/************************************************************************** * * Copyright 2011 Marek Olšák * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * This module uploads user buffers and translates the vertex buffers which * contain incompatible vertices (i.e. not supported by the driver/hardware) * into compatible ones, based on the Gallium CAPs. * * It does not upload index buffers. * * The module heavily uses bitmasks to represent per-buffer and * per-vertex-element flags to avoid looping over the list of buffers just * to see if there's a non-zero stride, or user buffer, or unsupported format, * etc. * * There are 3 categories of vertex elements, which are processed separately: * - per-vertex attribs (stride != 0, instance_divisor == 0) * - instanced attribs (stride != 0, instance_divisor > 0) * - constant attribs (stride == 0) * * All needed uploads and translations are performed every draw command, but * only the subset of vertices needed for that draw command is uploaded or * translated. (the module never translates whole buffers) * * * The module consists of two main parts: * * * 1) Translate (u_vbuf_translate_begin/end) * * This is pretty much a vertex fetch fallback. It translates vertices from * one vertex buffer to another in an unused vertex buffer slot. It does * whatever is needed to make the vertices readable by the hardware (changes * vertex formats and aligns offsets and strides). The translate module is * used here. * * Each of the 3 categories is translated to a separate buffer. * Only the [min_index, max_index] range is translated. For instanced attribs, * the range is [start_instance, start_instance+instance_count]. For constant * attribs, the range is [0, 1]. * * * 2) User buffer uploading (u_vbuf_upload_buffers) * * Only the [min_index, max_index] range is uploaded (just like Translate) * with a single memcpy. * * This method works best for non-indexed draw operations or indexed draw * operations where the [min_index, max_index] range is not being way bigger * than the vertex count. * * If the range is too big (e.g. one triangle with indices {0, 1, 10000}), * the per-vertex attribs are uploaded via the translate module, all packed * into one vertex buffer, and the indexed draw call is turned into * a non-indexed one in the process. This adds additional complexity * to the translate part, but it prevents bad apps from bringing your frame * rate down. * * * If there is nothing to do, it forwards every command to the driver. * The module also has its own CSO cache of vertex element states. */ #include "util/u_vbuf.h" #include "util/u_dump.h" #include "util/format/u_format.h" #include "util/u_helpers.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "indices/u_primconvert.h" #include "util/u_prim_restart.h" #include "util/u_screen.h" #include "util/u_upload_mgr.h" #include "translate/translate.h" #include "translate/translate_cache.h" #include "cso_cache/cso_cache.h" #include "cso_cache/cso_hash.h" struct u_vbuf_elements { unsigned count; struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS]; unsigned src_format_size[PIPE_MAX_ATTRIBS]; /* If (velem[i].src_format != native_format[i]), the vertex buffer * referenced by the vertex element cannot be used for rendering and * its vertex data must be translated to native_format[i]. */ enum pipe_format native_format[PIPE_MAX_ATTRIBS]; unsigned native_format_size[PIPE_MAX_ATTRIBS]; /* Which buffers are used by the vertex element state. */ uint32_t used_vb_mask; /* This might mean two things: * - src_format != native_format, as discussed above. * - src_offset % 4 != 0 (if the caps don't allow such an offset). */ uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */ /* Which buffer has at least one vertex element referencing it * incompatible. */ uint32_t incompatible_vb_mask_any; /* Which buffer has all vertex elements referencing it incompatible. */ uint32_t incompatible_vb_mask_all; /* Which buffer has at least one vertex element referencing it * compatible. */ uint32_t compatible_vb_mask_any; /* Which buffer has all vertex elements referencing it compatible. */ uint32_t compatible_vb_mask_all; /* Which buffer has at least one vertex element referencing it * non-instanced. */ uint32_t noninstance_vb_mask_any; /* Which buffers are used by multiple vertex attribs. */ uint32_t interleaved_vb_mask; void *driver_cso; }; enum { VB_VERTEX = 0, VB_INSTANCE = 1, VB_CONST = 2, VB_NUM = 3 }; struct u_vbuf { struct u_vbuf_caps caps; bool has_signed_vb_offset; struct pipe_context *pipe; struct translate_cache *translate_cache; struct cso_cache cso_cache; struct primconvert_context *pc; bool flatshade_first; /* This is what was set in set_vertex_buffers. * May contain user buffers. */ struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS]; uint32_t enabled_vb_mask; /* Vertex buffers for the driver. * There are usually no user buffers. */ struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS]; uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last call of set_vertex_buffers */ /* Vertex elements. */ struct u_vbuf_elements *ve, *ve_saved; /* Vertex elements used for the translate fallback. */ struct cso_velems_state fallback_velems; /* If non-NULL, this is a vertex element state used for the translate * fallback and therefore used for rendering too. */ boolean using_translate; /* The vertex buffer slot index where translated vertices have been * stored in. */ unsigned fallback_vbs[VB_NUM]; unsigned fallback_vbs_mask; /* Which buffer is a user buffer. */ uint32_t user_vb_mask; /* each bit describes a corresp. buffer */ /* Which buffer is incompatible (unaligned). */ uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */ /* Which buffer has a non-zero stride. */ uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */ /* Which buffers are allowed (supported by hardware). */ uint32_t allowed_vb_mask; }; static void * u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count, const struct pipe_vertex_element *attribs); static