/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.ec; import sun.security.ec.point.*; import sun.security.util.ArrayUtil; import sun.security.util.math.*; import static sun.security.ec.ECOperations.IntermediateValueException; import java.security.ProviderException; import java.security.spec.*; import java.util.Optional; public class ECDSAOperations { public static class Seed { private final byte[] seedValue; public Seed(byte[] seedValue) { this.seedValue = seedValue; } public byte[] getSeedValue() { return seedValue; } } public static class Nonce { private final byte[] nonceValue; public Nonce(byte[] nonceValue) { this.nonceValue = nonceValue; } public byte[] getNonceValue() { return nonceValue; } } private final ECOperations ecOps; private final AffinePoint basePoint; public ECDSAOperations(ECOperations ecOps, ECPoint basePoint) { this.ecOps = ecOps; this.basePoint = toAffinePoint(basePoint, ecOps.getField()); } public ECOperations getEcOperations() { return ecOps; } public AffinePoint basePointMultiply(byte[] scalar) { return ecOps.multiply(basePoint, scalar).asAffine(); } public static AffinePoint toAffinePoint(ECPoint point, IntegerFieldModuloP field) { ImmutableIntegerModuloP affineX = field.getElement(point.getAffineX()); ImmutableIntegerModuloP affineY = field.getElement(point.getAffineY()); return new AffinePoint(affineX, affineY); } public static Optional forParameters(ECParameterSpec ecParams) { Optional curveOps = ECOperations.forParameters(ecParams); return curveOps.map( ops -> new ECDSAOperations(ops, ecParams.getGenerator()) ); } /** * * Sign a digest using the provided private key and seed. * IMPORTANT: The private key is a scalar represented using a * little-endian byte array. This is backwards from the conventional * representation in ECDSA. The routines that produce and consume this * value uses little-endian, so this deviation from convention removes * the requirement to swap the byte order. The returned signature is in * the conventional byte order. * * @param privateKey the private key scalar as a little-endian byte array * @param digest the digest to be signed * @param seed the seed that will be used to produce the nonce. This object * should contain an array that is at least 64 bits longer than * the number of bits required to represent the group order. * @return the ECDSA signature value * @throws IntermediateValueException if the signature cannot be produced * due to an unacceptable intermediate or final value. If this * exception is thrown, then the caller should discard the nonnce and * try again with an entirely new nonce value. */ public byte[] signDigest(byte[] privateKey, byte[] digest, Seed seed) throws IntermediateValueException { byte[] nonceArr = ecOps.seedToScalar(seed.getSeedValue()); Nonce nonce = new Nonce(nonceArr); return signDigest(privateKey, digest, nonce); } /** * * Sign a digest using the provided private key and nonce. * IMPORTANT: The private key and nonce are scalars represented by a * little-endian byte array. This is backwards from the conventional * representation in ECDSA. The routines that produce and consume these * values use little-endian, so this deviation from convention removes * the requirement to swap the byte order. The returned signature is in * the conventional byte order. * * @param privateKey the private key scalar as a little-endian byte array * @param digest the digest to be signed * @param nonce the nonce object containing a little-endian scalar value. * @return the ECDSA signature value * @throws IntermediateValueException if the signature cannot be produced * due to an unacceptable intermediate or final value. If this * exception is thrown, then the caller should discard the nonnce and * try again with an entirely new nonce value. */ public byte[] signDigest(byte[] privateKey, byte[] digest, Nonce nonce) throws IntermediateValueException { IntegerFieldModuloP orderField = ecOps.getOrderField(); int orderBits = orderField.getSize().bitLength(); if (orderBits % 8 != 0 && orderBits < digest.length * 8) { // This implementation does not support truncating digests to // a length that is not a multiple of 8. throw new ProviderException("Invalid digest length"); } byte[] k = nonce.getNonceValue(); // check nonce length int length = (orderField.getSize().bitLength() + 7) / 8; if (k.length != length) { throw new ProviderException("Incorrect nonce length"); } MutablePoint R = ecOps.multiply(basePoint, k); IntegerModuloP r = R.asAffine().getX(); // put r into the correct field by fully reducing to an array byte[] temp = new byte[length]; r.asByteArray(temp); r = orderField.getElement(temp); // store r in result r.asByteArray(temp); byte[] result = new byte[2 * length]; ArrayUtil.reverse(temp); System.arraycopy(temp, 0, result, 0, length); // compare r to 0 if (ECOperations.allZero(temp)) { throw new IntermediateValueException(); } IntegerModuloP dU = orderField.getElement(privateKey); int lengthE = Math.min(length, digest.length); byte[] E = new byte[lengthE]; System.arraycopy(digest, 0, E, 0, lengthE); ArrayUtil.reverse(E); IntegerModuloP e = orderField.getElement(E); IntegerModuloP kElem = orderField.getElement(k); IntegerModuloP kInv = kElem.multiplicativeInverse(); MutableIntegerModuloP s = r.mutable(); s.setProduct(dU).setSum(e).setProduct(kInv); // store s in result s.asByteArray(temp); ArrayUtil.reverse(temp); System.arraycopy(temp, 0, result, length, length); // compare s to 0 if (ECOperations.allZero(temp)) { throw new IntermediateValueException(); } return result; } }