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Abstract

We describe the environment for symbolic and numeric computations, called SYNAPS (Sym-
bolic and Numeric APplicationS) and developed in C++. Its aim is to provide a coherent platform
integrating many of the nowadays freely available software in scientific computing. The approach
taken here is inspired by the recent paradigm of software developments called active library. In
this paper, we explain the design choices of the kernel and their impact on the development of
generic and efficient codes for the treatment of algebraic objects, such as vectors, matrices, uni-
variate and multivariate polynomials. Implementation details illustrate the performance of the
approach.

The objective of this paper is to describe an environment for symbolic and numeric computations,
which is implemented in the library SYNAPS (Symbolic and Numeric APplicationS1).

The need to combine symbolic and numeric computations is ubiquitous in many problems. Starting
with an exact description of the equations, in most cases, we will eventually have to compute an
approximation of the solutions. Even more, in many problems the coefficients of the equations may
only be known with some inaccuracy (due, for instance, to measurement errors). In this case, we are
not dealing with a solely system but with a neighborhood of the ”exact” system and we have to take
into account the continuity of the solutions with respect to the input coefficients. This leads to new,
interesting and challenging questions either from a theoretical or practical point of view at the frontier
between Algebra and Analysis and witnesses the emergence of new investigations [30, 21].

The aim of the SYNAPS project is to provide a coherent platform integrating many of the nowadays
freely available software in scientific computing. Connecting and configuring together these tools
allow a user to get, in a single download, everything he or she needs. The kernel of this platform is
based on the former library ALP [23], and provides data-structures and classes for the manipulation
of basic objects, such as (dense, sparse, structured) vectors, matrices, univariate and multivariate
polynomials. The aim of this paper is to describe the design of its kernel. We will also mention briefly
the implementations of algorithms, which have been described in different research papers such as
[18], [29], [15], [6, 3, 8, 16]. [17], [7], [12], [19], [25], [12], . . .

As SYNAPS is targeting different domains of application, it has to provide various internal repre-
sentations for the abstract data-types required by algorithms specifications. Thus, this library makes it
possible to define parameterized but efficient data structures for fundamental algebraic objects such as
vectors, matrices, monomials and polynomials. . . which can be used easily in the construction of more
elaborated algorithms. We pay a special attention to genericity, or more precisely to parameterized
types (templates in C++ parlance) which allow us to tune easily the data structure to each specific
problem at hand. So called template expression (see §1.4) are used to guide the expansion of code
during program translation and thus to get very efficient implementations. Traditional developments
of libraries, in particular for scientific computations, are usually understood as a collection of “pas-
sive” routines. The approach taken here is inspired by a recent paradigm of software developments

1http://www.inria.fr/galaad/logiciels/synaps/
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called active library [10, 31, 13] and illustrated by the library STL [27]. The software components of
such libraries take active parts of the configuration and generation of codes (at compile time), which
combine parameterization and efficiency. Projects like blitz2, SciTL3, MTL4, NTL5 successfully
use those ideas. The present environment is also a step in that direction, with an orientation toward
algebraic data-structures (e.g. polynomials).

We also carefully consider the problem of reusability of external or third-party libraries. Currently,
we have connected lapack (Fortran library for numerical linear algebra), umfpack, SparseLib
(respectively Fortran and C++ libraries for sparse matrices), superlu (C library for solving sparse
linear system), gmp (C library for extended arithmetics), GB6, RS7 . . . Specialized implementations
— for instance lapack routines — can coexist with generic ones, the choice being determined by the
internal representation. We also want this library to be easy to use. Once the basic objects are defined
by specialization of the parameters, including maybe the optimization of some critical routines, we
want to be able to write the code of an algorithm “as it is on the paper”. Tools featured by the C++
programming language to support polymorphism allows us to make a great step towards achieving
the goals described above.

1 Tools for an Active Library Design

The fundamental characteristic of an active library is to provide general purpose abstractions along
with domain-specific specializations, tuned to take advantage of configuration knowledge necessary
to deliver optimal efficiency. The configuration knowledge of an active library must be bundled in a
uniform and extensible framework. In the scope of the C++ programming language, the tools at our
disposal are the type-system and its two-level aspect through the template support machinery.

