Python Reference Manual
Release 2.2.3

Guido van Rossum
Fred L. Drake, Jr., editor

30 May 2003

PythonLabs
Email: python-docs@python.org

Copyright (©) 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics.
Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it
very attractive for rapid application development, as well as for use as a scripting or glue language to
connect existing components together. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules and packages, which
encourages program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and can be freely
distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but
attempts to be exact and complete. The semantics of non-essential built-in object types and of the built-
in functions and modules are described in the Python Library Reference. For an informal introduction
to the language, see the Python Tutorial. For C or C++ programmers, two additional manuals exist:
Ezxtending and Embedding the Python Interpreter describes the high-level picture of how to write a Python
extension module, and the Python/C API Reference Manual describes the interfaces available to C/C++
programmers in detail.

CONTENTS

Introduction 1
1.1 Notation o . o e 1
Lexical analysis 3
2.1 Line structure e e 3
2.2 Other tokens e)
2.3 Identifiers and keywords)
2.4 Literals e e e 6
2.5 Operatorso e e 10
2.6 Delimiters e e e e e e 10
Data model 11
3.1 Objects, values and types L 11
3.2 The standard type hierarchyo o 12
3.3 Special method names oL e 17
Execution model 27
4.1 Naming and binding 27
4.2 Exceptions L e e e 28
Expressions 31
5.1 Arithmetic conversions L 31
5.2 AtOmS . . . L 31
5.3 Primaries L e 33
5.4 The power operator L e e e e e 36
5.5 Unary arithmetic operations 37
5.6 Binary arithmetic operations Lo L 37
5.7 Shifting operations 38
5.8 Binary bit-wise operations oL L Lo e 38
5.9 CompariSOns v i e e e e e e 38
5.10 Boolean operations e 39
511 Lambdas e 40
5.12 Expression listso 40
5.13 Evaluation order L e 40
514 SUMMATY . . o v v v ot e e e e 41
Simple statements 43
6.1 Expression statements Lo L 43
6.2 Assert statements L L e e e e e e 43
6.3 Assignment statements oL e 44
6.4 The pass statement 46
6.5 The del statement e 46
6.6 The print statement L L L 46
6.7 The return statement e 47

6.8 The yield statement L L e

6.9 The raise statement e e e
6.10 The break statement e e e e e e e
6.11 The continue statement L
6.12 The import statement
6.13 The global statement L
6.14 The exec statement e e e e
7 Compound statements
7.1 The if statement L
7.2 The while statement e e
7.3 The for statement e e e e
7.4 The try statement e
7.5 Function definitions
7.6 Class definitions L e e
8 Top-level components
8.1 Complete Python programs L
8.2 Filednput L e e
8.3 Imteractive input L
8.4 Expression inputo e e e e
A Future statements and nested scopes
A.1 Future statements e e e e e e
A.2 __future__ — Future statement definitions
A3 Nested SCOPES .« . v o v v v e
B History and License
B.1 History of the software
B.2 Terms and conditions for accessing or otherwise using Python
Index

51
92
52
52
93
o4
95

57
o7
57
57
58

59
59
60
61

63
63
64

67

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications
for everything except syntax and lexical analysis. This should make the document more understandable
to the average reader, but will leave room for ambiguities. Consequently, if you were coming from Mars
and tried to re-implement Python from this document alone, you might have to guess things and in
fact you would probably end up implementing quite a different language. On the other hand, if you are
using Python and wonder what the precise rules about a particular area of the language are, you should
definitely be able to find them here. If you would like to see a more formal definition of the language,
maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the im-
plementation may change, and other implementations of the same language may work differently. On
the other hand, there is currently only one Python implementation in widespread use (although a sec-
ond one now exists!), and its particular quirks are sometimes worth being mentioned, especially where
the implementation imposes additional limitations. Therefore, you’ll find short “implementation notes”
sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not
documented here, but in the separate Python Library Reference document. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the
following style of definition:

name: lc_letter (lc_letter | "_")*
lc_letter: "a'..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1lc_letters and
underscores. An 1lc_letter in turn is any of the single characters ‘a’ through ‘z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical bar (1) is
used to separate alternatives; it is the least binding operator in this notation. A star (*) means zero or
more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and a phrase
enclosed in square brackets ([1) means zero or one occurrences (in other words, the enclosed phrase is
optional). The * and + operators bind as tightly as possible; parentheses are used for grouping. Literal
strings are enclosed in quotes. White space is only meaningful to separate tokens. Rules are normally
contained on a single line; rules with many alternatives may be formatted alternatively with each line
after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters
separated by three dots mean a choice of any single character in the given (inclusive) range of AsCII

