
The Netscape 8.0 Themes Toolkit
Advice and Resources for Working with

Themes
By Kurt Cagle
and Raj Paul

The Netscape 8.0 Themes Toolkit: Advice and Resources for Work-
ing with Themes
By Kurt Cagle
and Raj Paul
Copyright © 2005 Netscape Corporation. All Rights Reserved.

Abstract
The XML Theme Kit is provided by the Netscape Corporation in order to make it easier to create themes and skins
for the Netscape 8.0 browser. It is provided as is with no warranty, and Netscape assumes no liability in the use of
this toolkit.

Table of Contents
1. Understanding Themes ... 1

Getting Under the Skin ... 1
Finding New Themes ... 1
Uploading Themes .. 4

2. Working with the Master.css Rules ... 5
Understanding the Master.CSS file ... 5
A Short Primer on CSS .. 9

Selectors ... 9
Using CSS Properties ... 11

Understanding Chrome .. 12
3. Building and Modifying Themes ... 16

Designing the Theme ... 16
Protect Yourself! ... 16
Creating a Prototype .. 16
Standard Button Sets .. 17
Templates .. 18
Throbber ... 20
Background Graphics ... 21

Working with Theme Jars ... 22
Modifying an Existing Theme ... 24
Installing Themes .. 30

A. Licenses .. 33

iv

List of Figures
1.1. Selecting a Theme from the Netscape Theme Park ... 2
1.2. Downloading a Theme from the Netscape Theme Park ... 2
1.3. Selecting a Theme to Use .. 3
2.1. Root Directory of the Generic Theme .. 13
2.2. Browser Directory of the Generic Theme ... 14
3.1. Rustic Theme Prototype ... 16
3.2. Large Navigation Buttons File nav_large.png ... 17
3.3. Creating the Rustic Theme nav_large.png icons .. 18
3.4. Generic Functional Buttons ... 20
3.5. Rustic Functional Buttons ... 20
3.6. Creating Animations using Gimp 2 ... 21
3.7. The principle background pattern, woodBackground.jpg. .. 21
3.8. A darker version of the background, darkWoodBackground.jpg, for the titlebar. 22
3.9. Generic jar file root. ... 22
3.10. Generic jar interesting bits. .. 23
3.11. Netscape with the Generic Theme ... 25
3.12. Netscape with the Rustic Theme ... 25
3.13. Regions to edit in the Rustic theme ... 26
3.14. New Rustic Background-Top-Gradient .. 27
3.15. Displaying the throbber element. .. 27
3.16. The Titlebar Separator .. 28

v

List of Tables
2.1. Description of the Selectors in Master.css .. 8

vi

List of Examples
2.1. Master.css Base File .. 5
2.2. The Generic Theme install.rdf file .. 13
3.1. The TopBox CSS .. 27
3.2. Throbber-box CSS declaration. .. 28
3.3. Reworking the Titlebar Separator ... 28
3.4. Setting the Titlebar Menu Font ... 28
3.5. Invoking Fonts from Styles ... 29
3.6. Working with the menu stack. .. 29
3.7. Assigning CSS hover states. .. 30
3.8. The Rustic contents.rdf file ... 31
3.9. The Rustic Theme install.rdf file .. 31

vii

Chapter 1. Understanding Themes
We all like to add our own "personal" touch to the world around us. Whether one's house or one's soft-
ware, the ability to change the way that our world looks and acts is one of the more desired "features"
that people want. The Netscape browser, based upon Mozilla Firefox, is built with this capability in
mind, letting you both load in new themes from artists and designers and making it possible for you to
create themes of your own.

The Netscape 8.0 Theme Kit consists of both this document, which describes both how to use and how
to create themes, and a sample theme template to be used to generate a new theme that can be used per-
sonally or that can be submitted to share with others. It is expressly for the Netscape 8.0+ series of
browsers.

Getting Under the Skin
Open up a typical application, and it is likely that the program looks a great deal like every other applic-
ation out there - the title bar is probably blue, maybe with a gradient thrown in for good measure so that
it goes from dark blue to light blue ... the height of interface fashion, to be sure. The buttons and menu-
bars all likely have a specific light gray background, selected to be as neutral as possible, and the fonts
are likely some sans-serif variation in basic black.

Given this, it's not surprising that people occasionally long to be able to dress up their applications, to
make them just a little bit less .. um, corporate (or perhaps a little bit more, if your desires really lean
that way). Themes or skins emerged as a way of customizing applications so that they were perhaps not
quite so vanilla, and indeed were better able to reflect the personality of the user of those applications.
Sometimes these changes are fairly minor - altering the default font or color sets, for instance - while in
other situations (such as with audio or media players, which seem to have taken this phenomenon to a
new level) the customization extended to shape and even component functionality.

The Netscape 8.0 browser, having been built on top of the Gecko framework used by Mozilla, offers a
surprisingly robust degree of customization with respect to its themes. While certain issues prevent the
creation of non-rectangular windows (at least in the current iteration), the Netscape 8.0 browser is other-
wise incredibly extensible - letting you alter the background images of the title bar and status bars, repla-
cing stodgy old rectangular buttons with much more dynamically shaped buttons, altering colors, fonts,
and positions, and so forth.

What's more, because Netscape does use the Mozilla XUL engine, you can take advantage of the Ex-
tensible Binding Language (XBL) in order to create far more sophisticated behaviors in the components
that you add. While in some respects this blurs the boundary between creating "pretty" skins and actu-
ally developing applications, this doesn't mean you can't (or shouldn't) do it.

This article covers the process of creating Netscape 8.0 themes, from inception through bundling and
packaging to updating. It assumes that you've had some experience working with XML and CSS, but for
the most part the underlying lesson here should be that you can create very rich, sophisticated themes
with comparatively little work.

Finding New Themes
You can easily add new themes from the Internet and load it into your browser. Netscape maintains a
specific site, called the Theme Park [http://browser.netscape.com/ns8/community/themes.jsp], at ht-
tp://browser.netscape.com/ns8/community/themes.jsp. This site contains specific themes for use within
Netscape itself - moreover, because of the potential security risks associated with any themes, the
themes displayed here have been checked to insure that there is no malicious code that can affect your
browser.

1

http://browser.netscape.com/ns8/community/themes.jsp
http://browser.netscape.com/ns8/community/themes.jsp
http://browser.netscape.com/ns8/community/themes.jsp

Warning
As a general security measure, you should only download themes from officially sanctioned Netscape
sites. This will insure that the themes you are loading have been inspected by Netscape and determined
to be clean. Unless you are sure about the integrity of the site, you should never download themes from
unauthorized sites, as it increases the risk of viruses, spyware or other malware.

To download a theme:

1. Go to the Theme Park at http://browser.netscape.com/ns8/community/themes.jsp.

2. Preview the themes until you like one you like (there are usually screenshots that you can examine
if you don't want to download the theme.

3. Click on the Install Theme button (cf. Figure 1.1, “Selecting a Theme from the Netscape Theme
Park ”).

Figure 1.1. Selecting a Theme from the Netscape Theme Park

4. This will bring up a dialog box asking whether you wish to install the theme. Press the OK button
to load the theme, or Cancel to stop the operation and return to the browser. Once selected, the
theme will automatically load into your theme manager dialog (cf., Figure 1.2, “Downloading a
Theme from the Netscape Theme Park ”)

Figure 1.2. Downloading a Theme from the Netscape Theme Park

Understanding Themes

2

5. After you download a theme, the theme is not yet selected. To use a particular theme, select the
theme name on the upper-left hand side of the Theme Manager, then press the "Use Theme" button
in order to tell the browser to switch to the new theme (Figure 1.3, “Selecting a Theme to Use”).

