MIT/GNU Scheme Reference Manual

Edition 1.105 for release 9.2
2014-05-05

by Chris Hanson
the MIT Scheme Team
and a cast of thousands

This manual documents MIT/GNU Scheme 9.2.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Short Contents

Acknowledgements. 1
L OVEIVIEW .« vttt e 3
2 Special Forms e 15
3 Equivalence Predicates......... 55
4 NUmbers . ..o e 61
5 Characters.oii i e 79
6 SETINgS . oo e 91
A)1 109
8 Vet OrS . o ot 125
9 Bit Strings. e 129
10 Miscellaneous Datatypes. 133
11 ASSOCIationS. ...ttt e 147
12 Procedures. 173
13 Environmentsin . 183
14 Input/Outputot 187
15 Operating-System Interface 231
16 Error System........... .. 265
17 GraphiCs .. e e e 289
18 Win32 Package Reference........... 303
A GNU Free Documentation License...................... 313
B Binding Index 321
C Concept Index. ... e 339

Table of Contents

Acknowledgements 1
1 OVerview ... 3
1.1 Notational Conventionsccoiiiiiiiiiiiiiiieaann. 4
111 Brrors. .o 4
1.1.2 Examplesoooi e 4
1.1.3 Entry Format i 5
1.2 Scheme Concepts.ouu it 6
1.2.1 Variable Bindings ... 6
1.2.2 Environment Conceptscovveiiiiiiiiiiinennnn... 6
1.2.3 Initial and Current Environments.......................... 7
1.2.4 Static Scoping. ..o 7
1.25 Trueand False............oo i, 8
1.2.6 External Representations.............. ..., 8
1.2.7 Disjointness of Types........ccoviiiiiiiiiiiiiiiiiinin.. 9
1.2.8 Storage Model...... ... 9
1.3 Lexical Conventionsuuuieiiiiiiiiiiieeeeaeanannnns 9
1.3.1 WHhitespace. . ..ottt e 9
1.3.2 Delimiters.oouuiiiiii 10
1.3.3 Identifiers. ..o 10
1.3.4 Uppercase and Lowercase...............coiiiiiiineee .. 10
1.3.5 Naming Conventionsc.ooiiiiiiiiiiiieien.. 10
1.3.6 CommEnts 11
1.3.7 Additional Notations...............ciiiiiii .. 11
1.4 EXPreSSIONS . oottt ettt et e 12
1.4.1 Literal EXpressions...........ooiiiiiiinininnn. 13
1.4.2 Variable References L. 13
1.4.3 Special Form Syntax ..., 13
1.4.4 Procedure Call Syntaxcocoviiiiiiiiiiinnn... 13

2 Special Forms................... 15
2.1 Lambda ExXpressionsooouiiiiniiniiiiiiii.. 15
2.2 Lexical Bindingo 17
2.3 Dynamic Bindingo 18
2.4 Definitions. ..o 20
2.4.1 Top-Level Definitions.............. .. o i, 21
2.4.2 Internal Definitions. 21
2.5 ASSIGNIMENES . oo\t 22
2.6 QUOINE. ..ottt e 22
2.7 Conditionalscooiiiii 24
2.8 SeqUENCING.ottt 26

2.9 Tteration 27

iv MIT/GNU Scheme 9.2

2.10 Structure Definitions......... i 29
201 MaACTOS oo 34
2.11.1 Binding Constructs for Syntactic Keywords.............. 35
2.11.2 Pattern Languageccoviiiiiiiiiiiiiiiiii .., 38
2.11.3 Syntactic Closuresccoviuiiiiiiiiiiniieennn.. 40
2.11.3.1 Syntax Terminologycooiiiiiiin.. 40
2.11.3.2 Transformer Definition 41
2.11.3.3 Identifiers........ ..o 45
2.11.4 Explicit Renamingo i i 47
212 SRFEIsyntax........oiiiii i e 49
2.12.1 cond-expand (SRFI0).........., 50
2.12.2 receive (SRFI8) ..o.ooiiii 51
2.12.3 and-let™ (SRFI2) 52
2.12.4 define-record-type (SRFI9)l 52

3 Equivalence Predicates........................ 55
4 Numbers........... 61
4.1 Numerical types. .. oo 61
4.2 BEXACHESS . . o vttt ettt 62
4.3 Implementation restrictions i i 62
4.4 Syntax of numerical constants............... oL 64
4.5 Numerical operations.c.coouiiiiiiiiiiiiiiiiie.. 64
4.6 Numerical input and output............. 71
4.7 Fixnum and Flonum Operations................... ...t 74
4.7.1 Fixnum Operations.oiiiiiiiiiiiieniiiea . 74
4.7.2 Flonum Operations.............ccoiiiiiiiiiiiiniiean. 76
4.8 Random Numbers........ ... 7
5 Characters.............ccoiiiiiiiiiii, 79
5.1 External Representation of Characters......................... 79
5.2 Comparison of Characters...............ooiiiiiiiii ... 81
5.3 Miscellaneous Character Operations........................... 81
5.4 Internal Representation of Characters......................... 82
5.5 ISO-8859-1 Charactersoueurtiiiiieinaennan.. 84
5.6 Character Sets........oouiiiii 84
5.7 Unicode. .. e 87
5.7.1 Wide Strings......oooviii e 87

