
The Parma Polyhedra Library
User’s Manual∗

(version 0.2)

Roberto Bagnara†

Sara Bonini
Patricia M. Hill‡

Andrea Pescetti
Elisa Ricci§

Angela Stazzone
Enea Zaffanella¶

Tatiana Zolo‖

November 13, 2001

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”.
†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§ericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
¶zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‖zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by theFree Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theFree Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1

2 PPL Namespace Index 6

3 PPL Compound Index 6

4 PPL Page Index 6

5 PPL Namespace Documentation 6

6 PPL Class Documentation 8

7 PPL Page Documentation 29

1 Convex Polyhedra and the PPL

1.1 An Introduction to Convex Polyhedra

Most of the following definitions and results are taken from:

• G. L. Nemhauser and L. A. Wolsey - Integer and Combinatorial Optimization - Wiley Interscience
Series in Discrete Mathematics and Optimization, 1988.
• D. K. Wilde - A library for doing polyhedral operations - IRISA Publication interne n. 785, Decem-

ber 1993.
• K. Fukuda - Polyhedral Computation FAQ - Swiss Federal Institute of Technology, Lausanne and

Zurich, Switzerland, October 2000.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 2

Combination

Let λ1, . . . , λk ∈ R andx1, . . . ,xk ∈ Rn. The linear combination
∑k
j=1 λjxj is said to be

• apositive combination, if ∀j ∈ {1, . . . , k} : λj ≥ 0;

• anaffine combination, if
∑k
j=1 λj = 1;

• aconvex combination, if both the previous conditions hold.

Note that, whenk = 0, we have
∑k
j=1 λjxj = 0 and

∑k
j=1 λj = 0. Therefore, the origin0 ∈ Rn can

always be regarded as a positive (but not affine) linear combination of an empty set of vectors.

Scalar product

Let x = (x0, . . . , xn−1)T, y = (y0, . . . , yn−1)T ∈ Rn. Thescalar productof x andy is defined as

〈x,y〉 =
n−1∑
i=0

xiyi.

The vectorsx andy areorthogonalif 〈x,y〉 = 0.

Convex hull

Theconvex hullof a setK ⊆ Rn is the set of all the convex combinations of the points inK. The setK is
convex if it is its own convex hull.

Affine transformation

An affine transformationis a function mapping a pointx ∈ Rn to a pointx′ ∈ Rm such that

x′ = Ax + b

whereA ∈ Rm × Rn andb ∈ Rm.

Linear independence

A finite set of points{x1, . . . ,xk} ⊆ R
n is linearly independentif, for all λ1, . . . , λk ∈ R, the set of

equations
k∑
i=1

λixi = 0

implies that, for eachi = 1, . . . , k, λi = 0.

Note that the maximum number of linearly independent points inR
n is n.

Proposition

If A is anm × n matrix, the maximum number of linearly independent rows ofA, viewed as vectors of
R
n, equals the maximum number of linearly independent columns ofA, viewed as vectors ofRm.

Rank

The maximum number of linearly independent rows (columns) of a matrixA is therankofA and is denoted
by rank(A).

Affine independence

A finite set of points{x1, . . . ,xk} ⊆ R
n is affinely independentif, for all λ1, . . . , λk ∈ R, the set of

equations
k∑
i=1

λixi = 0,
k∑
i=1

λi = 0

implies that, for eachi = 1, . . . , k, λi = 0.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 3

Note that linear independence implies affine independence, but the converse is not true. Moreover the
maximum number of affinely independent points inRn is n + 1 (e.g.,n linearly independent points and
the origin0).

Polyhedron

A setP ⊆ Rn is called apolyhedronif it is the set of solutions to a finite number of linear equalities and
inequalities:

P = {x ∈ Rn | Ax = b, Cx ≥ d },

where, ifm1 is the number of linear equalities andm2 the number of linear inequalities,A ∈ Rm1 × Rn,
b ∈ Rm1 , C ∈ Rm2 × Rn andd ∈ Rm2 .

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as aconstraint.

Constraints representation

By definition, any polyhedronP ⊆ Rn can be represented by asystem of constraints: namely, the system
given by the union of the equalities specified by matrixA and vectorb and the inequalities specified by
matrixC and vectord.

Note that, ifc,x ∈ Rn andλ ∈ R and the system of constraints contains the equality〈c,x〉 = λ, then this
one can be replaced by the two equivalent inequalities〈c,x〉 ≥ λ and〈c,x〉 ≤ λ (i.e., 〈−c,x〉 ≥ −λ). It
follows that a polyhedronP ⊆ Rn can always be represented as a system ofinequalityconstraints

P = {x ∈ Rn | Ax ≥ b }

for some matrixA ∈ Rm × Rn and vectorb ∈ Rm.

Rational polyhedron

A polyhedronP ⊆ Rn is said to berational if there exists a matrixA ∈ Rm′ × Rn and a vectorb ∈ Rm′

with rational coefficients such that

P = {x ∈ Rn | Ax ≥ b }.

In the sequel, we will consider only rational polyhedra and assume that, if{x ∈ Rn | Ax ≥ b } is a system
of constraints representing a polyhedron, thenA andb have rational coefficients.

Universe polyhedron

A polyhedronP ⊆ Rn is calleduniverse polyhedronif it is the whole space (i.e.,P = R
n).

Polytope

A polyhedronP ⊂ Rn is boundedif there exists aλ ∈ R, λ ≥ 0 such that

P ⊆
{

(x0, . . . , xn−1)T ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is called apolytope.

Proposition

A polyhedron is a closed convex set.

Polyhedron dimension

A non-empty polyhedronP ⊆ Rn is of dimensionk, denoted bydim(P) = k, if the maximum number of
affinely independent points inP is k + 1.

Note:
What is the dimension of theemptypolyhedron? If the above definition is applied to an empty poly-
hedron, then the answer would be−1.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 4

Vertex

A vertexof a polyhedronP is any point inP which cannot be expressed as a convex combination of any
other distinct points inP .

Ray

Let P, P0 be the polyhedra

P = {x ∈ Rn | Ax ≥ b } 6= ∅ andP0 = { r ∈ Rn | Ar ≥ 0 }

whereA ∈ Rm × Rn, b ∈ Rm. Then any pointr ∈ P0 \ {0} is called aray of P .

A ray indicates a direction in which the polyhedronP is infinite (i.e., unbounded).

Proposition

A point r ∈ Rn \ {0} is a ray of a non-empty polyhedronP ⊆ Rn if and only if, for any pointx ∈ P ,
(x + λr) ∈ P for all λ ∈ R, λ ≥ 0.

Extreme ray

A ray r of a polyhedronP is anextreme rayif and only if it cannot be expressed as a positive combination
of any other pairr1 andr2 of rays ofP , wherer 6= λr1, r 6= λr2 andr1 6= λr2 for all λ ∈ R, λ ≥ 0.

Line

A line (or bidirectional ray) of a polyhedronP ⊆ Rn is a rayl of P such that−l is another ray ofP .

Cone

A setC ⊆ Rn is aconeif
x ∈ C ⇒ λx ∈ C for all λ ∈ R, λ ≥ 0.

Polyhedral cone

The polyhedronP = {x ∈ Rn | Ax ≥ 0 } is a convex cone and is calledpolyhedral cone.

A polyhedral cone is eitherpointed, having the origin as its only vertex, or has no vertices at all.

Lineality space

Given a polyhedronP = {x ∈ Rn | Ax ≥ b }, thelineality spaceof P is the set

{x ∈ P | Ax = 0 }

and it is denoted bylin.space(P).

Minkowski’s sum

LetR, S ⊆ Rn be two sets of vectors. Then theMinkowski’s sumof R andS is:

R+ S = { r + s | r ∈ R, s ∈ S }.

Generators representation

A polyhedronP ⊆ Rn can also be represented by a finite setV of points ofP , a finite setR of rays ofP
and a finite setL of lines ofP . The elements of these three sets are thegeneratorsof P , in the sense that

P = V +R+ L,

where the symbol ’+’ denotes the Minkowski’s sum and

• V is the set of all the convex combinations of the points inV ;
• R is the set of all the positive combinations of the rays inR; and

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 5

• L is the set of all the linear combinations of the lines inL.

Note thatV is a polytope,R is a pointed cone, andL is lin.space(P). Moreover, ifV = ∅, we obtain
V = ∅, so thatP = ∅. In contrast, if bothR = L = ∅, we obtainR = L = {0}, so thatP = V.

