditions, which correspond
to bit settings in SRR1 and arise during execution of an instruction:

* Floating-point enabled exception—A floating-point enabled exception condition is gener-
ated when MSR[FEO-FE1] # ‘00’ and FPSCRI[FEX] is set. The settings of FEO and FE1
are described in Table 6-3.

FPSCRIFEX] is set by the execution of a floating-point instruction that causes an enabled
exception or by the execution of a Move to FPSCR instruction that sets both an exception
condition bit and its corresponding enable bit in the FPSCR. These exceptions are
described in Section 3.3.6 Floating-Point Program Exceptions.”

* lllegal instruction—An illegal instruction program exception is generated when execution
of an instruction is attempted with an illegal opcode or illegal combination of opcode and
extended opcode fields or when execution of an optional instruction not provided in the
specific implementation is attempted (these do not include those optional instructions that
are treated as no-ops). The PowerPC instruction set is described in Chapter 4, “Address-
ing Modes and Instruction Set Summary” See Section 6.4.9 Program Exception
(0x00700) for a complete list of causes for an illegal instruction program exception.

* Privileged instruction—A privileged instruction type program exception is generated when
the execution of a privileged instruction is attempted and the MSR user privilege bit,
MSRI[PRY], is set. This exception is also generated for mtspr or mfspr with an invalid SPR
field if spr[0] =1’ and MSR[PR] ="1".

* Trap—A trap type program exception is generated when any of the conditions specified in
a trap instruction is met.

For more information, refer to Section 6.4.9 Program Exception (0x00700).”

A floating-point unavailable exception is caused by an attempt to execute a floating-point
instruction (including floating-point load, store, and move instructions) when the floating-point
available bit is cleared, MSR[FP] =0’.

The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] =1’), and it
is pending. The exception is created when the most-significant bit of the decrementer changes
from 0 to 1. If it is not enabled, the exception remains pending until it is taken.

This is reserved for implementation-specific exceptions.

A system call exception occurs when a System Call (sc) instruction is executed.

Implementation of the trace exception is optional. If implemented, it occurs if either the
MSR[SE] =1’ and almost any instruction successfully completed or MSR[BE] =’1’ and a
branch instruction is completed. See Section 6.4.13 Trace Exception (0x00D0O0) for more infor-
mation.

The performance monitor exception is part of the optional performance monitor facility. If the
performance monitor facility is not implemented or does not use this interrupt, the correspond-
ing interrupt vector is treated as reserved.

This is reserved for implementation-specific purposes. May be used for implementation-spe-
cific exception vectors or other uses.

Exceptions
Page 207 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6.1.1 Precise Exceptions

When any precise exception occurs, SRRO points to either the instruction causing the exception or the
instruction immediately following. The exception type and status bits determine which instruction is
addressed. However, depending on the exception type, the instruction addressed by SRRO and those
following it might have started, but might not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the instruction fetch unit to
any instruction execution mechanism) is halted and the following synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction stream to complete to a
point where they will not report any exceptions.

2. The processor ensures that all previous instructions in the instruction stream complete in the context in
which they began execution.

3. The exception mechanism implemented in hardware (the loading of registers SRR0 and SRR1) and the
software handler (saving SRR0 and SRR1 in the stack and updating stack pointer, etc.) are responsible
for saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization. A complete
description of context synchronization is described in Section 6.1.2.1 Context Synchronization.

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the processor that
performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed below. Such instruc-
tions and events are collectively called context-synchronizing operations. Examples of context-synchronizing
operations include the isyne, sc, and rfid instructions, the mtmsr[d] instruction if L = ‘0’, and most excep-
tions. A context-synchronizing operation has the following characteristics:

1. The operation causes instruction fetching and dispatching (the issuance of instructions by the instruction
fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all instructions in execution
have completed to a point at which they have reported all exceptions they will cause.

3. The operation ensures that the instructions that precede the operation will complete execution in the con-
text (privilege, relocation, memory protection, etc.) in which they were initiated, except that the operation
has no effect on the context in which the associated Reference and Change bit updates are performed.

4. If the operation either directly causes an exception (for example, the sc instruction causes a system call
exception) or is an exception, then the operation is not initiated until there is no exception having a higher
priority than the exception associated with the context-synchronizing operation.

