Python Library Reference

Release 2.0

Guido van Rossum

Fred L. Drake, Jr., editor

October 16, 2000

BeOpen PythonLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade hames in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://imww.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI's License Agreement. This Agreement
together with Python 1.6 may be located on the Internet using the following unique, persistent identifier (known as a
handle): 1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using the following
URL.: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright(© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in TYPES 3
2.2 BUIlt-INEXCEPLiONS o o e e e e 15
2.3 BUilt-in FUNCLONS L e e e 18

3 Python Runtime Services 27
3.1 sys — System-specific parameters and functions. o oL 27
3.2 gc — Garbage Collectorinterface. e 31
3.3 atexit —Exithandlers. 33
3.4 types —Namesforallbuilt-intypes. 33
3.5 UserDict — Class wrapper for dictionaryobjects 35
3.6 UserList —Classwrapperforlistobjects o 35
3.7 UserString — Class wrapper forstringobjects 36
3.8 operator — Standard operatorsasfunctions.. 37
3.9 traceback — Printorretrieve astacktraceback. o oL 39
3.10 linecache — Randomaccesstotextlines., 41
3.11 pickle — Python objectserialization 42
3.12 cPickle — Alternate implementation gfickle Lo 46
3.13 copy _reg — Registempickle supportfunctions. 46
3.14 shelve — Pythonobjectpersistence. 46
3.15 copy — Shallow and deep copy operations 48
3.16 marshal — Alternate Python object serialization. 49
3.17 imp — Accessthemport internals. 49
3.18 code —Interpreterbaseclasses 52
3.19 codeop — Compile Pythoncode e 54
3.20 pprint — Datapretty printer e 54
3.21 repr — Alternaterepr() implementation. L 56
3.22 new — Creation of runtime internal objects. L Lo 58
3.23 site — Site-specific configurationhook 58
3.24 user — User-specific configurationhook, 59
3.25 __builtin __ —Built-infunctions. 60
3.26 __main __ —Top-level scriptenvironment. 60

4 String Services 61
4.1 string —Commonstringoperations e e e 61
4.2 re —Regularexpressionoperations. 64

4.3 struct — Interpret strings as packed binarydata oL oL 72

4.4 fpformat — Floating pointconversions. i e 74
45 Stringl0 — Read and write stringsasfiles. 75
4.6 cStringlO — Faster version oBtringlO 75
4.7 codecs — Codecregistryandbaseclasses.o 75
4.8 unicodedata —Unicode Database. 80
Miscellaneous Services 81
5.1 math — Mathematical functions. 81
5.2 cmath — Mathematical functions for complexnumbers 83
5.3 random — Generate pseudo-randomnumbers. o 84
5.4 whrandom — Pseudo-random number generator. e 85
5.5 bisect — Array bisectionalgorithm 86
5.6 array — Efficientarraysofnumericvalues 87
5.7 ConfigParser = — Configurationfileparser. 89
5.8 fileinput — lterate over lines from multiple inputstreams 91
5.9 calendar — General calendar-related functions. 92
5.10 cmd— Support for line-oriented command interpretets. oL 93
5.11 shlex — Simplelexicalanalysis 95
Generic Operating System Services 99
6.1 o0s —Miscellaneous OSinterfaces e 99
6.2 os.path — Common pathname manipulations. 110
6.3 dircache — Cacheddirectorylistings. 112
6.4 stat — Interpretingstat() results. 113
6.5 statcache — Anoptimizationofos.stat() 115
6.6 statvfs — Constants used withs.statvfs() oo 115
6.7 fileecmp —File and Directory Comparisons i it 116
6.8 popen2 — Subprocesses with accessiblel/Ostreams. 117
6.9 time —Timeaccessand ConverSionNS v v v ittt e 118
6.10 sched —Eventscheduler. e 122
6.11 getpass — Portable passwordinput. 123
6.12 curses — Terminal handling for character-celldisplays. 123
6.13 curses.textpad — Text input widget for curses programs 137
6.14 curses.wrapper — Terminal handler for cursesprograms 138
6.15 curses.ascii — Utilities for ASCllcharacters 139
6.16 getopt — Parserforcommand lineoptions. o e 141
6.17 tempfile — Generate temporaryfilenames. oL 143
6.18 errno — Standard errnosystemsymbols. oL 143
6.19 glob — UNIx style pathname patternexpansion 149
6.20 fnmatch — UNix filename patternmatching 150
6.21 shutii —High-levelfile operations 150
6.22 locale — Internationalizationservices e 152
6.23 gettext — Multilingual internationalization services. 155
Optional Operating System Services 163
7.1 signal — Sethandlersforasynchronousevents. 163
7.2 socket — Low-level networkinginterface. L 165
7.3 select — Waiting for I/O completion. e 170
7.4 thread — Multiplethreadsofcontrol. 171
7.5 threading — Higher-level threadinginterface. 173
7.6 mutex — Mutual exclusion Support. e 179
7.7 Queue —Asynchronizedqueueclass. 179
7.8 mmap— Memory-mapped file support 180
7.9 anydbm — Generic access to DBM-styledatabases 182