Also note thatV must contain all the vertices ofP (hence the choice for its name). However, ifP is a
non-empty polyhedron having no vertices at all, thenV necessarily contains points that arenot vertices of
P . For instance, the half-space ofR2 corresponding to the single constrainty ≥ 0 can be represented by
taking the generatorsV =

{
(0, 0)T

}
,R =

{
(0, 1)T

}
andL =

{
(1, 0)T

}
. Note also that the only ray inR

is notan extreme ray ofP .

The following theorem states that, whenever a polyhedronP has a vertex, there exists a decomposition
such that

• V is the set of allverticesof P ;
• R is the set of allextremerays ofP ; and
• L = ∅.

Minkowski’s theorem

Let P = {x ∈ Rn | Ax ≥ b } be a non-empty polyhedron whererank(A) = n. Let V be the set of
vertices andR the set of extreme rays ofP . Let alsoV be the set of convex combinations ofV andR the
set of positive combinations ofR. Then

P = V +R.

The conditions thatP is not empty andrank(A) = n are equivalent to the condition thatP has a vertex.
(See also Nemhauser and Wolsey - Integer and Combinatorial Optimization - propositions 4.1 and 4.2 on
pages 92 and 93).

Proposition

Under the same hypotheses of Minkowsky’s theorem, ifP is a rational polyhedron then all the vertices in
V have rational coefficients and we can consider a setR of extreme rays having rational coefficients only.

The second theorem, called Weil’s theorem, states that any system of generators having rational coefficients
defines a rational polyhedron:

Weil’s theorem

If A is a rationalm× n matrix,B is a rationalm′ × n matrix and

Q =

x ∈ Rn

∣∣∣∣∣∣∣
xT = yTA+ zTB,

y = (y0, . . . , ym−1)T ∈ Rm+ ,
∑m−1
k=0 yk = 1,

z ∈ Rm′+

,
thenQ is a rational polyhedron.

In fact, sinceQ consists of the sum of convex combinations of the rows ofA with positive combinations of
the rows ofB, we can think ofA as the matrix of vertices andB as the matrix of rays.

Dual representation

Thus a rational polyhedronP hasdual representations. That is,P can be represented by a system of
constraints or a system of generators. Moreover, given one of the representations, there is an algorithm for
computing the other.

Space dimension and dimension-compatibility

Thespace dimensionof a polyhedronP ⊆ Rn is the dimensionn ∈ N of the corresponding vector space.
The space dimension of constraints, generators and other objects of the PPL are defined similarly. The

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Namespace Index 6

space dimension of objects is important because most of the operations defined on polyhedra are well-
defined if and only if the various arguments are space dimension-compatible.

The following (space)dimension-compatibilityrules are defined:

• the polyhedraP ⊆ Rn andQ ⊆ Rm are dimension-compatible if and only ifn = m;
• the constraint〈a,x〉 = λ (or 〈a,x〉 ≥ λ), wherea,x ∈ Rm, is dimension-compatible with polyhe-

dronP ⊆ Rn if and only ifm ≤ n;
• the generatorx ∈ Rm is dimension-compatible with polyhedronP ⊆ Rn if and only ifm ≤ n;
• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if

all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

Be careful not to confuse the dimensionk ≤ n of a polyhedronP ⊆ Rn with thespacedimensionn of
P , which is the dimension of the enclosing vector space. In particular, we can havedim(P) 6= dim(Q)
even thoughP andQ are dimension-compatible; and vice versa,P andQ may be dimension-incompatible
polyhedra even thoughdim(P) = dim(Q).

2 PPL Namespace Index

2.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma Polyhedra Library (The entire library is confined into this namespace) 6

3 PPL Compound Index

3.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma Polyhedra Library::Constraint (A linear equality or inequality) 8

Parma Polyhedra Library::ConSys (A system of constraints) 10

Parma Polyhedra Library::ConSys::const iterator 11

Parma Polyhedra Library::Generator (A line, ray or vertex) 12

Parma Polyhedra Library::GenSys (A system of generators) 15

Parma Polyhedra Library::GenSys::const iterator 17

Parma Polyhedra Library::LinExpression (A linear expression) 18

Parma Polyhedra Library::Polyhedron (A convex polyhedron) 21

Parma Polyhedra Library::Variable (A dimension of the space) 28

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Page Index 7

4 PPL Page Index

4.1 PPL Related Pages

Here is a list of all related documentation pages:

Prolog Interface 29

GNU GENERAL PUBLIC LICENSE 36

GNU Free Documentation License 41

5 PPL Namespace Documentation

5.1 Parma Polyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

• classParmaPolyhedraLibrary::Variable

A dimension of the space.

• classParmaPolyhedraLibrary::LinExpression

A linear expression.

• classParmaPolyhedraLibrary::Constraint

A linear equality or inequality.

• classParmaPolyhedraLibrary::ConSys

A system of constraints.

• classParmaPolyhedraLibrary::ConSys::constiterator
• classParmaPolyhedraLibrary::Generator

A line, ray or vertex.

• classParmaPolyhedraLibrary::GenSys

A system of generators.

• classParmaPolyhedraLibrary::GenSys::constiterator
• classParmaPolyhedraLibrary::Polyhedron

A convex polyhedron.

Enumerations

• enum GenSysCon Rel { NONE SATISFIES, ALL SATISFY, ALL SATURATE, SOME -
SATISFY}

Describes possible relations between a system of generators and a given constraint.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Class Documentation 8

5.1.1 Enumeration Type Documentation

5.1.1.1 enum ParmaPolyhedra Library::GenSys Con Rel

Enumeration values:
NONE SATISFIES No generator satisfies the given constraint.

ALL SATISFY All generators satisfy the given constraint, but there exists a generator not saturating
it (i.e., a generator does not belong to the hyper-plane defined by the constraint.).

ALL SATURATE All generators saturate the given constraint (i.e., they all belong to the hyper-
plane defined by the constraint.).

SOME SATISFY Some generators satisfy the given constraint (i.e., there exists both a generator
satisfying the constraint and another generator which does not satisfy it.).

6 PPL Class Documentation

6.1 Parma Polyhedra Library::Constraint Class Reference

A linear equality or inequality.

#include <ppl.hh >

Public Methods

• Constraint(const Constraint &c)

Ordinary copy-constructor.

• ∼Constraint()

Destructor.

• bool is equality() const

Returnstrue if and only if∗this is an equality constraint.

• bool is inequality() const

Returnstrue if and only if∗this is an inequality constraint.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• const Integer &coefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• const Integer &coefficient() const

Returns the inhomogeneous term of∗this .

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.1 Parma Polyhedra Library::Constraint Class Reference 9

Static Public Methods

• const Constraint &zerodim false()

The unsatisfiable (zero-dimension space) constraint0 = 1.

• const Constraint &zerodim positivity ()

The true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint.

Friends

• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 = e2 .

• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e, const Integer &n)

Returns the constrainte = n.

• ConstraintParmaPolyhedraLibrary::operator==(const Integer &n, constLinExpression&e)

Returns the constraintn = e.

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 >= e2 .

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e, const Integer &n)

Returns the constrainte >= n.

• ConstraintParmaPolyhedraLibrary::operator>= (const Integer &n, constLinExpression&e)

Returns the constraintn >= e.

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 <= e2 .

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e, const Integer &n)

Returns the constrainte <= n.

• ConstraintParmaPolyhedraLibrary::operator<= (const Integer &n, constLinExpression&e)

Returns the constraintn <= e.

• ConstraintParmaPolyhedraLibrary::operator>> (const Constraint &c, unsigned int offset)

Returns the constraintc with variables renamed by addingoffset to their Cartesian axis identifier.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Constraint &c)

Output operator.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.2 Parma Polyhedra Library::ConSys Class Reference 10

6.1.1 Detailed Description

An object of the classConstraintis either:

• an equality:
∑n−1
i=0 aixi + b = 0; or

• an inequality:
∑n−1
i=0 aixi + b ≥ 0;

wheren is the dimension of the space.