1.1 Types Are Our Friends

As announced in the introduction, the SYNAPS framework extensively uses the typeful programming
paradigm[4], whereby the motto is: laws should be enforceable. By that we mean, whenever some
constraints are known to hold, we use the type-system — wherever possible — to express them8 so that
much errors can be detected very early in the development stage (i.e. compile-time). In doing so, the
program translator (e.g. the compiler) can keep us from breaking hard-to-find constraints violations
and save us considerable time. Another immediate benefit is that, when a program construct fails to
type-check then the reasons of the failure are apparent. Last but not least, as compilers are improving,
information gathered from static analysis of a program text may be profitably used by the compiler to
emit efficient executable images: A popular example is the type-based alias analysis[22] used to detect
whether two pointers may alias the same object or not. Template expressions (see §1.4) illustrate
typical uses of the type-system to implement (in library) domain-specific optimizations not available
in common-place compilers.

One feature of symbolic and numeric computations is the ubiquity of parameterized data-types
and algorithms. From a numerical point of view, it is not uncommon (depending on the context) to
perform the same computations with different numerical precisions – that usually implies instantiating
the same algorithm for different numerical data types. From a symbolic perspective, the notion
of polynomial may be defined (and actually used) for any coefficient data type that happens to
meet the ring axioms. Therefore, symbolic computation naturally calls for polymorphism[5] as an
effective programming tool. The C++ programming language[2] supports polymorphic data type

2http://monet.uwaterloo.ca/blitz/
3http://www.acl.lanl.gov/SciTL/
4http://www.lsc.nd.edu/research/mtl/
5http://www.shoup.net/ntl/
6http://calfor.lip6.fr/̃jcf/Software/Gb/index.html
7http://calfor.lip6.fr/̃rouillie/Software/RS/index.html
8Obviously, not all constraints are expressible in the type-system
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and algorithms through class inheritance, virtual functions, template classes and template functions.
Both programming paradigms are not exclusive — as is always the case in C++ with its supported
programming styles — even though the stress on parametric polymorphism is rather recent, compared
to the conventional use of inclusion polymorphism.

Inclusion polymorphism is expressed in C++ through class inheritance. Virtual functions make it
possible for a derived class to override a particular behavior of its base class; the executing environment
will use type-information to select the appropriate function while the program is running. When
that happens, we speak of dynamic binding. Dynamic binding is an extremely flexible mecanism;
it supports modular continuity. That is, using inclusion polymorphism (where appropriate), new
components can be plugged into an existing environment without breaking the overall architecture,
nor rewriting major components. However, inclusion polymorphism may become cumbersome or even
conflicts with situations where value semantics, efficiency and static-type constraints are premium.

The template mechanism is the way the C++ programming language implements parametric
polymorphism. By definition, it is static-checking oriented; the program-translator uses static type
information to generate (or instantiate) program components which, in turn, are integrated into the
program being translated. That means templates are the feature of choice where polymorphism, value
semantics, execution efficiency and static constraints are discriminating criterions. Because templates
operate on two levels (template classes are “type-constructors” and template functions are “function-
constructors”), they embody a form of meta-language which has proven to be handy when it comes to
use the type-system to express constraints, perform compile-time computations, or implement features
(such as lazy evaluation) not directly supported by the language.

1.2 How Do We Find Our Algorithms?

A distinctive feature of the C++ programming language is the ability to name scopes. For a name use
in a C++ program to be valid, it must be first introduced by a declaration. The scope of a declaration
is the totality of the parts of the program text in which the use of the declared name, as an unqualified
name (i.e. a plain identifier), is valid. There are five kinds of scopes in C++:

1. Local scope. A name declared in a block has a local scope. Names with local scope can not be
accessed outside of their declarative regions.

2. Function prototype scope. Any parameter name declared in a function declaration — that is
not also a function definition — has a function prototype scope. Function prototype scopes are
of limited use. They are merely used to convey intentional information about each function-
parameter in a forward declaration.

3. Function scope. No identifier but a label can have a function scope.

4. Class scope. Names declared in class definitions have class scope. The potential scope of a
name declared in a class definition comprises not only the declarative region that contains its
declaration as a member, but also the regions deliminated by the members definitions, functions
definitions inside the class definition, default arguments and constructors initializers.