Figure 1.3. Selecting a Theme to Use

Understanding Themes

3

Troubleshooting Download Problems

Periodically you may encounter problems when downloading themes. Here are a few suggestions about what
to do handle that case if it happens to you.

• Wrong Browser. While Netscape is built upon Firefox, Netscape and Firefox have different identifiers.
As the install.rdf used by themes relies upon the identifier to ascertain whether the installing application is
the correct one for the code, this means that you can't run Firefox-based themes.

• Wrong Version. The install.rdf also contains information about which versions of the browser are sup-
ported. Failing to include both an upper and lower limit on browser versions within the range for the cur-
rent browser will launch a message indicating that the component won't work with the browser in ques-
tion. Either look for a more up to date theme or upgrade your browser as appropriate.

• Odd XML In Browser Window. Periodically you may find with a theme that you get an odd block of
XML or error code appearing within the browser itself. This usually is a symptom that either the XML
(most typically the XUL in more elaborate themes) is malformed, or it indicates that there is a collision of
critical ids or similar features which renders the them install incompatible with the browser or (more
likely) some extension. The best solution in this case is to remove the offending theme, using the uninstall
option of the Theme Manager Dialog.

More information about themes and troubleshooting can be found at the Theme Park pages at ht-
tp://browser.netscape.com/ns8/community/themes.jsp .

Uploading Themes
While it is possible to host themes from your local server (as will be discussed in the next chapter), in
general it is far better if you have a theme that you wish to share to upload it to the world via the Nets-
cape Theme Park (
<authornote>URL to be determined</authornote>
). To upload your theme, fill out the form, attaching the file using the Theme File: input field and submit
the file.

There are, however, a number of considerations that you should be aware of before submitting any
theme:

• Do Not Violate Copyright. If you do not own the copyright to images (or entities) depicted within
your theme, do not upload a theme containing them. No matter how much you want to do the Darth
Vader theme, if you upload it, it won't be posted unless you are working for George Lucas.

• No External References. All images and related resources must be contained strictly within the
theme's JAR file - there can be no references to external images or other resources sitting on a given
server.

• Identify All Bindings. If your theme makes use of bindings (XBLs), scripts, or other executable,
please note them in the uploaded document identify them and why they are included.

Understanding Themes

4

http://browser.netscape.com/ns8/community/themes.jsp
http://browser.netscape.com/ns8/community/themes.jsp

Chapter 2. Working with the Master.css
Rules

Netscape has been defined to be customized. To do this requires the direct manipulation of a special
CSS file called master.css which should be contained in each theme (it is invoked, however, by the
browser itself). You can edit this file in your own theme version in order to change the styling of the
browser itself.

Understanding the Master.CSS file
As mentioned in the previous section, all Netscape theme jars should contain a copy of master.css. This
file is defined originally to have no direct effect upon the browser - most of the containers that the CSS
lists are previously defined as part of other CSS files. However, master.css is generally invoked last,
which means that any selector found within the master.css document will automatically overlay what
had been defined previously, making it a known entry point for modifications that web authors can use
to style the browser. Code Listing Example 2.1, “Master.css Base File” contains a listing of the "default"
master.css which comes with the toolkit.

Example 2.1. Master.css Base File

/***\
* master.css - use this file to quickly theme NS8's most visible components
* Uncomment styles and appearances of elements you wish to modify. Refer
* to the graphic SDK in the Photoshop and ImageReady Files and overwrite
* graphical elements to change them.
*
* We recommend using a CSS editor to edit this file such as Rapid CSS
* which has a color picker to generate the hex code for colors. Please
* refer the theming SDK document for a How-to for this document.
*
***/
@namespace url("http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul");
/* ==
Global application changes
Use this section to change:

- The main window's background color (background-color: color)
- The main window's font (font: font)
- The main window's font color (color: color)

- The main window's background
If you would like to keep the application looking like a standard
windows application then comment out the attributes mentioned above
for window.

=== */
/* Change the background color of the application

explain what each one is*/
window,
#winInspectorMain,
#extensionsManager,
#downloadManager,
#CustomizeToolbarWindow,
#bookmark-window,
page,
dialog,
wizard {

5

/*background-color: black !important;*/
/*color: white !important;*/
/*font: arial !important;*/

/*background-image: url("path/to/image.png") !important;*/
/*background-repeat: no-repeat !important;*/

}
/* Change the font color and the font of the tabbrowser tab*/
tabbrowser tab {

/*color: pink !important; */
/*font: arial !important;*/

}
/* ==

Main menubar and menubar items. Uncomment the background-color and color
to change the mouse over properties of the menu and the font color
respectively.
=== */
#main-menubar > menupopup > menu[_moz-menuactive="true"],
#main-menubar menupopup > menuitem[_moz-menuactive="true"],
#main-menubar popup > menu[_moz-menuactive="true"],
#main-menubar popup > menuitem[_moz-menuactive="true"],
menupopup > menu:hover,
#main-menubar popup > menu:hover,
#main-menubar menupopup > menuitem:hover,
#main-menubar popup > menuitem:hover
{

/*background-color: #371C14 !important;*/
/*color: white !important;*/

}

/* :::: The font properties for the application menubar::: */
#titlebar menubar > menu {

/*color: Lime;*/
/*font-family: Arial;*/
/*font-size: 10pt;*/
/*font-style: italic;*/

}

/* ==
Window top
Use this section to change:

- The appearance of top of the navigator window.
#top-box: styles to control appearance of the top of the browser

window.
To have a solid color, comment the background-image line of top-box
and supply a non-transparent background-color,
i.e. background-color: red;

#titlebar #titlebar-separator: image that separates the title of the
document and the menubar (if toggled to the right).
To have no separator
uncomment the line background-image: none !important;

#titlebar #titlebar-title: Font, font color and Text Decoration
of browser
window title.

=== */
#topbox {

/*background-color: #371C14 !important;*/
/*background-image: none !important;*/

}

toolbox {
/*background-image: none !important;*/

}

Working with the Master.css Rules

6

#titlebar {
/*background-color: transparent;*/

}
#titlebar #titlebar-separator {

/*width: 153px;*/
/*background-image: none !important;*/

}

#titlebar .titlebar-menu-stack {
/*background-color: #371C14 !important;*/

}
#titlebar #titlebar-title {

/*font-family: Arial !important;*/
/*font-weight: bold !important;*/
/*font-size: 12pt !important;*/
/*color: #FFFFFF !important;*/
}

/* ==
Statusbar
Uncommment the background-color style or background-image style
to modify the appearance of the statusbar.

=== */
statusbar {

/*background-color: #FFCF94 !important;*/
/*background-image: url("backgrounds/statusbar-bg.gif") !important;*/
/*background-repeat: repeat-x !important;*/

}
/* ==
Sidebar
Use this section to modify the appearance of the sidebar.