How to build a constraint
Constraints are typically built by applying a relational operator to a pair of linear expressions. Avail-
able relational operators include equality (==) and non-strict inequalities (>= and<=). Strict inequal-
ities (< and>) are not supported. The space-dimension of a constraint is defined as the maximum
space-dimension of the arguments of its constructor.
In the following example it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example
The following code builds the equality constraint3x+ 5y − z = 0, having space-dimension3:

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the inequality constraint4x ≥ 2 ∗ y − 13, having space-dimension2:

Constraint ineq_c(4*x >= 2*y - 13);

The unsatisfiable constraint on the zero-dimension spaceR
0 can be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

An equivalent, but more involved way is the following:

Constraint false_c(LinExpression::zero() == 1);

In constrast, the following code defines an unsatisfiable constraint having space-dimension3:

Constraint false_c(0*z == 1);

6.2 Parma Polyhedra Library::ConSys Class Reference

A system of constraints.

#include <ppl.hh >

Public Methods

• ConSys()

Default constructor: builds an empty system of constraints.

• ConSys(constConstraint&c)

Builds the singleton system containing only constraintc .

• ConSys(const ConSys &cs)

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.2 Parma Polyhedra Library::ConSys Class Reference 11

Ordinary copy-constructor.

• virtual∼ConSys()

Destructor.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• void insert(constConstraint&c)

Inserts a copy of the constraintc into ∗this , increasing the number of dimensions if needed.

• constiteratorbegin() const

Returns theconstiterator pointing to the first constraint, if∗this is not empty; otherwise, returns the
past-the-endconstiterator.

• constiteratorend() const

Returns the past-the-endconstiterator.

Static Public Methods

• const ConSys &zerodim empty()

Returns the singleton system containing onlyConstraint::zerodim false().

6.2.1 Detailed Description

An object of the classConSysis a system of constraints, i.e., a multiset of objects of the classConstraint.
When inserting constraints in a system, dimensions are automatically adjusted so that all the constraints in
the system are defined on the same vector space.

In all the examples it is assumed that variablesx andy are defined as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a system of constraints corresponding to a square inR

2:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);

Note that: the constraint system is created with space dimension zero; the first and third constraint
insertions increases the space dimension to1 and2, respectively.

Example 2
The following code builds a system of constraints corresponding to a half-strip inR

2:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 Parma Polyhedra Library::ConSys::const iterator Class Reference 12

Note:
After inserting a multiset of constraints in a constraint system, there are no guarantees that anexact
copy of them can be retrieved: in general, only anequivalentconstraint system will be available,
where original constraints may have been reordered, removed (if they are trivial, duplicate or implied
by other constraints), linearly combined, etc.

6.3 Parma Polyhedra Library::ConSys::const iterator Class Reference

#include <ppl.hh >

Public Methods

• constiterator()

Default constructor.

• constiterator(const constiterator &y)

Ordinary copy-constructor.

• virtual∼constiterator()

Destructor.

• constiterator &operator=(const constiterator &y)

Assignment operator.

• constConstraint& operator∗ () const

Dereference operator.

• constConstraint∗ operator→ () const

Indirect member selector.

• constiterator &operator++()

Prefix increment operator.

• constiteratoroperator++(int)

Postfix increment operator.

• booloperator==(const constiterator &y) const

Returnstrue if and only if∗this andy are identical.

• booloperator!=(const constiterator &y) const

Returnstrue if and only if∗this andy are different.

6.3.1 Detailed Description

A constiteratoris used to provide read-only access to each constraint contained in an object ofConSys.

Example
The following code prints the system of constraints defining the polyhedronph :

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Parma Polyhedra Library::Generator Class Reference 13

const ConSys cs = ph.constraints();
ConSys::const_iterator iend = cs.end();
for (ConSys::const_iterator i = cs.begin(); i != iend; ++i)

cout << *i << endl;

6.4 Parma Polyhedra Library::Generator Class Reference

A line, ray or vertex.

#include <ppl.hh >

Public Types

• enumType

The generator type.

Public Methods

• Generator(const Generator &g)

Ordinary copy-constructor.

• ∼Generator()

Destructor.

• Typetype() const

Returns the generator type of∗this .

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• const Integer &coefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• const Integer &divisor () const

If ∗this is a vertex, returns its divisor.
Exceptions:

std::invalid argument thrown if∗this is not a vertex.

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Methods

• const Generator &zerodim vertex()

Returns the origin of the zero-dimensional spaceR0.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Parma Polyhedra Library::Generator Class Reference 14

Friends

• GeneratorParmaPolyhedraLibrary::line (constLinExpression&e)

Returns the (bidirectional) line of directione.
Exceptions:

std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

• GeneratorParmaPolyhedraLibrary::ray(constLinExpression&e)

Returns the (unidirectional) ray of directione.
Exceptions:

std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

• GeneratorParmaPolyhedraLibrary::vertex(constLinExpression&e=LinExpression::zero(), const
Integer &d=Integer::one())

Returns the vertex ate / d Bothe andd are optional arguments, with default valuesLinExpression::zero()
and Integer::one(), respectively.
Exceptions:

std::invalid argument thrown ifd is zero.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Generator &g)

Output operator.

6.4.1 Detailed Description

An object of the classGeneratoris one of the following:

• a linel = (a0, . . . , an−1)T;

• a rayr = (a0, . . . , an−1)T;

• a vertexv = (a0
d , . . . ,

an−1
d)T;

wheren is the dimension of the space.

A note on terminology.
As observed in the Introduction, there are cases when, in order to represent a polyhedronP using gen-
erators, we need to include in the finite setV even points ofP that arenotvertices ofP . Nonetheless,
accordingly to what is now an established terminology, we will callvertexany element of the set of
generatorsV , even though it is not a “proper” vertex ofP .

How to build a generator.
Each type of generator is built by applying the corresponding function (line , ray or vertex) to
a linear expression, representing a direction in the space; the space-dimension of the generator is
defined as the space-dimension of the corresponding linear expression. Linear expressions used to
define a generator should be homogeneous (any constant term will be simply ignored). When defining

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Parma Polyhedra Library::Generator Class Reference 15

a vertex, an optional Integer argument can be used as a commondenominatorfor all the coefficients
occurring in the provided linear expression; the default value for this argument is 1.
In all the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds a line with directionx− y − z and having space-dimension3:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to built a ray from the origin of the space.

Example 3
The following code builds the vertexv = (1, 0, 2)T ∈ R3:

Generator v = vertex(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator v = vertex(x + 2*z);

Similarly, the origin0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = vertex(0*x + 0*y + 0*z);
Generator origin3_alt = vertex(0*z);

Note however that the following code would have defined a different vertex, namely0 ∈ R2:

Generator origin2 = vertex(0*y);

The following two lines of code both define the only vertex having space-dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the functionvertex is
optional.

Generator origin0 = Generator::zero_dim_vertex();
Generator origin0_alt = vertex();

Example 4
The vertexv specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the functionvertex (the denominator):

Generator v = vertex(2*x + 0*y + 4*z, 2);

Obviously, the denominator can be usefully exploited to specify vertices having some non-integer (but
rational) coordinates. For instance, the vertexw = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the
following code:

Generator w = vertex(-15*x + 32*y + 21*z, 10);

If a zero denominator is provided, an exception is thrown.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 Parma Polyhedra Library::GenSys Class Reference 16

6.5 Parma Polyhedra Library::GenSys Class Reference

A system of generators.

#include <ppl.hh >

Public Methods

• GenSys()

Default constructor: builds an empty system of generators.

• GenSys(constGenerator&g)

Builds the singleton system containing only generatorg.

• GenSys(const GenSys &gs)

Ordinary copy-constructor.

• virtual∼GenSys()

Destructor.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• void insert(constGenerator&g)

Inserts a copy of the generatorg into ∗this , increasing the number of dimensions if needed.

• constiteratorbegin() const

Returns theconstiterator pointing to the first generator, if∗this is not empty; otherwise, returns the
past-the-endconstiterator.

• constiteratorend() const

Returns the past-the-endconstiterator.

Static Public Methods

• const GenSys &zerodim univ ()

Returns the singleton system containing onlyGenerator::zerodim vertex().

6.5.1 Detailed Description

An object of the classGenSysis a system of generators, i.e., a multiset of objects of the classGenerator
(lines, rays and vertices). When inserting generators in a system, dimensions are automatically adjusted so
that all the generators in the system are defined on the same vector space. A system of generators which
is meant to define a non-empty polyhedron must include at least one vertex, even if the polyhedron has no
“proper” vertices: the reason is that lines and rays need a supporting point (they only specify directions).