5. Namespace scope. Names declared outside of any of the above mentioned scopes have namespace
scope; or put differently, a namespace member name has a namespace scope. The potential
scope of a namespace member name starts from its point of declaration in its namespace body
and extends onwards including the potential scope of each using-directive that nominates its
namespace (following its point of declarations), and each of the declarative regions established
by reopening its namespace for extension. The reason for this — seemingly sophisticated but
actually elementary — notion of scope is due to the open nature of namespaces and the powerful
mechanism of name selection and namespace composition (see below).

For the purpose of name-use validation, the program-translator has to make sure that a given
name is used in conformance with the properties specified by its declaration. That, in turn, means
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there ought to be a way of associating a declaration with a name. That process is what we call a name
lookup. In general, a name used in conformant conditions must, in its scope, designate unambiguously
one and only one entity. That means that, in a given scope, name lookup usually finds a single
declaration for a valid name-use. Failure to do so may result in the program being rejected for:

• using undeclared name if the name lookup doesn’t find any declaration matching that of the
looked up name; or

• ambiguity if the name lookup finds multiple different declarations for the same name. As an
exception to this rule, name lookup may find multiple function declarations for the same name.
In that case the name is said to be overloaded; then, if the outcome of the overload resolution
process still consists of multiple declarations, the program is invalid.

Understanding how name lookup works, what rules govern it, is crucial for large libraries and programs
organization; even as a simple user of a third party library one might be affected as well since library
implementors tend to take advantages of name lookup rules in order to provide features not possible
in pre-Standard C++. There are three categories of name lookup rules: unqualified name lookup,
qualified name lookup, and function argument dependent name lookup also known as Koenig lookup.
Before going into the details, let’s mention that name lookup rules apply uniformly to all names and
that the process is ended as soon as a declaration is found in a given scope.

The rules for unqualified name lookup are rather simple. In general, a name shall have a declaration
“in scope” before use (an exception to that general rule is that covered by the Koenig lookup to be
discussed in the next paragraph). For that matter, declarations from namespaces nominated by using-
directives are visible in the namespace enclosing the using-directives. For the name lookup machinery,
names declared in namespaces nominated by using-directives are considered members of the enclosing
namespace. That mechanism is known as namespace composition. Qualified names are used when
a particular scope (a class-scope or namespace-scope) is specified to designate where the program-
translator should look for a name. When the qualified name has the form N::m, where N designates a
namespace, then the set of declarations of m comprises all declarations for m in N and in the transitive
closure of all namespaces nominated by using-directives in N and its used namespaces, except that
using-directives are ignored in any namespace directly containing one or more declaration of m. Since a
using-declaration is a declaration, names brought from foreign namespaces through using-declarations
are considered during qualified name lookup.

All the above rules are fine . . . , except that they miss the way operator overloading process works.
If the above rules were the only available name lookup rules then the following program would fail to
compile

#include <iostream>
#include <string>
int main() {

std::string hello = "Hello, World!"; std::cout << hello << std::endl;
return 0;

}
The reason is that in the expression std::cout << hello, the compiler infers a call for a function
named operator<<, but a declaration for that name cannot be found, starting from the declarative
region of main() body and using ordinary unqualified name lookup rules alone — the required func-
tion actually is defined in the standard namespace std. On the other hand, the (naive) tentative
“std::cout std::<< hello” to specify the scope is no option since that syntax is not valid, and
even if the language were hijacked to allow such a syntax, it won’t really scale. The C++ program-
ming language solves that problem by introducing a third group of lookup rules: When looking up an
unqualified name as a function-name in a function call, namespaces associated with the type of the
arguments are also examinated; in those namespaces the function is looked up as a qualified name
where the qualifier is the associated namespace. Koenig lookup is applicable not only to operator
names but also to any function-name used in an unqualified manner. Concretely, that means that
given the following:
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namespace Our

{
template<typename T> class Matrix { /* ... */ } ;

template<typename T> T frobenius_norm(const Matrix<T>&) { /* ... */ }
}

int main()

{
Our::Matrix<double> m; // ...

double n = frobenius_norm(m); // ...

}

the function Our::frobenius_norm is found by Koenig lookup which considers the namespace Our
associated with the type of the argument m. It is worth restating that Koenig lookup is not applicable
for qualified names, and in its current form it only applies to function-names.

One last word about the wonderful tool that Koenig lookup is: it does not work for built-in types
because the set of their associated namespaces is empty. That is, Koenig lookup works only for
functions whose signatures involve user-defined types (mostly classes). Therefore, some care must be
exercised when relying on argument dependent function name lookup. As an example, consider that
after the definition

namespace Our { template<typename CoeffType> struct Polynomial { /* ... */ }; }

of a parameterized data-type intended to model dense univariate polynomials over some arbitrary
ring, we wanted to implement the height of a polynomial P =

∑
akXk defined as height (P ) =

∑
|ak|.

