
Installing Python Modules

Greg Ward

January 15, 2002

E-mail: gward@python.net

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the end-user’s point-of-view,
describing how to extend the capabilities of a standard Python installation by building and installing
third-party Python modules and extensions.

Contents

1 Introduction 1
1.1 Best case: trivial installation . 2
1.2 The new standard: Distutils . 2
1.3 The old way: no standards . 3

2 Standard Build and Install 3
2.1 Platform variations . 3
2.2 Splitting the job up . 4
2.3 How building works . 4
2.4 How installation works . 5

3 Building Extensions: Tips and Tricks 6
3.1 Using non-Microsoft compilers on Windows . 6

Borland C++ . 6
GNU C / Cygwin / MinGW32 . 7

4 Alternate Installation 8
4.1 Alternate installation: Unix (the home scheme) . 8
4.2 Alternate installation: Unix (the prefix scheme) . 8
4.3 Alternate installation: Windows . 9
4.4 Alternate installation: MacOS . 10

5 Custom Installation 10

6 Distutils Configuration Files 12
6.1 Location and names of config files . 12
6.2 Syntax of config files . 13

1 Introduction

Although Python’s extensive standard library covers many programming needs, there often comes a time
when you need to add some new functionality to your Python installation in the form of third-party modules.
This might be necessary to support your own programming, or to support an application that you want to
use and that happens to be written in Python.

In the past, there has been little support for adding third-party modules to an existing Python installation.
With the introduction of the Python Distribution Utilities (Distutils for short) in Python 2.0, this is starting
to change. Not everything will change overnight, though, so while this document concentrates on installing
module distributions that use the Distutils, we will also spend some time dealing with the old ways.

This document is aimed primarily at the people who need to install third-party Python modules: end-users
and system administrators who just need to get some Python application running, and existing Python
programmers who want to add some new goodies to their toolbox. You don’t need to know Python to
read this document; there will be some brief forays into using Python’s interactive mode to explore your
installation, but that’s it. If you’re looking for information on how to distribute your own Python modules
so that others may use them, see the Distributing Python Modules manual.

1.1 Best case: trivial installation

In the best case, someone will have prepared a special version of the module distribution you want to install
that is targeted specifically at your platform and is installed just like any other software on your platform.
For example, the module developer might make an executable installer available for Windows users, an RPM
package for users of RPM-based Linux systems (Red Hat, SuSE, Mandrake, and many others), a Debian
package for users of Debian-based Linux systems (Debian proper, Caldera, Corel, etc.), and so forth.

In that case, you would download the installer appropriate to your platform and do the obvious thing with
it: run it if it’s an executable installer, rpm --install it if it’s an RPM, etc. You don’t need to run Python
or a setup script, you don’t need to compile anything—you might not even need to read any instructions
(although it’s always a good idea to do so anyways).

Of course, things will not always be that easy. You might be interested in a module distribution that doesn’t
have an easy-to-use installer for your platform. In that case, you’ll have to start with the source distribution
released by the module’s author/maintainer. Installing from a source distribution is not too hard, as long as
the modules are packaged in the standard way. The bulk of this document is about building and installing
modules from standard source distributions.

1.2 The new standard: Distutils

If you download a module source distribution, you can tell pretty quickly if it was packaged and distributed in
the standard way, i.e. using the Distutils. First, the distribution’s name and version number will be featured
prominently in the name of the downloaded archive, e.g. ‘foo-1.0.tar.gz’ or ‘widget-0.9.7.zip’. Next, the archive
will unpack into a similarly-named directory: ‘foo-1.0’ or ‘widget-0.9.7’. Additionally, the distribution will
contain a setup script ‘setup.py’, and a ‘README.txt’ (or possibly ‘README’), which should explain that
building and installing the module distribution is a simple matter of running

python setup.py install

If all these things are true, then you already know how to build and install the modules you’ve just down-
loaded: run the command above. Unless you need to install things in a non-standard way or customize the
build process, you don’t really need this manual. Or rather, the above command is everything you need to
get out of this manual.

2 1 Introduction

1.3 The old way: no standards

Before the Distutils, there was no infrastructure to support installing third-party modules in a consistent,
standardized way. Thus, it’s not really possible to write a general manual for installing Python modules
that don’t use the Distutils; the only truly general statement that can be made is, “Read the module’s own
installation instructions.”