In all the examples it is assumed that variablesx andy are defined as follows:

Variable x(0);
Variable y(1);

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 Parma Polyhedra Library::GenSys Class Reference 17

Example 1
The following code defines the line having the same direction as thex axis (i.e., the first Cartesian
axis) inR2:

GenSys gs;
gs.insert(line(x + 0*y));

As said above, this system of generators corresponds to an empty polyhedron, because the line has no
supporting point. To define a system of generators indeed corresponding to thex axis, one can add the
following code which inserts the origin of the space as a vertex:

gs.insert(vertex(0*x + 0*y));

Since dimensions are automatically adjusted, the following code obtains the same effect:

gs.insert(vertex(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to thex axis and
including the point(0, 1)T ∈ R2.

gs.insert(vertex(0*x + 1*y));

Example 2
The following code builds a ray having the same direction as the positive part of thex axis inR2:

GenSys gs;
gs.insert(ray(x + 0*y));

To define a system of generators indeed corresponding to the set{
(x, 0)T ∈ R2

∣∣ x ≥ 0
}
,

one just has to add the origin:

gs.insert(vertex(0*x + 0*y));

Example 3
The following code builds a system of generators having four vertices and corresponding to a square
in R2 (the same as Example 1 for the system of constraints):

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 3*y));
gs.insert(vertex(3*x + 0*y));
gs.insert(vertex(3*x + 3*y));

Example 4
The following code builds a system of generators having two vertices and a ray, corresponding to a
half-strip inR2 (the same as Example 2 for the system of constraints):

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 1*y));
gs.insert(ray(x - y));

Note:
After inserting a multiset of generators in a generator system, there are no guarantees that anexact
copy of them can be retrieved: in general, only anequivalentgenerator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Parma Polyhedra Library::GenSys::const iterator Class Reference 18

6.6 Parma Polyhedra Library::GenSys::const iterator Class Reference

#include <ppl.hh >

Public Methods

• constiterator()

Default constructor.

• constiterator(const constiterator &y)

Ordinary copy-constructor.

• virtual∼constiterator()

Destructor.

• constiterator &operator=(const constiterator &y)

Assignment operator.

• constGenerator& operator∗ () const

Dereference operator.

• constGenerator∗ operator→ () const

Indirect member selector.

• constiterator &operator++()

Prefix increment operator.

• constiteratoroperator++(int)

Postfix increment operator.

• booloperator==(const constiterator &y) const

Returnstrue if and only if∗this andy are identical.

• booloperator!=(const constiterator &y) const

Returnstrue if and only if∗this andy are different.

6.6.1 Detailed Description

A constiteratoris used to provide read-only access to each generator contained in an object ofGenSys.

Example
The following code prints the system of generators of the polyhedronph :

const GenSys gs = ph.generators();
GenSys::const_iterator iend = gs.end();
for (GenSys::const_iterator i = gs.begin(); i != iend; ++i)

cout << *i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const GenSys gs = ph.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Generator>(cout, "\n"));

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.7 Parma Polyhedra Library::LinExpression Class Reference 19

6.7 Parma Polyhedra Library::LinExpression Class Reference

A linear expression.

#include <ppl.hh >

Public Methods

• LinExpression()

Default constructor: returns a copy ofLinExpression::zero().

• LinExpression(const LinExpression &e)

Ordinary copy-constructor.

• virtual∼LinExpression()

Destructor.

• LinExpression(const Integer &n)

Constructor: builds the linear expression corresponding to the inhomogeneous termn.

• LinExpression(constVariable&v)

Constructor: builds the linear expression corresponding to the variablev .

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

Static Public Methods

• const LinExpression &zero()

Returns the (zero-dimension space) constant 0.

Friends

• LinExpression ParmaPolyhedraLibrary::operator+ (const LinExpression &e1, const Lin-
Expression &e2)

Returns the linear expressione1 + e2 .

• LinExpressionParmaPolyhedraLibrary::operator+(const Integer &n, const LinExpression &e)

Returns the linear expressionn + e.

• LinExpressionParmaPolyhedraLibrary::operator+(const LinExpression &e, const Integer &n)

Returns the linear expressione + n.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e)

Returns the linear expression -e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e1, const LinExpression
&e2)

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.7 Parma Polyhedra Library::LinExpression Class Reference 20

Returns the linear expressione1 - e2 .

• LinExpressionParmaPolyhedraLibrary::operator-(const Integer &n, const LinExpression &e)

Returns the linear expressionn - e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e, const Integer &n)

Returns the linear expressione - n.

• LinExpressionParmaPolyhedraLibrary::operator∗ (const Integer &n, const LinExpression &e)

Returns the linear expressionn ∗ e.

• LinExpressionParmaPolyhedraLibrary::operator∗ (const LinExpression &e, const Integer &n)

Returns the linear expressione ∗ n.

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 + e2 and assigns it toe1 .

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, constVariable&v)

Returns the linear expressione + v and assigns it toe.

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, const Integer &n)

Returns the linear expressione + n and assigns it toe.

6.7.1 Detailed Description

An object of the classLinExpressionrepresents the linear expression

n−1∑
i=0

aixi + b

wheren is the dimension of the space, eachai is the integer coefficient of thei -th variablexi andb is the
integer for the inhomogeneous term.

How to build a linear expression.
Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequal-
ities) and generators (i.e., lines, rays and vertices). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from ob-
jects of the classesVariableand Integer: available operators include unary negation, binary addition
and subtraction, as well as multiplication by an Integer. The space-dimension of a linear expression is
defined as the maximum space-dimension of the arguments used to build it: in particular, the space-
dimension of aVariablex is defined asx.id()+1 , whereas all the objects of the class Integer have
space-dimension zero.

Example
The following code builds the linear expression4x− 2y − z + 14, having space-dimension3:

LinExpression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 21

LinExpression e1 = 4*x;
LinExpression e2 = 2*y;
LinExpression e3 = z;
LinExpression e = LinExpression(14);
e += e1 - e2 - e3;

Note thate1 , e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

6.8 Parma Polyhedra Library::Polyhedron Class Reference

A convex polyhedron.

#include <ppl.hh >

Public Types

• enumDegenerateKind { UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Methods

• Polyhedron(const Polyhedron &y)

Ordinary copy-constructor.

• Polyhedron(size t num dimensions=0,DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty polyhedron of dimensionnum dimensions . Both parameters are
optional: by default, a 0-dimension space universe polyhedron is built.

• Polyhedron(ConSys&cs)

Builds a polyhedron from a system of constraints. The polyhedron inherits the space dimension of the
constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not declaredconst because it can be
modified.

• Polyhedron(GenSys&gs)

Builds a polyhedron from a system of generators. The polyhedron inherits the space dimension of the
generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declaredconst because it can be
modified.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no vertices.

• Polyhedron &operator=(const Polyhedron &y)

The assignment operator. (Note that∗this andy can be dimension-incompatible.).

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 22

• void intersectionassignandminimize(const Polyhedron &y)

Intersects∗this with polyhedrony and assigns the result to∗this .
Exceptions:

std::invalid argument thrown if∗this andy are dimension-incompatible.

• void intersectionassign(const Polyhedron &y)

Intersects∗this with polyhedrony and assigns the result to∗this without minimizing the result.
Exceptions:

std::invalid argument thrown if∗this andy are dimension-incompatible.

• void convexhull assignandminimize(const Polyhedron &y)

Assigns the convex hull of∗this ∪ y to ∗this .
Exceptions:

std::invalid argument thrown if∗this andy are dimension-incompatible.

• void convexhull assign(const Polyhedron &y)

Assigns the convex hull of∗this ∪ y to ∗this , without minimizing the result.
Exceptions:

std::invalid argument thrown if∗this andy are dimension-incompatible.

• GenSysCon Rel satisfies(constConstraint&c)

Returns the relation between the generators of∗this and the constraintc .
Exceptions:

std::invalid argument thrown if∗this and constraintc are dimension-incompatible.

• bool includes(constGenerator&g)

Tests the inclusion of the generatorg in the polyhedron∗this .
Exceptions:

std::invalid argument thrown if∗this and constraintg are dimension-incompatible.

• void wideningassign(const Polyhedron &y)

Computes the widening between∗this andy and assigns the result to∗this .
Parameters:

y The polyhedron thatmustbe contained in∗this .
Exceptions:

std::invalid argument thrown if∗this andy are dimension-incompatible.

