/* $NetBSD: t_cos.c,v 1.9 2019/05/27 00:10:36 maya Exp $ */ /*- * Copyright (c) 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jukka Ruohonen. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include static const struct { int angle; double x; double y; float fy; } angles[] = { { -180, -3.141592653589793, -1.0000000000000000, 999 }, { -135, -2.356194490192345, -0.7071067811865476, 999 }, { -90, -1.5707963267948966, 6.123233995736766e-17, -4.3711388e-08 }, { -90, -1.5707963267948968, -1.6081226496766366e-16, -4.3711388e-08 }, { -45, -0.785398163397448, 0.7071067811865478, 999 }, { 0, 0.000000000000000, 1.0000000000000000, 999 }, { 30, 0.523598775598299, 0.8660254037844386, 999 }, { 45, 0.785398163397448, 0.7071067811865478, 999 }, { 60, 1.0471975511965976, 0.5000000000000001, 999 }, { 60, 1.0471975511965979, 0.4999999999999999, 999 }, { 90, 1.570796326794897, -3.8285686989269494e-16, -4.3711388e-08 }, { 120, 2.0943951023931953, -0.4999999999999998, 999 }, { 120, 2.0943951023931957, -0.5000000000000002, 999 }, { 135, 2.356194490192345, -0.7071067811865476, 999 }, { 150, 2.617993877991494, -0.8660254037844386, 999 }, { 180, 3.141592653589793, -1.0000000000000000, 999 }, { 270, 4.712388980384690, -1.8369701987210297e-16, 1.1924881e-08 }, { 360, 6.283185307179586, 1.0000000000000000, 999 }, }; #ifdef __HAVE_LONG_DOUBLE /* * cosl(3) */ ATF_TC(cosl_angles); ATF_TC_HEAD(cosl_angles, tc) { atf_tc_set_md_var(tc, "descr", "Test some selected angles"); } ATF_TC_BODY(cosl_angles, tc) { /* * XXX The given data is for double, so take that * into account and expect less precise results.. */ const long double eps = DBL_EPSILON; size_t i; for (i = 0; i < __arraycount(angles); i++) { int deg = angles[i].angle; long double theta = angles[i].x; long double cos_theta = angles[i].y; assert(cos_theta != 0); if (!(fabsl((cosl(theta) - cos_theta)/cos_theta) <= eps)) { atf_tc_fail_nonfatal("cos(%d deg = %.17Lg) = %.17Lg" " != %.17Lg", deg, theta, cosl(theta), cos_theta); } } } ATF_TC(cosl_nan); ATF_TC_HEAD(cosl_nan, tc) { atf_tc_set_md_var(tc, "descr", "Test cosl(NaN) == NaN"); } ATF_TC_BODY(cosl_nan, tc) { const long double x = 0.0L / 0.0L; ATF_CHECK(isnan(x) != 0); ATF_CHECK(isnan(cosl(x)) != 0); } ATF_TC(cosl_inf_neg); ATF_TC_HEAD(cosl_inf_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cosl(-Inf) == NaN"); } ATF_TC_BODY(cosl_inf_neg, tc) { const long double x = -1.0L / 0.0L; ATF_CHECK(isnan(cosl(x)) != 0); } ATF_TC(cosl_inf_pos); ATF_TC_HEAD(cosl_inf_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cosl(+Inf) == NaN"); } ATF_TC_BODY(cosl_inf_pos, tc) { const long double x = 1.0L / 0.0L; ATF_CHECK(isnan(cosl(x)) != 0); } ATF_TC(cosl_zero_neg); ATF_TC_HEAD(cosl_zero_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cosl(-0.0) == 1.0"); } ATF_TC_BODY(cosl_zero_neg, tc) { const long double x = -0.0L; ATF_CHECK(cosl(x) == 1.0); } ATF_TC(cosl_zero_pos); ATF_TC_HEAD(cosl_zero_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cosl(+0.0) == 1.0"); } ATF_TC_BODY(cosl_zero_pos, tc) { const long double x = 0.0L; ATF_CHECK(cosl(x) == 1.0); } #endif /* * cos(3) */ ATF_TC(cos_angles); ATF_TC_HEAD(cos_angles, tc) { atf_tc_set_md_var(tc, "descr", "Test some selected angles"); } ATF_TC_BODY(cos_angles, tc) { const double eps = DBL_EPSILON; size_t i; for (i = 0; i < __arraycount(angles); i++) { int deg = angles[i].angle; double theta = angles[i].x; double cos_theta = angles[i].y; assert(cos_theta != 0); if (!