characters. A phrase between angular brackets (<...>) gives an informal description of the symbol
defined; e.g., this could be used to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of
lexical and syntactic definitions: a lexical definition operates on the individual characters of the input
source, while a syntax definition operates on the stream of tokens generated by the lexical analysis. All
uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subsequent chapters
are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical
analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text and string literals. 8-bit characters may be
used in string literals and comments but their interpretation is platform dependent; the proper way to
insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is generally a
superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters
is ISO Latin-1 (an ASCII superset that covers most western languages that use the Latin alphabet), but
it is possible that in the future Unicode text editors will become common. These generally use the
UTF-8 encoding, which is also an ASCII superset, but with very different use for the characters with
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-1
or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the
source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line
boundaries except where NEWLINE is allowed by the syntax (e.g., between statements in compound
statements). A logical line is constructed from one or more physical lines by following the explicit or
implicit line joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On UNIX,
this is the Aascir LF (linefeed) character. On DOS/Windows, it is the Ascil sequence CR LF (return
followed by linefeed). On Macintosh, it is the Ascit CR (return) character.

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of
the physical line. A comment signifies the end of the logical line unless the implicit line joining rules are
invoked. Comments are ignored by the syntax; they are not tokens.

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows:
when a physical line ends in a backslash that is not part of a string literal or comment, it is joined with
the following forming a single logical line, deleting the backslash and the following end-of-line character.
For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A
backslash does not continue a token except for string literals (i.e., tokens other than string literals cannot
be split across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string
literal.

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line
without using backslashes. For example:

month_names = [’Januari’, ’Februari’, ’Maart’, # These are the
’April’, ’Mei’, ’Juni’, # Dutch names
?Juli’, ’Augustus’, ’September’, # for the months
’Oktober’, ’November’, ’December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important.
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines.
Implicitly continued lines can also occur within triple-quoted strings (see below); in that case they cannot
carry comments.

2.1.6 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no
NEWLINE token is generated). During interactive input of statements, handling of a blank line may
differ depending on the implementation of the read-eval-print loop. In the standard implementation, an
entirely blank logical line (i.e. one containing not even whitespace or a comment) terminates a multi-line
statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters
up to and including the replacement is a multiple of eight (this is intended to be the same rule as used
by UNIX). The total number of spaces preceding the first non-blank character then determines the line’s
indentation. Indentation cannot be split over multiple physical lines using backslashes; the whitespace
up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms,
it is unwise to use a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; it will be ignored for the indentation
calculations above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined
effect (for instance, they may reset the space count to zero).

4 Chapter 2. Lexical analysis

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped
off again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At
the beginning of each logical line, the line’s indentation level is compared to the top of the stack. If it is
equal, nothing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated.
If it is smaller, it must be one of the numbers occurring on the stack; all numbers on the stack that are
larger are popped off, and for each number popped off a DEDENT token is generated. At the end of the
file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r= (]
for i in range(len(l)):
s = 1[:i] + 1[i+1:]
p = perm(s)
for x in p:
r.append(1[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(1): # error: first line indented
for i in range(len(1l)): # error: not indented
s = 1[:4i] + 1[i+1:]
p = perm(1[:i] + 1[i+1:]) # error: unexpected indent
for x in p:
r.append(1[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical
analyzer — the indentation of return r does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and
formfeed can be used interchangeably to separate tokens. Whitespace is needed between two tokens only
if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token, but a b
is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, key-
words, literals, operators, and delimiters. Whitespace characters (other than line terminators, discussed
earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the
longest possible string that forms a legal token, when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions:

2.2. Other tokens 5

identifier == (letter|"_") (letter | digit | "_")x*

letter = lowercase | uppercase
lowercase n="a"..."z"
uppercase = "A'.LL"ZM
digit = "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as
ordinary identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Note that although the identifier as can be used as part of the syntax of import statements, it is not
currently a reserved word.

In some future version of Python, the identifiers as and None will both become keywords.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Form ‘ Meaning ‘ Notes
_x Not imported by ‘from module import * | (1)
__*__ | System-defined name

% Class-private name mangling

See sections: 6.12, “The import statement”; 3.3, “Special method names”; 5.2.1, “Identifiers (Names)”.