• bool limited wideningassign(const Polyhedron &y,ConSys&cs)

Limits the widening between∗this andy bycs and assigns the result to∗this .
Parameters:

y The polyhedron thatmustbe contained in∗this .
cs The system of constraints that limits the widened polyhedron. It is not declaredconst because it

can be modified.
Returns:

true if the resulting polyhedron is not emptyfalse otherwise.
Exceptions:

std::invalid argument thrown if∗this , y andcs are dimension-incompatible.

• constConSys& constraints() const

Returns the system of constraints.

• constGenSys& generators() const

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 23

Returns the system of generators.

• void insert(constConstraint&c)

Inserts a copy of constraintc into the system of constraints of∗this .
Exceptions:

std::invalid argument thrown if∗this and constraintc are dimension-incompatible.

• void insert(constGenerator&g)

Inserts a copy of generatorg into the system of generators of∗this .
Exceptions:

std::invalid argument thrown if ∗this and generatorg are dimension-incompatible or if a ray/line
is inserted in an empty polyhedron.

• void affine image (const Variable &v, const LinExpression&expr, const Integer &denomina-
tor=Integer::one())

Transforms the polyhedron∗this , assigning an affine expression to the specified variable.
Parameters:

v The variable to which the affine expression is assigned.
expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifv is not a dimension of∗this .

• void affine preimage(constVariable &v, const LinExpression&expr, const Integer &denomina-
tor=Integer::one())

Transforms the polyhedrons∗this , substituting an affine expression for the specified variable. (It is the
inverse operation ofaffine image .)
Parameters:

v The variable to which the affine expression is substituted.
expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifv is not a dimension of∗this .

• boolOK (bool checknot empty=true) const

Checks if all the invariants are satisfied.
Parameters:

checknot empty true if it must be checked whether the system of constraint is satisfiable.
Returns:

true if the polyhedron satisfies all the invariants stated in the PPL,false otherwise.

• void adddimensionsandembed(size t dim)

Adds new dimensions and embeds the old polyhedron in the new space.
Parameters:

dim The number of dimensions to add.

• void adddimensionsandproject(size t dim)

Adds new dimensions to the polyhedron and does not embed it in the new space.
Parameters:

dim The number of dimensions to add.

• void removedimensions(const std::set< Variable> &to be removed)

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 24

Removes the specified dimensions.
Parameters:

to be removed The set of variables to remove.

• void removehigherdimensions(size t new dimension)

FIXME: this must be commented.

• booladdconstraintsandminimize(ConSys&cs)

Adds the specified constraints and computes a new polyhedron.
Parameters:

cs The constraints that will be added to the current system of constraints. This parameter is not de-
claredconst because it can be modified.

Returns:
false if the resulting polyhedron is empty.

Exceptions:
std::invalid argument thrown if∗this andcs are dimension-incompatible.

• void addconstraints(ConSys&cs)

Adds the specified constraints without minimizing.
Parameters:

cs The constraints that will be added to the current system of constraints. This parameter is not de-
claredconst because it can be modified.

Exceptions:
std::invalid argument thrown if∗this andcs are dimension-incompatible.

• void adddimensionsandconstraints(ConSys&cs)

First increases the space dimension of∗this by addingcs.space dimension() new dimensions;
then adds to the system of constraints of∗this a renamed-apart version of the constraints in ‘cs’.

• void addgenerators(GenSys&gs)

Adds the specified generators.
Parameters:

gs The generators that will be added to the current system of generators. The parameter is not declared
const because it can be modified.

Exceptions:
std::invalid argument thrown if∗this andgs are dimension-incompatible.

• bool checkempty() const

Returnstrue if and only if∗this is an empty polyhedron.

• bool checkuniverse() const

Returnstrue if and only if∗this is a universe polyhedron.

• void swap(Polyhedron &y)

Swaps∗this with polyhedrony . (Note that∗this andy can be dimension-incompatible.).

• bool is empty() const

Returnstrue if and only if∗this is an empty polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 25

Friends

• boolParmaPolyhedraLibrary::operator<= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only if polyhedronx is contained in polyhedrony .
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const Polyhedron &p)

Output operator.

• std::istream &ParmaPolyhedraLibrary::operator>> (std::istream &s, Polyhedron &p)

Input operator.

Related Functions

(Note that these are not member functions.)

• booloperator==(const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are the same polyhedron.
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

• booloperator!=(const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are different polyhedra.
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

• booloperator< (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx is strictly contained iny .
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

• booloperator> (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx strictly containsy .
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

• booloperator>= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx containsy .
Exceptions:

std::invalid argument thrown ifx andy are dimension-incompatible.

6.8.1 Detailed Description

An object of the classPolyhedronrepresents a convex polyhedron in the vector spaceR
n.

The dimensionn ∈ N of the enclosing vector space is a key attribute of the polyhedron:

• all polyhedra, the empty ones included, are endowed with a specific space dimension;

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 26

• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
dimension-incompatible (see the dimension-compatibility rules in the Introduction);
• the only ways to change the space dimension of a polyhedron are:

– explicitcalls to operators provided for that purpose;
– standard copy, assignment and swap operators.

Note that two polyhedra can be defined on the zero-dimension space: the empty polyhedron and the uni-
verse polyhedronR0.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
Minkowski’s theorem in the Introduction) and it is always possible to obtain either representation. That is,
if we know the system of constraints, we can obtain from this the system of generators that define the same
polyhedron and vice versa. These systems can contain redundant members: in this case we say that they
are not in the minimal form.

In all the examples it is assumed that variablesx andy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a square inR

2, given as a system of con-
straints:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 3*y));
gs.insert(vertex(3*x + 0*y));
gs.insert(vertex(3*x + 3*y));
Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-strip inR

2, given as a
system of constraints:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + y));
gs.insert(ray(x - y));
Polyhedron ph(gs);

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 27

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron inR2:

Polyhedron ph(2);
ph.insert(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spaceR2 and inserting the appropriate generators (a vertex, a ray and a line).

Polyhedron ph(2, Polyhedron::EMPTY);
ph.insert(vertex(0*x + 0*y));
ph.insert(ray(y));
ph.insert(line(x));

Note that, even if the above polyhedron has no “proper” vertex, we must add one, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
vertex (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functionadd dimensions and embed:

Polyhedron ph(1);
ph.insert(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension spaceR. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set{2} ⊆ R. After the last line
of code, the resulting polyhedron is{

(2, x1)T ∈ R2
∣∣ x1 ∈ R

}
.

Example 5
The following code shows the use of the functionadd dimensions and project :

Polyhedron ph(1);
ph.insert(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 foradd dimensions and embed. After
the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6
The following code shows the use of the functionaffine image :

Polyhedron ph(2, Polyhedron::EMPTY);
ph.insert(vertex(0*x + 0*y));
ph.insert(vertex(0*x + 3*y));
ph.insert(vertex(3*x + 0*y));
ph.insert(vertex(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a square inR
2, the considered variable isx and the affine

expression isx + 4. The resulting polyhedron is the same square translated towards right. Moreover,
if the affine transformation for the same variablex is x+ y:

LinExpression coeff = x + y;

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.8 Parma Polyhedra Library::Polyhedron Class Reference 28

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functionaffine preimage :

Polyhedron ph(2);
ph.insert(x >= 0);
ph.insert(x <= 3);
ph.insert(y >= 0);
ph.insert(y <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

In this example the starting polyhedron,var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated towards
left. Moreover, if the affine transformation forx is x+ y

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex + y. Instead, if we do not use an invertible transformation for the
same variablex , for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a line that corresponds to they axis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functionremove dimensions :

GenSys gs;
gs.insert(vertex(3*x + y +0*z + 2*w));
Polyhedron ph(gs);
set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton set
{

(3, 1, 0, 2)T
}
⊆ R4, while the resulting polyhedron is{

(3, 2)T
}
⊆ R2. Be careful when removing dimensionsincrementally: since dimensions are auto-

matically renamed after each application of theremove dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
ph.remove_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed2);

In this case, the result is the polyhedron
{

(3, 0)T
}
⊆ R2: when removing the set of dimensionsto -

be removed2 we are actually removing variablew of the original polyhedron. For the same reason,
the operatorremove dimensions is not idempotent: removing twice the same set of dimensions
is never a no-op.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.9 Parma Polyhedra Library::Variable Class Reference 29

6.8.2 Member Enumeration Documentation

6.8.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

6.9 Parma Polyhedra Library::Variable Class Reference

A dimension of the space.