5.7.2 Unicode Representationscoooiiiiiiiii. 88

6 Strings......... 91

6.1 Construction of Strings......... ... 92
6.2 Selecting String Components..............ccooiiiiiiiiiin.. 92
6.3 Comparison of Strings......... ..o 93
6.4 Alphabetic Case in Strings ... 94
6.5 Cutting and Pasting Strings........ ...t 95
6.6 Searching Stringscoiiiiiiiiii i 97
6.7 Matching Strings.........o.oiiiiiiiii e 99
6.8 Regular EXpressionsot 100
6.8.1 Regular-expression procedures...................ooe.... 100
6.8.2 REXP abstraction 102
6.9 Modification of Strings....... ... 104
6.10 Variable-Length Strings............. ... oo i L. 106
6.11 Byte Vectors. ..o 106
T Lists......... 109
T Pairs 110
7.2 Construction of Lists...... ... 112
7.3 Selecting List Components............c.oooiiiiiiiiiia... 114
7.4 Cutting and Pasting Lists........... ... i 115
7.5 Filtering Lists. ... 117
7.6 Searching Lists..........c.oiiiiiiiiii i 119
7.7 Mapping of Lists. ... 120
7.8 Reduction of Lists ... 121
7.9 Miscellaneous List Operations................cooiiieea. ... 123
8 Vectors...........oiiiiiiii 125
8.1 Construction of Vectors......... ..o, 125
8.2 Selecting Vector Components.cooiiiiiiiiiieean... 126
8.3 Cutting Vectors. e 127
8.4 Modifying Vectorso 127
9 Bit Strings........... 129
9.1 Construction of Bit Strings............. ... i 129
9.2 Selecting Bit String Componentsc.ooeviiina... 130
9.3 Cutting and Pasting Bit Strings.............., 130
9.4 Bitwise Operations on Bit Strings............................ 131
9.5 Modification of Bit Strings................o i, 131

9.6 Integer Conversions of Bit Strings............................ 132

vi MIT/GNU Scheme 9.2

10 Miscellaneous Datatypes................... 133
10.1 Booleans ...t 133
10.2 Symbols 134
10.3 Cells. oo 137
10.4 Records 138
10.5 PromiiSes ...t 139
10.6 SEIreaINIS . o oottt 141
10.7 Weak References.............c i 143

10.7.1 Weak Pairs ... 143
10.7.2 Ephemeronsc.uiiiiiieeeiiiiiiiiiannean... 144

11 Associations................. 147
11.1 Association LiStS..... ..o 147
11.2 1D Tables ..o 149
11.3 The Association Table 150
11.4 Hash Tables e 151

11.4.1 Construction of Hash Tables 152
11.4.2 Basic Hash Table Operations........................... 155
11.4.3 Resizing of Hash Tables.............. 157
11.4.4 Address Hashing............... ..o, 159
11.5 Object Hashing........ ..o 159
11.6 Red-Black Treesot 161
11.7 Weight-Balanced Trees. ..., 164
11.7.1 Construction of Weight-Balanced Trees................. 165
11.7.2 Basic Operations on Weight-Balanced Trees............ 166
11.7.3 Advanced Operations on Weight-Balanced Trees. 167
11.7.4 Indexing Operations on Weight-Balanced Trees......... 170

12 Procedures............., 173
12.1 Procedure Operations.c.coooiiiiiiiiiiiiiennnn.. 173
12,2 ATIEy .o 174
12.3 Primitive Procedures. 175
12,4 ContinuationsS.uuiiii i 176
12.5 Application HOOKS 178
12.6 Generic Dispatch ... i 180

12.6.1 Generic Procedures, 180
12.6.2 Method Generatorsoovuuiiiiini .. 181
12.6.3 Dispatch Tags ..o 181

13 Environments 183
13.1 Environment Operations...............oooiiiiiiiiiiia.. 183
13.2 Environment Variables............ i 185
13.3 REPL Environment........., 185

13.4 Top-level Environments................o i, 186

14 Input/Output............................... 187
141 POrtS .o 187
14.2 File Ports. ..o 189
14.3 String Ports . ..o 191
14.4 Input Procedureso.iiiiiiiiiiiii .. 193
14.5 Output Procedures ... 196
14.6 Format ... 199
14.7 Custom Outpub.ooinni i 200
14.8 Prompting......... .o 202
14.9 Port Primitiveso 204

14.9.1 Port Types .. .vveii e e 204
14.9.2 Constructors and Accessors for Ports................... 205
14.9.3 Input Port Operations, 206
14.9.4 Output Port Operations...................coiiiiian. 207
14.9.5 Blocking Mode. ... 209
14.9.6 Terminal Mode 210
14.10 Parser Buffers.......... 211
14.11 Parser Languageooiiieiiiiniiiiiiiiii 214
14.11.1 *Matcher 216
14.11.2 A PaISeT ..ttt e e e 219
14.11.3 Parser-language Macros.............ccooiiiiiiii.. 222
14.12 XML SUPPOTt «« v et 223
14.12.1 XML Input ..o 223
14.12.2 XML Output .. cvvvei 224
14.12.3 XML Namesoon e 225
14.12.4 XML Structure 227

15 Operating-System Interface................ 231

15.1 Pathnamesooiiiiiii i 231
15.1.1 Filenames and Pathnames.............................. 232
15.1.2 Components of Pathnames................., 233
15.1.3 Operations on Pathnames.............................. 236
15.1.4 Miscellaneous Pathname Procedures.................... 239

15.2 Working Directoryo 240

15.3 File Manipulation.......... ... o i i 241

15.4 Directory Reader ... 247

155 Dateand Timec e 247
15.5.1 Universal Timeooo oo, 248
15.5.2 Decoded Timecooiiiii e, 248
15.5.3 File Time.......ooiiii e 250
15.5.4 Time-Format Conversion..................ovviueee.... 251
15.5.5 External Representation of Time 254

