/* * Copyright © 2020 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "helpers.h" using namespace aco; BEGIN_TEST(regalloc.subdword_alloc.reuse_16bit_operands) /* Registers of operands should be "recycled" for the output. But if the * input is smaller than the output, that's not generally possible. The * first v_cvt_f32_f16 instruction below uses the upper 16 bits of v0 * while the lower 16 bits are still live, so the output must be stored in * a register other than v0. For the second v_cvt_f32_f16, the original * value stored in v0 is no longer used and hence it's safe to store the * result in v0. */ for (chip_class cc = GFX8; cc < NUM_GFX_VERSIONS; cc = (chip_class)((unsigned)cc + 1)) { for (bool pessimistic : { false, true }) { const char* subvariant = pessimistic ? "/pessimistic" : "/optimistic"; //>> v1: %_:v[#a] = p_startpgm if (!setup_cs("v1", (chip_class)cc, CHIP_UNKNOWN, subvariant)) return; //! v2b: %_:v[#a][0:16], v2b: %res1:v[#a][16:32] = p_split_vector %_:v[#a] Builder::Result tmp = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), inputs[0]); //! v1: %_:v[#b] = v_cvt_f32_f16 %_:v[#a][16:32] dst_sel:dword src0_sel:uword1 //! v1: %_:v[#a] = v_cvt_f32_f16 %_:v[#a][0:16] //; success = (b != a) auto result1 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), tmp.def(1).getTemp()); auto result2 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), tmp.def(0).getTemp()); writeout(0, result1); writeout(1, result2); finish_ra_test(ra_test_policy { pessimistic }); } } END_TEST BEGIN_TEST(regalloc.32bit_partial_write) //>> v1: %_:v[0] = p_startpgm if (!setup_cs("v1", GFX10)) return; /* ensure high 16 bits are occupied */ //! v2b: %_:v[0][0:16], v2b: %_:v[0][16:32] = p_split_vector %_:v[0] Temp hi = bld.pseudo(aco_opcode::p_split_vector, bld.def(v2b), bld.def(v2b), inputs[0]).def(1).getTemp(); /* This test checks if this instruction uses SDWA. */ //! v2b: %_:v[0][0:16] = v_not_b32 0 dst_sel:uword0 dst_preserve src0_sel:dword Temp lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v2b), Operand::zero()); //! v1: %_:v[0] = p_create_vector %_:v[0][0:16], %_:v[0][16:32] bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), lo, hi); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.precolor.swap) //>> s2: %op0:s[0-1] = p_startpgm if (!setup_cs("s2", GFX10)) return; program->dev.sgpr_limit = 4; //! s2: %op1:s[2-3] = p_unit_test Temp op1 = bld.pseudo(aco_opcode::p_unit_test, bld.def(s2)); //! s2: %op1_2:s[0-1], s2: %op0_2:s[2-3] = p_parallelcopy %op1:s[2-3], %op0:s[0-1] //! p_unit_test %op0_2:s[2-3], %op1_2:s[0-1] Operand op(inputs[0]); op.setFixed(PhysReg(2)); bld.pseudo(aco_opcode::p_unit_test, op, op1); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.precolor.blocking_vector) //>> s2: %tmp0:s[0-1], s1: %tmp1:s[2] = p_startpgm if (!setup_cs("s2 s1", GFX10)) return; //! s2: %tmp0_2:s[2-3], s1: %tmp1_2:s[1] = p_parallelcopy %tmp0:s[0-1], %tmp1:s[2] //! p_unit_test %tmp1_2:s[1] Operand op(inputs[1]); op.setFixed(PhysReg(1)); bld.pseudo(aco_opcode::p_unit_test, op); //! p_unit_test %tmp0_2:s[2-3] bld.pseudo(aco_opcode::p_unit_test, inputs[0]); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.precolor.vector.test) //>> s2: %tmp0:s[0-1], s1: %tmp1:s[2], s1: %tmp2:s[3] = p_startpgm if (!setup_cs("s2 s1 s1", GFX10)) return; //! s1: %tmp2_2:s[0], s2: %tmp0_2:s[2-3] = p_parallelcopy %tmp2:s[3], %tmp0:s[0-1] //! p_unit_test %tmp0_2:s[2-3] Operand op(inputs[0]); op.setFixed(PhysReg(2)); bld.pseudo(aco_opcode::p_unit_test, op); //! p_unit_test %tmp2_2:s[0] bld.pseudo(aco_opcode::p_unit_test, inputs[2]); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.precolor.vector.collect) //>> s2: %tmp0:s[0-1], s1: %tmp1:s[2], s1: %tmp2:s[3] = p_startpgm if (!setup_cs("s2 s1 s1", GFX10)) return; //! s1: %tmp2_2:s[0], s1: %tmp1_2:s[1], s2: %tmp0_2:s[2-3] = p_parallelcopy %tmp2:s[3], %tmp1:s[2], %tmp0:s[0-1] //! p_unit_test %tmp0_2:s[2-3] Operand op(inputs[0]); op.setFixed(PhysReg(2)); bld.pseudo(aco_opcode::p_unit_test, op); //! p_unit_test %tmp1_2:s[1], %tmp2_2:s[0] bld.pseudo(aco_opcode::p_unit_test, inputs[1], inputs[2]); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.scratch_sgpr.create_vector) if (!setup_cs("v1 s1", GFX7)) return; Temp tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), inputs[0], Operand::zero()); //>> v3b: %0:v[0][0:24] = v_and_b32 0xffffff, %0:v[0][0:24] //! s1: %0:s[1] = s_mov_b32 0x1000001 //! v1: %0:v[0] = v_mul_lo_u32 %0:s[1], %_:v[0][0:8] bld.pseudo(aco_opcode::p_create_vector, bld.def(v1), Operand(v3b), Operand(tmp)); //! p_unit_test %_:s[0] //! s_endpgm bld.pseudo(aco_opcode::p_unit_test, inputs[1]); finish_ra_test(ra_test_policy(), true); END_TEST BEGIN_TEST(regalloc.scratch_sgpr.create_vector_sgpr_operand) if (!setup_cs("v2 s1", GFX7)) return; Temp tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), inputs[0], Operand::c32(4u)); //>> v1: %0:v[0] = v_mov_b32 %_:s[0] //! v3b: %0:v[1][0:24] = v_and_b32 0xffffff, %0:v[1][0:24] //! s1: %0:s[1] = s_mov_b32 0x1000001 //! v1: %0:v[1] = v_mul_lo_u32 %0:s[1], %_:v[1][0:8] bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), inputs[1], Operand(v3b), Operand(tmp)); //! p_unit_test %_:s[0] //! s_endpgm bld.pseudo(aco_opcode::p_unit_test, inputs[1]); finish_ra_test(ra_test_policy(), true); END_TEST BEGIN_TEST(regalloc.linear_vgpr.live_range_split.fixed_def) //>> p_startpgm if (!setup_cs("", GFX10)) return; PhysReg reg_v0{256}; PhysReg reg_v1{257}; //! lv1: %tmp1:v[0] = p_unit_test Temp tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1.as_linear(), reg_v0)); //! lv1: %tmp2:v[1] = p_parallelcopy %tmp1:v[0] //! v1: %_:v[0] = p_unit_test bld.pseudo(aco_opcode::p_unit_test, Definition(reg_v0, v1)); //! p_unit_test %tmp2:v[1] bld.pseudo(aco_opcode::p_unit_test, tmp); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.linear_vgpr.live_range_split.get_reg_impl) //>> p_startpgm if (!setup_cs("", GFX10)) return; program->dev.vgpr_limit = 3; PhysReg reg_v1{257}; //! s1: %scc_tmp:scc, s1: %1:s[0] = p_unit_test Temp s0_tmp = bld.tmp(s1); Temp scc_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(s1, scc), Definition(s0_tmp.id(), PhysReg{0}, s1)); //! lv1: %tmp1:v[1] = p_unit_test Temp tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1.as_linear(), reg_v1)); //! lv1: %tmp2:v[2] = p_parallelcopy %tmp1:v[1] //! v2: %_:v[0-1] = p_unit_test bld.pseudo(aco_opcode::p_unit_test, bld.def(v2)); //! p_unit_test %tmp2:v[2], %scc_tmp:scc, %1:s[0] bld.pseudo(aco_opcode::p_unit_test, tmp, scc_tmp, s0_tmp); finish_ra_test(ra_test_policy()); //>> lv1: %5:v[2] = p_parallelcopy %3:v[1] scc:1 scratch:s1 Pseudo_instruction& parallelcopy = program->blocks[0].instructions[3]->pseudo(); aco_print_instr(¶llelcopy, output); fprintf(output, " scc:%u scratch:s%u\n", parallelcopy.tmp_in_scc, parallelcopy.scratch_sgpr.reg()); END_TEST BEGIN_TEST(regalloc.linear_vgpr.live_range_split.get_regs_for_copies) //>> p_startpgm if (!setup_cs("", GFX10)) return; program->dev.vgpr_limit = 6; PhysReg reg_v2{258}; PhysReg reg_v4{260}; //! lv1: %lin_tmp1:v[4] = p_unit_test Temp lin_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1.as_linear(), reg_v4)); //! v2: %log_tmp1:v[2-3] = p_unit_test Temp log_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v2, reg_v2)); //! lv1: %lin_tmp2:v[0], v2: %log_tmp2:v[4-5] = p_parallelcopy %lin_tmp1:v[4], %log_tmp1:v[2-3] //! v3: %_:v[1-3] = p_unit_test bld.pseudo(aco_opcode::p_unit_test, bld.def(v3)); //! p_unit_test %log_tmp2:v[4-5], %lin_tmp2:v[0] bld.pseudo(aco_opcode::p_unit_test, log_tmp, lin_tmp); finish_ra_test(ra_test_policy()); END_TEST BEGIN_TEST(regalloc.linear_vgpr.live_range_split.get_reg_create_vector) //>> p_startpgm if (!setup_cs("", GFX10)) return; program->dev.vgpr_limit = 4; PhysReg reg_v0{256}; PhysReg reg_v1{257}; //! lv1: %lin_tmp1:v[0] = p_unit_test Temp lin_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1.as_linear(), reg_v0)); //! v1: %log_tmp:v[1] = p_unit_test Temp log_tmp = bld.pseudo(aco_opcode::p_unit_test, bld.def(v1, reg_v1)); //! lv1: %lin_tmp2:v[2] = p_parallelcopy %lin_tmp1:v[0] //! v2: %_:v[0-1] = p_create_vector v1: undef, %log_tmp:v[1] bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(v1), log_tmp); //! p_unit_test %lin_tmp2:v[2] bld.pseudo(aco_opcode::p_unit_test, lin_tmp); finish_ra_test(ra_test_policy()); END_TEST