However, if such instructions exist at all, they are often woefully inadequate and targeted at experienced
Python developers. Such users are already familiar with how the Python library is laid out on their platform,
and know where to copy various files in order for Python to find them. This document makes no such
assumptions, and explains how the Python library is laid out on three major platforms (Unix, Windows,
and MacOS), so that you can understand what happens when the Distutils do their job and know how to
install modules manually when the module author fails to provide a setup script.

Additionally, while there has not previously been a standard installation mechanism, Python has had some
standard machinery for building extensions on Unix since Python 1.4. This machinery (the ‘Makefile.pre.in’
file) is superseded by the Distutils, but it will no doubt live on in older module distributions for a while. This
‘Makefile.pre.in’ mechanism is documented in the Extending & Embedding Python manual, but that manual is
aimed at module developers—hence, we include documentation for builders/installers here.

All of the pre-Distutils material is tucked away in section ??.

2 Standard Build and Install

As described in section 1.2, building and installing a module distribution using the Distutils is usually one
simple command:

python setup.py install

On Unix, you’d run this command from a shell prompt; on Windows, you have to open a command prompt
window (“DOS box”) and do it there; on MacOS, things are a tad more complicated (see below).

2.1 Platform variations

You should always run the setup command from the distribution root directory, i.e. the top-level subdirectory
that the module source distribution unpacks into. For example, if you’ve just downloaded a module source
distribution ‘foo-1.0.tar.gz’ onto a Unix system, the normal thing to do is:

gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0

cd foo-1.0

python setup.py install

On Windows, you’d probably download ‘foo-1.0.zip’. If you downloaded the archive file to ‘C:\Temp’, then
it would unpack into ‘C:\Temp\foo-1.0’; you can use either a GUI archive manipulator (such as WinZip) or
a command-line tool (such as unzip or pkunzip) to unpack the archive. Then, open a command prompt
window (“DOS box”), and run:

cd c:\Temp\foo-1.0

python setup.py install

1.3 The old way: no standards 3

On MacOS, you have to go through a bit more effort to supply command-line arguments to the setup script:

• hit option-double-click on the script’s icon (or option-drop it onto the Python interpreter’s icon)

• press the “Set unix-style command line” button

• set the “Keep stdio window open on termination” if you’re interested in seeing the output of the setup
script (which is usually voluminous and often useful)

• when the command-line dialog pops up, enter “install” (you can, of course, enter any Distutils
command-line as described in this document or in Distributing Python Modules: just leave off the
initial python setup.py and you’ll be fine)

**this should change: every Distutils setup script will need command-line arguments for every
run (and should probably keep stdout around), so all this should happen automatically for
setup scripts**

2.2 Splitting the job up

Running setup.py install builds and installs all modules in one run. If you prefer to work incrementally—
especially useful if you want to customize the build process, or if things are going wrong—you can use the
setup script to do one thing at a time. This is particularly helpful when the build and install will be done by
different users—e.g., you might want to build a module distribution and hand it off to a system administrator
for installation (or do it yourself, with super-user privileges).

For example, you can build everything in one step, and then install everything in a second step, by invoking
the setup script twice:

python setup.py build

python setup.py install

(If you do this, you will notice that running the install command first runs the build command, which—in
this case—quickly notices that it has nothing to do, since everything in the ‘build’ directory is up-to-date.)

You may not need this ability to break things down often if all you do is install modules downloaded off the
’net, but it’s very handy for more advanced tasks. If you get into distributing your own Python modules
and extensions, you’ll run lots of individual Distutils commands on their own.

2.3 How building works

As implied above, the build command is responsible for putting the files to install into a build directory. By
default, this is ‘build’ under the distribution root; if you’re excessively concerned with speed, or want to keep
the source tree pristine, you can change the build directory with the --build-base option. For example:

python setup.py build --build-base=/tmp/pybuild/foo-1.0

(Or you could do this permanently with a directive in your system or personal Distutils configuration file;
see section 6.) Normally, this isn’t necessary.