We assume that there is a function abs() defined over the coefficient ring, having the desirable
properties. Then, a first take would be to write:

template<CoeffType> CoeffType height(const Polynomial<CoeffType>& p)

{
const std::size_t d = degree(p);

CoeffType h = CoeffType();

for (std::size_t i = 0; i <= d; ++i) h += abs(p[i]);

return h;

}

The above works well when instantiated for example with for Your::Integer — assuming a
corresponding function abs() is defined in the domain Your. However it fails when instantiated for
int because there is no associated namespace for built-in types. The conventional way to make the
above work is to bring std::abs into scope either through a using-directive (not recommended) or a
using-declaration (recommended):

template<CoeffType> CoeffType height(const Polynomial<CoeffType>& p)

{
using std::abs; // make sure std::abs() is visible for built-in types

// the rest as above...

}

The act of bringing into a scope a particular name from a foreign namespace through a using-
declaration is sometime referred to as name selection.

1.3 Classes versus Namespaces

We’ve seen in the previous section that there are two kinds of “nommable” scope: class-scope and
namespace-scope. These scopes, while sharing some properties, work in fundamentally different ways.
Whereas namespaces are “open”, classes are “closed”: A namespace can be “re-open” for the purpose
of adding new members but classes can not, once the right-brace terminating their definitions have
been seen. Another distinctive difference is the fact that namespaces cannot be used as template-
arguments whereas classes can. Thus, the decision of using a class or a namespace to implement a
particular instance of scope is usually guided by the intended use.
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The first approach based on class-scope is used for instance in [14], or in [9]. The algorithms are
enclosed in so-called kernels. A kernel is a class, containing other sub-classes representing data or
function-objects or methods operating on these types. The extension of a given kernel is performed
by the derivation of classes, but with some constrains.

In SYNAPS, the second approach based on namespace has been chosen, for its ease extension.
Moreover, using Koenig lookup, this allows us to combine genericity and specialization, exploiting
natural conventions of developments.

1.4 Template expression

Template expressions are type manipulations used to guide the compiler to produce optimized code.
This technique is particularly interesting for some linear algebra operations, where intensive but
independent instructions are performed. We illustrate it on the addition of vectors. Consider for
instance the following instruction: v = v1 + v2 + v3; where v, v1, v2, v3 are vectors (say of
type Vector). A traditional implementation would define the operator Vector operator+(const
Vector & v1, Vector & v2); so that the previous instruction will produce the temporary vector
(say __tmp1) for the addition of v1 and v2, another one (say __tmp2) for the addition of __tmp1 and
v3 and will use the operator Vector & Vector::operator=(const Vector &); to assign v to the
value of __tmp2, using a loop

for(index_type i = 0; i <v.size(); i++) v[i] = __tmp2[i];

In such an implementation, two temporary vectors are allocated and deleted, which is time and
memory consuming, especially if the vectors are of large size.

A more optimized implementation would consist in writing the code

for(index_type i = 0; i <v.size(); i++) v[i] = v1[i] + v2[i] + v3[i];

This code can be generated directly, at compile time, using template expression techniques. Instead
of defining the operator +, as before, we define it with the following prototype:

VAL<Op<’+’,Vector,Vector> > operator+(const Vector & v1, Vector & v2);

where VAL<Op<’+’,Vector,Vector> > is the type of a data-structure which contains references to
the two vectors v1, v2, but which does not compute the sum of this two vectors. The instruc-
tion v1+v2+v3 that we are considering, produces a data of type VAL<Op<’+’, Vector, VAL<Op<’+’,
Vector, Vector> > > >; Now, the assignment v = v1 + v2 + v3; will involve the operator

template<class R> Vector & operator=(const VAL<R> & v)

which is implemented as for(index type i = 0; i <v.size(); i++) (*this)[i] = elem(v,i);.
The key point is that the compiler will expand the call to the inline function elem(v,i) into
v1[i]+v2[i]+v3[i], because the ith element of an element v of type VAL<Op<’+’,...,...> > is the
sum of the ith of its two components. A complete set of arithmetic unevaluated operations is available
in the SYNAPS kernel, namely types of the form OP<c,T1,T2> with c ∈ {’+’,’-’,’*’,’.’,’/’,’%’,’^’}
can be used in the library. Such arithmetic operations will return an unevaluated arithmetic tree and
the computation will be effectively performed only when the assignment operator will be used.

