Python/C API Reference Manual
Release 1.5.1

Guido van Rossum

August 6, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

This manual documents the API used by C (drt{programmers who want to write extension modules or embed
Python. It is a companion tBxtending and Embedding the Python Interpretenich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

1 Introduction 1
1.1 Include Files. e e 1
1.2 Objects, Typesand Reference Counts ittt 1
1.3 EXCEPLiONS. o e e e e e 5
1.4 Embedding Python e 7

2 The Very High Level Layer 9

3 Reference Counting 11

4 Exception Handling 13
4.1 Standard EXCeptions e e e 15

5 Utilities 17
5.1 OSULIIItIES. . . . o o o e e e e e 17
5.2 Process Control. e e e 17
5.3 Importing Modules e e e 17

6 Abstract Objects Layer 21
6.1 ObjectProtocol e 21
6.2 Number Protocol e 23
6.3 Sequence Protocal e 24
6.4 Mapping Protocol. 25
6.5 CONSHIUCIOIS. o o e e e e e e 26

7 Concrete Objects Layer 27
7.1 Fundamental Objects. e 27
7.2 Sequence ODJeCES. 27
7.3 Mapping Objects L e 30
7.4 Numeric ObJeCtS. e e e e e 31
7.5 OtherObjects e e e 33

8 Initialization, Finalization, and Threads 35
8.1 Thread State and the Global InterpreterLack 38

9 Defining New Object Types 43

10 Debugging 45

Index 47

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &xtetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward that writing an extension. Python 1.5
introduces a number of new API functions as well as some changes to the build process that make embedding much
simpler. This manual describes the 1.5.1 state of affairs.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> , <string.h> , <errno.h> , and
<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or ‘ _Py’. Names beginning with_‘Py’ are for internal use only. Structure member names do not have
a reserved prefix.

Important: user code should never define hames that begin Ath 6r ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bfypgect * . This type

is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is
only fitting that they should be represented by a single C type. All Python objects live on the heap: you never declare
an automatic or static variable of typgObject , only pointer variables of typByObject * can be declared.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explainéyithoneReference
Manual)). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a)’ is true iff the object pointed to bg is a Python list.

Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that”.)

Reference counts are always manipulated explicitly. The normal way is to use thePya¢dCREF() to increment

an object’s reference count by one, @yd DECREF() to decrement it by one. The decref macro is considerably more
complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’s
deallocator, which is a function pointer contained in the object’s type structure. The type-specific deallocator takes
care of decrementing the reference counts for other objects contained in the object, and so on, if this is a compound
object type such as a list. There’s no chance that the reference count can overflow; at least as many bits are used to
hold the reference count as there are distinct memory locations in virtual memory (assimaiviglong) >=

sizeof(char *)). Thus, the reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnrDECREF(),

so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginBy@itdject ',
‘PyNumber_’, ‘ PySequence _’ or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility taPRgalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best expelained in teomsership of references

Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is

2 Chapter 1. Introduction

said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setitem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create th€liu@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below anyway):

PyObiject *t;

t = PyTuple_New(3);

PyTuple_Setitem(t, 0, PyInt_FromLong(1L));
PyTuple_Setitem(t, 1, PyInt_FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString(“three"));

Incidentally, PyTuple _Setltem() is theonly way to set tuple itemsPySequence _Setltem() and Py-
Object _Setltem() refuse to do this since tuples are an immutable data type. You should onlyydse
ple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *I, *x;

| = PyList_New(3);

X = PyInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = Pyint_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
X = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fuistioBuildValue() , that can

create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

PyObject *t, *I;

t = Py_BuildVvalue("(iis)", 1, 2, "three");
| = Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

1.2. Objects, Types and Reference Counts 3

int set_all(PyObject *target, PyObject *item)

{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (i.e., the caller becomes

the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumagdi.e., the type of the type of the object passed as an argument to the furdiiest)'t enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usitygsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , once usind®?ySequence _Getltem()

long sum_list(PyObject *list)

{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can't fail */
if (!Pylnt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

4 Chapter 1. Introduction

long sum_sequence(PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyObject_Size(list);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(list, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int ,long , double andchar * . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type. These will be discussed together with the functions
that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, till they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULL or -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fiy&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Bygr _SetString()

is the most common (though not the most general) function to set the exception sta®gEand Clear() clears

the exception state.

The full exception state consists of three objects (all of which caNUBEL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Pythasysbject _type ,

sys.exc _value ,sys.exc _traceback ; however, they are not the same: the Python objects represent the last
exception being handled by a Pythtty ... except statement, while the C level exception state only exists while

an exception is being passed on between C functions until it reaches the Python interpreter, which takes care of trans-
ferring it tosys.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is

1.3. Exceptions 5

to call the functionsys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and returns an error indicator, but it shawdtset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsaorthesequence() example above.