15.6 Machine Time ...ttt 254

15.7 SUDPIOCESSES. . .t vttt e 256
15.7.1 Subprocess Procedures..............o i 256
15.7.2 Subprocess Conditionsccovviiiiiiiii... 257
15.7.3 Subprocess Optionsc.ovieiieiiiiineiiienannn.. 258

15.8

TCOP SOCKES . . oot 261

vii

viii MIT/GNU Scheme 9.2

15.9 Miscellaneous OS Facilities. ...t 262
16 Error System.................., 265
16.1 Condition Signalling, 266
16.2 Error MesSagesttt 268
16.3 Condition Handling........... .o oo i 269
16.4 Restartsoouiii i 271
16.4.1 Establishing Restart Code..............t 272
16.4.2 Invoking Standard Restart Code 273
16.4.3 Finding and Invoking General Restart Code............ 275
16.4.4 The Named Restart Abstraction........................ 276
16.5 Condition Instances............c.oooiiiiiiiiiiiiiiia.. 276
16.5.1 Generating Operations on Conditions 277
16.5.2 Condition Abstraction oo i 278
16.5.3 Simple Operations on Condition Instances.............. 279
16.6 Condition TyPes.ttt e 279
16.7 Condition-Type Taxonomycooiiiiiieenieenn... 280
17 Graphics............ ... 289
17.1 Opening and Closing of Graphics Devices 289
17.2 Coordinates for Graphicso, 290
17.3 Drawing Graphicso 290
17.4 Characteristics of Graphics Output.......................... 292
17.5 Buffering of Graphics Outputooiiiin.. 293
17.6 Clipping of Graphics Output............ 294
17.7 Custom Graphics Operations...............coiiiiiiio... 294
17.8 IMAZES .. e e 294
17.9 X Graphics . ..o vvii e e 295
17.9.1 X Graphics Type ..ot 296
17.9.2 Utilities for X Graphics ..., 296
17.9.3 Custom Operations on X Graphics Devices............. 297
17.10 Win32 Graphics ... 300
17.10.1 Win32 Graphics Type........coviiiiiiiiii i 300
17.10.2 Custom Operations for Win32 Graphics............... 301
18 Win32 Package Reference.................. 303
18.1 OVEIVIEW . .ve ettt 303
18.2 Foreign Function Interfaceo .. 303
18.2.1 Windows Types. ..ot 304
18.2.2 Windows Foreign Procedures........................... 306
18.2.3 Win32 API names and procedures...................... 308
18.3 Device Independent Bitmap Utilities 309
18.3.1 DIB procedures.........coovuuiiiiiiiiiiiii i 309

18.3.2 Other parts of the DIB Utilities implementation........ 311

Appendix A GNU Free Documentation License
... 313
A.1 ADDENDUM: How to use this License for your documents... 319

Appendix B Binding Index 321

Appendix C Concept Index................... 339

ix

Acknowledgements 1

Acknowledgements

While "a cast of thousands" may be an overstatement, it is certainly the case that this
document represents the work of many people. First and foremost, thanks go to the authors
of the Revised™4 Report on the Algorithmic Language Scheme, from which much of this
document is derived. Thanks also to BBN Advanced Computers Inc. for the use of parts of
their Butterfly Scheme Reference, and to Margaret O’Connell for translating it from BBN’s
text-formatting language to ours.

Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software
Foundation, for creating and maintaining the Texinfo formatting language in which this
document is written.

This report describes research done at the Artificial Intelligence Laboratory and the
Laboratory for Computer Science, both of the Massachusetts Institute of Technology. Sup-
port for this research is provided in part by the Advanced Research Projects Agency of the
Department of Defense and by the National Science Foundation.

Chapter 1: Overview 3

1 Overview

This manual is a detailed description of the MIT/GNU Scheme runtime system. It is
intended to be a reference document for programmers. It does not describe how to run
Scheme or how to interact with it — that is the subject of the MIT/GNU Scheme User’s
Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT/GNU
Scheme programming environment, and explains the syntactic and lexical conventions of
the language. Subsequent chapters describe special forms, numerous data abstractions, and
facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised~4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT/GNU Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.

4 MIT/GNU Scheme 9.2

Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme will
call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples

have a common format that shows the expression being evaluated on the left hand side, an

“arrow” in the middle, and the value of the expression written on the right. For example:
(+12) = 3

Sometimes the arrow and value will be moved under the expression, due to lack of space.
Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,
prefaced by ° "
(+ 1 ’foo) Illegal datum
An example that shows printed output marks it with ‘
(begin (write ’foo) ’bar)
- foo
= bar

Chapter 1: Overview 5

When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT/GNU Scheme variable, special form, or procedure begins with
one or more header lines in this format:

template [category]
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.

A horizontal ellipsis (. ..) is describes repeated components. Specifically,
thing . ..

indicates zero or more occurrences of thing, while
thing thing . ..

indicates one or more occurrences of thing.

Brackets, [], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions],
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,

cdr pair [procedure]
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.

6 MIT/GNU Scheme 9.2

Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.