=== */

/* :::: The background color and the top border of the sidebar::: */
#sidebar-box {

/* border-top: 1px solid #344c52 !important;*/
/*background-color: green !important;*/

/*background-image: url("path/to/image.png") !important;*/
/*background-repeat: no-repeat !important;*/

}
/*::: .sidebar-header-text: sidebar header - (My Sidebar Text)::::: */
.sidebar-header-text {

/*color: black !important;*/
/*font-weight: bold !important;*/

}
.sidebarheader-main {

/*border-top: 1px solid white !important;*/
}
/* ::::Sidebar picker button::: */
/* Default state of the panel picker button */
#sidebar-panel-picker {

/*color: green !important;*/
/*border: 1px solid transparent !important;*/

}
/* Hover state of the panel picker button */
#sidebar-panel-picker:hover {

/*border: 1px outset #B1BDC9 !important;*/
}
/* Open state of the panel picker button... after the user

clicks the button and the menu is open */
#sidebar-panel-picker[open="true"] {

/*border-width: 1px !important;*/
/*border-style: inset !important;*/

}

Working with the Master.css Rules

7

The master.css file contains a number of useful "containers" that can control the look and feel of the
browser. These containers are also contained elsewhere in the browser application, so the effect of any
changes in master.css will only be to override the existing behavior for these items. The table Table 2.1,
“Description of the Selectors in Master.css” contains a summary of the classes that are affected by this
document, describing what they do and providing hints about how to use them.

Table 2.1. Description of the Selectors in Master.css

Rule Name Rule Selector Description
Window window This is the general window used by the browser itself.

CSS properties set here will affect everything within the
browser.

Window Inspector #winInspectorMain This controls the window inspector dialog
Extensions Manager #extensionsManager This controls the extensions manager dialog.
Download Manager #downloadManager This controls the download manager dialog
Customize Window Dialog #CustomizeToolbarWindo

w
Use this to set the primary characteristics of the Custom-
ize Toolbar dialog.

Bookmark Window #bookmark-window This sets the style for the bookmarks sidebar pane.
Page page This sets the general attributes for all pages within wiz-

ards.
Dialog dialog This is invoked by all dialog boxes to set up the default

CSS. Can be used with others.
Wizard Tabs wizard tabbrowser tab In a wizard with multiple tabs, this sets thestyle of those

tabs.
Active Menubar Menus This sets the CSS properties for all menus that are ac-

cessible from the main menubar.
Active Menubar Menu
Items

#main-menubar
menupopup > menu-
item[_moz-menuactive='tru
e']

This sets the CSS properties for each active menu item.

Active Menubar Secondary
Popup Menus

#main-menubar popup >
menu[_moz-menuactive='tr
ue']

This sets the CSS for secondary menus, or for alternative
popups that are launched via menus.

Active Menubar Secondary
Popup Menu Items

#main-menubar popup >
menu-
item[_moz-menuactive='tru
e']

This sets the CSS for items within secondary menus

Hover State for Generic
Menu

menupopup > menu:hover When a person hovers over a menu, it can change state.
This lets you set the CSS to determine what that will
look like for all menus.

Hover State for Main Menu #main-menubar popup >
menu:hover

Same as above, but this controls the main menubar
menus only. You can subclass this with the previous
entry.

Hover State for Main Menu
Menu-Item

#main-menubar
menupopup > menu-
item:hover

This controls the hover state for an individual menu item
on the main menu.

Working with the Master.css Rules

8

Rule Name Rule Selector Description
Hover State for Secondary
Menu's Menu-Item

#main-menubar popup >
menuitem:hover

This controls the hover state for menu items on second-
ary menus.

Titlebar Menubar #titlebar menubar > menu This lets you set menu 'buttons' when the menus are in
the titlebar rather than beneath it.

Topbox #topbox This establishes an area that includes the titlebar and
toolbar regions.

Toolbox toolbox The toolbox consists of the container for the menu and
associated toolbars. Use this to set text characteristics

Titlebar #titlebar This covers the titlebar region exclusively.
Titlebar Separator #titlebar #titlebar-separator The titlebar separator acts as a graphic divider between

the titlebar region and the menu if the menu is in fact
located on the titlebar. If the menu is below the titlebar,
this can be used as a secondary 'overlay' graphic.

Titlebar Menu Stack #titlebar
.titlebar-menu-stack

This defines the styles used for background and borders
for the stack holding a titlebar based menu. This is not
used if the menu is located below thetitlebar.

Titlebar Title #titlebar #titlebar-title This sets the font and text characteristics of the tilebar
title.

Statusbar statusbar This describes the style associated with the statusbar at
the bottom of the primary view window.

Sidebar Box #sidebar-box This provides the CSSstyling for the sidebar
Sidebar Header Text .sidebar-header-text This defines the header text used for sidebar content.
Sidebar Header .sidebarheader-main This provides the general properties of a sidebar header.
Sidebar Panel Picker #sidebar-panel-picker This provides the styling for the sidebar panel-picker ele-

ment
Sidebar Panel Picker Hover
State

#sidebar-panel-picker:hover This gives the hover state for a sidebar picker.

Open Sidebar PanelPIcker #sidebar-panel-picker[open
='true']

This shows the open state for a sidebar picker.

This list is not exhaustive, and if you wished to you could go into the browser source code to find out the
names of additional CSS selectors, but this provides a reasonably complete set.

A Short Primer on CSS
CSS is one of those languages which can be deceptively simple on the surface, but which can get very
complicated once you get into the details of real world experience. While a comprehensive look at CSS
can take up several hundred pages, the CSS necessary to work with Netscape can be summarized as fol-
lows:

Selectors
A selector lets you specify a certain pattern of HTML or XML elements within a document and then as-
sociates a set of style properties to that pattern. A given pattern, called a selector, coupled with the style
properties for that pattern are together called a style rule, typically of the form:

selector {property1:value1;property2:value2;property3:value3;...}

Working with the Master.css Rules

9

For instance, you can set the CSS that applies to all dialog boxes within an application as:

dialog {background-color:white;color:black;font-family:Arial;}

which sets the background color to white, the text color to black,and the default font family to "Arial".

CSS is short for Cascading Stylesheets, which describes the underlying inheritance model. In general, if
you apply a style to a container elements, most of the CSS properties that are assigned to the container
are inherited by any child elements of that property, unless they are specifically overridden or unless it
would make no sense to inherit (such as the display property, which controls how the element flows in
with other elements).

This means that you can define global characteristics for a given window, dialog or wizard page then
define subordinate rules that either augment or replace existing rules.

Selectors use a basic syntax to match given sets of elements:

• Element Matches. Matches of the form elementName {propertyset} with no modifiers on
the name. This will match all elements that are found within the document that have that name.

• Anonymous Matches. Matches of the form * {propertyset} where the asterisk indicates that
this should apply to all elements.

• Class Matches. Matches of the form .classname {propertyset} where classname is a
name given as one of potentially many tokens in an element's class attribute.

• Indexed Matches. Matches of the form .#identifier {propertyset} where the identifier
is an id attribute on a particular element. Since id-based items are unique, this will almost invariably
refer to only one element in the associated document.

• Conditional Matches. A conditional match is of the form selector [attr] or selector
[attr = 'value'] where attr is the name of an attribute to be found on an element in the
document. For instance, menuitem[_moz-menuactive='true'] indicates that the selector
matches all menuitems where the _moz-menuactive attrtibute has the value of true. If no value is
given, then this rule applies to all elements that have the _moz-menuactive attribute, regardless
of the actual value.