Note:

(1) The special identifier ‘_’ is used in the interactive interpreter to store the result of the last evaluation;
it is stored in the __builtin__ module. When not in interactive mode, ‘_’ has no special meaning
and is not defined.

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

6 Chapter 2. Lexical analysis

stringliteral = [stringprefix] (shortstring | longstring)

stringprefix w="r" | "uw" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"
shortstring = "’" shortstringitem*x "’" | ’"’ shortstringitemx* ’"’
longstring n= "’2?2’" Jongstringitemx "’’’"

[>""" longstringitemx """’
shortstringitem ::= shortstringchar | escapeseq
longstringitem = longstringchar | escapeseq
shortstringchar ::= <any ASCII character except "\" or newline or the quote>
longstringchar = <any ASCII character except "\">
escapeseq m= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between
the stringprefix and the rest of the string literal.

In plain English: String literals can be enclosed in matching single quotes (?) or double quotes ("). They
can also be enclosed in matching groups of three single or double quotes (these are generally referred
to as triple-quoted strings). The backslash (\) character is used to escape characters that otherwise
have a special meaning, such as newline, backslash itself, or the quote character. String literals may
optionally be prefixed with a letter ‘r’ or ‘R’; such strings are called raw strings and use different rules
for interpreting backslash escape sequences. A prefix of ‘u’ or ‘U’ makes the string a Unicode string.
Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.
Some additional escape sequences, described below, are available in Unicode strings. The two prefix
characters may be combined; in this case, ‘u’ must appear before ‘r’.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three
unescaped quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e.
either * or ".)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules similar
to those used by Standard C. The recognized escape sequences are:

Escape Sequence | Meaning Notes

\newline Ignored

\\ Backslash (\)

\’ Single quote (?)

\" Double quote (")

\a Ascit Bell (BEL)

\b Asc1l Backspace (BS)

\f Ascit Formfeed (FF)

\n Ascll Linefeed (LF)

\N{name? Character named name in the Unicode database (Unicode only)

\r Ascilt Carriage Return (CR)

\t Ascit Horizontal Tab (TAB)

\uzzze Character with 16-bit hex value zzzz (Unicode only) (1)

\Uzzrzrres Character with 32-bit hex value zzzzzrzz (Unicode only) (2)

\v Ascir Vertical Tab (VT)

\ 0oo ASCII character with octal value ooo (3)

\xhh ASCII character with hex value hh (4)
Notes:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape se-
quence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual
Plane (BMP) will be encoded using a surrogate pair if Python is compiled to use 16-bit code units
(the default). Individual code units which form parts of a surrogate pair can be encoded using this
escape sequence.

(3) As in Standard C, up to three octal digits are accepted.

2.4. Literals 7

(4) Unlike in Standard C, at most two hex digits are accepted.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash
is left in the string. (This behavior is useful when debugging: if an escape sequence is mistyped, the
resulting output is more easily recognized as broken.) It is also important to note that the escape
sequences marked as “(Unicode only)” in the table above fall into the category of unrecognized escapes
for non-Unicode string literals.

When an ‘r’ or ‘R’ prefix is present, a character following a backslash is included in the string without
change, and all backslashes are left in the string. For example, the string literal r"\n" consists of two
characters: a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the
backslash remains in the string; for example, r"\"" is a valid string literal consisting of two characters:
a backslash and a double quote; r"\" is not a valid string literal (even a raw string cannot end in an odd
number of backslashes). Specifically, a raw string cannot end in a single backslash (since the backslash
would escape the following quote character). Note also that a single backslash followed by a newline is
interpreted as those two characters as part of the string, not as a line continuation.

When an ‘r’ or ‘R’ prefix is used in conjunction with a ‘u’ or ‘U’ prefix, then the \uXXXX escape sequence is
processed while all other backslashes are left in the string. For example, the string literal ur"\u0062\n"
consists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN
SMALL LETTER N’. Backslashes can be escaped with a preceding backslash; however, both remain in
the string. As a result, \uXXXX escape sequences are only recognized when there are an odd number of
backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" ’world’ is equivalent
to "helloworld". This feature can be used to reduce the number of backslashes needed, to split long
strings conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’
operator must be used to concatenate string expressions at run time. Also note that literal concatenation
can use different quoting styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and
imaginary numbers. There are no complex literals (complex numbers can be formed by adding a real
number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the unary operator ‘-’ and the literal 1.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

8 Chapter 2. Lexical analysis

longinteger = integer ("1" | "L")

integer = decimalinteger | octinteger | hexinteger
decimalinteger := nonzerodigit digit*x | "O"

octinteger = "O0" octdigit+

hexinteger n= "0" ("x" | "X") hexdigit+

nonzerodigit BE S

octdigit = "o"..."7"

hexdigit n= digit | "a"..."f" | "A"..."F"

Although both lower case ‘" and upper case ‘L’ are allowed as suffix for long integers, it is strongly
recommended to always use ‘L’, since the letter ‘I’ looks too much like the digit ‘1°.