void u_vbuf_delete_vertex_elements(void *ctx, void *state, enum cso_cache_type type); static const struct { enum pipe_format from, to; } vbuf_format_fallbacks[] = { { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R16G16B16_SINT, PIPE_FORMAT_R32G32B32_SINT }, { PIPE_FORMAT_R16G16B16_UINT, PIPE_FORMAT_R32G32B32_UINT }, { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT }, { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT }, { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT }, { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT }, }; void u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps, bool needs64b) { unsigned i; memset(caps, 0, sizeof(*caps)); /* I'd rather have a bitfield of which formats are supported and a static * table of the translations indexed by format, but since we don't have C99 * we can't easily make a sparsely-populated table indexed by format. So, * we construct the sparse table here. */ for (i = 0; i < PIPE_FORMAT_COUNT; i++) caps->format_translation[i] = i; for (i = 0; i < ARRAY_SIZE(vbuf_format_fallbacks); i++) { enum pipe_format format = vbuf_format_fallbacks[i].from; unsigned comp_bits = util_format_get_component_bits(format, 0, 0); if ((comp_bits > 32) && !needs64b) continue; if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0, 0, PIPE_BIND_VERTEX_BUFFER)) { caps->format_translation[format] = vbuf_format_fallbacks[i].to; caps->fallback_always = true; } } caps->buffer_offset_unaligned = !screen->get_param(screen, PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY); caps->buffer_stride_unaligned = !screen->get_param(screen, PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY); caps->velem_src_offset_unaligned = !screen->get_param(screen, PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY); caps->user_vertex_buffers = screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS); caps->max_vertex_buffers = screen->get_param(screen, PIPE_CAP_MAX_VERTEX_BUFFERS); if (screen->get_param(screen, PIPE_CAP_PRIMITIVE_RESTART) || screen->get_param(screen, PIPE_CAP_PRIMITIVE_RESTART_FIXED_INDEX)) { caps->rewrite_restart_index = screen->get_param(screen, PIPE_CAP_EMULATE_NONFIXED_PRIMITIVE_RESTART); caps->supported_restart_modes = screen->get_param(screen, PIPE_CAP_SUPPORTED_PRIM_MODES_WITH_RESTART); caps->supported_restart_modes |= BITFIELD_BIT(PIPE_PRIM_PATCHES); if (caps->supported_restart_modes != BITFIELD_MASK(PIPE_PRIM_MAX)) caps->fallback_always = true; caps->fallback_always |= caps->rewrite_restart_index; } caps->supported_prim_modes = screen->get_param(screen, PIPE_CAP_SUPPORTED_PRIM_MODES); if (caps->supported_prim_modes != BITFIELD_MASK(PIPE_PRIM_MAX)) caps->fallback_always = true; if (!screen->is_format_supported(screen, PIPE_FORMAT_R8_UINT, PIPE_BUFFER, 0, 0, PIPE_BIND_INDEX_BUFFER)) caps->fallback_always = caps->rewrite_ubyte_ibs = true; /* OpenGL 2.0 requires a minimum of 16 vertex buffers */ if (caps->max_vertex_buffers < 16) caps->fallback_always = true; if (!caps->buffer_offset_unaligned || !caps->buffer_stride_unaligned || !caps->velem_src_offset_unaligned) caps->fallback_always = true; if (!caps->fallback_always && !caps->user_vertex_buffers) caps->fallback_only_for_user_vbuffers = true; } struct u_vbuf * u_vbuf_create(struct pipe_context *pipe, struct u_vbuf_caps *caps) { struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf); mgr->caps = *caps; mgr->pipe = pipe; if (caps->rewrite_ubyte_ibs || caps->rewrite_restart_index || /* require all but patches */ ((caps->supported_prim_modes & caps->supported_restart_modes & BITFIELD_MASK(PIPE_PRIM_MAX))) != BITFIELD_MASK(PIPE_PRIM_MAX)) { struct primconvert_config cfg; cfg.fixed_prim_restart = caps->rewrite_restart_index; cfg.primtypes_mask = caps->supported_prim_modes; cfg.restart_primtypes_mask = caps->supported_restart_modes; mgr->pc = util_primconvert_create_config(pipe, &cfg); } mgr->translate_cache = translate_cache_create(); memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs)); mgr->allowed_vb_mask = u_bit_consecutive(0, mgr->caps.max_vertex_buffers); mgr->has_signed_vb_offset = pipe->screen->get_param(pipe->screen, PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET); cso_cache_init(&mgr->cso_cache, pipe); cso_cache_set_delete_cso_callback(&mgr->cso_cache, u_vbuf_delete_vertex_elements, pipe); return mgr; } /* u_vbuf uses its own caching for vertex elements, because it needs to keep * its own preprocessed state per vertex element CSO. */ static struct u_vbuf_elements * u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, const struct cso_velems_state *velems) { struct pipe_context *pipe = mgr->pipe; unsigned key_size, hash_key; struct cso_hash_iter iter; struct u_vbuf_elements *ve; /* need to include the count into the stored state data too. */ key_size = sizeof(struct pipe_vertex_element) * velems->count + sizeof(unsigned); hash_key = cso_construct_key((void*)velems, key_size); iter = cso_find_state_template(&mgr->cso_cache, hash_key, CSO_VELEMENTS, (void*)velems, key_size); if (cso_hash_iter_is_null(iter)) { struct cso_velements *cso = MALLOC_STRUCT(cso_velements); memcpy(&cso->state, velems, key_size); cso->data = u_vbuf_create_vertex_elements(mgr, velems->count, velems->velems); iter = cso_insert_state(&mgr->cso_cache, hash_key, CSO_VELEMENTS, cso); ve = cso->data; } else { ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data; } assert(ve); if (ve != mgr->ve) pipe->bind_vertex_elements_state(pipe, ve->driver_cso); return ve; } void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, const struct cso_velems_state *velems) { mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, velems); } void u_vbuf_set_flatshade_first(struct u_vbuf *mgr, bool flatshade_first) { mgr->flatshade_first = flatshade_first; } void u_vbuf_unset_vertex_elements(struct u_vbuf *mgr) { mgr->ve = NULL; } void u_vbuf_destroy(struct u_vbuf *mgr) { struct pipe_screen *screen = mgr->pipe->screen; unsigned i; const unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_MAX_INPUTS); mgr->pipe->set_vertex_buffers(mgr->pipe, 