2 The Design

We have distinguished three levels of abstractions: containers attached to domains, modules and
views. The next few pages are devoted to their descriptions.
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2.1 Containers and domains

A container specifies the internal representation of a SYNAPS object. It provides abstractions to
access, scan, create, or transform that concrete representation and thus depends closely on the data-
type being modeled. Containers are implemented as classes (often parameterized by coefficient types
or index types), with few functions so that they can be easily rewritten or extended. These structures
are adapted to the problem they aim to solve. The algorithm will be provided by other classes or
namespaces.

Our approach is in the spirit of the stl library [27], which implements basic structures such as
std::list<>, std::vector<>, std::set<>, std::deque<>, . . . New containers have been added, e.g.
one-dimensional arrays rep1d<C> with generic coefficients, two-dimensional arrays rep2d<C> for dense
matrices . . . Domain-specific implementations, counterpart of the above generic versions, are usually
found in domains (concretely implemented by namespaces). For instance, the container rep1d<C> is
in namespace linalg and the usual way to call it, is:

linalg::rep1d<C> or using linalg::rep1d; rep1d<C>

Similarly, we have defined 2-dimensional containers linalg::rep2d<C> and lapack::rep2d<C>, for
dense matrices. The last container is adapted to the internal representation of dense matrices in
the lapack library, so that calling a subroutine of this library does not require to create new
data. Adapted containers for the manipulations of structured matrices such as Toeplitz matrices
(linalg::toeplitz<C>), Hankel matrices (linalg::hankel<C>) or sparse matrices (linalg::sparse2d<C>)
are also available in the library.

The job of iterating over data-structures is delegated to iterators. For unidimensional containers
such as linalg::rep1d<C>, a usual loop on such a structure can be written as:

for(R::iterator it=V.begin(); it !=V.end(); ++it) *it = ...

On a bidimensional container like linalg::rep2d<C>, an iterator type for the rows and the columns
are also available, namely

R::row_type::iterator; R::col_type::iterator;

In the first case, the iterator scans continuously the memory, but in the second case, it jumps by the
number of rows. Notice that in this case, the types row type and col type are container types, which
just store the addresses of the beginning and end of a memory block and which access to it through
iterators.

Because namespaces are open, using this domain mechanism allows us to add easily specialized
functions, and to use them, in a transparent way, in elaborated algorithms. As we will see, using the
Koenig lookup mechanism described in 1.2, these specialized functions are searched in the domain of
the container, if they exist. Another interesting feature of this approach, is that the functions and
classes provided in a domain, can be compiled separately.

The extension of domains can be performed either by extending the namespace itself or by deriva-
tion of container classes. If we need to add a new function operating on a container, we add it directly
in the domain:

namespace Domain { void new_function(const R & r) { /* ... */ } }

If we need to modify the definition of existing functions, we change the semantic of the container class
A, by deriving a new class

namespace Domain { struct B : public A {...}; }

and by redefining the needed functions of the domain. The specialized functions defined for A and
which apply for B, will also be used through this mechanism.
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2.2 Modules

A module is a collection of generic implementations which apply to a family of objects sharing common
properties (such as vectors, matrices, univariate polynomials, . . . ). They are implemented as names-
paces and thus can be extended easily. For instance in the module (or namespace) VECTOR, we have
gathered generic implementations for vectors, which are independent of the internal representation,
such as Print, Norm, . . .

namespace VECTOR {

template<class V> ostream & Print(ostream & os, const V& v)

{

typename V::const_iterator it =v.begin();

os<<"["<<*it; ++it; for( ; it !=v.end(); ++it) os<<","<< *it; os<<"]";

return os;

}

}

No constraints are imposed on the parameter V of the template function Print. This function can
be applied as soon as a const iterator is available in the class V. Thus, this function can be applied
to a univariate or a even a multivariate polynomial. The output will look like a vector of coefficients
or monomials, but not as is usually printed by a polynomial.

Another interesting feature of the approach, is that namespaces can be combined or extend nat-
urally: namespace UPOLY { using namespace VECTOR; ... } . This yields a great flexibility in
the construction of set of functions which applies for a families of objects.