Plain integer decimal literals that are above the largest representable plain integer (e.g., 2147483647
when using 32-bit arithmetic) are accepted as if they were long integers instead. Octal and hexadecimal
literals behave similarly, but when in the range just above the largest representable plain integer but
below the largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, they are
taken as the negative plain integer obtained by subtracting 4294967296 from their unsigned value. There
is no limit for long integer literals apart from what can be stored in available memory. For example,
Oxdeadbeef is taken, on a 32-bit machine, as the value -559038737, while Oxdeadbeeffeed is taken as the
value 244837814107885L.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeeffeed

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat := (intpart | pointfloat) exponent
intpart n= digit+

fraction = "." digit+

exponent = (uen I uEu) [n+|| | ||_||] dlglt+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are
interpreted using radix 10. For example, ‘077e010’ is legal, and denotes the same number as ‘77e10’.
The allowed range of floating point literals is implementation-dependent. Some examples of floating
point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the operator - and the literal 1.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber := (floatnumber | intpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented
as a pair of floating point numbers and have the same restrictions on their range. To create a complex
number with a nonzero real part, add a floating point number to it, e.g., (3+4j). Some examples of
imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.4. Literals 9

2.5 Operators

The following tokens are operators:

+ - * *k / // %
<< >> & | - -
< > <= >= == 1= <>
The comparison operators <> and != are alternate spellings of the same operator. != is the preferred

spelling; <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }
+= -= *= - /1= U=
&= |= = >>= <<= *k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a
special meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators,
serve lexically as delimiters, but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise
significant to the lexical analyzer:

bl n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals
and comments is an unconditional error:

10 Chapter 2. Lexical analysis

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or
by relations between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored
program computer,” code is also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been
created; you may think of it as the object’s address in memory. The ‘is’ operator compares the identity
of two objects; the id() function returns an integer representing its identity (currently implemented as
its address). An object’s type is also unchangeable.! An object’s type determines the operations that the
object supports (e.g., “does it have a length?”) and also defines the possible values for objects of that
type. The type () function returns an object’s type (which is an object itself). The value of some objects
can change. Objects whose value can change are said to be mutable; objects whose value is unchangeable
once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still
considered immutable, because the collection of objects it contains cannot be changed. So, immutability
is not strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is
determined by its type; for instance, numbers, strings and tuples are immutable, while dictionaries and
lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-
collected. An implementation is allowed to postpone garbage collection or omit it altogether — it is
a matter of implementation quality how garbage collection is implemented, as long as no objects are
collected that are still reachable. (Implementation note: the current implementation uses a reference-
counting scheme with (optional) delayed detection of cyclically linked garbage, which collects most
objects as soon as they become unreachable, but is not guaranteed to collect garbage containing circular
references. See the Python Library Reference for information on controlling the collection of cyclic
garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that
would normally be collectable. Also note that catching an exception with a ‘try...except’ statement
may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is under-
stood that these resources are freed when the object is garbage-collected, but since garbage collection
is not guaranteed to happen, such objects also provide an explicit way to release the external resource,
usually a close() method. Programs are strongly recommended to explicitly close such objects. The
‘try...finally’ statement provides a convenient way to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are
tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk
about the value of a container, we imply the values, not the identities of the contained objects; however,

1Since Python 2.2, a gradual merging of types and classes has been started that makes this and a few other assertions
made in this manual not 100% accurate and complete: for example, it is now possible in some cases to change an ob-
ject’s type, under certain controlled conditions. Until this manual undergoes extensive revision, it must now be taken as
authoritative only regarding “classic classes”, that are still the default, for compatibility purposes, in Python 2.2 and 2.3.