10

11

7.10 dumbdbm— Portable DBM implementation 182
7.11 dbhash — DBM-style interface to the BSD database libraty. 183
7.12 whichdb — Guess which DBM module created adatabase. 184
7.13 bsddb — Interface to Berkeley DB library 184
7.14 zlib — Compression compatible witheip 186
7.15 gzip — Supportforgzipfiles e e 188
7.16 zipfile — Work with ZIP archives. 188
7.17 readline —GNUreadlineinterface. 191
7.18 rlcompleter — Completion function for GNU readline. 193
Unix Specific Services 195
8.1 posix — The mostcommon POSIXsystemcalls. 195
8.2 pwd—Thepassworddatabase. 196
8.3 grp —Thegroupdatabase 197
8.4 crypt —Functiontocheck Mix passwords. e 197
8.5 dl —CallCfunctionsinsharedobjects 198
8.6 dbm— Simple “database” interface. 199
8.7 gdbm— GNU'sreinterpretationofdbm. oL 200
8.8 termios — POSIXstylettycontrol. e 201
8.9 TERMIOS— Constants used with thermios module 202
8.10 tty — Terminalcontrolfunctions. e 202
8.11 pty — Pseudo-terminal utilities 203
8.12 fentl — Thefentl() andioctl() systemecalls. 203
8.13 pipes — Interface toshell pipelines L 204
8.14 posixfile — File-like objects with lockingsupport 205
8.15 resource — Resource usage information. e 207
8.16 nis — Interfaceto Sun's NIS (YellowPages) 210
8.17 syslog — UNix sysloglibraryroutines 210
8.18 commands— Utilities for runningcommands Lo 211
The Python Debugger 213
9.1 DebuggerCommands e 214
9.2 How ItWOrks. o e 216
The Python Profiler 219
10.1 Introductiontothe profiler L 219
10.2 How Is This Profiler Different From The Old Profiler?. 219
10.3 InstantUsers Manual. e 220
10.4 What Is Deterministic Profiling?. 222
10.5 Reference Manual 222
10.6 Limitations. o e 225
10.7 Calibration. e 225
10.8 Extensions — Deriving Better Profilers. 226
Internet Protocols and Support 231
11.1 webbrowser — Convenient Web-browsercontroller. 231
11.2 cgi — Common Gateway Interface support.. e 232
11.3 urlib —Open arbitraryresourcesby URL 239
11.4 httplib —HTTP protocolclient. e 242
115 ftplib —FTP protocolclient. 244
11.6 gopherlib — Gopher protocolclient 247
11.7 poplib —POP3protocolclient. e 248
11.8 imaplib — IMAP4 protocolclient e 249
11.9 nntplib —NNTP protocolclient. 252
11.10smtplib — SMTP protocolclient. 255