• Descendent Matches. CSS Selectors provide an set language, and by placing one selector after an-
other, you are tellingCSS to retrieve all descendents of the first selector element that conform to the
second selector. You can use the > symbol between the selectors to indicate that you only want to
search the immediate children of the first element that correspond to the second. Subsequent select-
ors in the same rule treat all valid elements from the previous query as the base from which to
search.

• Mixed Matches.Mixed matches combine multiple match techniques into a more restrictive selector.
For instance, #main-menubar menupopup > menuitem[_moz-menuactive='true']
indicates that CSS should find the element associated with the id "main-menubar", retrieve all
<menupopup> children of that element, then retrieve all <menuitem> elements of the menupop.
Finally, of those menu-items, choose only those for which the attribute _moz-menuactive exists
and has the string value of "true".

• Sequential Matches. You can have more than one selector share the same property set by using a
comma (,) to separate each selector prior to the property list. For instance,

Working with the Master.css Rules

10

window,dialog {background-color:lightGray,color:black;font-family:Arial;}

will set both the window and dialog elements to have the same light-gray background, black text col-
or, and font-family of Arial.

• Pseudo-Element Matches. These are matches of the form selector:action {properties}
A pseudo-element typically controls certain aspects of behavior of an element, such as the :hover,
:active, and :visited properties which occur when the mouse hovers over or clicks on an element, or
when a linked element is revisited. While the Netscape browser supports a wide number of these ele-
ments, most of the time you'll likely use only a very limited subset for XUL development. For in-
stance,

menuitem:hover {background-color:lightBlue;}

will set the color of a menuitem light blue when a user places the mouse over that item.

This is, of course, not a completely comprehensive list of selector options, but should cover enough to
be able to work with the master.css file. For more information about the selectors that are available with-
in both Mozilla Firefox and the Netscape 8.0 browser, check out ht-
tp://wiki.mozilla.org/Help:User_style#Css while a good set of guidelines for designing and using CSS
selectors for your own applications can be found at http://www.mozilla.org/xpfe/goodcss.html.

Using CSS Properties
The original role of Cascading Stylesheets was to provide a markup independent mechanism for "present-
ing" HTML content, making it possible for HTML to become increasingly oriented as a "logical" style
language. XUL has adopted CSS as the language it uses for specifying its own internal presentation
characteristics, and as such, a good knowledge of CSS is almost mandatory to develop rich themes. Such
a course of action is beyond the scope of this particular theme kit. Instead, this section will focus on a
few basic principles and conventions within CSS that are especially useful for XUL theme developers.

• CSS Specifications. You can find the formal specification for the CSS language (CSS v. 2.0) at ht-
tp://www.w3.org/TR/REC-CSS2. This link also includes download links for zipped HTML and PDF
versions which can be saved to your system, especially useful if you develop from a laptop com-
puter.

• Mozilla CSS Properties. The Mozilla Firefox engine on which Netscape is based also has created a
number of useful CSS-like properties, most of which have been resubmitted and are in consideration
for inclusion in CSS 3.0. A useful listing of some of these properties can be found at ht-
tp://www.blooberry.com/indexdot/css/properties/extensions/nsextensions.htm or at ht-
tp://www.xulplanet.com/references/elemref/ref_StyleProperties.html. These properties are typically
prefixed by a "-moz-" extension(such as -moz-opacity)that indicates that they are experimental
and currently Mozilla specific

• Include Units. The use of units within Mozilla CSS is mandatory - the CSS engine will not not auto-
matically assume that a CSS property is the same as {width:25px;}. The typical response in
such cases is for the rendering engine to ignore that property and all properties after it, making de-
bugging especially frustrating.

• Use the chrome protocol. The reflection of languages, themes, overlays and bindings together con-
spire to make specifying the location of resources especially tough. For this reason, you should never
use relative references to graphics or images, but instead should specify the chrome location of those

Working with the Master.css Rules

11

http://wiki.mozilla.org/Help:User_style#Css
http://wiki.mozilla.org/Help:User_style#Css
http://www.mozilla.org/xpfe/goodcss.html
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.blooberry.com/indexdot/css/properties/extensions/nsextensions.htm
http://www.blooberry.com/indexdot/css/properties/extensions/nsextensions.htm
http://www.xulplanet.com/references/elemref/ref_StyleProperties.html
http://www.xulplanet.com/references/elemref/ref_StyleProperties.html

resources. More information about chrome is covered in the next section.

• Employ Transparencies. The Netscape application supports transparent XUL containers, either
through the use of PNG files as backgrounds for such containers or using the -moz-opacity property.
PNG files with alpha-channel support can appear partially translucent, making them ideal for back-
ground images in popups.

• Deploying Image Maps. On a related note, the Netscape browser makes extensive use of "image
maps", alpha-channel supporting PNG or GIF images that contain collections of buttons and related
interface graphics. Rather than retaining the hundreds of individual graphics, Netscape utilizes

The Netscape 8.0 Theme SDK includes several graphics files that hold the critical buttons and back-
grounds for the

• Important! For ease of use, many of the more common CSS rules (especially from browser.css)
have been placed in the master.css file. You can use either stylesheet, but if you do decide to use
master.css, you must make sure that every rule contains the important! directive. This instructs
the browser to use this rule in preference to an others declared, even if the others are declared at a
later point in the build cycle.

The Netscape 8.0 Theme SDK includes several graphics files that hold the critical buttons and back-
grounds for the

Understanding Chrome
The Netscape 8.0 browser is considered to be one of the family of Mozilla browsers (specifically Moz-
illa 1.7) which also forms the foundation of such applications as the Firefox web browser, Thunderbird
mail application, the Mac OSX Camino, and others. This means that it is built upon the XML User-
interface language (XUL) and utilizes (for the most part) services built upon the Mozilla API (known by
the more colorful sobriquet "Gecko"). The principal difference between the Netscape and Firefox
browsers is the fact that Netscape also includes the capability of running Internet Explorer as part of its
internal architecture, though this is hosted within the Gecko environment. From a themability stand-
point, the Internet Explorer component is irrelevent.

Under both the original Mozilla engine and the current design used by Netscape, the Chrome is both a
generic term that describes the various pieces that make up a theme (and, for that matter, that make up
most applications) as well as having a more specific meaning. In the latter case, the chrome is a pro-
tocol, in much the same way that http: is a protocol, that is used to describe the location of resources
within the application in a platform neutral, theme and language aware environment.

The reason for such a system should become evident with a little bit of thought. For instance, consider
the need to access a particular background image called background.jpg used for the titlebar (assuming
the background has an image in the first place). A URL , even a file URL, will give an absolute location
for background.js, something that is very useful for web content in general. However, within Nets-
cape, each particular theme that is employed in the browser may (and likely will) have a different graph-
ic for the same general position, quite probably with the same name.

Given this, the Netscape browser needed to have some way of being able to uniquely identify one such
resource among many possible themes, and to do so it used the concept of the Mozilla chrome: protocol.
Within chrome:, a file reference first must get resolved by the chrome: parser by looking up the current
theme and language versions, which in turn then points to the actual file within the theme itself. This
system, while a little awkward at first blush, works surprisingly well for the use-cases which Netscape
has to deal with.