In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

e object: any object

e thunk: a procedure of no arguments
e x, y: real numbers

e (, n: integers

e k: an exact non-negative integer

Some examples:

list object ... [procedure]
indicates that the standard Scheme procedure list takes zero or more arguments, each of
which may be any Scheme object.

write-char char [output-port] [procedure]
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments|, page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable
signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;
rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x
is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Chapter 1: Overview 7

Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions], page 21) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions|, page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT/GNU Scheme provides an initial environment that contains all of the variable bind-
ings described in this manual. Most environments are ultimately extensions of this initial
environment. In Scheme, the environment in which your programs execute is actually a
child (extension) of the environment containing the system’s bindings. Thus, system names
are visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol
and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) = 3 ;not 7

Here £ and g are bound to procedures created in the initial environment. Because Scheme

is statically scoped, the call to g from f extends the initial environment (the one in which
g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to £, in which x is bound to 5 by the call to £, and the answer would be 7.)

Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because

8 MIT/GNU Scheme 9.2

of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This
manual uses the word true to refer to any Scheme value that counts as true, and the word
false to refer to any Scheme value that counts as false. In conditional tests, all values count
as true except for #£, which counts as false (see Section 2.7 [Conditionals|, page 24).

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000" and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘(08 13)’ and ‘(8 . (13 . ()))".

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 22).

External representations can also be used for input and output. The procedure read
parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates
writing programs such as interpreters and compilers that treat programs as data or data as
programs.

Chapter 1: Overview 9

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False|, page 8, for an exception):

bit-string? environment? port? symbol?
boolean? null? procedure? vector?
cell? number? promise? weak-pair?
char? pair? string?

condition?

1.2.8 Storage Model
This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error to
attempt to store a new value into a location that is denoted by an immutable object. Note
that the MIT/GNU Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to
improve the readability of your programs and to separate tokens from each other, when nec-
essary. (A token is an indivisible lexical unit such as an identifier or number.) Whitespace
is otherwise insignificant. Whitespace may occur between any two tokens, but not within a
token. Whitespace may also occur inside a string, where it is significant.

10 MIT/GNU Scheme 9.2

1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as delim-
iters:

¢y oo

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

L1 {1}

For example, if the value of the variable name is "max":

(1ist"Hi"name(+ 1 2)) = ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in
several ways in Scheme programs:

e An identifier can be used as a variable or as a syntactic keyword.

e When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow.
MIT/GNU Scheme allows all of the identifiers that standard Scheme does, plus many
more.

MIT/GNU Scheme defines a potential identifier to be a sequence of non-delimiter char-
acters that does not begin with either of the characters ‘#’ or ‘,’. Any such sequence of
characters that is not a syntactically valid number (see Chapter 4 [Numbers|, page 61) is
considered to be a valid identifier. Note that, although it is legal for ‘#’ and ‘,’ to appear
in an identifier (other than in the first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q
list->vector soup

+ Vi7a
<=7 a34kTMNs

the-word-recursion-has-many-meanings

1.3.4 Uppercase and Lowercase

Scheme doesn’t distinguish uppercase and lowercase forms of a letter except within character
and string constants; in other words, Scheme is case-insensitive. For example, ‘Foo’ is the
same identifier as ‘FO0’, and ‘#x1AB’ is the same number as ‘#X1ab’. But ‘#\a’ and ‘#\A’
are different characters.

1.3.5 Naming Conventions

A predicate is a procedure that always returns a boolean value (#t or #f). By convention,
predicates usually have names that end in ‘7.

A mutation procedure is a procedure that alters a data structure. By convention, mu-
tation procedures usually have names that end in ‘!’.

Chapter 1: Overview 11

1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything
on a line in which a semicolon appears, from the semicolon until the end of the line. The
entire comment, including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with
the characters ‘#|’ and ends with the characters ‘|#’. This alternative form is an MIT/GNU
Scheme extension. As with ordinary comments, all of the characters in an extended com-
ment, including the leading ‘#|’ and trailing ‘|#’, are treated as whitespace. Comments
of this form may extend over multiple lines, and additionally may be nested (unlike the
comments of the programming language C, which have a similar syntax).

;55 This is a comment about the FACT procedure. Scheme
;55 ignores all of this comment. The FACT procedure computes
;55 the factorial of a non-negative integer.

#|

This is an extended comment.

Such comments are useful for commenting out code fragments.
| #

(define fact

(lambda (n)
(if (= n 0) ;This is another comment:
1 ;Base case: return 1

(x n (fact (- n 1))))))
1.3.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Numbers],
page 61, for a description of the notations used for numbers.

+- . The plus sign, minus sign, and period are used in numbers, and may also occur
in an identifier. A delimited period (not occurring within a number or identifier)
is used in the notation for pairs and to indicate a “rest” parameter in a formal
parameter list (see Section 2.1 [Lambda Expressions|, page 15).

@) Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists],
page 109).
" The double quote delimits strings (see Chapter 6 [Strings|, page 91).

\ The backslash is used in the syntax for character constants (see Chapter 5

[Characters|, page 79) and as an escape character within string constants (see
Chapter 6 [Strings|, page 91).

; The semicolon starts a comment.

’ The single quote indicates literal data; it suppresses evaluation (see Section 2.6
[Quoting], page 22).

¢ The backquote indicates almost-constant data (see Section 2.6 [Quoting],
page 22).

12 MIT/GNU Scheme 9.2

, The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 22).
,Q A comma followed by an at-sign is used in conjunction with the backquote (see

Section 2.6 [Quoting], page 22).

The sharp (or pound) sign has different uses, depending on the character that
immediately follows it:

#t #f These character sequences denote the boolean constants (see Section 10.1
[Booleans|, page 133).