12

13

14

15

11.11telnetlib — Telnetclient e 258

11.12urlparse — Parse URLsintocomponents. i i 261
11.13SocketServer — A framework for network servers. Lo 262
11.14BaseHTTPServer —BasicHTTPserver i i i i e 264
11.15SimpleHTTPServer — Simple HTTP requesthandler 266
11.16 CGIHTTPServer — CGl-capable HTTPrequesthandler 267
11.17Cookie — HTTP state management. i i i i i e e e e 268
11.18asyncore — Asynchronous sockethandler. oL 272
Internet Data Handling 275
12.1 formatter — Genericoutputformatting 275
12.2 rfc822 —Parse RFC822mailheaders. 279
12.3 mimetools — Tools for parsing MIME messages i 282
12.4 MimeWriter — Generic MIME filewriter L o 283
12.5 muiltifile — Support for files containing distinctparts. 284
12.6 binhex — Encode and decode binhex4files 286
12.7 uu — Encode and decode uuencodefiles L L Lo 287
12.8 binascii — Convert between binary amdsCIl 287
12.9 xdrlib —Encode anddecode XDRdata. 289
12.10mailcap — Mailcap file handling.. e 291
12.11mimetypes — Map filenamesto MIME types. 292
12.12base64 — Encode and decode MIME base64 data. 293
12.13quopri — Encode and decode MIME quoted-printabledata 294
12.14mailbox — Read various mailboxformats o 294
12.15mhlib — Accessto MH mailboxes L 295
12.16 mimify — MIME processingof mailmessages. e 297
12.17netrc —netrcfile processing. L e 298
12.18robotparser — Parserforrobots.txt o 298
Structured Markup Processing Tools 301
13.1 sgmllib — Simple SGML parser. 0 e e e e 301
13.2 htmllib — AparserforHTMLdocuments i i it i 303
13.3 htmlentitydefs — Definitions of HTML general entities 305
13.4 xml.parsers.expat — Fast XML parsing using the Expatlibrary 305
13.5 xmlsax —Supportfor SAX2 ParserS. . . . v v v v v i e e e e 309
13.6 xml.sax.handler —BaseclassesforSAXhandlers oo 310
13.7 xml.sax.saxutils — SAXUtilities 314
13.8 xml.sax.xmlreader — Interface for XML parsers. 314
13.9 xmllib — A parserfor XMLdocuments. e 318
Multimedia Services 323
14.1 audioop — Manipulateraw audiodata 323
14.2 imageop — Manipulaterawimagedata. e 326
14.3 aifc — Read and write AIFF and AIFCfiles. o 327
14.4 sunau — Read and write Sun AUfiles 329
14.5 wave — Read and write WAV files. 331
14.6 chunk — Read IFFchunkeddata. 333
14.7 colorsys — Conversions betweencolorsystems. 335
14.8 rghimg — Read and write “SGIRGB”"files 335
14.9 imghdr — Determinethetypeofanimage 336
14.10sndhdr — Determine type of soundfile L 336
Cryptographic Services 339
15.1 md5— MD5 message digestalgorithm. o oL 339
15.2 sha — SHA message digestalgorithm. 340