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the
context established by the operation. (This requirement dictates that any prefetched instructions be dis-
carded and that any effects and side effects of executing them out-of-order also be discarded, except as
described in the Section Out-of-Order Accesses to Guarded Memory.)

Exceptions pem6_exceptions.fm.3.0
Page 208 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync instruction, a
context-synchronizing operation need not wait for memory-related operations to complete on this or other
processors, or for Referenced and Changed bits in the page table to be updated.

6.1.2.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second
item described above (that is, the conditions described in the second item apply to the completion of sync).
The sync and mtmsr instructions are examples of execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context-synchronizing operation,
an execution-synchronizing instruction need not ensure that the subsequent instructions execute in the
context established by this and previous instructions. This new context becomes effective sometime after the
execution-synchronizing instruction completes and before or at a subsequent context-synchronizing opera-
tion.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the exception point:

¢ SRRO always points to the instruction causing the exception except for the sc¢ instruction. In this case
SRRO points to the immediately following instruction. The instruction addressed can be determined from
the exception type and status bits, which are defined in the description of each exception. In all cases
SRRO points to the first instruction that has not completed execution. The sc instruction always com-
pletes execution, updates the instruction pointer and reports the exception. Hence, SRRO points to the
instructions following sc.

¢ Allinstructions that precede the excepting instruction complete to a point where they will not report
exceptions before the exception is processed. However, some memory accesses generated by these pre-
ceding instructions may not have been performed with respect to all other processors or system devices.

¢ The instruction causing the exception may not have begun execution, may have partially completed, or
may have completed, depending on the exception type. Handling of partially executed instructions is
described in Section 6.1.4 Partially Executed Instructions.

¢ Architecturally, no subsequent instruction has begun execution.
While instruction parallelism allows the possibility of multiple instructions reporting exceptions during the

same cycle, they are handled one at a time in program order. Exception priorities are described in
Section 6.1.5 Exception Priorities.

pem6_exceptions.fm.3.0 Exceptions
July 15, 2005 Page 209 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are nonmaskable and
highest-priority exceptions, and external interrupt and decrementer exceptions which are maskable and low-
priority. These two types of asynchronous exceptions are discussed separately.

System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while other exceptions
are being processed.

Note: Nonmaskable, asynchronous exceptions are never delayed; therefore, if two of these exceptions occur
in immediate succession, the state information saved by the first exception may be overwritten when the sub-
sequent exception occurs. Also, these exceptions are context-synchronizing if they are recoverable; the sys-
tem uses the MSR[RI] to detect whether an exception is recoverable.

While a system is running the MSRJ[RI] bit is set. When an exception occurs a copy of the MSR register is
stored in SRR1. Then most bits in the MSR are cleared including the RI bit with various exceptions (see the
exceptions types for new setting of the MSR bits). The exception handler saves the state of the machine
(saving SRRO and SRR1 into the stack and updating the stack pointer) to a point that it can incur another
exception. At this point the exception handler sets the MSR[RI] bit. Also the external interrupt can be re-
enabled. Now you can clearly understand that if the exception handler ever sees in the SRR1 register a case
where the MSRIRI] bit is not set, the exception is not recoverable (because the exception occurred while the
machine state was being saved) and a system restart procedure should be initiated.

System reset and machine check exceptions cannot be masked by using the MSR[EE] bit. Furthermore, if the
machine check enable bit, MSR[ME], is cleared and a machine check exception condition occurs, the
processor goes directly into checkstop state as the result of the exception condition. Clearly, one never wants
to run in this mode (MSR[ME] cleared) for extended periods of time. When one of these exceptions occur, the
following conditions exist at the exception point:

* For system reset exceptions, SRRO addresses the instruction that would have attempted to execute next
if the exception had not occurred.

¢ For machine check exceptions, SRRO holds either an instruction that would have completed or some
instruction following it that would have completed if the exception had not occurred.

* An exception is generated such that all instructions preceding the instruction addressed by SRRO appear
to have completed with respect to the executing processor.

Note: MSRI[RI] indicates whether enough of the machine state was saved to allow the processor to resume
processing.