The chrome usually does not deal directly with file systems per se. Instead, it treats the theme jar file as
a distinct file system, and usually relies upon a specific set of folders to be within the JAR. The root dir-

Working with the Master.css Rules

12

ectory of the jar then acts as the root for the file system, containing general installation scripts
(install.rdf) and other system wide components (see Figure 2.1, “Root Directory of the Generic Theme”)

Figure 2.1. Root Directory of the Generic Theme

For instance, a reference such as:

chrome://browser/skin/background.png"

points not to a specific file, but to a particular file to be found based upon the theme that is currently se-
lected. The default theme for Netscape, called the Winscape theme, indicates that a chrome reference
should look in the Winscape.jar file in the Netscape application directory for the resource, based upon a
special resource called install.rdf.

The install.rdf file contains the metadata that uniquely identifies a given resource, and should always be
in the root directory of any theme Jar file. It replaces the older install.js file which was used by earlier
Mozilla builds, and is specifically searched for by the theme installer in order to help it perform the in-
stallation.

Example 2.2. The Generic Theme install.rdf file

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:em="http://www.mozilla.org/2004/em-rdf#">
<Description about="urn:mozilla:install-manifest">
<em:id>{7ace5bd0-bd83-11d9-9669-0800200c9a66}</em:id>
<em:version>8.0</em:version>
<!-- Target Application this extension can install into,

with minimum and maximum supported versions. -->
<em:targetApplication>
<Description>
<em:name>Netscape</en:name>
<em:id>{3db10fab-e461-4c80-8b97-957ad5f8ea47}</em:id>
<em:minVersion>8.0</em:minVersion>
<em:maxVersion>8.1</em:maxVersion>

</Description>
</em:targetApplication>
<!-- Front End MetaData -->
<em:name>Generic Theme</em:name>
<em:description>A generic theme to be used as a base for building

other themes for the Netscape browser.</em:description>
<em:creator>Kurt Cagle</em:creator>

Working with the Master.css Rules

13

<em:creator>Raj Paul</em:creator>
<em:homepageURL>http://www.netscape.com</em:homepageURL>
<!-- Front End Integration Hooks (used by Theme Manager)-->
<em:internalName>Generic Theme</em:internalName>

</Description>
</RDF>

The install.rdf file can look a little daunting at first, especially with regard to the <em:id> elements.
These particular elements are UUIDs (or GUIDs, if you come from a Windows background) - time-
stamp derived "numbers" which are statistically unique with a one in
3,402,823,669,209,385,000,000,000,000,000,000,000,000 chance of generating the same ID. They con-
sequently serve very nicely as a way of uniquely identifying a given component over the web.
Note
There are a number of free GUID generators on the web, including the one which generated this UUID
at http://kruithof.xs4all.nl/uuid/uuidgen. When you create a new theme (or other XUL resource, such as
an extension), generate the GUID and paste it into the primary <em:id> element.

The <em:targetApplication> indicates which application this theme is target to, and should be kept as
shown above. The <em:id> again is perhaps the most critical property, as this, rather than the name,
uniquely defines the Netscape browser itself. The version information indicates which versions of the
browser this particular theme can be used with - if the theme mechanism changes, you would use these
properties to insure that someone doesn't attempt to install a theme into a version which doesn't have the
means to be able to accept it.

You should also set the <em:version to provide for a version control for the theme. Keep in mind that
themes can have programmatic components, can introduce bugs, and may need to be updated with critic-
al information, so version control is very important when dealing with such resources.>

Perhaps the most significant directory within the JAR file itself (at least with respect to themes) is the
Browser folder. This folder will typically contain most, if not all, of the critical files for the theme itself,
including the Master.css file referenced within this SDK. It will also usually have most of the primary
graphics that are used for buttons or backgrounds. A partial listing of the contents of the generic theme
browser folder is shown in Figure 2.2, “Browser Directory of the Generic Theme”

Figure 2.2. Browser Directory of the Generic Theme

Working with the Master.css Rules

14

To accesss specific files within the theme via the chrome you have to rely upon the folder structure,
though a specific path $THEME_JAR/browser/myFile.jpg doesn't correspond directly to the
URL. Instead, your chrome reference would look like chrome://browser/skin/myFile.jpg,
where the browser folder corresponded to $THEME_JAR/browser, the /skin/ indicated that it was refer-
enced as the current theme, and the filename maps to the filename.

It's worth noting here that this can also be used to good effect for additional libraries. For instance, if
you had an extension for Netscape called myLib.xpi with global objects contained in a /global/ directory
in that JAR file (XPI's are also JARs), you could reference it from within your CSS as
chrome://mylib/global/myFile.jpg.
Warning
The chrome provides a measure of security for your users, and as a theme developer you should respect
this, as you have heightened access into a user's environment. For this reason, you should only include
chrome references into your CSS, not external URL calls (Netscape specifically removes any such refer-
ences when evaluating and preparing themes for common download, but if you host a theme yourself
you should also keep this warning under consideration.)

Working with the Master.css Rules

15

Chapter 3. Building and Modifying
Themes

Creating new themes in general is not complicated, though it does involve a certain amount of work up
front to make things happen. This chapter focuses on the creation process, walking you through the steps
to make a simple theme from the generic theme JAR and the Toolkit.

Designing the Theme
Creating a theme is obviously an artistic endeavor - your are seeking a way to be able to present your
visions and artistic sensibility to others. While it is possible to create themes one piece at a time, such a
process is usually fraught with peril. Thus, the best solution as a theme designer is to take a screen shot
of an existing theme as deployed in Netscape and use that as a starting point. As you are designing, you
should keep a number of factors in mind.

Protect Yourself!
Before creating any new theme, protect yourself from grief later by creating a folder with the theme's
name (for this example, you can always change it later), and drag a copy of the default theme jar file and
the image templates into this new folder. Always work on the copy. For purposes of discussion, the
theme being generated here is the Rustic Theme.

Creating a Prototype
Just as no sane architect would create a blue-print of a house without first putting together both drawings
and scale models of a given building, so too should you plan ahead in establishing how you envision the
final theme will look like. One good technique is to take a screen shot of an existing browser theme sim-
ilar to your own, then edit it in your favorite graphics editor by adding new backgrounds, changing the
general shape and functionality of buttons and so forth. By making each change on a different layer, you
can also generate many of the graphics that you will likely develop anyway.

Inspirations for themes can come from anywhere, and with the use of photographic images and high
quality gradients you can generally build themes for just about any topic. Please keep in mind, however,
that if you wish to distribute themes (either through your own site or through the Netscape Theme Park)
you can only use a given graphic or image (or piece thereof) if you created it, or you have the express
written permission of the creator under some form of license agreement.

In order to illustrate the point, this paper looks at the Rustic Theme (see Figure 3.1, “Rustic Theme Pro-
totype”), included as part of the Netscape Theme SDK. Designed to give a "woodsy" feel to the browser,
this particular theme is both relatively simple to implement yet sufficiently rich to show how themes are
built.

Figure 3.1. Rustic Theme Prototype

16

Standard Button Sets
It is not yet possible to create a translucent background for the browser itself (at least not yet), you can
create translucent backgrounds for any contained element within the browser. This principle is utilized
heavily for the production of buttons and related interactive graphics.