The main modules of the library are VECTOR, MATRIX, UPOLY (univariate polynomials), MPOLY
(multivariate polynomials).

2.3 Views

The views specify how to manipulate or to see the containers as mathematical objects and provide
operations on the objects which are independent of the container. They are implemented as classes
parameterized by the container type and sometimes by trait classes which precise the implementation.
The only data available in such a class, via the member function rep(), is of container type.

For instance a one-dimensional array of double numbers can be seen as a vector, using the type

VectDse<double,linalg::rep1d<double> >

For convenience, using the facility of default template arguments, this is equivalent to the type
VectDse<double>. Among the operations defined in this class, we have for example, the vector opera-
tors +=, -=, +, - and the scalar multiplications *, *=. But such an array can also be viewed as a uni-
variate polynomial. In this case, we will define the following type : UPolDse<double,linalg::rep1d<double>
> , which extends the operations given in VectDse<double,linalg::rep1d<double> > by adding the
polynomial multiplication operators *=, * and changing the output operator. The implementations
of these views are searched in a module In the first case, it will be the module VECTOR and in the
second case UPOLY, as it is illustrated below:

template <class C, class R>

UPolDse<C,R> operator*(const UPolDse<C,R> & v1, const UPolDse<C,R> & v2)

{

UPolDse<C,R> w(Degree(v1)+Degree(v2)+1,AsSize());

using namespace UPOLY; mul(w.rep(),v1.rep(),v2.rep());

return W;

}

The generic implementation of the function mul will be searched in the namespace UPOLY. This
one is the naive implementation, which applies for all direct-access containers and which uses index
loops. Such an approach allows genericity but also specialization as we illustrate now. In the case,
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for instance, where the container of type Domain::R is adapted to the use of an external library and
where the multiplication has already been implemented there, the connection of this multiplication
function in the frame work can be done very easily. Indeed, we just have to define the function mul
in the domain Domain:

namespace Domain { void mul(R & s, const R & r1, const R & r2); }

This is the scheme that has been used to connect the external libraries lapack, gmp, superlu, . . . .
Here are the main examples of view classes that are implemented in the current version of the li-

brary, R standing for the container type: VectDse<C,R> (standard vectors), MatrDse<C,R> (dense ma-
trices), MatrStr<C,R> (structured matrices), MatSparse<R> (sparse matrices), UPolDse<C,R> (dense
univariate polynomials), UPolQuot<R> (quotiented univariate polynomials), Monom<C,E> (monomials
with coefficients in C and exponents in E), MPoly<C,O,R> (multivariate polynomials where O defines
the order on the monomials).

Separating the internal representation from the algorithms, is the key step to construct easily views
of sub-objects. Imagine for instance, that we want to assign the subvector of indices 1, 2, 3 of W to the
sum of two vectors W1, W2:

VectDse<double> V(5,"1 2 3 4"), W1(3,"0 1 0"), W2(3,"1 0 0");
V[Range(1,3)]=W1+W2;

This mechanism is working, thanks to the generic view of the VectDse and the specification of the
construction V[Range(1,3)]. That construct returns a view VectDse, with a container sharing data
with V. Now, the assignment instruction corresponds to the member function

template<class S> VectDse<C,R> VectDse<C,R>::operator=(const VAL<S> & w)

which knows how to assign a vector to another, once the direct-access operators are available. The
actual expansion of this code produced by the compiler corresponds to the following loop:

for(unsigned i=0; i<2;++i) V[1+i]=W1[i]+W2[i];

2.4 Large Objects Management: Copy On Write

Because objects management in the C++ programming language defaults to value semantics, we
have to take explicit actions to avoid copying large objects — the time spent in copying large ob-
jects may be shown to be non negligible under usual circumstances. A popular way to solve that
memory management problem is to use reference counting[20] coupled with a copy-on-write strategy.
Concretely, each object (of type VectDse, MatrDse, MatrStr, MatrSps, UPolDse or MPol, used as
template-arguments for our containers) is attached with a counter whose purpose is to keep track of
the number of references to its associated object. An assignment to a new object will increment the
counter and copy the actual data’s address. A modification of the shared object will induce a copy
of the data leading to a new shared object with counter 0. The object’s destructor either decrements
the counter (if it is positive) or else effectively destroys the data, thereby freeing its storage. The
overall scheme is implemented by the class shared object<R>. Therefore, returning such objects
by value in a function as in VectDse<C,R> F(...) { VectDse<C,R> W; ... ; return W; } does
not incure a performance penalty. Indeed a copy and destruction of W, will in this case just increment
or decrement a counter.