It so happens that that example doesn'’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (item == NULL) {
[* Handle KeyError only: */
if ('PyErr_ExceptionMatches(PyExc_KeyError)) goto error;

[* Clear the error and use zero: */
PyErr_Clear();
item = Pyint_FromLong(OL);
if (tem == NULL) goto error;
}

const_one = Pyint_FromLong(1L);
if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
[* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of gbto statement in C! It illustrates the use dy-

Err _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNigLL (note the X' in the name;Py_DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function iRy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin ~ __, __main __ andsys . It also initializes the module search padlyg.path).
Py _Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code

1.4. Embedding Python 7

that will be executed later, it must be set explicitly with a calPySys _SetArgv(argc, argv) subsequent to the
call to Py_Initialize()

On most systems (in particular, on NiX and Windows, although the details are slightly different),
Py_lnitialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory naniiegbython1.5’ (replacing ‘1.5’ with the current in-
terpreter version) relative to the parent directory where the executable ngyitenh® is found on the shell command
search path (the environment variable $PATH).

For instance, if the Python executable is found /msr/local/bin/python’, it will assume that the libraries are in
‘lusr/localllib/python1.5’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along $PATH.) The user can override this behavior by setting the environment variable
$PYTHONHOME, or insert additional directories in front of the standard path by setting $SPYTHONPATH.

The embedding application can steer the search by callygSetProgramName(file) before calling

Py _Initialize() . Note that SPYTHONHOME still overrides this and $PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , Py_GetProgramFullPath() (all defined

in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy_lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by calggFinalize() . The functionPy _lIsInitialized()

returns true iff Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

int PyRun_AnyFile (FILE *fp, char *filenamé

int PyRun_SimpleString (char *commanjl

int PyRun_SimpleFile (FILE *fp, char *filenam@

int PyRun_InteractiveOne (FILE *fp, char *filename¢

int PyRun_lInteractiveLoop (FILE *fp, char *filenameg

struct _node* PyParser _SimpleParseString (char *str, int starf

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int staft

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *lochls
PyObject* Py_CompileString (char *str, char *filename, int stajt

10

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREHR PyObject *9
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

void Py_XINCREHK PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

void Py_DECREFPyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a__del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

void Py_XDECREFPyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asiRy_DECREF(), and the same warning applies.

The following functions or macros are only for internal usePy_Dealloc() , _Py_ForgetReference())
_Py_NewReference() , as well as the global variablePy RefTotal

XXX Should mention PyMalloc(), Py Realloc(), PyFree()) PyMemMalloc(), PyMem Realloc(),
PyMem_Free(), PyMemNEW(), PyMem_RESIZE(), PyMem DEL(), PyMem_XDELY().

11

12

CHAPTER
FOUR

Exception Handling

The functions in this chapter will let you handle and raise Python exceptions. It is important to understand some of
the basics of Python exception handling. It works somewhat like thix @rrno variable: there is a global indicator

(per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate the
cause of the error on failure. Most functions also return an error indicator, udildlly if they are supposed to return

a pointer, or1 if they return an integer (exception: tRyArg _Parse*() functions returrl for success an@ for

failure). When a function must fail because some function it called failed, it generally doesn’t set the error indicator;

the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vasgblesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErr _Print ()
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Test whether the error indicator is set. If set, return the excepyioa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not own a
reference to the return value, so you do not neeeifaDECREF() it. Note: do not compare the return value
to a specific exception; usgyErr _ExceptionMatches() instead, shown below.

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq . This should only be
called when an exception is actually set.

int PyErr _GivenExceptionMatches (PyObiject *given, PyObject *eXc
Return true if thegivenexception matches the exceptionerc If excis a class object, this also returns true
whengivenis a subclass. Iéxcis a tuple, all exceptions in the tuple (and recursively in subtuples) are searched
for a match. This should only be called when an exception is actually set.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returndeyiyrr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tlULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may N&JLL even when the type object is noWote: this function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator

13

temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pasdldLL type and norNULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object, i.e. you must own a reference to each object before the call and after the call
you no longer own these references. (If you don’t understand this, don’t use this function. | warneldgteu.)

this function is normally only used by code that needs to save and restore the error indicator temporarily.

void PyErmr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr _SetObject (PyObject *type, PyObject *valge
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception. You need not increment its reference count.

void PyErr _SetNone (PyObject *typg
This is a shorthand foPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagge’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
This is a shorthand foPyErr _SetNone(PyExc _MemoryError) ;itreturnsNULLso an object allocation
function can writefeturn PyErr _NoMemory(); ’when it runs out of memory.

PyObject* PyErr _SetFromErrno (PyObject *typé
This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the intesyeno value and whose second item
is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type
objec) . On UNIX, when theerrno value isEINTR, indicating an interrupted system call, this cdhg-
Err _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wrigéurn PyErr _SetFromErrno(); ' when
the system call returns an error.

void PyErr _BadinternalCall 0

This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr _CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect3tBINT is to raise theKeyboadinterrupt
exception. If an exception is raised the error indicator is set and the function rétuntiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

void PyErr _Setinterrupt 0
This function is obsolete (XXX or platform dependent?). It simulates the effecB0GENT signal arriving —
the next timePyErr _CheckSignals() is called,KeyboadInterrupt will be raised.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict
This utility function creates and returns a new exception object. riEmeeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normalljULL
Normally, this creates a class object derived from the