Exceptions pem6_exceptions.fm.3.0
Page 210 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the exception point
(assuming these exceptions are enabled (MSR[EE] bit is set)):

* All instructions issued before the exception is taken and any instructions that precede those instructions
in the instruction stream appear to have completed before the exception is processed.

* No subsequent instructions in the instruction stream have begun execution.

* SRRO addresses the first instruction that has not completed execution.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer exceptions are
maskable. When the machine state register external interrupt enable bit is cleared (MSR[EE] = ’0’), these
exception conditions are not recognized until the EE bit is set. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of subsequent exception conditions. No two precise exceptions can
be recognized simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been handled. Excep-
tion priorities are described in Section 6.1.5 Exception Priorities.

6.1.3 Imprecise Exceptions

The PowerPC Architecture defines one imprecise exception, the imprecise mode floating-point enabled
exception. This is implemented as one of the conditions that can cause a program exception.

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRRO contains information related to
the address of the excepting instruction as follows:

* SRRO addresses either the instruction causing the exception or some instruction following the instruction
causing the exception that generated the interrupt.

* The exception is generated such that all instructions preceding the instruction addressed by SRRO have
completed with respect to the processor.

* [f the imprecise exception is caused by the context-synchronizing mechanism (due to an instruction that
caused another exception—for example, an alignment or DSI exception), then SRRO contains the
address of the instruction that caused the exception, and that instruction may have been partially exe-
cuted (refer to Section 6.1.4 Partially Executed Instructions).

¢ [f the imprecise exception is caused by an execution-synchronizing instruction other than syne, isync, or
ptesync, then SRRO addresses the instruction causing the exception. Additionally, besides causing the
exception, that instruction is considered not to have begun execution. If the exception is caused by the
syngc, isync, or ptesync instruction, SRR0 may address either the sync, isync, or ptesync instruction,
or the following instruction.

* [f the imprecise exception is not forced by either the context-synchronizing mechanism or the execution-
synchronizing mechanism, then the instruction addressed by SRRO is considered not to have begun exe-
cution if it is not the instruction that caused the exception.

* When an imprecise exception occurs, no instruction following the instruction addressed by SRRO is con-
sidered to have begun execution.

pem6_exceptions.fm.3.0 Exceptions
July 15, 2005 Page 211 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled IEEE floating-point exception mode bits in the MSR (FEO and FE1) together define whether
IEEE floating-point exceptions are handled precisely, imprecisely, or whether they are taken at all. The
possible settings are shown in Table 6-3. For further details, see Section 3.3.6 Floating-Point Program

Exceptions.

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FEO
0
0
1
1

FE1

0
1
0
1

Floating-point exceptions ignored
Floating-point imprecise nonrecoverable
Floating-point imprecise recoverable

Floating-point precise mode

As shown in the table, the imprecise floating-point enabled exception has two modes—nonrecoverable and
recoverable. These modes are specified by setting the MSR[FEQ] and MSR[FE1] bits and are described as

follows:

* Imprecise nonrecoverable floating-point enabled mode. MSR[FEQ] =’0’; MSR[FE1] = ‘1’. When an excep-
tion occurs, the exception handler is invoked at some point at or beyond the instruction that caused the
exception. It may not be possible to identify the offending instruction or the data that caused the excep-
tion. Results from the offending instruction may have been used by or affected data of subsequent

instructions executed before the exception handler was invoked.

* Imprecise recoverable floating-point enabled mode. MSR[FEQ] =’1’; MSR[FE1] =’0’. When an exception
occurs, the floating-point enabled exception handler is invoked at some point at or beyond the offending
instruction that caused the exception. Sufficient information is provided to the exception handler that it
can identify the offending instruction and correct any faulty data. In this mode, no incorrect data caused
by the offending instruction have been used by or affected data of subsequent instructions that are exe-

cuted before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable exceptions in that
the masking is usually controlled by the application program rather than by the operating system.

Exceptions
Page 212 of 657

pem6_exceptions.fm.3.0

July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment exception or DSI
exception occurs, or an imprecise floating-point exception is forced by an instruction that causes an align-
ment or DSI exception. They are as follows:

* Load multiple/string instructions that cause an alignment or DSI exception—Some registers in the range
of registers to be loaded may have been loaded.

» Store multiple/string instructions that cause an alignment or DSI exception—Some bytes in the
addressed memory range may have been updated.