3 The algorithms

We describe briefly the algorithms, which are available in the current distribution. This one, still in
progress, is distributed via a cvs9 server and by ftp10.

9cvs -d :pserver:cvs@cvs-sop.inria.fr/CVS/galaad co synaps
10wget http://www-sop.inria.fr/galaad/logiciels/synaps.tgz
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Input/output: Streams for outputting objects in maple and latex format are available. An output
stream for vrml format is under construction as well as a connection to povray. The tool for Inter
Process Communication called UDX and developed by F. Rouillier is also linked to the environment.

Arithmetic: The extended arithmetic classes are based on the GMP and MPFR libraries, and cor-
respond to the predefined types ZZ, QQ, RR, RRR, CC. A simple implementation of modular numbers
is also available in the class Z<p>.

Linear algebra: Basic linear algebra operations such as LU, QR, Bareiss decomposition, deter-
minant, svd, rank, eigenvalues and eigenvectors computations, FFT are available, either using the
lapack routines for double number type or generic ones. In particular, the implementation of struc-
tured LU decomposition of sparse matrices [11] developed by J. Demmel, J.R. Gilbert and X.S. Li, in
C for float and double number types has been extended to generic coefficients.

Resultants: A package devoted to resultant constructions including the Sylvester and Bezout ma-
trices for univariate polynomials, the Macaulay, Bezoutian, Toric (integrating the C-library developed
by I. Emiris) formulations for multivariate polynomials [17], [15], [18].

Solvers: Regarding solvers for univariate polynomials, we implement subdivision methods based on
Bezier representation and Descartes rule, or on exclusion functions, iterative methods such as Sebastio
a Sylva method [7]. The solver mpsolve developed by D. Bini and G. Firorentino is also connected
to the environment. For multivariate polynomials, resultant based solvers, hiding a variable are also
available. The algorithm [24, 25, 26] for solving zero-dimensional ideals, which computes first a normal
form and then the eigenvalues or eigenvectors of the induced matrices of multiplications is implemented
and illustrated in the next section. The extension of Weierstrass method [28] to the multivariate case
is under implementation.

Geometry: A package on algebraic curves and surfaces is also under constructions, including tools
for intersecting them, computing their topology or drawing them.

4 An example

We have already shown in experimentations repported for instance in [25], that genericity is compatible
with efficiency. We can push further this reasonning: genericity is in fact a matter of performance.
Indeed as the code is not attached to any particuliar implementation of the containers, it is possible
to change them to use the most efficient implementation aviable without any code rewriting. For
example, in [25] we describe an algorithm that computes a normal form system for a projective
complete intersection with no zeroes at infinity. And we emphasize on the effective solving of systems
comming for real world applications, thus drawing the attention on two main needs in terms of linear
algebra:

• Fast Sparse LU-decomposition.

• Fast and Robust eigenvectors computations.

The SYNAPS framework allows us to use specialized implementations for these two points, namely
SuperLU [11] and LAPACK [1]. Here are the results we obtained when dealing with the Katsura
equations case (n is the number of variable) on an PIII 933MHz and using the double precision
floating point arithmetic:

n time normal forms time eigenvectors Max(|fi|)
4 0.01s 0.01s 10−13

5 0.02s 0.02s 10−10

6 0.13s 0.11s 10−8

7 0.54s 2.33s 10−8
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During the normal form computations, it is the SuperLU library which is used and then LAPACK is
called for the eigenvectors computation. The so tremendous gap between n = 6 and n = 7 is due to
cache miss. Beyond n = 7 the matrices used for eigenvectors computations do not fit entirely in the
cache. Furthermore we did a port of SuperLU in C++ using the template paradigms with respect to
the type of coefficients. This allowed us to use the very efficient SuperLU algorithm regardless to the
type of our coefficients. Using modular arithmetic we treated the same family of equations.

n 4 5 6 7 10 11
time 0.01s 0.05s 0.17s 0.95s 256.81s 1412s

Of course we are not limited to modular arithmetic. For example the GMP link allows us to use GMP
rational or GMP float number types.
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