The current Netscape themes make use of a single PNG for collections of common buttons, then intern-
ally segments the buttons using a clipping rectangle to isolate the specific buttons. Most of these are
containered in the $THEMEJAR/browser/icons/ folder. For instance, the larger navigation buttons are
contained in a single file - $THEMEJAR/browser/icons/nav_large.png (see Figure 3.2, “Large Naviga-
tion Buttons File nav_large.png”).

Figure 3.2. Large Navigation Buttons File nav_large.png

Building and Modifying Themes

17

Templates
While you can resize such button sets using CSS, this can be a complex process at best as you will need
to handle positioning each button from CSS separately. in general you're better off replacing the graph-
ics with your own at the same size. One useful technique for doing this in applications such as Pho-
toshop or GIMP is to place the original graphics in one layer, set the opacity of that layer to 25%, create
a second layer on top of the first, then draw your new buttons over the old ones on the second layer. Pri-
or to saving, remove the first layer and flatten as a PNG file.

You can replace the graphics with your own graphics, though you should make sure that you replace
them exactly where they were in the original jar file (see Figure 3.3, “Creating the Rustic Theme
nav_large.png icons”. It should also be noted that replacing button and system graphics in this way does
not necessitate changes in the CSS stylesheets directly.

Figure 3.3. Creating the Rustic Theme nav_large.png icons

Building and Modifying Themes

18

Large icons are 32x32 pixels in size, while small icons are 16x16. The grid of images left to right for the
navigational elements provide the graphics as follows:

1. Previous web page in viewing history

2. Next web page in viewing history

3. Stop the current download process.

4. Refresh the current web page.

5. Go to the user-defined home page.

The rows in the diagram represent different states of each button, as follows:

1. Disabled state (button is inactive)

2. Default state (button is active but has not received focus)

3. Hover state (button is active and the mouse is hovering over the button)

4. Active state (button is active and being pressed/activated)

while these buttons represent the primary means of controlling the browser itself, Netscape also has a
number of secondary functions which can be added via "customized" buttons. As with the navigational
buttons, these can be found within the /browser/icon folder as functional_large.png and func-

Building and Modifying Themes

19

tional_large_2.png. (see Figure 3.4, “Generic Functional Buttons”).

Figure 3.4. Generic Functional Buttons

Modifying these buttons for the Rustic theme was quite simple - using Photoshop, the entire file full of
buttons was first run through an emboss filter to make them appear as if carved, then run through the
Hue/Saturation dialog and "colorized" to turn them into a wood-brown color. These were then saved
back into the RusticTheme.jar file under their old name (see ???).

Figure 3.5. Rustic Functional Buttons

Throbber
The throbber is the name of the animated graphic that appears whenever a web page is being loaded, the
trademark Netscape "N". It in fact consists of two distinct images, a static PNG file that shows the throb-
ber in its "rest" state and an animated GIF file that contains the sequence shown while a page is being re-
quested or refreshed.

These particular graphics are contained in the theme's /browser subfolder, as throbber-bg.png and
throbber-anim.gif. The throbber-bg.png file is sized to fit exactly within the upper left corner of
the application, while the GIF animation is specifcally positioned so that it appears on top of the throb-
ber background element.

While editing the throbber-bg.png file is reasonably straight-forward and can be done in Adobe Pho-
toshop, creating and editing animated GIFs is a little more problematic, as this capability is not suppor-
ted by Photoshop except via plug-ins (such as BoxTop Software's GIFmation), though it is supported by
Adobe ImageReady. If you want to go the open source route, GIMP 2.0
(http://www.gimp.org/windows/) provides a free alternative to Photoshop that lets you edit the frames of
an animation as successive layers and control the timing of each framee of the animation Figure 3.6,
“Creating Animations using Gimp 2”). The throbber animations continues to run until a file is down-
loaded or the Nescape browser application times out, so the animation duration is immaterial to the
throbber's primary role.

Building and Modifying Themes

20

http://www.gimp.org/windows/

Figure 3.6. Creating Animations using Gimp 2

The throbber graphic and animation sequences are considered to be trademarks of Netscape corpora-
tions, and must be included on any Netscape Theme package unless the authors of the theme have the
express written consent from Netscape Corporation or its agents to alter or replace the graphics.

Background Graphics
Backgrounds provide the foundation upon which your themes ride. The Generic background, while
seeming to be fairly complex, relies upon a few basic tricks to minimize filesize - creating 20 pixel high/
one pixel wide graphics that can be repeated along one axis or another, for instance. Chances are good,
however, that your own background may be more complex, and as such a slightly different approach
should be taken in designing these backgrounds.

For Rustic, the basic background piece was created as a texture in Photoshop by using a combination of
the Noise filter and a motion blur, coupled with colorizing the resulting gray streaks to make them look
like wood, as shown in Figure 3.7, “The principle background pattern, woodBackground.jpg.” and in a
darker version for the titlebar (Figure 3.8, “A darker version of the background, darkWoodBack-
ground.jpg, for the titlebar.”).

Figure 3.7. The principle background pattern, woodBackground.jpg.

Building and Modifying Themes

21

Figure 3.8. A darker version of the background, darkWoodBackground.jpg, for
the titlebar.

Both of these should then be placed in the /browser folder of the RusticTheme.jar file.

Working with Theme Jars
In Netscape 8.0, a theme is an extension, a compressed resource that contains sets of CSS documents,
XBL code, graphics, and similar resources. Each theme is wholly self-contained, and is identified by a
specific name. When you download the stock Netscape 8.0 browser, the application ships with two dis-
tinct XPI files: Winscape, which provides a visual interface similar to that of the Mozilla Firefox
browser, while the Generic them provides a sleeker "starship navigator" look and feel.
Note
This particular Theme SDK comes with its own generic theme (called Generic.jar), which includes a ba-
sic configuration for use in developing your own themes.

Each theme is a JAR file. If $NETSCAPE is the folder where your netscape.exe file is kept (by default,
$NETSCAPE is set to c:\Program Files\Netscape) then you should be able to find all of the
relevant them JAR files in $NETSCAPE\chrome.

A theme JAR file is a compressed file that uses the ZIP protocol for compression. This means that any
application that lets you open up and examine a ZIP file (including several that are built into the most re-
cent versions of Windows) should let you look at it. If you have such an application installed and you're
still having trouble opening the JAR file, change the extension to ZIP and try opening it this way..

The best way to learn how to create a theme is to start with an existing one, such as the Generic theme.
Because it is very easy to make changes to a theme that leave it in an unstable (i.e., broken) state, you
are strongly recommended to make a backup of the $NETSCAPE\chrome\Generic.jar file before making
any changes. Copy the jar file to someplace safe, then work on the original version within the
$NETSCAPE\chrome folder. If you have a goof (or simply don't like the theme you've produced), then
copy the newly created copy back over the one one in the chrome folder and restart your browser.

Open up the Generic.jar file using your ZIP tools, and you will see something that looks roughly like
Figure 3.9, “Generic jar file root.”.

Figure 3.9. Generic jar file root.

Building and Modifying Themes

22

Once here, select the skin folder, then Generic\browser\ in order to get to the interesting bits
(Figure 3.10, “Generic jar interesting bits.”). This is where the theme that the browser uses resides, re-
gardless of the theme in question. You should make use of the same structure if you create your themes
from scratch.

Figure 3.10. Generic jar interesting bits.

Building and Modifying Themes

23

The theme contains a number of graphics files - though with GIF and PNG files predominating. The
PNG format (for Portable Network Graphics) makes it possible to create partially transparent images in
24-bit color, and as such, is increasingly replacing the use of 8-bit GIF files for handling transparency-con-
taining images.