The default layout for the build tree is as follows:

4 2 Standard Build and Install

--- build/ --- lib/

or

--- build/ --- lib.<plat>/

temp.<plat>/

where <plat> expands to a brief description of the current OS/hardware platform and Python version. The
first form, with just a ‘lib’ directory, is used for “pure module distributions”—that is, module distributions
that include only pure Python modules. If a module distribution contains any extensions (modules written in
C/C++), then the second form, with two <plat> directories, is used. In that case, the ‘temp.plat’ directory
holds temporary files generated by the compile/link process that don’t actually get installed. In either
case, the ‘lib’ (or ‘lib.plat’) directory contains all Python modules (pure Python and extensions) that will be
installed.

In the future, more directories will be added to handle Python scripts, documentation, binary executables,
and whatever else is needed to handle the job of installing Python modules and applications.

2.4 How installation works

After the build command runs (whether you run it explicitly, or the install command does it for you),
the work of the install command is relatively simple: all it has to do is copy everything under ‘build/lib’
(or ‘build/lib.plat’) to your chosen installation directory.

If you don’t choose an installation directory—i.e., if you just run setup.py install—then the install
command installs to the standard location for third-party Python modules. This location varies by platform
and by how you built/installed Python itself. On Unix and MacOS, it also depends on whether the module
distribution being installed is pure Python or contains extensions (“non-pure”):

Platform Standard installation location Default value Notes
Unix (pure) prefix/lib/python2.0/site-packages /usr/local/lib/python2.0/site-packages (1)
Unix (non-pure) exec-prefix/lib/python2.0/site-packages /usr/local/lib/python2.0/site-packages (1)
Windows prefix C:\Python (2)
MacOS (pure) prefix :Lib:site-packages Python:Lib:site-packages

MacOS (non-pure) prefix :Lib:site-packages Python:Lib:site-packages

Notes:

(1) Most Linux distributions include Python as a standard part of the system, so prefix and exec-prefix are
usually both ‘/usr’ on Linux. If you build Python yourself on Linux (or any Unix-like system), the
default prefix and exec-prefix are ‘/usr/local’.

(2) The default installation directory on Windows was ‘C:\Program Files\Python’ under Python 1.6a1, 1.5.2,
and earlier.

prefix and exec-prefix stand for the directories that Python is installed to, and where it finds its libraries at run-
time. They are always the same under Windows and MacOS, and very often the same under Unix. You can
find out what your Python installation uses for prefix and exec-prefix by running Python in interactive mode
and typing a few simple commands. Under Unix, just type python at the shell prompt; under Windows, run
“Python 2.0 (interpreter)” **right?**; under MacOS, **???**. Once the interpreter is started, you type
Python code at the ‘>>> ’ prompt. For example, on my Linux system, I type the three Python statements
shown below, and get the output as shown, to find out my prefix and exec-prefix:

2.4 How installation works 5

Python 1.5.2 (#1, Apr 18 1999, 16:03:16) [GCC pgcc-2.91.60 19981201 (egcs-1.1.1 on linux2

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import sys

>>> sys.prefix

’/usr’

>>> sys.exec_prefix

’/usr’

If you don’t want to install modules to the standard location, or if you don’t have permission to write there,
then you need to read about alternate installations in section 4. If you want to customize your installation
directories more heavily, see section 5 on custom installations.

3 Building Extensions: Tips and Tricks

(This is the section to read for people doing any sort of interesting build. Things to talk about:

• the ‘Setup’ file (any platform now, but Unix-biased)

• CFLAGS and LDFLAGS (must implement them first!)

• using non-MS compilers on Windows (how to convert Python’s library, ...)

3.1 Using non-Microsoft compilers on Windows

Borland C++

This subsection describes the necessary steps to use Distutils with the Borland C++ compiler version 5.5.1

First you have to know that the Borland’s object file format(OMF) is different from what is used by the
Python version you can download from the Python web site. (Python is built with Microsoft Visual C++,
which uses COFF as object file format.) For this reason you have to convert Python’s library ‘python20.lib’
into the Borland format. You can do this as follows:

coff2omf python20.lib python20_bcpp.lib

The ‘coff2omf’ program comes with the Borland compiler. The file ‘python20.lib’ is in the ‘Libs’ directory of
your Python installation. If your extension uses other libraries (zlib,...) you have to convert them too.

The converted files have to reside in the same directories as the normal libraries.