#\ This character sequence introduces a character constant (see Chapter 5 [Char-
acters|, page 79).

#(This character sequence introduces a vector constant (see Chapter 8 [Vectors],
page 125). A close parenthesis,)’, terminates a vector constant.

#e #1i #b #o #d #1 #s #x
These character sequences are used in the notation for numbers (see Chapter 4
[Numbers|, page 61).

#| This character sequence introduces an extended comment. The comment is
terminated by the sequence ‘|#’. This notation is an MIT/GNU Scheme exten-
sion.

#! This character sequence is used to denote a small set of named constants. Cur-

rently there are only two of these, #!optional and #!rest, both of which are
used in the lambda special form to mark certain parameters as being “optional”
or “rest” parameters. This notation is an MIT/GNU Scheme extension.

#x This character sequence introduces a bit string (see Chapter 9 [Bit Strings]
page 129). This notation is an MIT/GNU Scheme extension.

9

#[This character sequence is used to denote objects that do not have a readable
external representation (see Section 14.7 [Custom Output], page 200). A close
bracket, ‘], terminates the object’s notation. This notation is an MIT/GNU
Scheme extension.

#0 This character sequence is a convenient shorthand used to refer to objects by
their hash number (see Section 14.7 [Custom Output], page 200). This notation
is an MIT/GNU Scheme extension.

#it These character sequences introduce a notation used to show circular structures
in printed output, or to denote them in input. The notation works much like
that in Common Lisp, and is an MIT/GNU Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal, a
variable reference, a special form, or a procedure call.

Chapter 1: Overview 13

1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In general,
the external representation must be quoted (see Section 2.6 [Quoting], page 22); but some
external representations can be used without quotation.

llabcll :> llabcll
145932 = 145932
#t = #t

#\a = #\a

The external representation of numeric constants, string constants, character constants,
and boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and
vectors require quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers|, page 10) is a variable
reference; the identifier is the name of the variable being referenced. The value of the
variable reference is the value stored in the location to which the variable is bound. An
error is signalled if the referenced variable is unbound or unassigned.

(define x 28)

X = 28

1.4.3 Special Form Syntax

(keyword component ...)

A parenthesized expression that starts with a syntactic keyword is a special form. Each
special form has its own syntax, which is described later in the manual.

Note that syntactic keywords and variable bindings share the same namespace. A local
variable binding may shadow a syntactic keyword, and a local syntactic-keyword definition
may shadow a variable binding.

The following list contains all of the syntactic keywords that are defined when MIT/GNU
Scheme is initialized:

access and begin

case cond cons-stream

declare define

define-integrable define-structure define-syntax

delay do er-macro-transformer

fluid-let if lambda

let let* let*-syntax

let-syntax letrec letrec-syntax

local-declare named-lambda non-hygienic-macro-
transformer

or quasiquote quote

rsc-macro-transformer sc-macro-transformer set!

syntax-rules the-environment

1.4.4 Procedure Call Syntax

(operator operand ...)

14 MIT/GNU Scheme 9.2

A procedure call is written by simply enclosing in parentheses expressions for the proce-
dure to be called (the operator) and the arguments to be passed to it (the operands). The
operator and operand expressions are evaluated and the resulting procedure is passed the
resulting arguments. See Section 2.1 [Lambda Expressions|, page 15, for a more complete
description of this.

Another name for the procedure call expression is combination. This word is more
specific in that it always refers to the expression; “procedure call” sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression
and the operand expressions with the same evaluation rules, and the order of evaluation is
unspecified.

(+ 34) = 7
((if #f = %) 3 4) = 12
A number of procedures are available as the values of variables in the initial environment;
for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure
call: it is a special form.

Chapter 2: Special Forms 15

2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter describes
the basic Scheme special forms.

2.1 Lambda Expressions

lambda formals expression expression . . . [special form)]
A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called
the closing environment. When the procedure is later called with some arguments,
the closing environment is extended by binding the variables in the formal parameter
list to fresh locations, and the locations are filled with the arguments according to
rules about to be given. The new environment created by this process is referred to
as the invocation environment.

Once the invocation environment has been constructed, the expressions in the body
of the 1lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of
the procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required All of the required parameters are matched against the arguments first.
If there are fewer arguments than required parameters, an error of type
condition-type:wrong-number-of-arguments is signalled; this error is
also signalled if there are more arguments than required parameters and
there are no further parameters.

Optional Once the required parameters have all been matched, the optional param-
eters are matched against the remaining arguments. If there are fewer ar-
guments than optional parameters, the unmatched parameters are bound
to special objects called default objects. If there are more arguments
than optional parameters, and there are no further parameters, an error
of type condition-type:wrong-number-of-arguments is signalled.

The predicate default-object?, which is true only of default objects,
can be used to determine which optional parameters were supplied, and
which were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.
(If there are no remaining arguments, the rest parameter is bound to the
empty list.)
In Scheme, unlike some other Lisp implementations, the list to which a
rest parameter is bound is always freshly allocated. It has infinite extent
and may be modified without affecting the procedure’s caller.

16

MIT/GNU Scheme 9.2

Specially recognized keywords divide the formals parameters into these three classes.
The keywords used here are ‘#!optional’, ‘.’ and ‘#!rest’. Note that only ‘.’ is
defined by standard Scheme — the other keywords are MIT /GNU Scheme extensions.

‘#!'rest’ has the same meaning as ‘.’ in formals.