15.3 mpz— GNU arbitrary magnitude integers 341

15.4 rotor — Enigma-like encryptionanddecryption. 342
16 Restricted Execution 345
16.1 rexec — Restricted executionframework o 346
16.2 Bastion — Restrictingaccesstoobjects L o 348
17 Python Language Services 349
17.1 parser — Access Pythonparsetrees. i i i e 349
17.2 symbol — Constants used with Python parsetrees 358
17.3 token — Constants used with Python parsetrees 359
17.4 keyword — Testing for Pythonkeywords 359
17.5 tokenize — Tokenizerfor Pythonsource. 359
17.6 tabnanny — Detection of ambiguousindentation 360
17.7 pyclbr — Python class browsersupport 360
17.8 py_compile — Compile Pythonsourcefiles. 361
17.9 compileall ~— Byte-compile Python libraries L. 361
17.10dis — Disassembler for Pythonbytecode. 362
18 SGI IRIX Specific Services 371
18.1 al — Audio functionsonthe SGI e 371
18.2 AL — Constants used withthed module 373
18.3 cd — CD-ROM access on SGISystems o 0 i i i e e e e e e e 373
18.4 fl — FORMS library interface for GUl applications. 377
18.5 FL — Constantsused withtife module 381
18.6 flp — Functions for loading stored FORMS designs. 382
18.7 fm — Font Managelinterface. e 382
18.8 gl — Graphics Libraryinterface e 383
18.9 DEVICE— Constantsused withthlgd module 385
18.10GL— Constants used with ttgd module o 385
18.11imgfile — Support for SGlimglibfiles 385
18.12jpeg — Read and write JPEGfiles. 386
19 SunOS Specific Services 389
19.1 sunaudiodev — AccesstoSunaudiohardware. oL 389
19.2 SUNAUDIODEW- Constants used wittunaudiodev 390
20 MS Windows Specific Services 391
20.1 msvert —Useful routines from the MS VC++runtime 391
20.2 _winreg —WINdowsS registry @CCeSS v v v v i i e e e e e 392
20.3 winsound — Sound-playing interface for Windows. 396
A Undocumented Modules 399
Al Frameworks e e e 399
A.2 Miscellaneous useful utilities. L 399
A.3 Platform specificmodules 399
Ad Multimedia. e e 400
A5 Obsolete e e 400
A.6 SGl-specific Extension modules. e 401
B Reporting Bugs 403
Module Index 405
Index 409

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use irfanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zerd.

All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found ifPtheon Reference Manual

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result | Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casds not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning | Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal 8
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betwsseand C! :-) != isthe

preferred spellings> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrttpe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbers Plain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendinjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the Same rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation | Result | Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy)
X %y remainderok / y
- X X hegated
+X X unchanged
abs(x) absolute value or magnitude f
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pa#, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %Y) 3
pow(X,) X to the powely
X ¥y x to the powely

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the Iigt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result | Notes

X|y bitwiseor of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy

X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits 1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéadueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of thHeython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasia, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesespe.g., or() . A single item

tuple must have a trailing comma, e.(l,) . Buffers are not directly supported by Python syntax, but can be created
by calling the builtin functiorbuffer() . XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created usingdtaange() function.

Sequence types support the following operations. Tié and ‘not in ' operations have the same priorities as the
comparison operations. The'and *’ operations have the same priority as the corresponding numeric operétions.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation | Result | Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated Q)
9] i'th item of s, origin O 2
g i] slice ofsfromi toj 2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

4They must have since the parser can't tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

(2) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still .

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(9). If i is omitted, us®. If j is omitted, usden(). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, start[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enardimg may
be given to set a different error handling scheme. The defau#irforsis 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’

endswith (suffi>{, start[, end]])
Return true if the string ends with the specifiadfix otherwise return false. With optionstlart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsabis found, such thadubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7

istitle

0

Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthdth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ()

Return a copy of the string with leading whitespace removed.

replace (old, nevx[, maxsplit])

rfind

Return a copy of the string with all occurrences of substoiyreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

(sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thatubis contained within s[start,end].
Optional argumentstart andendare interpreted as in slice notation. Retetnon failure.

rindex (sul, starf, end]])

rjust

rstrip

split

Like rfind() but raises/alueError when the substringubis not found.

(width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

0

Return a copy of the string with trailing whitespace removed.

([sep[,maxspii]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit

splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend]s)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])

strip

Return true if string starts with therefix otherwise return false. With optionatart, test string beginning at
that position. With optionaénd stop comparing string at that position.