How does Distutils manage to use these libraries with their changed names? If the extension needs a library
(eg. ‘foo’) Distutils checks first if it finds a library with suffix ‘ bcpp’ (eg. ‘foo bcpp.lib’) and then uses this
library. In the case it doesn’t find such a special library it uses the default name (‘foo.lib’.)2

To let Distutils compile your extension with Borland C++ you now have to type:

python setup.py build --compiler=bcpp

1Check http://www.borland.com/bcppbuilder/freecompiler/ for download
2This also means you could replace all existing COFF-libraries with OMF-libraries of the same name.

6 3 Building Extensions: Tips and Tricks

If you want to use the Borland C++ compiler as default, you should consider to write it in your personal or
system-wide configuration file for Distutils (see section 6.)

One place to look: http://www.cyberus.ca/ g will/pyExtenDL.shtml

GNU C / Cygwin / MinGW32

This section describes the necessary steps to use Distutils with the GNU C/C++ compilers in their Cygwin
and MinGW32 distributions.3

**For a Python which was built with Cygwin, all should work without any of these following
steps.**

For these compilers we have to create some special libraries too. This task is more complex as for Borland’s
C++, because there is no program to convert the library (inclusive the references on data structures.)

First you have to create a list of symbols which the Python DLL exports. (You can find a good program for
this task at http://starship.python.net/crew/kernr/mingw32/Notes.html, see at PExports 0.42h there.)

pexports python20.dll >python20.def

Then you can create from these information an import library for gcc.

dlltool --dllname python20.dll --def python20.def --output-lib libpython20.a

The resulting library has to be placed in the same directory as ‘python20.lib’. (Should be the ‘libs’ directory
under your Python installation directory.)

If your extension uses other libraries (zlib,...) you might have to convert them too. The converted files have
to reside in the same directories as the normal libraries do.

To let Distutils compile your extension with Cygwin you now have to type

python setup.py build --compiler=cygwin

and for Cygwin in no-cygwin mode4 or for MinGW32 type

python setup.py build --compiler=mingw32

If you want to use any of these options/compilers as default, you should consider to write it in your personal
or system-wide configuration file for Distutils (see section 6.)

One place to look: http://www.zope.org/Members/als/tips/win32 mingw modules

**For converted import libraries for python20, tcl83 and tk83 in cyg-
win/mingw32 and bcpp format, see http://www.htw-dresden.de/ liebschr/PyOpenGL/py2.0-libs.tgz

and for the missing header files of the in python2.0 included tcl/tk, see
http://www.htw-dresden.de/%7Eliebschr/PyOpenGL/py2.0-tk8.3-header.tgz.**

3Check http://sources.redhat.com/cygwin/ and http://www.mingw.org for more information
4Then you have no POSIX emulation available, but you also don’t need ‘cygwin1.dll’.

3.1 Using non-Microsoft compilers on Windows 7

4 Alternate Installation

Often, it is necessary or desirable to install modules to a location other than the standard location for
third-party Python modules. For example, on a Unix system you might not have permission to write to
the standard third-party module directory. Or you might wish to try out a module before making it a
standard part of your local Python installation; this is especially true when upgrading a distribution already
present: you want to make sure your existing base of scripts still works with the new version before actually
upgrading.

The Distutils install command is designed to make installing module distributions to an alternate location
simple and painless. The basic idea is that you supply a base directory for the installation, and the install
command picks a set of directories (called an installation scheme) under this base directory in which to
install files. The details differ across platforms, so read whichever of the following sections applies to you.

4.1 Alternate installation: Unix (the home scheme)

Under Unix, there are two ways to perform an alternate installation. The “prefix scheme” is similar to
how alternate installation works under Windows and MacOS, but is not necessarily the most useful way to
maintain a personal Python library. Hence, we document the more convenient and commonly useful “home
scheme” first.

The idea behind the “home scheme” is that you build and maintain a personal stash of Python modules,
probably under your home directory. Installing a new module distribution is as simple as

python setup.py install --home=<dir>

where you can supply any directory you like for the --home option. Lazy typists can just type a tilde (~);
the install command will expand this to your home directory:

python setup.py install --home=~

The --home option defines the installation base directory. Files are installed to the following directories
under the installation base as follows:

Type of file Installation Directory Override option
pure module distribution home/lib/python --install-purelib
non-pure module distribution home/lib/python --install-platlib
scripts home/bin --install-scripts
data home/share --install-data

4.2 Alternate installation: Unix (the prefix scheme)

The “prefix scheme” is useful when you wish to use one Python installation to perform the build/install
(i.e., to run the setup script), but install modules into the third-party module directory of a different Python
installation (or something that looks like a different Python installation). If this sounds a trifle unusual, it
is—that’s why the “home scheme” comes first. However, there are at least two known cases where the prefix
scheme will be useful.