The use of these keywords is best explained by means of examples. The following
are typical lambda lists, followed by descriptions of which parameters are required,
optional, and rest. We will use ‘#!rest’ in these examples, but anywhere it appears
‘.7 could be used instead.

(abc) a, b, and c are all required. The procedure must be passed exactly three
arguments.

(a b #'!'optional c)
a and b are required, c is optional. The procedure may be passed either
two or three arguments.

(#!optional a b c)
a, b, and c are all optional. The procedure may be passed any number
of arguments between zero and three, inclusive.

a

(#'rest a)
These two examples are equivalent. a is a rest parameter. The procedure
may be passed any number of arguments. Note: this is the only case in
which ‘.’ cannot be used in place of ‘#!rest’.

(a b #'optional c d #!rest e)
a and b are required, ¢ and d are optional, and e is rest. The procedure
may be passed two or more arguments.

Some examples of lambda expressions:

(lambda (x) (+ x x)) = #[compound-procedure 53]
((lambda (x) (+ x x)) 4) = 8

(define reverse-subtract
(lambda (x y)
-y x)))
(reverse-subtract 7 10) = 3

(define foo
(let ((x 4))
(lambda (y) (+ x y))))
(foo 6) = 10

named-lambda formals expression expression . . . [special form]

The named-lambda special form is similar to lambda, except that the first “required
parameter” in formals is not a parameter but the name of the resulting procedure; thus
formals must have at least one required parameter. This name has no semantic mean-
ing, but is included in the external representation of the procedure, making it useful

Chapter 2: Special Forms 17

for debugging. In MIT/GNU Scheme, lambda is implemented as named-lambda, with
a special name that means “unnamed”.

(named-lambda (f x) (+ x x)) = #[compound-procedure 53 f]
((named-lambda (f x) (+ x x)) 4) = 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The
syntax of the three constructs is identical, but they differ in the regions they establish for
their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound. In a let* expression, the evaluations and bindings are
sequentially interleaved. And in a letrec expression, all the bindings are in effect while
the initial values are being computed (thus allowing mutually recursive definitions).

let ((variable init) ...) expression expression . . . [special form)]
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-
ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.
Note that the following are equivalent:
(let ((variable init) ...) expression expression ...)
((lambda (variable ...) expression expression ...) init ...)
Some examples:

(et ((x 2) (y 3
(*x x y)) = 6

(let ((x 2) (y 3))
(let ((foo (lambda (z) (+ x y 2)))
(x 7))
(foo 4))) = 9

See Section 2.9 [Iteration], page 27, for information on “named let”.

let* ((variable init) ...) expression expression . . . [special form]|
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variablel init1)
(variable2 init2)

(variableN initQ))
expression
expression ...)

MIT/GNU Scheme 9.2

(let ((variablel init1))
(let ((variable2 init2))

(let ((variableN initN))
expression
expression ...)

co))

An example:

(let ((x 2) (y 3))
(letx ((x 7)

(z (+ x 7))
(x z x))) = 70
letrec ((variable init) ...) expression expression . . . [special form)]

The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(0dd? (- n 1)))))
(odd?
(lambda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88)) = #t

One restriction on letrec is very important: it shall be possible to evaluated each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all the
inits are lambda or delay expressions and the restriction is satisfied automatically.

2.3 Dynamic Binding

fluid-let ((variable init) ...) expression expression . . . [special form)]

The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the

Chapter 2: Special Forms 19

expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.

The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead
it assigns the value of each init to the binding (determined by the rules of lexical
scoping) of its corresponding variable.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are temporarily unassigned.

An error of type condition-type:unbound-variable is signalled if any of the vari-
ables are unbound. However, because fluid-let operates by means of side effects,
it is valid for any variable to be unassigned when the form is entered.

Here is an example showing the difference between fluid-let and let. First see how
let affects the binding of a variable:

(define variable #t)
(define (access-variable) variable)

variable = #t
(let ((variable #f))

(access-variable)) = #t
variable = #t

access-variable returns #t in this case because it is defined in an environment with
variable bound to #t. fluid-1let, on the other hand, temporarily reuses an existing

variable:
variable = #t
(fluid-let ((variable #f)) ;reuses old binding
(access-variable)) = #f
variable = #t

The extent of a dynamic binding is defined to be the time period during which the
variable contains the new value. Normally this time period begins when the body is
entered and ends when it is exited; on a sequential machine it is normally a contiguous
time period. However, because Scheme has first-class continuations, it is possible to
leave the body and then reenter it, as many times as desired. In this situation, the
extent becomes non-contiguous.

When the body is exited by invoking a continuation, the new value is saved, and
the variable is set to the old value. Then, if the body is reentered by invoking a
continuation, the old value is saved, and the variable is set to the new value. In
addition, side effects to the variable that occur both inside and outside of body are
preserved, even if continuations are used to jump in and out of body repeatedly.

Here is a complicated example that shows the interaction between dynamic binding and
continuations:

20 MIT/GNU Scheme 9.2

(define (complicated-dynamic-binding)
(let ((variable 1)
(inside-continuation))
(write-line variable)
(call-with-current-continuation
(lambda (outside-continuation)
(fluid-let ((variable 2))
(write-line variable)
(set! variable 3)
(call-with-current-continuation
(lambda (k)
(set! inside-continuation k)
(outside-continuation #t)))
(write-line variable)
(set! inside-continuation #f))))
(write-line variable)
(if inside-continuation
(begin
(set! variable 4)
(inside-continuation #£f)))))

Evaluating ‘(complicated-dynamic-binding)’ writes the following on the console:

Commentary: the first two values written are the initial binding of variable and its
new binding after the fluid-let’s body is entered. Immediately after they are written,
variable is set to ‘3’, and then outside-continuation is invoked, causing us to exit the
body. At this point, ‘1’ is written, demonstrating that the original value of variable has
been restored, because we have left the body. Then we set variable to ‘4’ and reenter the
body by invoking inside-continuation. At this point, ‘3’ is written, indicating that the
side effect that previously occurred within the body has been preserved. Finally, we exit
body normally, and write ‘4’, demonstrating that the side effect that occurred outside of
the body was also preserved.