0

Return a copy of the string with leading and trailing whitespace removed.

swapcase ()

title

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

0

Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechari)

Chapter 2. Built-in Types, Exceptions and Functions

Return a copy of the string where all characters occurring in the optional arguleletécharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String objects have one unique built-in operation: $heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple’dijedollowing format characters

are understood% c, s, i, d, u, 0, x, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don’t assume tH&l' is the end of the string.

For safety reasons, floating point precisions are clipped t&&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard moduleg and in built-in modulee .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable

5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 9

sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexds an arbitrary object):

Operation | Result | Notes
gi] = x itemi of sis replaced by
girj] = t slice ofsfromi to is replaced by
del di:j] sameas i:j] = []
s.append(x) same ag{len(s)ylen(9] = [X)
sextend(X) same asgllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del di]; return X 4)
sremove(X) same aglel o sindex(X)])
sreverse() reverses the items afin place (5)
s.sort([cmpfund) sort the items o§in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metBod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (A.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’> 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd?}

The following operations are defined on mappings (wlzeaadb are mappingsk is a key, andr andx are arbitrary
objects):

10 Chapter 2. Built-in Types, Exceptions and Functions

Operation | Result | Notes

len(a) the number of items ia

al K] the item ofa with key k Q)
akl = v seta[k] tov

del al kK] removeal K] froma 1)

a.clear() remove all items frona

a.copy() a (shallow) copy o&

a.has _key(k) 1 if ahas a ke, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k in b.keys(): ak] = DblK] 3)
a.values() a copy ofa’s list of values 2)
a.get(k[, x) al k] if ahas _key(k), elsex 4)
a.setdefault(kK|, x]) | a K if ahas _key(k), elsex (also setting it)| (5)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random orderkdf/s() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatipnalfie key) pairs
usingmap() : ‘pairs = map(None, a.values(), akeys()) .

(3) b must be of the same type as

(4) Never raises an exceptionkifis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing x is both returned and inserted into the dictionary as
the value ok.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anchameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatghert statement is not, strictly
speaking, an operation on a module objaniport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet __
attribute is not possible (i.e., you can write __dict __[a] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.0/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

2.1. Built-in Types 11

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance meathimas:self is the object on
which the method operates, antdim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the buikkémpile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtechstatement or the
built-in eval() function.

See thePython Reference Manutdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhds defines names for all standard built-in types.

Types are written like thisstype ’int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nantedipsis (a built-in name).

It is written asEllipsis

12 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functipen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&nror is raised. This includes situations where
the operation is not defined for some reason, $ikek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise alOError after the file has been closed. Callidgse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faldate: If a file-like object is not associated

with a real file, this method shoulibtbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friendsNote: File-like objects which do not have a real file descriptor shawit
provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hit®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aiEOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returnec¢taihen
is hit immediately. Note: Unlikestdio ’s fgets() , the returned string contains null characteéY@’() if
they occurred in the input.

readlines ([sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mhint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

seek (offse{, Whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file’'s end). There is no return value.

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])

"The advantage of leaving the newline on is that an empty string can be returned te araaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 13

Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Blix versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to mestdlnes() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe() method
changes the value. It may not be available on all file-like objects.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the formx!..> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vadfidpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thgint statement, but to allow the
implementation oprint to keep track of its internal state.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f., —__methods __ yields['append’, 'count’,
'index’, ’insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

14 Chapter 2. Built-in Types, Exceptions and Functions

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the neadelgtions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdlkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions exc8gstemExit . StandardError itself is derived from the
root clas€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError |
ZeroDivisionError , FloatingPointError

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available ostteeor attribute (it is usually the associated
error message). The tuple itself is also available oratige attribute. New in version 1.5.2.

2.2. Built-in Exceptions 15

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefifhe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiong0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

16 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frofenvironmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpreteisys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froException and notStandardError |, since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfervally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass NameError . New in version 2.0.