First, consider that many Linux distributions put Python in ‘/usr’, rather than the more traditional
‘/usr/local’. This is entirely appropriate, since in those cases Python is part of “the system” rather than
a local add-on. However, if you are installing Python modules from source, you probably want them to go

8 4 Alternate Installation

in ‘/usr/local/lib/python1.X ’ rather than ‘/usr/lib/python1.X ’. This can be done with

/usr/bin/python setup.py install --prefix=/usr/local

Another possibility is a network filesystem where the name used to write to a remote directory is differ-
ent from the name used to read it: for example, the Python interpreter accessed as ‘/usr/local/bin/python’
might search for modules in ‘/usr/local/lib/python1.X ’, but those modules would have to be installed to, say,
‘/mnt/@server/export/lib/python1.X ’. This could be done with

/usr/local/bin/python setup.py install --prefix=/mnt/@server/export

In either case, the --prefix option defines the installation base, and the --exec-prefix option defines the
platform-specific installation base, which is used for platform-specific files. (Currently, this just means non-
pure module distributions, but could be expanded to C libraries, binary executables, etc.) If --exec-prefix
is not supplied, it defaults to --prefix. Files are installed as follows:

Type of file Installation Directory Override option
pure module distribution prefix/lib/python1.X /site-packages --install-purelib
non-pure module distribution exec-prefix/lib/python1.X /site-packages --install-platlib
scripts prefix/bin --install-scripts
data prefix/share --install-data

There is no requirement that --prefix or --exec-prefix actually point to an alternate Python installation;
if the directories listed above do not already exist, they are created at installation time.

Incidentally, the real reason the prefix scheme is important is simply that a standard Unix installation
uses the prefix scheme, but with --prefix and --exec-prefix supplied by Python itself (as sys.prefix and
sys.exec prefix). Thus, you might think you’ll never use the prefix scheme, but every time you run
python setup.py install without any other options, you’re using it.

Note that installing extensions to an alternate Python installation has no effect on how those extensions are
built: in particular, the Python header files (‘Python.h’ and friends) installed with the Python interpreter
used to run the setup script will be used in compiling extensions. It is your responsibility to ensure that
the interpreter used to run extensions installed in this way is compatibile with the interpreter used to build
them. The best way to do this is to ensure that the two interpreters are the same version of Python (possibly
different builds, or possibly copies of the same build). (Of course, if your --prefix and --exec-prefix don’t
even point to an alternate Python installation, this is immaterial.)

4.3 Alternate installation: Windows

Since Windows has no conception of a user’s home directory, and since the standard Python installation
under Windows is simpler than that under Unix, there’s no point in having separate --prefix and --home
options. Just use the --prefix option to specify a base directory, e.g.

python setup.py install --prefix="\Temp\Python"

to install modules to the ‘\Temp’ directory on the current drive.

The installation base is defined by the --prefix option; the --exec-prefix option is not supported under
Windows. Files are installed as follows:

4.3 Alternate installation: Windows 9

Type of file Installation Directory Override option
pure module distribution prefix --install-purelib
non-pure module distribution prefix --install-platlib
scripts prefix\Scripts --install-scripts
data prefix\Data --install-data

4.4 Alternate installation: MacOS

Like Windows, MacOS has no notion of home directories (or even of users), and a fairly simple standard
Python installation. Thus, only a --prefix option is needed. It defines the installation base, and files are
installed under it as follows:

Type of file Installation Directory Override option
pure module distribution prefix :Lib:site-packages --install-purelib
non-pure module distribution prefix :Lib:site-packages --install-platlib
scripts prefix :Scripts --install-scripts
data prefix :Data --install-data

See section 2.1 for information on supplying command-line arguments to the setup script with MacPython.

5 Custom Installation

Sometimes, the alternate installation schemes described in section 4 just don’t do what you want. You
might want to tweak just one or two directories while keeping everything under the same base directory,
or you might want to completely redefine the installation scheme. In either case, you’re creating a custom
installation scheme.