11

when we talk about the mutability of a container, only the identities of the immediately contained objects
are implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its
value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in
some sense: for immutable types, operations that compute new values may actually return a reference
to any existing object with the same type and value, while for mutable objects this is not allowed. E.g.,
after ‘a = 1; b = 1’ a and b may or may not refer to the same object with the value one, depending
on the implementation, but after ‘c = [1; d = [1’, ¢ and d are guaranteed to refer to two different,
unique, newly created empty lists. (Note that ‘c = d = [1’ assigns the same object to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other
languages, depending on the implementation) can define additional types. Future versions of Python
may add types to the type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes
that provide access to the implementation and are not intended for general use. Their definition may
change in the future.

None This type has a single value. There is a single object with this value. This object is accessed
through the built-in name None. It is used to signify the absence of a value in many situations,
e.g., it is returned from functions that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object
is accessed through the built-in name NotImplemented. Numeric methods and rich comparison
methods may return this value if they do not implement the operation for the operands provided.
(The interpreter will then try the reflected operation, or some other fallback, depending on the
operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed
through the built-in name E1lipsis. It is used to indicate the presence of the ‘...’ syntax in a
slice. Its truth value is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never
changes. Python numbers are of course strongly related to mathematical numbers, but subject to
the limitations of numerical representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are two types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size, but not smaller.)
When the result of an operation would fall outside this range, the result is normally re-
turned as a long integer (in some cases, the exception OverflowError is raised instead).
For the purpose of shift and mask operations, integers are assumed to have a binary, 2’s
complement notation using 32 or more bits, and hiding no bits from the user (i.e., all
4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual)
memory only. For the purpose of shift and mask operations, a binary representation is
assumed, and negative numbers are represented in a variant of 2’s complement which
gives the illusion of an infinite string of sign bits extending to the left.

The rules for integer representation are intended to give the most meaningful interpretation of
shift and mask operations involving negative integers and the least surprises when switching

12 Chapter 3. Data model

between the plain and long integer domains. Any operation except left shift, if it yields a
result in the plain integer domain without causing overflow, will yield the same result in the
long integer domain or when using mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or Java implementation)
for the accepted range and handling of overflow. Python does not support single-precision
floating point numbers; the savings in processor and memory usage that are usually the reason
for using these is dwarfed by the overhead of using objects in Python, so there is no reason
to complicate the language with two kinds of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and
imaginary parts of a complex number z can be retrieved through the read-only attributes
z.real and z.imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function
len() returns the number of items of a sequence. When the length of a sequence is n, the index
set contains the numbers 0, 1, ..., n-1. Item 4 of sequence a is selected by a [i].

Sequences also support slicing: a[i:5] selects all items with index k such that ¢ <= k < j. When
used as an expression, a slice is a sequence of the same type. This implies that the index set is
renumbered so that it starts at 0.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created.
(If the object contains references to other objects, these other objects may be mutable and
may be changed; however, the collection of objects directly referenced by an immutable object
cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character
is represented by a string of one item. Characters represent (at least) 8-bit bytes. The
built-in functions chr() and ord() convert between characters and nonnegative integers
representing the byte values. Bytes with the values 0-127 usually represent the corre-
sponding ASCII values, but the interpretation of values is up to the program. The string
data type is also used to represent arrays of bytes, e.g., to hold data read from a file.
(On systems whose native character set is not AsCII, strings may use EBCDIC in their
internal representation, provided the functions chr() and ord() implement a mapping
between Ascil and EBCDIC, and string comparison preserves the ASciI order. Or perhaps
someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is
represented by a Unicode object of one item and can hold either a 16-bit or 32-bit
value representing a Unicode ordinal (the maximum value for the ordinal is given in
sys.maxunicode, and depends on how Python is configured at compile time). Surrogate
pairs may be present in the Unicode object, and will be reported as two separate items.
The built-in functions unichr () and ord() convert between code units and nonnegative
integers representing the Unicode ordinals as defined in the Unicode Standard 3.0. Con-
version from and to other encodings are possible through the Unicode method encode
and the built-in function unicode ().

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are
formed by comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can
be formed by affixing a comma to an expression (an expression by itself does not create
a tuple, since parentheses must be usable for grouping of expressions). An empty tuple
can be formed by an empty pair of parentheses.

Mutable sequences Mutable sequences can be changed after they are created. The subscription
and slicing notations can be used as the target of assignment and del (delete) statements.

There is currently a single intrinsic mutable sequence type:

3.2. The standard type hierarchy 13

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-
separated list of expressions in square brackets. (Note that there are no special cases
needed to form lists of length 0 or 1.)