#include <ppl.hh >

Public Methods

• Variable(unsigned int id)

Constructor:id is the index of the Cartesian axis.

• unsigned intid () const

Returns the index of the Cartesian axis.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const ParmaPolyhedraLibrary::Variable &v)

Output operator.

• booloperator< (const Variable &v, const Variable &w)

Defines a total ordering on variables.

6.9.1 Detailed Description

An object of the classVariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the classVariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressionse1 ande2 are equivalent, since the two variablesx andz
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression e1 = x + y;
LinExpression e2 = y + z;

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Page Documentation 30

7 PPL Page Documentation

7.1 Prolog Interface

7.1.1 Introduction

This Prolog library is an interface to the PPL and provides Prolog operations for creating and manipulating
the PPL polyhedra.

7.1.2 System-Dependent Features

GNU Prolog

Support for GNU Prolog is under development and will be available in a future release.

SWI Prolog

Support for SWI Prolog is under development and will be available in a future release.

SICStus Prolog

In order to use the library you should loadppl sicstus.pl .

7.1.3 System-Independent Features

The PPL predicates provided for the Prolog interface are specified below.

The specification uses the following grammar rules:

VarId --> non-negative integer variable identifier

PPL_Var --> ’$VAR’(VarId) PPL variable

LinExpr --> PPL_Var PPL variable
| number integer
| + LinExpr unary plus
| - LinExpr unary minus
| LinExpr + LinExpr addition
| LinExpr - LinExpr subtraction
| number * LinExpr multiplication
| LinExpr * number multiplication

Constraint --> LinExpr = LinExpr equation
| LinExpr =< LinExpr nonstrict inequation
| LinExpr >= LinExpr nonstrict inequation

Generator --> vertex(LinExpr) vertex
| vertex(LinExpr,Int) vertex

(Int is the denominator so that the
vertex is defined by Expr/Int)

| ray(LinExpr) ray
| line(LinExpr) line

There are a few general rules that need to be followed when using the PPL predicates.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Prolog Interface 31

• Argument positions labelled as+Address must be addresses in memory. It is up to the programmer
to ensure that these addresses refer to a PPL polyhedron.

• A free variable may be bound to an address of a PPL polyhedron by using eitherppl new -
polyhedron/2 or ppl copy polyhedron/2 .

• Memory occupied by a PPL polyhedron should be released as soon as it is no longer required. This
can be done by executingppl delete polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, addresses of PPL polyhedra are just integers. When variables bound to addresses
(i.e. integers) die or are uninstantiated, these variables will be garbage-collected, but the polyhedra
to which the addresses refer will not be released.

• For a PPL polyhedron with space dimensionk , the variables used for defining the constraints and
the generators must have the form,’$VAR’(0), ..., ’$VAR’(k-1). Note that the variable
identifiers must be strictly less thank .

• When using the predicates that combine PPL polyhedra or insert constraints or generators into a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the rules stated in the dimension-compatibility paragraph in the Introduction.

• Note that the vertex specified in the grammar rule forGenerator is not necessarily a vertex of a
polyhedron. As observed in the Introduction, a set of generators representing a polyhedronP often
have to include points inP that arenot vertices ofP . Hence, it is convenient to usevertexto mean
any element of the set of generatorsV even though it may not be a “proper” vertex ofP .

See the specifications of individual predicates for examples and more information regarding these issues.

ppl new polyhedron(-Address, +Integer)

Creates a new universe polyhedron withInteger dimensions with referenceAddress . Thus the query

| ?- ppl_new_polyhedron(X, 3).

creates the polyhedron defining the 3-dimensional vector spaceR
3 with X, the reference address.

The first argument must be a free variable and if it is already instantiated to an address, it will fail. E.g., the
following will fail:

| ?- ppl_new_polyhedron(X,3),
ppl_new_polyhedron(X,3).

ppl new empty polyhedron(-Address, +Integer)

Creates a new empty polyhedron withInteger dimensions with reference addressAddress . Thus the
query

| ?- ppl_new_empty_polyhedron(X, 3).

creates an empty polyhedron embedded inR
3 with X the reference address.

The first argument must be a free variable.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Prolog Interface 32

ppl copy polyhedron(+Address1, -Address2)

The polyhedron referenced byAddress1 is copied toAddress2 .

ppl delete polyhedron(+Address)

Deletes the polyhedron referenced byAddress .

If Address is not an address of a polyhedron, execution is aborted. E.g., the following aborts:

| ?-ppl_new_polyhedron(X,3),
ppl_delete_polyhedron(X),
ppl_delete_polyhedron(X).

ppl space dimension(+Address, -Integer+)

There must be a polyhedronP referenced byAddress . Returns inInteger the space dimension ofP.

If Address is not an address of a polyhedron, execution succeeds with a large but unspecified dimension.
E.g.,

| ?- ppl_new_polyhedron(X,5),
ppl_delete_polyhedron(X),
ppl_space_dimension(X,K).

K = 136896952,
X = -32966754 ?

ppl insert constraint(+Address, +Constraint)

Adds the constraintConstraint to the polyhedron referenced byAddress . Thus after the query

| ?- A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_new_polyhedron(X, 3),
ppl_insert_constraint(X, 4*A + B - 2*C >= 5).

the polyhedron referenced byX is defined to be the set of points in the vector spaceR
3 satisfying the

constraint4x+ y − 2z >= 5.

The constraintConstraint and the polyhedron referenced byAddress must be dimensional compat-
ible. This means that the identifiers for the variables inConstraint must be strictly less than the space
dimension of the polyhedron. E.g.,

| ?- ppl_new_polyhedron(X,3),
ppl_insert_constraint(X,’$VAR’(3) = -12).

{ERROR: ’PPL::Polyhedron::insert(c):\nthis->space_dimension() == 3,
y->space_dimension() == 4’}

ppl insert generator(+Address, +Generator)

Adds the generatorGenerator to the polyhedronP referenced byAddress . Thus after the query

| ?- A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_new_polyhedron(X, 3),
ppl_insert_generator(X, vertex(-100*A - 5*B, 8)).

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Prolog Interface 33

the polyhedron referenced byX is defined to be single vertex(−12.5,−0.625, 0)T in the vector spaceR3.

As for ppl insert constraint , the identifiers for the variables inGenerator must be strictly less
than the space dimension of the polyhedron referenced byAddress .

ppl insert constraints(+Address, +List of Constraints)

Adds the constraints in listList of Constraints to the polyhedron referenced byAddress . Con-
straints are not minimized and a query will succeed even whenList of Constraints is unsatisfiable.
E.g.,

| ?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_polyhedron(X, 2),
ppl_insert_constraints(X, [4*A + B >= 3, A = 1]),
ppl_get_constraints(X,CS).

A = A,
B = B,
X = -32975498,
CS = [4*A+1*B>=3,1*A=1] ?

yes
| ?- A = ’$VAR’(0), B = ’$VAR’(1),

ppl_new_polyhedron(X, 2),
ppl_insert_constraints(X, [4*A + B >= 3, A = 1]),
ppl_get_constraints(X,CS).

A = A,
B = B,
X = -32975104,
CS = [4*A+1*B>=3,1*A=1],
GS = [vertex(1*A+ -1*B),ray(1*B)] ?

yes

ppl add constraints and minimize(+Address, +List of Constraints)

Adds the constraints in listList of Constraints to the polyhedron referenced byAddress . This
will fail if the resulting polyhedron is empty. E.g.,

| ?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_polyhedron(X, 2),
ppl_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1]),
ppl_get_constraints(X,CS).

A = A,
B = B,
X = -33291612,
CS = [1*B>= -1,1*A=1] ?

yes
| ?- A = ’$VAR’(0), B = ’$VAR’(1),

ppl_new_polyhedron(X, 2),
ppl_add_constraints_and_minimize(X, [4*A + B >= 3, A = 0, B =< 0]),
ppl_get_constraints(X,CS).

| ?-
no

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Prolog Interface 34

ppl insert generators(+Address, +List of Generators)

Adds the generators in listList of Generators to the polyhedron referenced byAddress in list
order.