You probably noticed the column of “override options” in the tables describing the alternate installation
schemes above. Those options are how you define a custom installation scheme. These override options can
be relative, absolute, or explicitly defined in terms of one of the installation base directories. (There are
two installation base directories, and they are normally the same—they only differ when you use the Unix

“prefix scheme” and supply different --prefix and --exec-prefix options.)

For example, say you’re installing a module distribution to your home directory under Unix—but you want
scripts to go in ‘˜/scripts’ rather than ‘˜/bin’. As you might expect, you can override this directory with the
--install-scripts option; in this case, it makes most sense to supply a relative path, which will be interpreted
relative to the installation base directory (your home directory, in this case):

python setup.py install --home=~ --install-scripts=scripts

Another Unix example: suppose your Python installation was built and installed with a prefix of
‘/usr/local/python’, so under a standard installation scripts will wind up in ‘/usr/local/python/bin’. If you
want them in ‘/usr/local/bin’ instead, you would supply this absolute directory for the --install-scripts
option:

python setup.py install --install-scripts=/usr/local/bin

(This performs an installation using the “prefix scheme,” where the prefix is whatever your Python interpreter
was installed with— ‘/usr/local/python’ in this case.)

10 5 Custom Installation

If you maintain Python on Windows, you might want third-party modules to live in a subdirectory of prefix,
rather than right in prefix itself. This is almost as easy as customizing the script installation directory—you
just have to remember that there are two types of modules to worry about, pure modules and non-pure
modules (i.e., modules from a non-pure distribution). For example:

python setup.py install --install-purelib=Site --install-platlib=Site

The specified installation directories are relative to prefix. Of course, you also have to ensure that these
directories are in Python’s module search path, e.g. by putting a ‘.pth’ file in prefix (**should have a
section describing .pth files and cross-ref it here**).

If you want to define an entire installation scheme, you just have to supply all of the installation directory
options. The recommended way to do this is to supply relative paths; for example, if you want to maintain
all Python module-related files under ‘python’ in your home directory, and you want a separate directory for
each platform that you use your home directory from, you might define the following installation scheme:

python setup.py install --home=~ \

--install-purelib=python/lib \

--install-platlib=python/lib.$PLAT \

--install-scripts=python/scripts

--install-data=python/data

or, equivalently,

python setup.py install --home=~/python \

--install-purelib=lib \

--install-platlib=’lib.$PLAT’ \

--install-scripts=scripts

--install-data=data

$PLAT is not (necessarily) an environment variable—it will be expanded by the Distutils as it parses your
command line options (just as it does when parsing your configuration file(s)).

Obviously, specifying the entire installation scheme every time you install a new module distribution would
be very tedious. Thus, you can put these options into your Distutils config file (see section 6):

[install]

install-base=$HOME

install-purelib=python/lib

install-platlib=python/lib.$PLAT

install-scripts=python/scripts

install-data=python/data

or, equivalently,

11

[install]

install-base=$HOME/python

install-purelib=lib

install-platlib=lib.$PLAT

install-scripts=scripts

install-data=data

Note that these two are not equivalent if you supply a different installation base directory when you run the
setup script. For example,

python setup.py --install-base=/tmp

would install pure modules to /tmp/python/lib in the first case, and to /tmp/lib in the second case. (For the
second case, you probably want to supply an installation base of ‘/tmp/python’.)

You probably noticed the use of $HOME and $PLAT in the sample configuration file input. These are Distutils
configuration variables, which bear a strong resemblance to environment variables. In fact, you can use
environment variables in config files—on platforms that have such a notion—but the Distutils additionally
define a few extra variables that may not be in your environment, such as $PLAT. (And of course, you can only
use the configuration variables supplied by the Distutils on systems that don’t have environment variables,
such as MacOS (**true?**).) See section 6 for details.

**need some Windows and MacOS examples—when would custom installation schemes be
needed on those platforms?**

6 Distutils Configuration Files

As mentioned above, you can use Distutils configuration files to record personal or site preferences for any
Distutils options. That is, any option to any command can be stored in one of two or three (depending on
your platform) configuration files, which will be consulted before the command-line is parsed. This means
that configuration files will override default values, and the command-line will in turn override configuration
files. Furthermore, if multiple configuration files apply, values from “earlier” files are overridden by “later”
files.