The extension module array provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation

a[k] selects the item indexed by k from the mapping a; this can be used in expressions and as the
target of assignments or del statements. The built-in function len() returns the number of items
in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only
types of values not acceptable as keys are values containing lists or dictionaries or other
mutable types that are compared by value rather than by object identity, the reason being
that the efficient implementation of dictionaries requires a key’s hash value to remain constant.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (e.g., 1 and 1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are mutable; they can be created by the {. ..} notation (see section 5.2.5, “Dic-
tionary Displays”).
The extension modules dbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can

be applied:

User-defined functions A user-defined function object is created by a function definition (see
section 7.5, “Function definitions”). It should be called with an argument list containing the
same number of items as the function’s formal parameter list.

Special attributes: func_doc or __doc__ is the function’s documentation string, or None
if unavailable; func_name or __name__ is the function’s name; func_defaults is a tuple
containing default argument values for those arguments that have defaults, or None if no
arguments have a default value; func_code is the code object representing the compiled
function body; func_globals is (a reference to) the dictionary that holds the function’s global
variables — it defines the global namespace of the module in which the function was defined;
func_dict or __dict__ contains the namespace supporting arbitrary function attributes;
func_closure is None or a tuple of cells that contain binding for the function’s free variables.
Of these, func_code, func_defaults, func_closure, func_doc/__doc__, and
func_dict/__dict__ may be writable; the others can never be changed. Additional infor-
mation about a function’s definition can be retrieved from its code object; see the description
of internal types below.

In Python 2.1, the func_closure slot is always None unless nested scopes are enabled. (See
the appendix.)

User-defined methods A user-defined method object combines a class, a class instance (or None)
and any callable object (normally a user-defined function).
Special read-only attributes: im_self is the class instance object, im_func is the func-
tion object; im_class is the class of im_self for bound methods, or the class that asked
for the method for unbound methods); __doc__ is the method’s documentation (same
as im_func.__doc__); __name__ is the method name (same as im_func.__name__).
Changed in version 2.2: im_self used to refer to the class that defined the method.

Methods also support accessing (but not setting) the arbitrary function attributes on the
underlying function object.

User-defined method objects are created in two ways: when getting an attribute of a class
that is a user-defined function object, or when getting an attribute of a class instance that is
a user-defined function object defined by the class of the instance. In the former case (class
attribute), the im_self attribute is None, and the method object is said to be unbound; in
the latter case (instance attribute), im_self is the instance, and the method object is said
to be bound. For instance, when C is a class which has a method f£(), C.f does not yield

14

Chapter 3. Data model

the function object f; rather, it yields an unbound method object m where m.im_class is
C, m.im_func is £(), and m.im_self is None. When x is a C instance, x.f yields a bound
method object m where m.im_class is C, m.im_func is £(), and m.im_self is x.

When an unbound user-defined method object is called, the underlying function (im_func)
is called, with the restriction that the first argument must be an instance of the proper class
(im_class) or of a derived class thereof.

When a bound user-defined method object is called, the underlying function (im_func) is
called, inserting the class instance (im_self) in front of the argument list. For instance,
when C is a class which contains a definition for a function £(), and x is an instance of C,
calling x.£ (1) is equivalent to calling C.f(x, 1).

Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to a local variable and call that local variable.
Also notice that this transformation only happens for user-defined functions; other callable
objects (and all non-callable objects) are retrieved without transformation. It is also important
to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section 6.8,
“The yield statement”) is called a generator function. Such a function, when called, always
returns an iterator object which can be used to execute the body of the function: calling the
iterator’s next () method will cause the function to execute until it provides a value using
the yield statement. When the function executes a return statement or falls off the end,
a StopIteration exception is raised and the iterator will have reached the end of the set of
values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of
built-in functions are len() and math.sin() (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read-only
attributes: __doc__ is the function’s documentation string, or None if unavailable; __name_ _
is the function’s name; __self__ is set to None (but see the next item).

Built-in methods This is really a different disguise of a built-in function, this time containing
an object passed to the C function as an implicit extra argument. An example of a built-in
method is alist.append (), assuming alist is a list object. In this case, the special read-only
attribute __self__ is set to the object denoted by list.

Classes Class objects are described below. When a class object is called, a new class instance
(also described below) is created and returned. This implies a call to the class’s __init__ ()
method if it has one. Any arguments are passed on to the __init__ () method. If there is
no __init__ () method, the class must be called without arguments.