2.4 Definitions

define variable [expression] [special form]

define formals expression expression . . . [special form)]
Definitions are valid in some but not all contexts where expressions are allowed.
Definitions may only occur at the top level of a program and at the beginning of
a lambda body (that is, the body of a lambda, let, let*, letrec, fluid-let, or
“procedure define” expression). A definition that occurs at the top level of a program
is called a top-level definition, and a definition that occurs at the beginning of a body
is called an internal definition.

Chapter 2: Special Forms 21

In the second form of define (called “procedure define”), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (namel name2 ...)
expression
expression ...)

(define namel

(named-lambda (namel name2 ...)
expression
expression ...))

2.4.1 Top-Level Definitions
A top-level definition,

(define variable expression)
has essentially the same effect as this assignment expression, if variable is bound:
(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing the assignment (it is an error to perform a set! on an
unbound variable). If you omit expression, the variable becomes unassigned; an attempt to
reference such a variable is an error.

(define add3

(lambda (x) (+ x 3))) = unspecified
(add3 3) = 6
(define first car) = unspecified
(first ’(1 2)) = 1
(define bar) = unspecified
bar Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is, the
body of a lambda, let, let*, letrec, fluid-let, or “procedure define” expression),
rather than at the top level of a program. The variable defined by an internal definition is
local to the body. That is, variable is bound rather than assigned, and the region of the
binding is the entire body. For example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (x a b) a)))
(foo (+ x 3))) = 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to

22 MIT/GNU Scheme 9.2
(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (x a b) a))))
(foo (+ x 3))))
2.5 Assignments
set! variable [expression] [special form]
If expression is specified, evaluates expression and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; a subsequent reference to such a variable is an error. In either case, the
value of the set! expression is unspecified.
Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form
is entered.
(define x 2) = unspecified
(+ x 1) = 3
(set! x 4) = unspecified
(+x 1) = 5
Variable may be an access expression (see Chapter 13 [Environments|, page 183).
This allows you to assign variables in an arbitrary environment. For example,
(define x (let ((y 0)) (the-environment)))
(define y ’a)
y = a
(access y x) = 0
(set! (access y x) 1) = unspecified
y = a
(access y x) = 1
2.6 Quoting
This section describes the expressions that are used to modify or prevent the evaluation of
objects.
quote datum [special form)]

(quote datum) evaluates to datum. Datum may be any external representation of a
Scheme object (see Section 1.2.6 [External Representations|, page 8). Use quote to
include literal constants in Scheme code.

(quote a) = a
(quote #(a b c)) = #(a b c)
(quote (+ 1 2)) = (+12)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in
all respects.

Chapter 2: Special Forms

23

’a = a

'#(a b c) = #(abc)
Y+ 1 2) = (+12)

> (quote a) = (quote a)
’ra = (quote a)

Numeric constants, string constants, character constants, and boolean constants eval-

uate to themselves, so they don’t need to be quoted.

)llabcll j llabcll
llabcll :> llabcll
7145932 = 145932
145932 = 145932
‘#t = #t
#t = #t
"#\a = #\a
#\a = #\a
quasiquote template [special form)]

“Backquote” or “quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no
commas appear within the template, the result of evaluating ‘ template is equivalent
(in the sense of equal?) to the result of evaluating ’ template. If a comma appears
within the template, however, the expression following the comma is evaluated (“un-
quoted”) and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the
following expression shall evaluate to a list; the opening and closing parentheses of
the list are then “stripped away” and the elements of the list are inserted in place of
the comma at-sign expression sequence.

“(list ,(+ 1 2) 4) = (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name)) = (list a ’a)
‘(a ,(+ 1 2) ,0(map abs ’(4 -5 6)) b) = (a3456D0b

“((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(comns)))
= ((foo 7) . coms)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)
= #(10 5 2 4 3 8)

“,(+ 2 3) = 5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.

24 MIT/GNU Scheme 9.2

‘(a ‘(b ,(+12) ,(foo ,(+ 1 3) d) e) £)
= (a ‘(b ,(+12) ,(foo 4 d) e) f)

(let ((namel ’x)
(name2 ’y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(M ,x ,’y d e)
The notations ‘template and (quasiquote template) are identical in all respects.
,expression is identical to (unquote expression) and ,Q@expression is identical
to (unquote-splicing expression).

(quasiquote (list (unquote (+ 1 2)) 4))
= (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))
= ‘(1list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true or
false. The conditional expressions count only #f as false. They count everything else,
including #t, pairs, symbols, numbers, strings, vectors, and procedures as true (but see
Section 1.2.5 [True and False], page 8).

In the descriptions that follow, we say that an object has “a true value” or “is true”
when the conditional expressions treat it as true, and we say that an object has “a false
value” or “is false” when the conditional expressions treat it as false.

if predicate consequent [alternative] [special form]
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = 1no
(if (> 3 2)
(- 32)
(+ 3 2) = 1
cond clause clause . . . [special form]

Each clause has this form:

(predicate expression ...)