Additionally, the theme at this level includes a number of cascading stylesheet (CSS) files, most signi-
ficant of which being the file browser.css. This document serves to map XUL elements (referenced
either through ids, in the form #myItem, or CSS classes of the form .myClass) to specific CSS style
properties. This format does not differ in any significant way from that what is used for providing CSS
for normal web development, although there are a few additional Mozilla/Netscape extensions which are
specific to the XUL environment (more information on these can be found at ht-
tp://xulplanet.mozdev.org/references/elemref/ref_StyleProperties.html .

Modifying an Existing Theme
The browser.css document provides the specific CSS that will be used in changing the most significant
aspects of the theme, though other CSS files are used to change the presentation on lower level control
elements. There are a number of different style rules within browser.css, and in general the best way to
learn how to work with creating new themes is to try altering different rules.

The Generic theme was intended to evoke a "starship" feel to it. By adapting it, you can change the

Building and Modifying Themes

24

theme to something with more of a "deep space" visualization, which will eventually be the Rustic
Theme. In order to make such a theme work, its generally worthwhile first to mentally plan ahead of
time how you want the theme to look. In the case of a Rustic theme, one possibility is to pull images
from the Hubble telescope (many superb ones of which can be found at http://www.hubblesite.org) and
use these as the basis for new graphics and related resources .

As a benchmark, it's worth considering the original Generic theme, then provide a screenshot of the new
Rustic theme to show what's possible with simple modifications. The Generic Theme (Figure 3.11,
“Netscape with the Generic Theme”), takes advantage of PNG transparancies to give the illusion of
rounded corners and a three dimension appearance.

Figure 3.11. Netscape with the Generic Theme

By swapping out a few graphics and changing a few lines of CSS, this can be changed to reflect the Rus-
tic theme (Figure 3.12, “Netscape with the Rustic Theme”):

Figure 3.12. Netscape with the Rustic Theme

Building and Modifying Themes

25

The changes in the theme are fairly minor in terms of the overall look and feel - a full theme would
likely swap out buttons, alter placement of tabs, change default colors and modify font families and sim-
ilar resources, but most of these changes utilize the same techniques as are discussed for the simple title
bar change.

Themes are generally built up working on specific XUL regions, which are usually rectangular in nature.
What this means in general is that you will often need to be cognizant of multiple overlapping areas
within the web browser, which usually translates into being conscious about how transparencies are
used. The principal areas to be changed in our Generic to Rustic conversion are shown in Figure 3.13,
“Regions to edit in the Rustic theme”, with callouts describing the regions in detail.
Note
Once you save the changes you make back into the JAR file, you can actually see the changes within the
web browser. However, as the themes are loaded into the browser at start-up time, you should generally
close your browser before modifying the jar, then reopening it to reinitialize the themes engine.

Figure 3.13. Regions to edit in the Rustic theme

Building and Modifying Themes

26

1. The topbox. This is the foundation upon which the titlebar region is built. In the Generic topbox, a
background image (1-pixel wide) is used to create the lined pattern that runs the length of the title-
bar. The CSS for this tobbox points to the local reference for the graphic file itself (see Ex-
ample 3.1, “The TopBox CSS”)

Example 3.1. The TopBox CSS

#topbox {
background-color: transparent;
background-image:url("chrome://browser/skin/background-top-gradient.png");
background-repeat: repeat-x;

}

To change the theme to reflect the Rustic view, a new graphic was created by the same name, but
with different horizontal dimensions:

Figure 3.14. New Rustic Background-Top-Gradient

This was then added to the Generic.jar file. The browser.css file in this case was unchanged. This
will cause the graphic to repeat in the horizontal dimension over the length of the toolbar

2. The throbber. The throbber is a graphic that is used to indicate that the browser is performing some
action (usually searching for or navigating to a new web page). As with the topbox, the source
graphic for the default throbber state is one we wish to keep (it is Netscape's browser, after all), but
because the throbber's initial image incorporates part of the repeating pattern that is also used by
the topbox, the throbber graphic should be modified to make this background transparent in an ap-
plication such as Photoshop. The new throbber graphic (Figure 3.15, “Displaying the throbber ele-
ment.”) keeps the circular region of the Generic theme intact, but eliminates the background (the
animated gif states for the throbber are already transparent).

Figure 3.15. Displaying the throbber element.

Building and Modifying Themes

27

The CSS for this code can be found under the browser.css entry throbber-box (Example 3.2,
“Throbber-box CSS declaration.”)

Example 3.2. Throbber-box CSS declaration.

#throbber-box {
background-image: url("chrome://browser/skin/throbber-bg.png");
min-width: 58px;
min-height: 60px;

}

3. The titlebar-separator. The TopBox region includes two distinct areas, the title bar and the navigat-
or buttons. The title bar in the Generic implementation overrides the default behavior where the
menu is separate, instead, incorporating the menu into the titlebar itself, a mode that is becoming
increasingly common in user interfaces.

The Generic titlebar-separator provides some visual differentiation between the lined background
and the black of the menu:

Figure 3.16. The Titlebar Separator

in which the white area is in fact transparent, letting the repeating pattern show through (Ex-
ample 3.3, “Reworking the Titlebar Separator”.

Example 3.3. Reworking the Titlebar Separator

#titlebar #titlebar-separator {
width: 153px;
background-image:
url("chrome://browser/skin/titlebar-separator.png");
background-repeat: no-repeat;

}

With the Rustic theme, on the other hand, the differentiation provided by this element is minimal.
Instead, the wood pattern background is used to provide a more consistent theme (???):

4. The titlebar-menu-stack. A XUL stack is a container in which multiple items are stacked one on top
of the next. In the Generic theme, the menu-stack holds all of the menu elements in a horizontal
box, with CSS defining the characteristics of the stack contents. The initial entry for Generic as-
sumes simply a black color background with border lines defined along the bottom of the compon-
ent (see Example 3.4, “Setting the Titlebar Menu Font”

Example 3.4. Setting the Titlebar Menu Font

Building and Modifying Themes

28

#titlebar #titlebar-title {
font-family: "Trebuchet MS", Arial, sans-serif;
font-weight: bold;
font-size: 10pt;
color:#026b86;
margin: 2px 4px 0px 5px;
}

#titlebar .titlebar-menu-stack{
background: black;
border-bottom: 2px solid;
-moz-border-bottom-colors: #dff5fb #303030;

}

Unlike previous entries, this one will need to be revised slightly in order to eliminate the flat-black
background and the borders, and in order to change the fonts. One benefit that dealing with full ap-
plications provides is the ability to bundle fonts in with the rest of a theme, making it possible to
perform font effects (and incorporate very non-standard fonts) in ways that are much more prob-
lematic when dealing with traditional web applications. In order to do so, you should copy the font-
resource (such as Comic Sans MS, used here) into the theme jar file in the same folder as before,
then at the top of the browser.css document you should include

@font-face {font-family:"Comic Sans MS"; src:url(chrome://browser/skin/comic.ttf); }

You can then reference this within the menu theme by rewriting the first titlebar entry, as shown in
Example 3.5, “Invoking Fonts from Styles”:

Example 3.5. Invoking Fonts from Styles

#titlebar #titlebar-title {
font-family: "Comic Sans MS", Arial, sans-serif;
font-weight: normal;
font-size: 10pt;
color: #026b86;
margin: 2px 4px 0px 5px;

}

The stack itself similarly will need to be changed to be made transparent, and eliminate the very
subtle borders, as shown in Example 3.6, “Working with the menu stack.”:

Example 3.6. Working with the menu stack.