Class instances Class instances are described below. Class instances are callable only when the
class hasa __call__ () method; x(arguments) is a shorthand for x.__call__ (arguments).

Modules Modules are imported by the import statement (see section 6.12, “The import statement”).

A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the func_globals attribute of functions defined in the module). Attribute references
are translated to lookups in this dictionary, e.g., m.x is equivalent tom.__dict__["x"]. A module
object does not contain the code object used to initialize the module (since it isn’t needed once
the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., ‘m.x = 1’ is equivalent to
‘m.__dict__["x"] = 1’.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.
Predefined (writable) attributes: __name__ is the module’s name; __doc__ is the module’s doc-
umentation string, or None if unavailable; __file__ is the pathname of the file from which the

module was loaded, if it was loaded from a file. The __file__ attribute is not present for C
modules that are statically linked into the interpreter; for extension modules loaded dynamically
from a shared library, it is the pathname of the shared library file.

3.2.

The standard type hierarchy 15

Classes Class objects are created by class definitions (see section 7.6, “Class definitions”). A class has a

namespace implemented by a dictionary object. Class attribute references are translated to lookups
in this dictionary, e.g., ‘C.x’ is translated to ‘C. __dict__["x"]’. When the attribute name is not
found there, the attribute search continues in the base classes. The search is depth-first, left-to-
right in the order of occurrence in the base class list. When a class attribute reference would yield
a user-defined function object, it is transformed into an unbound user-defined method object (see
above). The im_class attribute of this method object is the class for which the attribute reference
was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name__ is the class name; __module__ is the module name in which the

class was defined; __dict__ is the dictionary containing the class’s namespace; __bases__ is a
tuple (possibly empty or a singleton) containing the base classes, in the order of their occurrence
in the base class list; __doc__ is the class’s documentation string, or None if undefined.

Class instances A class instance is created by calling a class object (see above). A class instance has

a namespace implemented as a dictionary which is the first place in which attribute references
are searched. When an attribute is not found there, and the instance’s class has an attribute by
that name, the search continues with the class attributes. If a class attribute is found that is a
user-defined function object (and in no other case), it is transformed into an unbound user-defined
method object (see above). The im_class attribute of this method object is the class of the
instance for which the attribute reference was initiated. If no class attribute is found, and the
object’s class has a __getattr__() method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If
the class has a __setattr__() or __delattr__() method, this is called instead of updating the
instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with
certain special names. See section 3.3, “Special method names.”

Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

Files A file object represents an open file. File objects are created by the open() built-in function, and

also by os.popen(), os.fdopen(), and the makefile () method of socket objects (and perhaps by
other functions or methods provided by extension modules). The objects sys.stdin, sys.stdout
and sys.stderr are initialized to file objects corresponding to the interpreter’s standard input,
output and error streams. See the Python Library Reference for complete documentation of file
objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions

may change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The
difference between a code object and a function object is that the function object contains
an explicit reference to the function’s globals (the module in which it was defined), while a
code object contains no context; also the default argument values are stored in the function
object, not in the code object (because they represent values calculated at run-time). Unlike
function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the number of
positional arguments (including arguments with default values); co_nlocals is the number of
local variables used by the function (including arguments); co_varnames is a tuple containing
the names of the local variables (starting with the argument names); co_cellvars is a tuple
containing the names of local variables that are referenced by nested functions; co_freevars
is a tuple containing the names of local variables that are neither local nor global; co_code is a
string representing the sequence of bytecode instructions; co_consts is a tuple containing the
literals used by the bytecode; co_names is a tuple containing the names used by the bytecode;
co_filename is the filename from which the code was compiled; co_firstlineno is the first
line number of the function; co_lnotab is a string encoding the mapping from byte code

16

Chapter 3. Data model

offsets to line numbers (for details see the source code of the interpreter); co_stacksize is
the required stack size (including local variables); co_flags is an integer encoding a number
of flags for the interpreter.