0, 0, num_vb, false, NULL); for (i = 0; i < PIPE_MAX_ATTRIBS; i++) pipe_vertex_buffer_unreference(&mgr->vertex_buffer[i]); for (i = 0; i < PIPE_MAX_ATTRIBS; i++) pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[i]); if (mgr->pc) util_primconvert_destroy(mgr->pc); translate_cache_destroy(mgr->translate_cache); cso_cache_delete(&mgr->cso_cache); FREE(mgr); } static enum pipe_error u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key, const struct pipe_draw_info *info, const struct pipe_draw_start_count_bias *draw, unsigned vb_mask, unsigned out_vb, int start_vertex, unsigned num_vertices, int min_index, boolean unroll_indices) { struct translate *tr; struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0}; struct pipe_resource *out_buffer = NULL; uint8_t *out_map; unsigned out_offset, mask; /* Get a translate object. */ tr = translate_cache_find(mgr->translate_cache, key); /* Map buffers we want to translate. */ mask = vb_mask; while (mask) { struct pipe_vertex_buffer *vb; unsigned offset; uint8_t *map; unsigned i = u_bit_scan(&mask); vb = &mgr->vertex_buffer[i]; offset = vb->buffer_offset + vb->stride * start_vertex; if (vb->is_user_buffer) { map = (uint8_t*)vb->buffer.user + offset; } else { unsigned size = vb->stride ? num_vertices * vb->stride : sizeof(double)*4; if (!vb->buffer.resource) { static uint64_t dummy_buf[4] = { 0 }; tr->set_buffer(tr, i, dummy_buf, 0, 0); continue; } if (vb->stride) { /* the stride cannot be used to calculate the map size of the buffer, * as it only determines the bytes between elements, not the size of elements * themselves, meaning that if stride < element_size, the mapped size will * be too small and conversion will overrun the map buffer * * instead, add the size of the largest possible attribute to the final attribute's offset * in order to ensure the map is large enough */ unsigned last_offset = size - vb->stride; size = MAX2(size, last_offset + sizeof(double)*4); } if (offset + size > vb->buffer.resource->width0) { /* Don't try to map past end of buffer. This often happens when * we're translating an attribute that's at offset > 0 from the * start of the vertex. If we'd subtract attrib's offset from * the size, this probably wouldn't happen. */ size = vb->buffer.resource->width0 - offset; /* Also adjust num_vertices. A common user error is to call * glDrawRangeElements() with incorrect 'end' argument. The 'end * value should be the max index value, but people often * accidentally add one to this value. This adjustment avoids * crashing (by reading past the end of a hardware buffer mapping) * when people do that. */ num_vertices = (size + vb->stride - 1) / vb->stride; } map = pipe_buffer_map_range(mgr->pipe, vb->buffer.resource, offset, size, PIPE_MAP_READ, &vb_transfer[i]); } /* Subtract min_index so that indexing with the index buffer works. */ if (unroll_indices) { map -= (ptrdiff_t)vb->stride * min_index; } tr->set_buffer(tr, i, map, vb->stride, info->max_index); } /* Translate. */ if (unroll_indices) { struct pipe_transfer *transfer = NULL; const unsigned offset = draw->start * info->index_size; uint8_t *map; /* Create and map the output buffer. */ u_upload_alloc(mgr->pipe->stream_uploader, 0, key->output_stride * draw->count, 4, &out_offset, &out_buffer, (void**)&out_map); if (!out_buffer) return PIPE_ERROR_OUT_OF_MEMORY; if (info->has_user_indices) { map = (uint8_t*)info->index.user + offset; } else { map = pipe_buffer_map_range(mgr->pipe, info->index.resource, offset, draw->count * info->index_size, PIPE_MAP_READ, &transfer); } switch (info->index_size) { case 4: tr->run_elts(tr, (unsigned*)map, draw->count, 0, 0, out_map); break; case 2: tr->run_elts16(tr, (uint16_t*)map, draw->count, 0, 0, out_map); break; case 1: tr->run_elts8(tr, map, draw->count, 0, 0, out_map); break; } if (transfer) { pipe_buffer_unmap(mgr->pipe, transfer); } } else { /* Create and map the output buffer. */ u_upload_alloc(mgr->pipe->stream_uploader, mgr->has_signed_vb_offset ? 0 : key->output_stride * start_vertex, key->output_stride * num_vertices, 4, &out_offset, &out_buffer, (void**)&out_map); if (!out_buffer) return PIPE_ERROR_OUT_OF_MEMORY; out_offset -= key->output_stride * start_vertex; tr->run(tr, 0, num_vertices, 0, 0, out_map); } /* Unmap all buffers. */ mask = vb_mask; while (mask) { unsigned i = u_bit_scan(&mask); if (vb_transfer[i]) { pipe_buffer_unmap(mgr->pipe, vb_transfer[i]); } } /* Setup the new vertex buffer. */ mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset; mgr->real_vertex_buffer[out_vb].stride = key->output_stride; /* Move the buffer reference. */ pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[out_vb]); mgr->real_vertex_buffer[out_vb].buffer.resource = out_buffer; mgr->real_vertex_buffer[out_vb].is_user_buffer = false; return PIPE_OK; } static boolean u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr, unsigned mask[VB_NUM]) { unsigned type; unsigned fallback_vbs[VB_NUM]; /* Set the bit for each buffer which is incompatible, or isn't set. */ uint32_t unused_vb_mask = mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask | ~mgr->enabled_vb_mask; uint32_t unused_vb_mask_orig; boolean insufficient_buffers = false; /* No vertex buffers available at all */ if (!unused_vb_mask) return FALSE; memset(fallback_vbs, ~0, sizeof(fallback_vbs)); mgr->fallback_vbs_mask = 0; /* Find free slots for each type if needed. */ unused_vb_mask_orig = unused_vb_mask; for (type = 0; type < VB_NUM; type++) { if (mask[type]) { uint32_t index; if (!unused_vb_mask) { insufficient_buffers = true; break; } index = ffs(unused_vb_mask) - 1; fallback_vbs[type] = index; mgr->fallback_vbs_mask |= 1 << index; unused_vb_mask &= ~(1 << index); /*printf("found slot=%i for type=%i\n", index, type);*/ } } if (insufficient_buffers) { /* not enough vbs for all types supported by the hardware, they will have to share one * buffer */ uint32_t index = ffs(unused_vb_mask_orig) - 1; /* When sharing one vertex buffer use per-vertex frequency for