Chapter 2: Special Forms 25

case

where predicate is any expression. The last clause may be an else clause, which has
the form:

(else expression expression ...)
A cond expression does the following;:

1. Evaluates the predicate expressions of successive clauses in order, until one of
the predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in
the associated clause in left to right order, and returns the result of evaluating
the last expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) ’greater)
((3 2) ’less)) = greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal
Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions
in which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.
Scheme supports an alternative clause syntax:
(predicate => recipient)
where recipient is an expression. If predicate evaluates to a true value, then recipient
is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.
(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #f)) = 9

key clause clause . . . [special form)]
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)
A case expression does the following:
1. Evaluates key and compares the result with each object.

2. If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 55) to an object, case evaluates the expressions
in the corresponding clause from left to right and returns the result of evaluating
the last expression in the clause as the result of the case expression.

26

MIT/GNU Scheme 9.2

3. If the result of evaluating key is different from every object, and if there’s an
else clause, case evaluates its expressions and returns the result of the last one
as the result of the case expression. If there’s no else clause, case returns an
unspecified result. Programs should not depend on the value of a case expression

that has no else clause.

For example,

(case (x 2 3)
((2 35 7) ’prime)
((1 4 6 89) ’composite)) =

(case (car ’(c d))
((a) ’a)
() ’v)) =

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) =

and expression . . .

composite

unspecified

consonant

[special form)]

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evalu-
ated. If all the expressions evaluate to true values, the value of the last expression is

returned. If there are no expressions then #t is returned.

(and (=2 2) > 2 1))
(and (= 2 2) (< 2 1))
(and 1 2 ’c (£ g))
(and)

LR

or expression . . .

#t
#f
(f g)
#t

[special form]

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not eval-
uated. If all expressions evaluate to false values, the value of the last expression is

returned. If there are no expressions then #f is returned.

(or (=22) (> 2 1)) =
(or (=2 2) (<2 1)) =
(or #f #f #f) =
(or (memq ’b ’(a b ¢)) (/ 3 0)) =

2.8 Sequencing

#t
#t
#f
(b c)

The begin special form is used to evaluate expressions in a particular order.

begin expression expression . . .

[special form)]

The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as

input and output.

Chapter 2: Special Forms 27

(define x 0)
(begin (set! x 5)
(+ x 1)) = 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1)))
<+ 4 plus 1 equals 5
= unspecified

Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

case
cond

define ;““procedure define” only
do

fluid-let

lambda

let

let*

letrec

named-lambda

The obsolete special form sequence is identical to begin. It should not be used in
new code.

2.9 Iteration

The iteration expressions are: “named let” and do. They are also binding expressions,
but are more commonly referred to as iteration expressions. Because Scheme is properly
tail-recursive, you don’t need to use these special forms to express iteration; you can simply
use appropriately written “recursive” procedure calls.

let name ((variable init) ...) expression expression . . . [special form]
MIT/GNU Scheme permits a variant on the syntax of let called “named let” which
provides a more general looping construct than do, and may also be used to express
recursions.

Named let has the same syntax and semantics as ordinary let except that name is
bound within the expressions to a procedure whose formal arguments are the variables
and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note: the following expressions are equivalent:

MIT/GNU Scheme 9.2

(let name ((variable init) ...)
expression
expression ...)

((letrec ((name

(named-lambda (name variable ...)
expression
expression ...)))
name)
init ...)

Here is an example:

(let loop

((numbers ’(3 -2 1 6 -5))

(nonneg ’ ()

(neg >0)))

(cond ((null? numbers)
(1ist nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)

neg))

(else

(loop (cdr numbers)
nonneg

(cons (car numbers) neg)))))

= ((613) (-5 -2))

do ((variable init step) ...) (test expression ...) command [special form]

do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Each iteration begins by evaluating test; if the result is false, then the command
expressions are evaluated in order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh locations, the results of the
steps are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right
and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT/GNU Scheme, the value of test is returned.

Chapter 2: Special Forms 29

The region of the binding of a variable consists of the entire do expression except
for the inits. It is an error for a variable to appear more than once in the list of do
variables.

A step may be omitted, in which case the effect is the same as if (variable init
variable) had been written instead of (variable init).

(do ((vec (make-vector 5))
10 (+1i1)))
((= i 5) vec)
(vector-set! vec i i)) = #(0 12 3 4)

(let ((x (1 357 9
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) = 25

2.10 Structure Definitions

This section provides examples and describes the options and syntax of define-structure,
an MIT/GNU Scheme macro that is very similar to defstruct in Common Lisp. The
differences between them are summarized at the end of this section. For more information,
see Steele’s Common Lisp book.

define-structure (name structure-option . ..) slot-description . . . [special form]
Each slot-description takes one of the following forms:

slot-name
(slot-name default-init [slot-option value]x*)

The fields name and slot-name must both be symbols. The field default-init is an
expression for the initial value of the slot. It is evaluated each time a new instance
is constructed. If it is not specified, the initial content of the slot is undefined.
Default values are only useful with a BOA constructor with argument list or a keyword
constructor (see below).

Evaluation of a define-structure expression defines a structure descriptor and a
set of procedures to manipulate instances of the structure. These instances are repre-
sented as records by default (see Section 10.4 [Records|, page 138) but may alternately
be lists or vectors. The accessors and modifiers are marked with compiler declara-
tions so that calls to them are automatically transformed into appropriate references.
Often, no options are required, so a simple call to define-structure looks like:

(def