Note that, as explained in the paragraph on generator representation in the Introduction, a non-empty
polyhedron must always have a vertex as as one of its generators. Thus care must be taken to ensure
that before calling this predicate that either the polyhedron referenced byAddress is non-empty or that
wheneverList of Generators is non-empty the first element defines a vertex.

ppl remove dimensions(+Address, +List of PPL Vars)

The dimensions corresponding to the identifiers of the variables in listList of PPL Vars are removed
from the polyhedron referenced byAddress . E.g.,

| ?- A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_new_polyhedron(X, 3),
ppl_remove_dimensions(X, [B]),
ppl_space_dimension(X,K),
ppl_get_generators(X,GS).

A = A,
B = B,
C = C,
K = 2,
X = -32974400,
GS = [vertex(0),line(1*A),line(1*B),line(0)] ?

Note that as can be seen from this example, the identifiers for the remaining variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions.

ppl remove higher dimensions(+Address, +Integer))

Projects the polyhedron referenced by addressAddress onto the firstInteger dimensions. Thus, if the
polyhedronP at theAddress has space dimensionk, Integer must be less than or equal tok. E.g.,

| ?- ppl_new_polyhedron(X,5),
ppl_remove_higher_dimensions(X,3),
ppl_space_dimension(X,K).

K = 3,
X = -33292540 ?

yes
| ?- ppl_new_polyhedron(X,5),

ppl_remove_higher_dimensions(X,6),
ppl_space_dimension(X,K).

{ERROR: ’void PPL::Polyhedron::remove_higher_dimensions(nd):
\nthis->space_dimension() == 5, requested dimension == 6’}

ppl add dimensions and embed(+Address, +Integer)

Adds Integer new dimensions and embeds the old polyhedron referenced byAddress in the new
space. E.g.,

| ?- ppl_new_polyhedron(X,0),
ppl_add_dimensions_and_embed(X,2),

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Prolog Interface 35

ppl_get_constraints(X,CS),
ppl_get_generators(X,GS).

X = -32775690,
CS = [],
GS = [vertex(0),line(1*A),line(1*B)] ?

yes

ppl add dimensions and project(+Address, +Integer)

Adds Integer new dimensions and does not embed the old polyhedron referenced byAddress in the
new space. E.g.,

| ?- ppl_new_polyhedron(X,0),
ppl_add_dimensions_and_project(X,2),
ppl_get_constraints(X,CS),
ppl_get_generators(X,GS).

X = -32920674,
CS = [1*A=0,1*B=0],
GS = [vertex(0)] ?

yes

ppl check empty(+Address)

Succeeds if and only if the polyhedron referenced byAddress is empty.

ppl get constraints(+Address, -List of Constraints)

BindsList of Constraints to the system of constraints defining the polyhedron atAddress . E.g.,

| ?- A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_new_polyhedron(X, 3),
ppl_insert_constraint(X, 4*A+B-2*C >= 5),
ppl_get_constraints(X, CS),
write(CS).

[4*A+1*B+ -2*C>=5]
A = A,
B = B,
C = C,
X = -32975760,
CS = [4*A+1*B+ -2*C>=5] ?

ppl get generators(+Address, -List of Generators)

BindsList of Generators to the system of generators defining the polyhedron atAddress . E.g.,

| ?- A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_new_polyhedron(X, 3),
ppl_insert_constraint(X, 4*A+B-2*C >= 5),
ppl_get_generators(X, GS),
write(GS).

A = A,
B = B,

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 GNU GENERAL PUBLIC LICENSE 36

C = C,
X = -32975734,
GS = [ray(-1*C),vertex(-5*C,2),line(-2*B+ -1*C),line(-1*A+ -2*C)] ?

ppl intersection assign(+Address 1, +Address 2)

Computes the intersection of the polyhedra referenced byAddress 1 andAddress 2 and places the
result atAddress 1.

ppl convex hull assign(+Address 1, +Addressn 2)

Computes the convex hull of the polyhedra referenced byAddress 1 andAddress 2 and places the
result atAddress 1.

ppl widening assign(+Address 1, +Address 2)

Computes the widening between the polyhedra referenced byAddress 1 andAddress 2 and places
the result atAddress 1.

7.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 GNU GENERAL PUBLIC LICENSE 37

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.
• b) You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
• c) If the modified program normally reads commands interactively when run, you must cause it, when

started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 GNU GENERAL PUBLIC LICENSE 38

But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,
• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge

no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,
• c) Accompany it with the information you received as to the offer to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 GNU GENERAL PUBLIC LICENSE 39

that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and ”any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 GNU GENERAL PUBLIC LICENSE 40

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands<SAMP>‘show w’</SAMP> and<SAMP>‘show c’</SAMP> should
show the appropriate parts of the General Public License. Of course, the commands you use may be called
something other than<SAMP>‘show w’</SAMP> and<SAMP>‘show c’</SAMP>; they could even
be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 GNU Free Documentation License 41

by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

7.3 GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ”free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The ”Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ”you”.

A ”Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (For ex-
ample, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 GNU Free Documentation License 42

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the Doc-
ument, free of added material, which the general network-using public has access to download anony-
mously at no charge using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 GNU Free Documentation License 43

sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.
• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).
• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given

in the Document’s license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section entitled ”History”, and its title, and add to it an item stating at least the title,

year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled ”History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.
• J. Preserve the network location, if any, given in the Document for public access to a Transpar-

ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
• K. In any section entitled ”Acknowledgements” or ”Dedications”, preserve the section’s title, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.
• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.
• M. Delete any section entitled ”Endorsements”. Such a section may not be included in the Modified

Version.
• N. Do not retitle any existing section as ”Endorsements” or to conflict in title with any Invariant

Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 GNU Free Documentation License 44

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ”History” in the various original documents,
forming one section entitled ”History”; likewise combine any sections entitled ”Acknowledgements”, and
any sections entitled ”Dedications”. You must delete all sections entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation
is called an ”aggregate”, and this License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 GNU Free Documentation License 45

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write ”with no Invariant Sections” instead of saying which ones are
invariant. If you have no Front-Cover Texts, write ”no Front-Cover Texts” instead of ”Front-Cover Texts
being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/.
http://www.cs.unipr.it/ppl/

Index
∼ConSys

ParmaPolyhedraLibrary::ConSys,10
∼Constraint

ParmaPolyhedraLibrary::Constraint,8
∼GenSys

ParmaPolyhedraLibrary::GenSys,16
∼Generator

ParmaPolyhedraLibrary::Generator,13
∼LinExpression

ParmaPolyhedraLibrary::LinExpression,
19

∼constiterator
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,18

addconstraints
ParmaPolyhedraLibrary::Polyhedron,24

addconstraintsandminimize
ParmaPolyhedraLibrary::Polyhedron,23

adddimensionsandconstraints
ParmaPolyhedraLibrary::Polyhedron,24

adddimensionsandembed
ParmaPolyhedraLibrary::Polyhedron,23

adddimensionsandproject
ParmaPolyhedraLibrary::Polyhedron,23

addgenerators
ParmaPolyhedraLibrary::Polyhedron,24

affine image
ParmaPolyhedraLibrary::Polyhedron,23

affine preimage
ParmaPolyhedraLibrary::Polyhedron,23

ALL SATISFY
ParmaPolyhedraLibrary, 7

ALL SATURATE
ParmaPolyhedraLibrary, 7

begin
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,16

checkempty
ParmaPolyhedraLibrary::Polyhedron,24

checkuniverse
ParmaPolyhedraLibrary::Polyhedron,24

coefficient
ParmaPolyhedraLibrary::Constraint,8
ParmaPolyhedraLibrary::Generator,13

constiterator

ParmaPolyhedraLibrary::ConSys::const-
iterator,11

ParmaPolyhedraLibrary::GenSys::const-
iterator,17

Constraint
ParmaPolyhedraLibrary::Constraint,8

constraints
ParmaPolyhedraLibrary::Polyhedron,22

ConSys
ParmaPolyhedraLibrary::ConSys,10

convexhull assign
ParmaPolyhedraLibrary::Polyhedron,22

convexhull assignandminimize
ParmaPolyhedraLibrary::Polyhedron,22

DegenerateKind
ParmaPolyhedraLibrary::Polyhedron,28

divisor
ParmaPolyhedraLibrary::Generator,13

EMPTY
ParmaPolyhedraLibrary::Polyhedron,28

end
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,16

Generator
ParmaPolyhedraLibrary::Generator,13

generators
ParmaPolyhedraLibrary::Polyhedron,22

GenSys
ParmaPolyhedraLibrary::GenSys,15, 16

GenSysCon Rel
ParmaPolyhedraLibrary, 7

id
ParmaPolyhedraLibrary::Variable,29

includes
ParmaPolyhedraLibrary::Polyhedron,22

insert
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,16
ParmaPolyhedraLibrary::Polyhedron,22