everything. */ fallback_vbs[VB_VERTEX] = index; mgr->fallback_vbs_mask = 1 << index; mask[VB_VERTEX] = mask[VB_VERTEX] | mask[VB_CONST] | mask[VB_INSTANCE]; mask[VB_CONST] = 0; mask[VB_INSTANCE] = 0; } for (type = 0; type < VB_NUM; type++) { if (mask[type]) { mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type]; } } memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs)); return TRUE; } static boolean u_vbuf_translate_begin(struct u_vbuf *mgr, const struct pipe_draw_info *info, const struct pipe_draw_start_count_bias *draw, int start_vertex, unsigned num_vertices, int min_index, boolean unroll_indices) { unsigned mask[VB_NUM] = {0}; struct translate_key key[VB_NUM]; unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */ unsigned i, type; const unsigned incompatible_vb_mask = mgr->incompatible_vb_mask & mgr->ve->used_vb_mask; const int start[VB_NUM] = { start_vertex, /* VERTEX */ info->start_instance, /* INSTANCE */ 0 /* CONST */ }; const unsigned num[VB_NUM] = { num_vertices, /* VERTEX */ info->instance_count, /* INSTANCE */ 1 /* CONST */ }; memset(key, 0, sizeof(key)); memset(elem_index, ~0, sizeof(elem_index)); /* See if there are vertex attribs of each type to translate and * which ones. */ for (i = 0; i < mgr->ve->count; i++) { unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index; if (!mgr->vertex_buffer[vb_index].stride) { if (!(mgr->ve->incompatible_elem_mask & (1 << i)) && !(incompatible_vb_mask & (1 << vb_index))) { continue; } mask[VB_CONST] |= 1 << vb_index; } else if (mgr->ve->ve[i].instance_divisor) { if (!(mgr->ve->incompatible_elem_mask & (1 << i)) && !(incompatible_vb_mask & (1 << vb_index))) { continue; } mask[VB_INSTANCE] |= 1 << vb_index; } else { if (!unroll_indices && !(mgr->ve->incompatible_elem_mask & (1 << i)) && !(incompatible_vb_mask & (1 << vb_index))) { continue; } mask[VB_VERTEX] |= 1 << vb_index; } } assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]); /* Find free vertex buffer slots. */ if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) { return FALSE; } /* Initialize the translate keys. */ for (i = 0; i < mgr->ve->count; i++) { struct translate_key *k; struct translate_element *te; enum pipe_format output_format = mgr->ve->native_format[i]; unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index; bit = 1 << vb_index; if (!(mgr->ve->incompatible_elem_mask & (1 << i)) && !(incompatible_vb_mask & (1 << vb_index)) && (!unroll_indices || !(mask[VB_VERTEX] & bit))) { continue; } /* Set type to what we will translate. * Whether vertex, instance, or constant attribs. */ for (type = 0; type < VB_NUM; type++) { if (mask[type] & bit) { break; } } assert(type < VB_NUM); if (mgr->ve->ve[i].src_format != output_format) assert(translate_is_output_format_supported(output_format)); /*printf("velem=%i type=%i\n", i, type);*/ /* Add the vertex element. */ k = &key[type]; elem_index[type][i] = k->nr_elements; te = &k->element[k->nr_elements]; te->type = TRANSLATE_ELEMENT_NORMAL; te->instance_divisor = 0; te->input_buffer = vb_index; te->input_format = mgr->ve->ve[i].src_format; te->input_offset = mgr->ve->ve[i].src_offset; te->output_format = output_format; te->output_offset = k->output_stride; k->output_stride += mgr->ve->native_format_size[i]; k->nr_elements++; } /* Translate buffers. */ for (type = 0; type < VB_NUM; type++) { if (key[type].nr_elements) { enum pipe_error err; err = u_vbuf_translate_buffers(mgr, &key[type], info, draw, mask[type], mgr->fallback_vbs[type], start[type], num[type], min_index, unroll_indices && type == VB_VERTEX); if (err != PIPE_OK) return FALSE; /* Fixup the stride for constant attribs. */ if (type == VB_CONST) { mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0; } } } /* Setup new vertex elements. */ for (i = 0; i < mgr->ve->count; i++) { for (type = 0; type < VB_NUM; type++) { if (elem_index[type][i] < key[type].nr_elements) { struct translate_element *te = &key[type].element[elem_index[type][i]]; mgr->fallback_velems.velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor; mgr->fallback_velems.velems[i].src_format = te->output_format; mgr->fallback_velems.velems[i].src_offset = te->output_offset; mgr->fallback_velems.velems[i].vertex_buffer_index = mgr->fallback_vbs[type]; /* elem_index[type][i] can only be set for one type. */ assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0u); assert(type > VB_VERTEX || elem_index[type+2][i] == ~0u); break; } } /* No translating, just copy the original vertex element over. */ if (type == VB_NUM) { memcpy(&mgr->fallback_velems.velems[i], &mgr->ve->ve[i], sizeof(struct pipe_vertex_element)); } } mgr->fallback_velems.count = mgr->ve->count; u_vbuf_set_vertex_elements_internal(mgr, &mgr->fallback_velems); mgr->using_translate = TRUE; return TRUE; } static void u_vbuf_translate_end(struct u_vbuf *mgr) { unsigned i; /* Restore vertex elements. */ mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso); mgr->using_translate = FALSE; /* Unreference the now-unused VBOs. */ for (i = 0; i < VB_NUM; i++) { unsigned vb = mgr->fallback_vbs[i]; if (vb != ~0u) { pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer.resource, NULL); mgr->fallback_vbs[i] = ~0; } } /* This will cause the buffer to be unbound in the driver later. */ mgr->dirty_real_vb_mask |= mgr->fallback_vbs_mask; mgr->fallback_vbs_mask = 0; } static void * u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count, const struct pipe_vertex_element *attribs) { struct pipe_vertex_element tmp[PIPE_MAX_ATTRIBS]; util_lower_uint64_vertex_elements(&attribs, &count, tmp); struct pipe_context *pipe = mgr->pipe; unsigned i; struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS]; struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements); uint32_t used_buffers = 0; ve->count = count; memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count); memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count); /* Set the best native format in case the original format is not * supported. */ for (i = 0; i < count; i++) { enum