* Non-multiple/string store instructions that cause an alignment or DSI exception—Some bytes just before
the boundary may have been updated. If the instruction normally alters CRO (stwex. or stdex.), CRO is
set to an undefined value. For instructions that perform register updates, the update register (rA) is not
altered.

* Floating-point load instructions that cause an alignment or DSI exception—The target register may be
altered. For update forms, the update register (rA) is not altered.

In the cases above, the number of registers and the amount of memory altered are implementation, instruc-
tion, and boundary-dependent. However, memory protection is not violated.

Note: An exception may result in the partial execution of a Load or Store instruction. For example, if the
Page Table Entry that translates the address of the memory operand is altered, by a program running on
another processor, such that the new contents of the Page Table Entry preclude performing the access, the
alteration could cause the Load or Store instruction to be aborted after having been partially executed.

Partial execution is not allowed when integer load operations (except multiple/string operations) cause an
alignment or DSI exception. The target register is not altered. For update forms of the integer load instruc-
tions, the update register (rA) is not altered.

6.1.5 Exception Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset and
machine check exceptions (although the machine check exception condition can be disabled so that the
condition causes the processor to go directly into the checkstop state). These two types of exceptions in
this class cannot be delayed by exceptions in other classes, and do not wait for the completion of any pre-
cise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

3. If an imprecise exception exists (the instruction that caused the exception has been completed and is
required by the sequential execution model), exceptions signaled by instructions subsequent to the
instruction that caused the exception are not permitted to change the architectural state of the processor.
The exception causes an imprecise program exception unless a machine check or system reset excep-
tion is pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions) have lowest priority.

The exceptions are listed in Table 6-4 in order of highest to lowest priority.

pem6_exceptions.fm.3.0 Exceptions
July 15, 2005 Page 213 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Table 6-4. Exception Priorities

Exception Class

Nonmaskable,
asynchronous

Synchronous,
precise

Exceptions

Page 214 of 657

Priority | Exception

System reset—The system reset exception has the highest priority of all exceptions. If this exception
exists, the exception mechanism ignores all other exceptions and generates a system reset exception.
When the system reset exception is generated, previously issued instructions can no longer generate
exception conditions that cause a nonmaskable exception.

Machine check—The machine check exception is the second-highest priority exception. If this exception
occurs, the exception mechanism ignores all other exceptions (except reset) and generates a machine
check exception. When the machine check exception is generated, previously issued instructions can no
longer generate exception conditions that cause a nonmaskable exception.

Instruction dependent— When an instruction causes an exception, the exception mechanism waits for
any instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions
caused by these instructions are handled first. It then generates the appropriate exception if no higher
priority exception exists when the exception is to be generated.

Note: A single instruction can cause multiple exceptions. When this occurs, those exceptions are
ordered in priority as indicated in the following:
A. Integer loads and stores
a. Program-illegal instruction
b. DSI, Data Segment, or Alignment
c. Trace (if implemented)
B. Floating-point loads and stores
a. Program-illegal instruction
b. Floating-point unavailable
c. DSI, Data Segment, or Alignment
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented)
D. rfid and mtmsrd (or mtmsr)
a. Program—~Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr) only

If precise-mode |IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is
set, a program exception occurs no later than the next synchronizing event.

E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—~Program: lllegal Instruction
b. Trace (if implemented)
F. ISI or Instruction Segment exception

The ISI or Instruction Segment exception has the lowest priority in this category. It is only recog-
nized when all instructions prior to the instruction causing this exception appear to have com-
pleted and that instruction is to be executed. The priority of this exception is specified for
completeness and to ensure that it is not given more favorable treatment. An implementation
can treat this exception as though it had a lower priority.

pem6_exceptions.fm.3.0
July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family

Table 6-4. Exception Priorities (Continued)

Exception Class Priority | Exception

Program imprecise floating-point mode enabled exceptions—When this exception occurs, the exception
handler is invoked at or beyond the floating-point instruction that caused the exception. The PowerPC

Imprecise 4 Architecture supports recoverable and nonrecoverable imprecise modes, which are enabled by setting
MSRI[FEO-FE1] = ‘10’ or ‘01’, respectively. For more information see, Section 6.1.3 Imprecise Excep-
tions.