intersectionassign
ParmaPolyhedraLibrary::Polyhedron,21

intersectionassignandminimize
ParmaPolyhedraLibrary::Polyhedron,21

is empty
ParmaPolyhedraLibrary::Polyhedron,24

is equality
ParmaPolyhedraLibrary::Constraint,8

INDEX 47

is inequality
ParmaPolyhedraLibrary::Constraint,8

limited wideningassign
ParmaPolyhedraLibrary::Polyhedron,22

LinExpression
ParmaPolyhedraLibrary::LinExpression,

19

NONE SATISFIES
ParmaPolyhedraLibrary, 7

OK
ParmaPolyhedraLibrary::Generator,13
ParmaPolyhedraLibrary::Polyhedron,23

operator∗
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,18
operator!=

ParmaPolyhedraLibrary::ConSys::const-
iterator,12

ParmaPolyhedraLibrary::GenSys::const-
iterator,18

ParmaPolyhedraLibrary::Polyhedron,25
operator++

ParmaPolyhedraLibrary::ConSys::const-
iterator,12

ParmaPolyhedraLibrary::GenSys::const-
iterator,18

operator->
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,18
operator<

ParmaPolyhedraLibrary::Polyhedron,25
ParmaPolyhedraLibrary::Variable,29

operator<<
ParmaPolyhedraLibrary::Constraint,9
ParmaPolyhedraLibrary::Generator,14
ParmaPolyhedraLibrary::Variable,29

operator=
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,18
ParmaPolyhedraLibrary::Polyhedron,21

operator==
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,18

ParmaPolyhedraLibrary::Polyhedron,25
operator>

ParmaPolyhedraLibrary::Polyhedron,25
operator>=

ParmaPolyhedraLibrary::Polyhedron,25

ParmaPolyhedraLibrary
ALL SATISFY,7
ALL SATURATE,7
NONE SATISFIES,7
SOME SATISFY,7

ParmaPolyhedraLibrary, 6
GenSysCon Rel,7

ParmaPolyhedraLibrary::Constraint,8
∼Constraint,8
coefficient,8
Constraint,8
is equality,8
is inequality,8
operator<<, 9
ParmaPolyhedraLibrary::operator<=, 9
ParmaPolyhedraLibrary::operator==,8, 9
ParmaPolyhedraLibrary::operator>=, 9
ParmaPolyhedraLibrary::operator>>, 9
spacedimension,8
zerodim false,8
zerodim positivity, 8

ParmaPolyhedraLibrary::ConSys
∼ConSys,10
begin,10
ConSys,10
end,10
insert,10
spacedimension,10
zerodim empty,11

ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::ConSys::const-

iterator
∼constiterator,12
constiterator,11
operator∗, 12
operator++,12
operator→ , 12
operator=,12
operator==,12

ParmaPolyhedraLibrary::ConSys::const-
iterator,11

ParmaPolyhedraLibrary::Generator,12
∼Generator,13
coefficient,13
divisor,13
Generator,13
OK, 13
operator<<, 14

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 48

ParmaPolyhedraLibrary::line,13
ParmaPolyhedraLibrary::ray,13
ParmaPolyhedraLibrary::vertex,13
spacedimension,13
type,13
zerodim vertex,13

ParmaPolyhedraLibrary::GenSys
∼GenSys,16
begin,16
end,16
GenSys,15, 16
insert,16
spacedimension,16
zerodim univ, 16

ParmaPolyhedraLibrary::GenSys,15
ParmaPolyhedraLibrary::GenSys::const-

iterator
∼constiterator,18
constiterator,17
operator∗, 18
operator++,18
operator→ , 18
operator=,18
operator==,18

ParmaPolyhedraLibrary::GenSys::const-
iterator,17

ParmaPolyhedraLibrary::line
ParmaPolyhedraLibrary::Generator,13

ParmaPolyhedraLibrary::LinExpression
∼LinExpression,19
LinExpression,19
ParmaPolyhedraLibrary::operator∗, 20
ParmaPolyhedraLibrary::operator+,19
ParmaPolyhedraLibrary::operator+=,20
ParmaPolyhedraLibrary::operator-,19
spacedimension,19
zero,19

ParmaPolyhedraLibrary::LinExpression,18
ParmaPolyhedraLibrary::operator∗

ParmaPolyhedraLibrary::LinExpression,
20

ParmaPolyhedraLibrary::operator+
ParmaPolyhedraLibrary::LinExpression,

19
ParmaPolyhedraLibrary::operator+=

ParmaPolyhedraLibrary::LinExpression,
20

ParmaPolyhedraLibrary::operator-
ParmaPolyhedraLibrary::LinExpression,

19
ParmaPolyhedraLibrary::operator<<

ParmaPolyhedraLibrary::Polyhedron,24
ParmaPolyhedraLibrary::operator<=

ParmaPolyhedraLibrary::Constraint,9

ParmaPolyhedraLibrary::Polyhedron,24
ParmaPolyhedraLibrary::operator==

ParmaPolyhedraLibrary::Constraint,8, 9
ParmaPolyhedraLibrary::operator>=

ParmaPolyhedraLibrary::Constraint,9
ParmaPolyhedraLibrary::operator>>

ParmaPolyhedraLibrary::Constraint,9
ParmaPolyhedraLibrary::Polyhedron,24

ParmaPolyhedraLibrary::Polyhedron
EMPTY, 28
UNIVERSE,28

ParmaPolyhedraLibrary::Polyhedron,21
addconstraints,24
addconstraintsandminimize,23
adddimensionsandconstraints,24
adddimensionsandembed,23
adddimensionsandproject,23
addgenerators,24
affine image,23
affine preimage,23
checkempty,24
checkuniverse,24
constraints,22
convexhull assign,22
convexhull assignandminimize,22
DegenerateKind, 28
generators,22
includes,22
insert,22
intersectionassign,21
intersectionassignandminimize,21
is empty,24
limited wideningassign,22
OK, 23
operator<, 25
operator=,21
operator==,25
operator>, 25
operator>=, 25
ParmaPolyhedraLibrary::operator<<, 24
ParmaPolyhedraLibrary::operator<=, 24
ParmaPolyhedraLibrary::operator>>, 24
Polyhedron,21
removedimensions,23
removehigherdimensions,23
satisfies,22
spacedimension,21
swap,24
wideningassign,22

ParmaPolyhedraLibrary::ray
ParmaPolyhedraLibrary::Generator,13

ParmaPolyhedraLibrary::Variable,28
id, 29
operator<, 29

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 49

operator<<, 29
Variable,29

ParmaPolyhedraLibrary::vertex
ParmaPolyhedraLibrary::Generator,13

Polyhedron
ParmaPolyhedraLibrary::Polyhedron,21

removedimensions
ParmaPolyhedraLibrary::Polyhedron,23

removehigherdimensions
ParmaPolyhedraLibrary::Polyhedron,23

satisfies
ParmaPolyhedraLibrary::Polyhedron,22

SOME SATISFY
ParmaPolyhedraLibrary, 7

spacedimension
ParmaPolyhedraLibrary::Constraint,8
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::Generator,13
ParmaPolyhedraLibrary::GenSys,16
ParmaPolyhedraLibrary::LinExpression,

19
ParmaPolyhedraLibrary::Polyhedron,21

swap
ParmaPolyhedraLibrary::Polyhedron,24

type
ParmaPolyhedraLibrary::Generator,13

UNIVERSE
ParmaPolyhedraLibrary::Polyhedron,28

Variable
ParmaPolyhedraLibrary::Variable,29

wideningassign
ParmaPolyhedraLibrary::Polyhedron,22

zero
ParmaPolyhedraLibrary::LinExpression,

19
zerodim empty

ParmaPolyhedraLibrary::ConSys,11
zerodim false

ParmaPolyhedraLibrary::Constraint,8
zerodim positivity

ParmaPolyhedraLibrary::Constraint,8
zerodim univ

ParmaPolyhedraLibrary::GenSys,16
zerodim vertex

ParmaPolyhedraLibrary::Generator,13

The Parma Polyhedra Library User’s Manual (version 0.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Namespace Index
	PPL Compound Index
	PPL Page Index
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