pipe_format format = ve->ve[i].src_format; unsigned vb_index_bit = 1 << ve->ve[i].vertex_buffer_index; ve->src_format_size[i] = util_format_get_blocksize(format); if (used_buffers & vb_index_bit) ve->interleaved_vb_mask |= vb_index_bit; used_buffers |= vb_index_bit; if (!ve->ve[i].instance_divisor) { ve->noninstance_vb_mask_any |= vb_index_bit; } format = mgr->caps.format_translation[format]; driver_attribs[i].src_format = format; ve->native_format[i] = format; ve->native_format_size[i] = util_format_get_blocksize(ve->native_format[i]); if (ve->ve[i].src_format != format || (!mgr->caps.velem_src_offset_unaligned && ve->ve[i].src_offset % 4 != 0)) { ve->incompatible_elem_mask |= 1 << i; ve->incompatible_vb_mask_any |= vb_index_bit; } else { ve->compatible_vb_mask_any |= vb_index_bit; } } if (used_buffers & ~mgr->allowed_vb_mask) { /* More vertex buffers are used than the hardware supports. In * principle, we only need to make sure that less vertex buffers are * used, and mark some of the latter vertex buffers as incompatible. * For now, mark all vertex buffers as incompatible. */ ve->incompatible_vb_mask_any = used_buffers; ve->compatible_vb_mask_any = 0; ve->incompatible_elem_mask = u_bit_consecutive(0, count); } ve->used_vb_mask = used_buffers; ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers; ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers; /* Align the formats and offsets to the size of DWORD if needed. */ if (!mgr->caps.velem_src_offset_unaligned) { for (i = 0; i < count; i++) { ve->native_format_size[i] = align(ve->native_format_size[i], 4); driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4); } } /* Only create driver CSO if no incompatible elements */ if (!ve->incompatible_elem_mask) { ve->driver_cso = pipe->create_vertex_elements_state(pipe, count, driver_attribs); } return ve; } static void u_vbuf_delete_vertex_elements(void *ctx, void *state, enum cso_cache_type type) { struct pipe_context *pipe = (struct pipe_context*)ctx; struct cso_velements *cso = (struct cso_velements*)state; struct u_vbuf_elements *ve = (struct u_vbuf_elements*)cso->data; if (ve->driver_cso) pipe->delete_vertex_elements_state(pipe, ve->driver_cso); FREE(ve); FREE(cso); } void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr, unsigned start_slot, unsigned count, unsigned unbind_num_trailing_slots, bool take_ownership, const struct pipe_vertex_buffer *bufs) { unsigned i; /* which buffers are enabled */ uint32_t enabled_vb_mask = 0; /* which buffers are in user memory */ uint32_t user_vb_mask = 0; /* which buffers are incompatible with the driver */ uint32_t incompatible_vb_mask = 0; /* which buffers have a non-zero stride */ uint32_t nonzero_stride_vb_mask = 0; const uint32_t mask = ~(((1ull << (count + unbind_num_trailing_slots)) - 1) << start_slot); /* Zero out the bits we are going to rewrite completely. */ mgr->user_vb_mask &= mask; mgr->incompatible_vb_mask &= mask; mgr->nonzero_stride_vb_mask &= mask; mgr->enabled_vb_mask &= mask; if (!bufs) { struct pipe_context *pipe = mgr->pipe; /* Unbind. */ unsigned total_count = count + unbind_num_trailing_slots; mgr->dirty_real_vb_mask &= mask; for (i = 0; i < total_count; i++) { unsigned dst_index = start_slot + i; pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]); pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]); } pipe->set_vertex_buffers(pipe, start_slot, count, unbind_num_trailing_slots, false, NULL); return; } for (i = 0; i < count; i++) { unsigned dst_index = start_slot + i; const struct pipe_vertex_buffer *vb = &bufs[i]; struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index]; struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index]; if (!vb->buffer.resource) { pipe_vertex_buffer_unreference(orig_vb); pipe_vertex_buffer_unreference(real_vb); continue; } if (take_ownership) { pipe_vertex_buffer_unreference(orig_vb); memcpy(orig_vb, vb, sizeof(*vb)); } else { pipe_vertex_buffer_reference(orig_vb, vb); } if (vb->stride) { nonzero_stride_vb_mask |= 1 << dst_index; } enabled_vb_mask |= 1 << dst_index; if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) || (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) { incompatible_vb_mask |= 1 << dst_index; real_vb->buffer_offset = vb->buffer_offset; real_vb->stride = vb->stride; pipe_vertex_buffer_unreference(real_vb); real_vb->is_user_buffer = false; continue; } if (!mgr->caps.user_vertex_buffers && vb->is_user_buffer) { user_vb_mask |= 1 << dst_index; real_vb->buffer_offset = vb->buffer_offset; real_vb->stride = vb->stride; pipe_vertex_buffer_unreference(real_vb); real_vb->is_user_buffer = false; continue; } pipe_vertex_buffer_reference(real_vb, vb); } for (i = 0; i < unbind_num_trailing_slots; i++) { unsigned dst_index = start_slot + count + i; pipe_vertex_buffer_unreference(&mgr->vertex_buffer[dst_index]); pipe_vertex_buffer_unreference(&mgr->real_vertex_buffer[dst_index]); } mgr->user_vb_mask |= user_vb_mask; mgr->incompatible_vb_mask |= incompatible_vb_mask; mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask; mgr->enabled_vb_mask |= enabled_vb_mask; /* All changed buffers are marked as dirty, even the NULL ones, * which will cause the NULL buffers to be unbound in the driver later. */ mgr->dirty_real_vb_mask |= ~mask; } static ALWAYS_INLINE bool get_upload_offset_size(struct u_vbuf *mgr, const struct pipe_vertex_buffer *vb, struct u_vbuf_elements *ve, const struct pipe_vertex_element *velem, unsigned vb_index, unsigned velem_index, int start_vertex, unsigned num_vertices, int start_instance, unsigned num_instances, unsigned *offset, unsigned *size) { /* Skip the buffers generated by translate. */ if ((1 << vb_index) & mgr->fallback_vbs_mask || !vb->is_user_buffer) return false; unsigned instance_div = velem->instance_divisor; *offset = vb->buffer_offset + velem->src_offset; if (!vb->stride) { /* Constant attrib. */ *size = ve->src_format_size[velem_index]; } else if (instance_div) { /* Per-instance attrib. */ /* Figure out how many instances we'll render