#titlebar .titlebar-menu-stack {
background:transparent;

}

5. The window controls. The controls at the far right of the Generic display that provide support for
maximizing, minimizing and closing the window can similarly be modifed. The #window-controls
container, a box which holds the three buttons, can be modified with the #window-controls refer-

Building and Modifying Themes

29

ence in CSS, changing it to

#window-controls { -moz-box-align: center; background: transparent; padding: 0px 0px 0px 4px; }

in order to make the starfield apear behind these elements. Note that each button itself is a GIF im-
age with its own transparency layer, and these individual buttons will need to be modified by hand
to assure that the backgrounds are transparent.

It should be noted in passing that these buttons (like most buttons within a theme) have multiple
states depending upon whether the mouse is rolled over or pressed on an item, or if the item is dis-
abled. The minimize button provides a good case in point here. The CSS for the minimize button
looks something Example 3.7, “Assigning CSS hover states.”:

Example 3.7. Assigning CSS hover states.

#minimize-button {
height: 22px;
padding-right: 2px !important;
padding-top: 4px !important;
padding-bottom: 4px !important;
list-style-image:url("chrome://global/skin/icons/

window-control-minimize.png");
}

#minimize-button:hover {
list-style-image:url("chrome://global/skin/icons/

window-control-minimize-h.png");
}

For XUL <button> elements, the list-style-image property controls the image associated with the
button itself, and as with fonts, this property uses the Mozilla chrome: convention for retrieving re-
sources out of themes. The hover pseudo-property (as in #minimize-button:hover) automatically
gets invoked whenever the mouse moves over the icon itself, and this can be used to provide for
complex button and related behavior without getting wrapped up in Javascript code.

A full theme involves several dozen of these modications, but most of them ultimately are reasonably
simple - replacement of colors, graphics or fonts, changes in spacing or padding, and so on. More soph-
isticated changes can be accomplished via XBL, but this is outside the scope of this article.
Note
Once you're done designing your theme, take a screenshot of the browser using the newly designed
theme and save it. This will come in handy when creating an installer, as shown in the next section.

Installing Themes
While modifying existing themes is useful from a learning standpoint, the ultimate goal in changing
those themes is to create stand-alone themes that can actually be distributed. This is not, in general, a
difficult proposition, though there are a few niggling details that need to be paid attention to closely.

In order to create a unique theme, it's necessary to generate an install.rdf file that provides critical in-
formation in identifying the theme and contents.rdf file which holds a manifest of the contents. As it
turns out, these files do not reside in the themes that ship with Netscape, so need to be added by hand.
Note

Building and Modifying Themes

30

Now is a good time to rename the Generic.jar file you were working with earlier to Rustic.jar, and to
copy the old Generic.jar file back into the chrome directory and restore its name to Generic.jar if you
saved it under a different name.

The contents.rdf file contains links to the various components within the theme itself, and is shown in
Example 3.8, “The Rustic contents.rdf file”. This particular contents.rdf would be used to identify the
Rustic them built earlier.

Example 3.8. The Rustic contents.rdf file

<RDF:RDF xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:chrome="http://www.mozilla.org/rdf/chrome#">

<!-- List all the skins being supplied by this theme -->
<RDF:Seq about="urn:mozilla:skin:root">
<RDF:li resource="urn:mozilla:skin:Rustic/1.0" />

</RDF:Seq>
<RDF:Description about="urn:mozilla:skin:Rustic/1.0"

chrome:displayName="Rustic"
chrome:author="Netscape"
chrome:description="A theme of old growth and log cabins"
chrome:name="Rustic/1.0"
chrome:image="preview.png">

<chrome:packages>
<RDF:Seq about="urn:mozilla:skin:Rustic/1.0:packages">
<RDF:li resource="urn:mozilla:skin:Rustic/1.0:browser"/>
<RDF:li resource="urn:mozilla:skin:Rustic/1.0:communicator"/>
<RDF:li resource="urn:mozilla:skin:Rustic/1.0:global"/>
<RDF:li resource="urn:mozilla:skin:Rustic/1.0:mozapps"/>

</RDF:Seq>
</chrome:packages>

</RDF:Description>

The contents.rdf file identifies a particular URN (Universal Resource Name) called
urn:Mozilla:skin:Rustic that's associated with the name Rustic. The subsequent resources
(global,browser,mozapps, and help) correspond to the chrome entries in somewhat inverted fashion ...
that is to say, chrome://browser/skin/myResource.png with the Rustic skin selected tells
the browser to look in the Rustic jar file in the browser/skin folder to find the resource. This file should
be added to the root of the Rustic.jar file (see ???

Example 3.9. The Rustic Theme install.rdf file

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:em="http://www.mozilla.org/2004/em-rdf#">

<Description about="urn:mozilla:install-manifest">
<em:id>{99cd1e10-dd02-11d9-8cd5-0800200c9a66}</em:id>
<em:version>1.0</em:version>

<!-- Target Application this extension can install into,
with minimum and maximum supported versions. -->

<em:targetApplication>
<Description>
<em:id>{3db10fab-e461-4c80-8b97-957ad5f8ea47}</em:id>

Building and Modifying Themes

31

<em:minVersion>8.0</em:minVersion>
<em:maxVersion>10.0</em:maxVersion>

</Description>
</em:targetApplication>

<!-- Front End MetaData -->
<em:name>Rustic Theme</em:name>
<em:description>A theme evoking old growth forests and log cabins.</em:description>
<em:creator>Netscape</em:creator>
<em:contributor>Netscape contributers</em:contributor>

<!-- Front End Integration Hooks (used by Theme Manager)-->
<em:internalName>Rustic/1.0</em:internalName>

</Description>
</RDF>

Save this file as install.rdf in the same root directory for the Rustic.jar file as the contents.rdf file.
You're nearly done at this stage ... all you will need to do is to create a preview graphic. Take the screen-
shot of your themed browser (you did take a screenshot from last section, right?) and trim it down to
230x230 pixels in size. Save the file out as a PNG file called preview.png, then save this back to the
Rustic.jar file. This is the preview image that is displayed for the Rustic them in the Themes dialog
when the latter pops up. This image doesn't have to be a screenshot, of course, but it is probably not that
useful for it to be anything else.

Congratulations, you have created a new theme! Now you just have to install it on your system to insure
that it in fact does work correctly. Fortunately, this stage is easy:

1. Using the File->Open File menu item, navigate to the Rustic.jar file and open it.The installer
should recognize the JAR file as a theme installer, and will launch the Theme dialog.

2. Select the Rustic theme.

3. Press the Use Theme button.

4. Close all instances of the Netscape browser and restart the browser. Your theme should now be
working.

Customizing the Netscape browser offers the option not just of expressing one's inner artistic skills, but
can make it possible to configure the browser for secondary branding and the addition of custom capab-
ilities tied specific to a certain theme (a case where themes and extensions overlap).

Building and Modifying Themes

32

Appendix A. Licenses
This appendix will contain the various licenses for use within the Netscape theme package.

33