2.2. Built-in Exceptions 17

UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladsaiError . New in
version 2.0.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

WindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporatrteman

value. Theerrno andstrerror values are created from the return values of@etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitgls argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigpomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find #ggs variable. As a workaround for this behavior, wgetattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(hame):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)

18 Chapter 2. Built-in Types, Exceptions and Functions

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordg)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, oﬁse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whaos&cii code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusiedueError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < vy, zeroifx == yand strictly positive iix > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pas&stgng>’
if it wasn’t read from a file. Th&ind argument specifies what kind of code must be compiled; it caexae’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagtj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiéigis omitted, it defaults to zero and the function
serves as a humeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative obetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The

2.3. Built-in Functions 19

resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]

divmod (a, b)

eval

Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %

b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. Inany casé¢ b + a % bis

very close ta, if a % bis non-zero it has the same signtagnd0 <= abs(a % b) < abs(b).

(expressio[u, globals[, Iocals]])

The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usingltitgalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment winegie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpie()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])

filter

float

This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment wheerecfile() is called. The return value done.

(function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufctionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

(%)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensital goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8|t is used relatively rarely so does not warrant being made into a statement.

20

Chapter 2. Built-in Types, Exceptions and Functions

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedaject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object nameg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thégpme
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®iraxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int (X[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36]. Ifadix is specified and is not a string,TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates toward® zero.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 21

instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, clasy
Return true if theobjectargument is an instance of tlodassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns faletad$is neither a class object nor a
type object, aypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist(’abc’) returns returng'a’,
b, 'c’] andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAllgning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idergicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended witime items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macldog;1) vyields’037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raisecarerflowError exception.

open (filename[, mode[, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arild’ opens it for appending (which aomeUnix

22 Chapter 2. Built-in Types, Exceptions and Functions

systems means thall writes append to the end of the file, regardless of the current seek paosition).

Modes’r+' ,’'w+ and’a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appélpd to themodevalue

for improved portability. (It's useful even on systems which don'’t treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &dyf’a’) returns the integer
97, ord(u’
u2020’) returns8224 . This is the inverse ofhr() for strings and ofinichr() ~ for Unicode characters.

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; eagw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] stod, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults tbh. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. dirés read,
EOFError is raised. Example:

105pecifying a buffer size currently has no effect on systems that don'tseiveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 23

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply function of two arguments cumulatively to the items squencefrom left to right, so as to reduce
the sequence to a single value. For exampmeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor

__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. H is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powen;nifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart gfetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

24 Chapter 2. Built-in Types, Exceptions and Functions

slice ([start,] stor{, step])
Return a slice object representing the set of indices specifiedrimye(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequenceés already
a tuple, it is returned unchanged. For instartagle('abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objecd
Return the type of anbject The return value is a type object. The standard motjydes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(X) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integgrunichr(97) returns the
stringu’a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode (string[, encodin&, errors]])
Decodesstring using the codec foencoding Error handling is done according éorors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors YakeeError . See also theodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stor{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

zip (seql,.)
This function returns a list of tuples, where each tuple contains-theslement from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 25

26

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc

atexit
types
UserDict
UserList
UserString
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp
code
codeop
pprint
repr
new
site
user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of tiaport statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python sauigiv[0]

is the script name (it is operating

system dependent whether this is a full pathname or not). If the command was executed usitgth@and

line option to the interpretegrgv[0]

is set to the string-c’ . If no script name was passed to the Python

interpreterargv has zero length.

27

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andiittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgype valueg tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objac)ue gets the exception parameter (#ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning théracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dontgywith finally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. theohfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal

28 Chapter 3. Python Runtime Services

termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasd€dne is equivalent to passing zero, and any other
object is printed t®ys.stderr and results in an exit code of 1. In particulays.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wken exit() is called.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgsitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ’ since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke faype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

3.1. s