given instance_div. We * can't use the typical div_round_up() pattern because the CTS uses * instance_div = ~0 for a test, which overflows div_round_up()'s * addition. */ unsigned count = num_instances / instance_div; if (count * instance_div != num_instances) count++; *offset += vb->stride * start_instance; *size = vb->stride * (count - 1) + ve->src_format_size[velem_index]; } else { /* Per-vertex attrib. */ *offset += vb->stride * start_vertex; *size = vb->stride * (num_vertices - 1) + ve->src_format_size[velem_index]; } return true; } static enum pipe_error u_vbuf_upload_buffers(struct u_vbuf *mgr, int start_vertex, unsigned num_vertices, int start_instance, unsigned num_instances) { unsigned i; struct u_vbuf_elements *ve = mgr->ve; unsigned nr_velems = ve->count; const struct pipe_vertex_element *velems = mgr->using_translate ? mgr->fallback_velems.velems : ve->ve; /* Faster path when no vertex attribs are interleaved. */ if ((ve->interleaved_vb_mask & mgr->user_vb_mask) == 0) { for (i = 0; i < nr_velems; i++) { const struct pipe_vertex_element *velem = &velems[i]; unsigned index = velem->vertex_buffer_index; struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index]; unsigned offset, size; if (!get_upload_offset_size(mgr, vb, ve, velem, index, i, start_vertex, num_vertices, start_instance, num_instances, &offset, &size)) continue; struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[index]; const uint8_t *ptr = mgr->vertex_buffer[index].buffer.user; u_upload_data(mgr->pipe->stream_uploader, mgr->has_signed_vb_offset ? 0 : offset, size, 4, ptr + offset, &real_vb->buffer_offset, &real_vb->buffer.resource); if (!real_vb->buffer.resource) return PIPE_ERROR_OUT_OF_MEMORY; real_vb->buffer_offset -= offset; } return PIPE_OK; } unsigned start_offset[PIPE_MAX_ATTRIBS]; unsigned end_offset[PIPE_MAX_ATTRIBS]; uint32_t buffer_mask = 0; /* Slower path supporting interleaved vertex attribs using 2 loops. */ /* Determine how much data needs to be uploaded. */ for (i = 0; i < nr_velems; i++) { const struct pipe_vertex_element *velem = &velems[i]; unsigned index = velem->vertex_buffer_index; struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index]; unsigned first, size, index_bit; if (!get_upload_offset_size(mgr, vb, ve, velem, index, i, start_vertex, num_vertices, start_instance, num_instances, &first, &size)) continue; index_bit = 1 << index; /* Update offsets. */ if (!(buffer_mask & index_bit)) { start_offset[index] = first; end_offset[index] = first + size; } else { if (first < start_offset[index]) start_offset[index] = first; if (first + size > end_offset[index]) end_offset[index] = first + size; } buffer_mask |= index_bit; } /* Upload buffers. */ while (buffer_mask) { unsigned start, end; struct pipe_vertex_buffer *real_vb; const uint8_t *ptr; i = u_bit_scan(&buffer_mask); start = start_offset[i]; end = end_offset[i]; assert(start < end); real_vb = &mgr->real_vertex_buffer[i]; ptr = mgr->vertex_buffer[i].buffer.user; u_upload_data(mgr->pipe->stream_uploader, mgr->has_signed_vb_offset ? 0 : start, end - start, 4, ptr + start, &real_vb->buffer_offset, &real_vb->buffer.resource); if (!real_vb->buffer.resource) return PIPE_ERROR_OUT_OF_MEMORY; real_vb->buffer_offset -= start; } return PIPE_OK; } static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr) { /* See if there are any per-vertex attribs which will be uploaded or * translated. Use bitmasks to get the info instead of looping over vertex * elements. */ return (mgr->ve->used_vb_mask & ((mgr->user_vb_mask | mgr->incompatible_vb_mask | mgr->ve->incompatible_vb_mask_any) & mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0; } static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr) { /* Return true if there are hw buffers which don't need to be translated. * * We could query whether each buffer is busy, but that would * be way more costly than this. */ return (mgr->ve->used_vb_mask & (~mgr->user_vb_mask & ~mgr->incompatible_vb_mask & mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0; } static void u_vbuf_get_minmax_index_mapped(const struct pipe_draw_info *info, unsigned count, const void *indices, unsigned *out_min_index, unsigned *out_max_index) { if (!count) { *out_min_index = 0; *out_max_index = 0; return; } switch (info->index_size) { case 4: { const unsigned *ui_indices = (const unsigned*)indices; unsigned max = 0; unsigned min = ~0u; if (info->primitive_restart) { for (unsigned i = 0; i < count; i++) { if (ui_indices[i] != info->restart_index) { if (ui_indices[i] > max) max = ui_indices[i]; if (ui_indices[i] < min) min = ui_indices[i]; } } } else { for (unsigned i = 0; i < count; i++) { if (ui_indices[i] > max) max = ui_indices[i]; if (ui_indices[i] < min) min = ui_indices[i]; } } *out_min_index = min; *out_max_index = max; break; } case 2: { const unsigned short *us_indices = (const unsigned short*)indices; unsigned short max = 0; unsigned short min = ~((unsigned short)0); if (info->primitive_restart) { for (unsigned i = 0; i < count; i++) { if (us_indices[i] != info->restart_index) { if (us_indices[i] > max) max = us_indices[i]; if (us_indices[i] < min) min = us_indices[i]; } } } else { for (unsigned i = 0; i < count; i++) { if (us_indices[i] > max) max = us_indices[i]; if (us_indices[i] < min) min = us_indices[i]; } } *out_min_index = min; *out_max_index = max; break; } case 1: { const unsigned char *ub_indices = (const unsigned char*)indices; unsigned char max = 0; unsigned char min = ~((unsigned char)0); if (info->primitive_restart) { for (unsigned i = 0; i < count; i++) { if (ub_indices[i] != info->restart_index) { if (ub_indices[i] > max) max = ub_indices[i]; if (ub_indices[i] < min) min = ub_indices[i]; } } } else { for (unsigned i = 0; i < count; i++) { if (ub_indices[i] > max) max = ub_indices[i]; if (ub_indices[i] < min) min = ub_indices[i]; } } *out_min_index = min; *out_max_index = max; break; } default: unreachable("bad index size"); } } void u_vbuf_get_minmax_index(struct pipe_context *pipe, const struct pipe_draw_info *info, const struct pipe_draw_start_count_bias *draw, unsigned *out_min_index, unsigned *out_max_index) { struct pipe_transfer *transfer = NULL; const void *indices; if (info->has_user_indices) { indices = (uint8_t*)info->index.user + draw->start * info->index_size; } else { indices = pipe_buffer_map_range(pipe, info->index.resource, draw->start * info->index_size, draw->count * info->index_size, PIPE_MAP_READ, &transfer); } u_vbuf_get_minmax_index_mapped(info, draw->count, indices, out_min_index, out_max_index); if (transfer) { pipe_buffer_unmap(pipe, transfer); } } static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr) { struct pipe_context *pipe = mgr->pipe; unsigned start_slot, count; start_slot = ffs(mgr->dirty_real_vb_mask) - 1; count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot); if (mgr->dirty_real_vb_mask == mgr->enabled_vb_mask && mgr->dirty_real_vb_mask == mgr->user_vb_mask) { /* Fast path that allows us to transfer the VBO references to the driver * to skip atomic reference counting there. These are freshly uploaded * user buffers that can be discarded after this call. */ pipe->set_vertex_buffers(pipe, start_slot, count, 0, true, mgr->real_vertex_buffer + start_slot); /* We don't own the VBO references now. Set them to NULL. */ for (unsigned i = 0; i < count; i++) { assert(!mgr->real_vertex_buffer[start_slot + i].is_user_buffer); mgr->real_vertex_buffer[start_slot + i].buffer.resource = NULL; } } else { /* Slow path where we have to keep VBO references. */ pipe->set_vertex_buffers(pipe, start_slot, count, 0, false, mgr->real_vertex_buffer + start_slot); } mgr->dirty_real_vb_mask = 0; } static void u_vbuf_split_indexed_multidraw(struct u_vbuf *mgr, struct pipe_draw_info *info, unsigned drawid_offset, unsigned *indirect_data, unsigned stride, unsigned draw_count) { /* Increase refcount to be able to use take_index_buffer_ownership with * all draws. */ if (draw_count > 1 && info->take_index_buffer_ownership) p_atomic_add(&info->index.resource->reference.count, draw_count - 1); assert(info->index_size); for (unsigned i = 0; i < draw_count; i++) { struct pipe_draw_start_count_bias draw; unsigned offset = i * stride / 4; draw.count = indirect_data[offset + 0]; info->instance_count = indirect_data[offset + 1]; draw.start = indirect_data[offset + 2]; draw.index_bias = indirect_data[offset + 3]; info->start_instance = indirect_data[offset + 4]; u_vbuf_draw_vbo(mgr, info, drawid_offset, NULL, draw); } } void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info, unsigned drawid_offset, const struct pipe_draw_indirect_info *indirect, const struct pipe_draw_start_count_bias draw) { struct pipe_context *pipe = mgr->pipe; int start_vertex; unsigned min_index; unsigned num_vertices; boolean unroll_indices = FALSE; const uint32_t used_vb_mask = mgr->ve->used_vb_mask; uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask; const uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask; struct pipe_draw_info new_info; struct pipe_draw_start_count_bias new_draw; unsigned fixed_restart_index = info->index_size ? util_prim_restart_index_from_size(info->index_size) : 0; /* Normal draw. No fallback and no user buffers. */ if (!incompatible_vb_mask && !mgr->ve->incompatible_elem_mask && !user_vb_mask && (info->index_size != 1 || !mgr->caps.rewrite_ubyte_ibs) && (!info->primitive_restart || info->restart_index == fixed_restart_index || !mgr->caps.rewrite_restart_index) && (!info->primitive_restart || mgr->caps.supported_restart_modes & BITFIELD_BIT(info->mode)) && mgr->caps.supported_prim_modes & BITFIELD_BIT(info->mode)) { /* Set vertex buffers if needed. */ if (mgr->dirty_real_vb_mask & used_vb_mask) { u_vbuf_set_driver_vertex_buffers(mgr); } pipe->draw_vbo(pipe, info, drawid_offset, indirect, &draw, 1); return; } new_info = *info; new_draw = draw; /* Handle indirect (multi)draws. */ if (indirect && indirect->buffer) { unsigned draw_count = 0; /* Get the number of draws. */ if (indirect->indirect_draw_count) { pipe_buffer_read(pipe, indirect->indirect_draw_count, indirect->indirect_draw_count_offset, 4, &draw_count); } else { draw_count = indirect->draw_count; } if (!draw_count) goto cleanup; unsigned data_size = (draw_count - 1) * indirect->stride + (new_info.index_size ? 20 : 16); unsigned *data = malloc(data_size); if (!data) goto cleanup; /* report an error? */ /* Read the used buffer range only once, because the read can be * uncached. */ pipe_buffer_read(pipe, indirect->buffer, indirect->offset, data_size, data); if (info->index_size) { /* Indexed multidraw. */ unsigned index_bias0 = data[3]; bool index_bias_same = true; /* If we invoke the translate path, we have to split the multidraw. */ if (incompatible_vb_mask || mgr->ve->incompatible_elem_mask) { u_vbuf_split_indexed_multidraw(mgr, &new_info, drawid_offset, data, indirect->stride, draw_count); free(data); return; } /* See if index_bias is the same for all draws. */ for (unsigned i = 1; i < draw_count; i++) { if (data[i * indirect->stride / 4 + 3] != index_bias0) { index_bias_same = false; break; } } /* Split the multidraw if index_bias is different. */ if (!index_bias_same) { u_vbuf_split_indexed_multidraw(mgr, &new_info, drawid_offset, data, indirect->stride, draw_count); free(data); return; } /* If we don't need to use the translate path and index_bias is * the same, we can process the multidraw with the time complexity * equal to 1 draw call (except for the index range computation). * We only need to compute the index range covering all draw calls * of the multidraw. * * The driver will not look at these values because indirect != NULL. * These values determine the user buffer bounds to upload. */ new_draw.index_bias = index_bias0; new_info.index_bounds_valid = true; new_info.min_index = ~0u; new_info.max_index = 0; new_info.start_instance = ~0u; unsigned end_instance = 0; struct pipe_transfer *transfer = NULL; const uint8_t *indices; if (info->has_user_indices) { indices = (uint8_t*)info->index.user; } else { indices = (uint8_t*)pipe_buffer_map(pipe, info->index.resource, PIPE_MAP_READ, &transfer); } for (unsigned i = 0; i < draw_count; i++) { unsigned offset = i * indirect->stride / 4; unsigned start = data[offset + 2]; unsigned count = data[offset + 0]; unsigned start_instance = data[offset + 4]; unsigned instance_count = data[offset + 1]; if (!count || !instance_count) continue; /* Update the ranges of instances. */ new_info.start_instance = MIN2(new_info.start_instance, start_instance); end_instance = MAX2(end_instance, start_instance + instance_count); /* Update the index range. */ unsigned min, max; u_vbuf_get_minmax_index_mapped(&new_info, count, indices + new_info.index_size * start, &min, &max); new_info.min_index = MIN2(new_info.min_index, min); new_info.max_index = MAX2(new_info.max_index, max); } free(data); if (transfer) pipe_buffer_unmap(pipe, transfer); /* Set the final instance count. */ new_info.instance_count = end_instance - new_info.start_instance; if (new_info.start_instance == ~0u || !new_info.instance_count) goto cleanup; } else { /* Non-indexed multidraw. * * Keep the draw call indirect and compute minimums & maximums, * which will determine the user buffer bounds to upload, but * the driver will not look at these values because indirect != NULL. * * This efficiently processes the multidraw with the time complexity * equal to 1 draw call. */ new_draw.start = ~0u; new_info.start_instance = ~0u; unsigned end_vertex = 0; unsigned end_instance = 0; for (unsigned i = 0; i < draw_count; i++) { unsigned offset = i * indirect->stride / 4; unsigned start = data[offset + 2]; unsigned count = data[offset + 0]; unsigned start_instance = data[offset + 3]; unsigned instance_count = data[offset + 1]; new_draw.start = MIN2(new_draw.start, start); new_info.start_instance = MIN2(new_info.start_instance, start_instance); end_vertex = MAX2(end_vertex, start + count); end_instance = MAX2(end_instance, start_instance + instance_count); } free(data); /* Set the final counts. */ new_draw.count = end_vertex - new_draw.start; new_info.instance_count = end_instance - new_info.start_instance; if (new_draw.start == ~0u || !new_draw.count || !new_info.instance_count) goto cleanup; } } else { if ((!indirect && !new_draw.count) || !new_info.instance_count) goto cleanup; } if (new_info.index_size) { /* See if anything needs to be done for per-vertex attribs. */ if (u_vbuf_need_minmax_index(mgr)) { unsigned max_index; if (new_info.index_bounds_valid) { min_index = new_info.min_index; max_index = new_info.max_index; } else { u_vbuf_get_minmax_index(mgr->pipe, &new_info, &new_draw, &min_index, &max_index); } assert(min_index <= max_index); start_vertex = min_index + new_draw.index_bias; num_vertices = max_index + 1 - min_index; /* Primitive restart doesn't work when unrolling indices. * We would have to break this drawing operation into several ones. */ /* Use some heuristic to see if unrolling indices improves * performance. */ if (!indirect && !new_info.primitive_restart && util_is_vbo_upload_ratio_too_large(new_draw.count, num_vertices) && !u_vbuf_mapping_vertex_buffer_blocks(mgr)) { unroll_indices = TRUE; user_vb_mask &= ~(mgr->nonzero_stride_vb_mask & mgr->ve->noninstance_vb_mask_any); } } else { /* Nothing to do for per-vertex attribs. */ start_vertex = 0; num_vertices = 0; min_index = 0; } } else { start_vertex = new_draw.start; num_vertices = new_draw.count; min_index = 0; } /* Translate vertices with non-native layouts or formats. */ if (unroll_indices || incompatible_vb_mask || mgr->ve->incompatible_elem_mask) { if (!u_vbuf_translate_begin(mgr, &new_info, &new_draw, start_vertex, num_vertices, min_index, unroll_indices)) { debug_warn_once("u_vbuf_translate_begin() failed"); goto cleanup; } if (unroll_indices) { new_info.index_size = 0; new_draw.index_bias = 0; new_info.index_bounds_valid = true; new_info.min_index = 0; new_info.max_index = new_draw.count - 1; new_draw.start = 0; } user_vb_mask &= ~(incompatible_vb_mask | mgr->ve->incompatible_vb_mask_all); } /* Upload user buffers. */ if (user_vb_mask) { if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices, new_info.start_instance, new_info.instance_count) != PIPE_OK) { debug_warn_once("u_vbuf_upload_buffers() failed"); goto cleanup; } mgr->dirty_real_vb_mask |= user_vb_mask; } /* if (unroll_indices) { printf("unrolling indices: start_vertex = %i, num_vertices = %i\n", start_vertex, num_vertices); util_dump_draw_info(stdout, info); printf("\n"); } unsigned i; for (i = 0; i < mgr->nr_vertex_buffers; i++) { printf("input %i: ", i); util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i); printf("\n"); } for (i = 0; i < mgr->nr_real_vertex_buffers; i++) { printf("real %i: ", i); util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i); printf("\n"); } */ u_upload_unmap(pipe->stream_uploader); if (mgr->dirty_real_vb_mask) u_vbuf_set_driver_vertex_buffers(mgr); if ((new_info.index_size == 1 && mgr->caps.rewrite_ubyte_ibs) || (new_info.primitive_restart && ((new_info.restart_index != fixed_restart_index && mgr->caps.rewrite_restart_index) || !(mgr->caps.supported_restart_modes & BITFIELD_BIT(new_info.mode)))) || !(mgr->caps.supported_prim_modes & BITFIELD_BIT(new_info.mode))) { util_primconvert_save_flatshade_first(mgr->pc, mgr->flatshade_first); util_primconvert_draw_vbo(mgr->pc, &new_info, drawid_offset, indirect, &new_draw, 1); } else pipe->draw_vbo(pipe, &new_info, drawid_offset, indirect, &new_draw, 1); if (mgr->using_translate) { u_vbuf_translate_end(mgr); } return; cleanup: if (info->take_index_buffer_ownership) { struct pipe_resource *indexbuf = info->index.resource; pipe_resource_reference(&indexbuf, NULL); } } void u_vbuf_save_vertex_elements(struct u_vbuf *mgr) { assert(!mgr->ve_saved); mgr->ve_saved = mgr->ve; } void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr) { if (mgr->ve != mgr->ve_saved) { struct pipe_context *pipe = mgr->pipe; mgr->ve = mgr->ve_saved; pipe->bind_vertex_elements_state(pipe, mgr->ve ? mgr->ve->driver_cso : NULL); } mgr->ve_saved = NULL; }