The co_cellvars and co_freevars are present in Python 2.1 when nested scopes are not
enabled, but the code itself does not use or create cells.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the
‘*arguments’ syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if
the function uses the ‘*xkeywords’ syntax to accept arbitrary keyword arguments; other bits
are used internally or reserved for future use; bit 0x10 is set if the function was compiled with
nested scopes enabled. If a code object represents a function, the first item in co_consts is
the documentation string of the function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects
(see below).
Special read-only attributes: f_back is to the previous stack frame (towards the caller), or
None if this is the bottom stack frame; f_code is the code object being executed in this
frame; f_locals is the dictionary used to look up local variables; f_globals is used for
global variables; f_builtins is used for built-in (intrinsic) names; f_restricted is a flag
indicating whether the function is executing in restricted execution mode; f_lineno gives
the line number and f_lasti gives the precise instruction (this is an index into the bytecode
string of the code object).
Special writable attributes: £_trace, if not None, is a function called at the start of each source
code line (this is used by the debugger); f_exc_type, f_exc_value, f_exc_traceback rep-
resent the most recent exception caught in this frame.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object

is created when an exception occurs. When the search for an exception handler unwinds the
execution stack, at each unwound level a traceback object is inserted in front of the current
traceback. When an exception handler is entered, the stack trace is made available to the
program. (See section 7.4, “The try statement.”) It is accessible as sys.exc_traceback, and
also as the third item of the tuple returned by sys.exc_info(). The latter is the preferred
interface, since it works correctly when the program is using multiple threads. When the
program contains no suitable handler, the stack trace is written (nicely formatted) to the
standard error stream; if the interpreter is interactive, it is also made available to the user as
sys.last_traceback.
Special read-only attributes: tb_next is the next level in the stack trace (towards the frame
where the exception occurred), or None if there is no next level; tb_frame points to the
execution frame of the current level; tb_lineno gives the line number where the exception
occurred; tb_lasti indicates the precise instruction. The line number and last instruction in
the traceback may differ from the line number of its frame object if the exception occurred in
a try statement with no matching except clause or with a finally clause.

Slice objects Slice objects are used to represent slices when extended slice syntaz is used. This is
a slice using two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:step],
ali:j, k:1],oral..., i:j]). They are also created by the built-in slice() function.
Special read-only attributes: start is the lower bound; stop is the upper bound; step is the
step value; each is None if omitted. These attributes can have any type.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations
or subscripting and slicing) by defining methods with special names. This is Python’s approach to
operator overloading, allowing classes to define their own behavior with respect to language operators.
For instance, if a class defines a method named __getitem__ (), and x is an instance of this class, then
x[1i] is equivalent to x.__getitem__(i). Except where mentioned, attempts to execute an operation
raise an exception when no appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only
be implemented to the degree that it makes sense for the object being modelled. For example, some

3.3. Special method names 17

sequences may work well with retrieval of individual elements, but extracting a slice may not make sense.
(One example of this is the NodeList interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

,,init,,(self[,])
Called when the instance is created. The arguments are those passed to the class constructor
expression. If a base class has an __init__ () method, the derived class’s __init__ () method,
if any, must explicitly call it to ensure proper initialization of the base class part of the instance;

for example: ‘BaseClass.__init__(self, [args...])’. As a special contraint on constructors,
no value may be returned; doing so will cause a TypeError to be raised at runtime.
__del__(self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class
has a __del__ () method, the derived class’s __del__ () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance. Note that it is possible (though not
recommended!) for the __del__ () method to postpone destruction of the instance by creating a
new reference to it. It may then be called at a later time when this new reference is deleted. It is
not guaranteed that __del__ () methods are called for objects that still exist when the interpreter
exits.

Note: ‘del x’ doesn’t directly call x.__del__ () — the former decrements the reference count
for x by one, and the latter is only called when x’s reference count reaches zero. Some common
situations that may prevent the reference count of an object from going to zero include: circular
references between objects (e.g., a doubly-linked list or a tree data structure with parent and child
pointers); a reference to the object on the stack frame of a function that caught an exception (the
traceback stored in sys.exc_traceback keeps the stack frame alive); or a reference to the object
on the stack frame that raised an unhandled exception in interactive mode (the traceback stored
in sys.last_traceback keeps the stack frame alive). The first situation can only be remedied
by explicitly breaking the cycles; the latter two situations can be resolved by storing None in
sys.exc_traceback or sys.last_traceback. Circular references which are garbage are detected
when the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there are
no Python-level __del__ () methods involved. Refer to the documentation for the gc module for
more information about how __del__ () methods are handled by the cycle detector, particularly
the description of the garbage value.

Warning: Due to the precarious circumstances under which __del__ () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sys.stderr
instead. Also, when __del__() is invoked in response to a module being deleted (e.g., when
execution of the program is done),