6.1 Location and names of config files

The names and locations of the configuration files vary slightly across platforms. On Unix, the three
configuration files (in the order they are processed) are:

Type of file Location and filename Notes
system prefix/lib/pythonver/distutils/pydistutils.cfg (1)
personal $HOME/.pydistutils.cfg (2)
local setup.cfg (3)

On Windows, the configuration files are:

Type of file Location and filename Notes
system prefix\Lib\distutils\pydistutils.cfg (4)
personal %HOME\pydistutils.cfg (5)
local setup.cfg (3)

12 6 Distutils Configuration Files

And on MacOS, they are:

Type of file Location and filename Notes
system prefix :Lib:distutils:pydistutils.cfg (6)
personal N/A
local setup.cfg (3)

Notes:

(1) Strictly speaking, the system-wide configuration file lives in the directory where the Distutils are in-
stalled; under Python 1.6 and later on Unix, this is as shown. For Python 1.5.2, the Distutils will
normally be installed to ‘prefix/lib/site-packages/python1.5/distutils’, so the system configuration file should
be put there under Python 1.5.2.

(2) On Unix, if the HOME environment variable is not defined, the user’s home directory will be determined
with the getpwuid() function from the standard pwd module.

(3) I.e., in the current directory (usually the location of the setup script).

(4) (See also note (1).) Under Python 1.6 and later, Python’s default “installation prefix” is ‘C:\Python’, so
the system configuration file is normally ‘C:\Python\Lib\distutils\pydistutils.cfg’. Under Python 1.5.2, the
default prefix was ‘C:\Program Files\Python’, and the Distutils were not part of the standard library—
so the system configuration file would be ‘C:\Program Files\Python\distutils\pydistutils.cfg’ in a standard
Python 1.5.2 installation under Windows.

(5) On Windows, if the HOME environment variable is not defined, no personal configuration file will
be found or used. (In other words, the Distutils make no attempt to guess your home directory on
Windows.)

(6) (See also notes (1) and (4).) The default installation prefix is just ‘Python:’, so under Python 1.6 and
later this is normally‘Python:Lib:distutils:pydistutils.cfg’. (The Distutils don’t work very well with Python
1.5.2 under MacOS. **true?**)

6.2 Syntax of config files

The Distutils configuration files all have the same syntax. The config files are grouped into sections; there is
one section for each Distutils command, plus a global section for global options that affect every command.
Each section consists of one option per line, specified like option=value.

For example, the following is a complete config file that just forces all commands to run quietly by default:

[global]

verbose=0

If this is installed as the system config file, it will affect all processing of any Python module distribution by
any user on the current system. If it is installed as your personal config file (on systems that support them),
it will affect only module distributions processed by you. And if it is used as the ‘setup.cfg’ for a particular
module distribution, it affects only that distribution.

You could override the default “build base” directory and make the build* commands always forcibly rebuild
all files with the following:

[build]

build-base=blib

force=1

6.2 Syntax of config files 13

which corresponds to the command-line arguments

python setup.py build --build-base=blib --force

except that including the build command on the command-line means that command will be run. Including
a particular command in config files has no such implication; it only means that if the command is run, the
options in the config file will apply. (Or if other commands that derive values from it are run, they will use
the values in the config file.)

You can find out the complete list of options for any command using the --help option, e.g.:

python setup.py build --help

and you can find out the complete list of global options by using --help without a command:

python setup.py --help

See also the “Reference” section of the “Distributing Python Modules” manual.

14 6 Distutils Configuration Files

	1 Introduction
	1.1 Best case: trivial installation
	1.2 The new standard: Distutils
	1.3 The old way: no standards

	2 Standard Build and Install
	2.1 Platform variations
	2.2 Splitting the job up
	2.3 How building works
	2.4 How installation works

	3 Building Extensions: Tips and Tricks
	3.1 Using non-Microsoft compilers on Windows
	Borland C++
	GNU C / Cygwin / MinGW32

	4 Alternate Installation
	4.1 Alternate installation: Unix (the home scheme)
	4.2 Alternate installation: Unix (the prefix scheme)
	4.3 Alternate installation: Windows
	4.4 Alternate installation: MacOS

	5 Custom Installation
	6 Distutils Configuration Files
	6.1 Location and names of config files
	6.2 Syntax of config files