(fabs((cos(theta) - cos_theta)/cos_theta) <= eps)) { atf_tc_fail_nonfatal("cos(%d deg = %.17g) = %.17g" " != %.17g", deg, theta, cos(theta), cos_theta); } } } ATF_TC(cos_nan); ATF_TC_HEAD(cos_nan, tc) { atf_tc_set_md_var(tc, "descr", "Test cos(NaN) == NaN"); } ATF_TC_BODY(cos_nan, tc) { const double x = 0.0L / 0.0L; ATF_CHECK(isnan(x) != 0); ATF_CHECK(isnan(cos(x)) != 0); } ATF_TC(cos_inf_neg); ATF_TC_HEAD(cos_inf_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cos(-Inf) == NaN"); } ATF_TC_BODY(cos_inf_neg, tc) { const double x = -1.0L / 0.0L; ATF_CHECK(isnan(cos(x)) != 0); } ATF_TC(cos_inf_pos); ATF_TC_HEAD(cos_inf_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cos(+Inf) == NaN"); } ATF_TC_BODY(cos_inf_pos, tc) { const double x = 1.0L / 0.0L; ATF_CHECK(isnan(cos(x)) != 0); } ATF_TC(cos_zero_neg); ATF_TC_HEAD(cos_zero_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cos(-0.0) == 1.0"); } ATF_TC_BODY(cos_zero_neg, tc) { const double x = -0.0L; ATF_CHECK(cos(x) == 1.0); } ATF_TC(cos_zero_pos); ATF_TC_HEAD(cos_zero_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cos(+0.0) == 1.0"); } ATF_TC_BODY(cos_zero_pos, tc) { const double x = 0.0L; ATF_CHECK(cos(x) == 1.0); } /* * cosf(3) */ ATF_TC(cosf_angles); ATF_TC_HEAD(cosf_angles, tc) { atf_tc_set_md_var(tc, "descr", "Test some selected angles"); } ATF_TC_BODY(cosf_angles, tc) { const float eps = FLT_EPSILON; size_t i; for (i = 0; i < __arraycount(angles); i++) { int deg = angles[i].angle; float theta = angles[i].x; float cos_theta = angles[i].fy; /* * Force rounding to float even if FLT_EVAL_METHOD=2, * as is the case on i386. * * The volatile should not be necessary, by C99 Sec. * 5.2.4.2.2. para. 8 on p. 24 which specifies that * assignment and cast remove all extra range and precision, * but seems to be needed to work around a compiler bug. */ volatile float result = cosf(theta); if (cos_theta == 999) cos_theta = angles[i].y; assert(cos_theta != 0); if (!(fabsf((result - cos_theta)/cos_theta) <= eps)) { atf_tc_fail_nonfatal("cosf(%d deg = %.8g) = %.8g" " != %.8g", deg, theta, result, cos_theta); } } } ATF_TC(cosf_nan); ATF_TC_HEAD(cosf_nan, tc) { atf_tc_set_md_var(tc, "descr", "Test cosf(NaN) == NaN"); } ATF_TC_BODY(cosf_nan, tc) { const float x = 0.0L / 0.0L; ATF_CHECK(isnan(x) != 0); ATF_CHECK(isnan(cosf(x)) != 0); } ATF_TC(cosf_inf_neg); ATF_TC_HEAD(cosf_inf_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cosf(-Inf) == NaN"); } ATF_TC_BODY(cosf_inf_neg, tc) { const float x = -1.0L / 0.0L; if (isnan(cosf(x)) == 0) { atf_tc_expect_fail("PR lib/45362"); atf_tc_fail("cosf(-Inf) != NaN"); } } ATF_TC(cosf_inf_pos); ATF_TC_HEAD(cosf_inf_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cosf(+Inf) == NaN"); } ATF_TC_BODY(cosf_inf_pos, tc) { const float x = 1.0L / 0.0L; if (isnan(cosf(x)) == 0) { atf_tc_expect_fail("PR lib/45362"); atf_tc_fail("cosf(+Inf) != NaN"); } } ATF_TC(cosf_zero_neg); ATF_TC_HEAD(cosf_zero_neg, tc) { atf_tc_set_md_var(tc, "descr", "Test cosf(-0.0) == 1.0"); } ATF_TC_BODY(cosf_zero_neg, tc) { const float x = -0.0L; ATF_CHECK(cosf(x) == 1.0); } ATF_TC(cosf_zero_pos); ATF_TC_HEAD(cosf_zero_pos, tc) { atf_tc_set_md_var(tc, "descr", "Test cosf(+0.0) == 1.0"); } ATF_TC_BODY(cosf_zero_pos, tc) { const float x = 0.0L; ATF_CHECK(cosf(x) == 1.0); } ATF_TP_ADD_TCS(tp) { #ifdef __HAVE_LONG_DOUBLE ATF_TP_ADD_TC(tp, cosl_angles); ATF_TP_ADD_TC(tp, cosl_nan); ATF_TP_ADD_TC(tp, cosl_inf_neg); ATF_TP_ADD_TC(tp, cosl_inf_pos); ATF_TP_ADD_TC(tp, cosl_zero_neg); ATF_TP_ADD_TC(tp, cosl_zero_pos); #endif ATF_TP_ADD_TC(tp, cos_angles); ATF_TP_ADD_TC(tp, cos_nan); ATF_TP_ADD_TC(tp, cos_inf_neg); ATF_TP_ADD_TC(tp, cos_inf_pos); ATF_TP_ADD_TC(tp, cos_zero_neg); ATF_TP_ADD_TC(tp, cos_zero_pos); ATF_TP_ADD_TC(tp, cosf_angles); ATF_TP_ADD_TC(tp, cosf_nan); ATF_TP_ADD_TC(tp, cosf_inf_neg); ATF_TP_ADD_TC(tp, cosf_inf_pos); ATF_TP_ADD_TC(tp, cosf_zero_neg); ATF_TP_ADD_TC(tp, cosf_zero_pos); return atf_no_error(); }