External interrupt—The external interrupt mechanism waits for instructions currently or previously dis-
patched to complete execution. After all such instructions are completed, and any exceptions caused by
5 those instructions have been handled, the exception mechanism generates this exception if no higher
priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is zero when
Maskable, the exception is detected, it is delayed until the bit is set.
asynchronous
Decrementer—This exception is the lowest priority exception. When this exception is created, the excep-
tion mechanism waits for all other possible exceptions to be reported. It then generates this exception if
no higher priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is
zero when the exception is detected, it is delayed until the bit is set.

Nonmaskable, asynchronous exceptions (namely, system reset or machine check exceptions) may occur at
any time. That is, these exceptions are not delayed if another exception is being handled (although machine
check exceptions can be delayed by system reset exceptions). As a result, state information for the inter-
rupted exception handler may be lost.

All other exceptions have lower priority than system reset and machine check exceptions, and the exception
might not be taken immediately when it is recognized. Only one synchronous, precise exception can be
reported at a time. If a maskable, asynchronous or an imprecise exception condition occurs while instruction-
caused exceptions are being processed, its handling is delayed until all exceptions caused by previous
instructions in the program flow are handled and those instructions complete execution.

6.2 Exception Processing

Associated with each kind of exception is an exception vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding exception occurs. Exception processing consists of saving a
small part of the processor's state in certain registers, identifying the cause of the exception in other registers,
and continuing execution at the corresponding exception vector location.

When an exception is taken, the processor uses the save/restore registers, SRR1 and SRRO, respectively, to
save the contents of the MSR for the interrupted process and to help determine where instruction execution
should resume after the exception is handled.

When an exception occurs, the address saved in SRRO is used to help calculate where instruction processing
should resume when the exception handler returns control to the interrupted process. Depending on the
exception, this may be the address in SRRO or at the next address in the program flow. All instructions in the
program flow preceding this one will have completed execution and no subsequent instruction will have
completed execution. This may be the address of the instruction that caused the exception or the next one
(as in the case of a system call or trap exception). The SRRO register is shown in Figure 6-1.

pem6_exceptions.fm.3.0 Exceptions
July 15, 2005 Page 215 of 657

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Figure 6-1. Machine Status Save/Restore Register 0

|:| Reserved

SRRO (holds effective address for instruction in interrupted program flow) 00

0 61 6263

The save/restore register 1 (SRR1) is used to save machine status (selected bits from the MSR and other
implementation-specific status bits as well) on exceptions and to restore those values when rfid is executed.
SRR1 is shown in Figure 6-2.

Figure 6-2. Machine Status Save/Restore Register 1

Exception-specific information and MSR bit values

0 63

When an exception occurs, SRR1 bits [33—36] and [42—47] are loaded with exception-specific information
and MSR bits [0, 48-55, 57-59,62—63] are placed into the corresponding bit positions of SRR1. Depending
on the implementation, additional bits of the MSR may be copied to SRR1.

Note: In some implementations, every instruction fetch when MSR[IR] =’1’, and every data access requiring
address translation when MSR[DR] = 1", can modify SRR0O and SRR1.

The MSR bits are shown in Figure 6-3.

Figure 6-3. Machine State Register (MSR)

D Reserved
SF 000 0000 ... 0000 0 POW| 0 |ILE|EE|PR|FP [ME|(FEO|SE|BE|FE1[0 0 [IR|DR| 0 [PMM|RI|LE
0o 1 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Exceptions pem6_exceptions.fm.3.0

Page 216 of 657 July 15, 2005

Programming Environments Manual for 64-Bit Microprocessors
PowerPC RISC Microprocessor Family
Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Bit(s) Name |Description

Sixty-four bit mode

0 SF 0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.
1 — Reserved
64-BIT BRIDGE Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or

ISF 32-bit mode for the context established by the exception.

2 Note: If the bridge function is not implemented, this bit is treated as reserved.
3-44 — Reserved
Power management enable
0 Power management disabled (normal operation mode)

45 POW |1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function is not implemented, this
bit is treated as reserved.

46 — Reserved

This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception
47 ILE occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-

tion.

External interrupt enable

48 EE 0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer
exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.
Privilege level

49 PR 0 The processor can ex