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Preface 1

Preface

Early in 1998, T wanted an AVL tree library for use in writing GNU PSPP. At the time,
few of these were available on the Internet. Those that were had licenses that were not
entirely satisfactory for inclusion in GNU software. I resolved to write my own. I sat down
with Knuth’s The Art of Computer Programming and did so. The result was the earliest
version of LIBAVL. As I wrote it, I learned valuable lessons about implementing algorithms
for binary search trees, and covered many notebook pages with scribbled diagrams.

Later, I decided that what I really wanted was a similar library for threaded AVL trees,
so I added an implementation to LIBAVL. Along the way, I ended up having to relearn
many of the lessons I'd already painstakingly uncovered in my earlier work. Even later, I
had much the same experience in writing code for right-threaded AVL trees and red-black
trees, which was done as much for my own education as any intention of using the code in
real software.

In late 1999, T contributed a chapter on binary search trees and balanced trees to a
book on programming in C. This again required a good deal of duplication of effort as I
rediscovered old techniques. By now I was beginning to see the pattern, so I decided to
document once and for all the algorithms I had chosen and the tradeoffs I had made. Along
the way, the project expanded in scope several times.

You are looking at the results. I hope you find that it is as useful for reading and reference
as I found that writing it was enjoyable for me. As I wrote later chapters, I referred less
and less to my other reference books and more and more to my own earlier chapters, so I
already know that it can come in handy for me.

Please feel free to copy and distribute this book, in accordance with the license agree-
ment. If you make multiple printed copies, consider contacting me by email first to check
whether there are any late-breaking corrections or new editions in the pipeline.

Acknowledgements

LiBAVL has grown into its current state over a period of years. During that time,
many people have contributed advice, bug reports, and occasional code fragments. I have
attempted to individually acknowledge all of these people, along with their contributions,
in the ‘NEWS’ and ‘ChangeLog’ files included with the LIBAVL source distribution. Without
their help, LIBAVL would not be what it is today. If you believe that you should be listed
in one of these files, but are not, please contact me.

Many people have indirectly contributed by providing computer science background and
software infrastructure, without which LIBAVL would not have been possible at all. For a
partial list, please see ‘THANKS’ in the LIBAVL source distribution.

Special thanks are due to Erik Goodman of the A. H. Case Center for Computer-Aided
Engineering and Manufacturing at Michigan State University for making it possible for me
to receive MSU honors credit for rewriting LIBAVL as a literate program, and to Dann
Corbit for his invaluable suggestions during development.
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Contacting the Author

LiBAVL, including this book, the source code, the TexiWEB software, and related pro-
grams, was written by Ben Pfaff, who welcomes your feedback. Please send LIBAVL-
related correspondence, including bug reports and suggestions for improvement, to him
at blp@gnu.org.

Ben received his B.S. in electrical engineering from Michigan State University in May
2001. He is now studying for a Ph.D. in computer science at Stanford University as a
Stanford Graduate Fellow.

Ben’s personal webpage is at http://benpfaff.org/, where you can find a list of his
current projects, including the status of LIBAVL test releases. You can also find him hanging
out in the Internet newsgroup comp.lang.c.
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1 Introduction

LiBAVL is a library in ANSI C for manipulation of various types of binary trees. This

book provides an introduction to binary tree techniques and presents all of LIBAVL’s source
code, along with annotations and exercises for the reader. It also includes practical infor-
mation on how to use LIBAVL in your programs and discussion of the larger issues of how
to choose efficient data structures and libraries. The book concludes with suggestions for
further reading, answers to all the exercises, glossary, and index.

1.1 Audience

This book is intended both for novices interested in finding out about binary search trees

and practicing programmers looking for a cookbook of algorithms. It has several features
that will be appreciated by both groups:

Tested code: With the exception of code presented as counterexamples, which are
clearly marked, all code presented has been tested. Most code comes with a working
program for testing or demonstrating it.

No pseudo-code: Pseudo-code can be confusing, so it is not used.

Motivation: An important goal is to demonstrate general methods for programming,
not just the particular algorithms being examined. As a result, the rationale for design
choices is explained carefully.

Ezxercises and answers: To clarify issues raised within the text, many sections conclude
with exercises. All exercises come with complete answers in an appendix at the back
of the book.

Some exercises are marked with one or more stars (*). Exercises without stars are
recommended for all readers, but starred exercises deal with particularly obscure topics
or make reference to topics covered later.

Experienced programmers should find the exercises particularly interesting, because
many of them present alternatives to choices made in the main text.

Asides: Occasionally a section is marked as an “aside”. Like exercises, asides often
highlight alternatives to techniques in the main text, but asides are more extensive
than most exercises. Asides are not essential to comprehension of the main text, so
readers not interested may safely skip over them to the following section.

Minimal C knowledge assumed: Basic familiarity with the C language is assumed, but
obscure constructions are briefly explained the first time they occur.

Those who wish for a review of C language features before beginning should consult
[Summit 1999]. This is especially recommended for novices who feel uncomfortable
with pointer and array concepts.

References: When appropriate, other texts that cover the same or related material are
referenced at the end of sections.

Glossary: Terms are emphasized and defined the first time they are used. Definitions
for these terms and more are collected into a glossary at the back of the book.

Catalogue of algorithms: See Appendix E [Catalogue of Algorithms], page 405, for a
handy list of all the algorithms implemented in this book.
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1.2 Reading the Code

This book contains all the source code to LIBAVL. Conversely, much of the source code
presented in this book is part of LIBAVL.

L1BAVL is written in ANSI/ISO C89 using TexiWEB, a literate programming system.
Literate programming is a philosophy that regards software as a kind of literature. The
ideas behind literate programming have been around for a long time, but the term itself was
invented by computer scientist Donald Knuth in 1984, who wrote two of his most famous
programs (TEX and METAFONT) with a literate programming system of his own design.
That system, called WEB, inspired the form and much of the syntax of TexiWEB.

A TexiWEB document is a C program that has been cut into sections, rearranged, and
annotated, with the goal to make the program as a whole as comprehensible as possible
to a reader who starts at the beginning and reads the entire program in order. Of course,
understanding large, complex programs cannot be trivial, but TexiWEB tries to make it as
easy as possible.

Each section of a TexiWEB program is assigned both a number and a name. Section
numbers are assigned sequentially, starting from 1 with the first section, and they are used
for cross-references between sections. Section names are words or phrases assigned by the
TexiWEB program’s author to describe the role of the section’s code.

Here’s a sample TexiWEB section:

( Clear hash table entries 19) =
for (i = 0; ¢ < hash—m; i++)
hash—entry|[i] = NULL;

This code is included in §15.

The first line of a section, as shown here, gives the section’s name and its number within
angle brackets. The section number is also printed in the left margin to make individual
sections easy to find. Looking farther down, at the code itself, the C operator -> has been
replaced by the nicer-looking arrow —. TexiWEB makes an attempt to “prettify” C in a
few ways like this. The table below lists most of these substitutions:

-> becomes —
0x12ab becomes Ox12ab
0377 becomes 0377
1.2e34 becomes 1.2-10%

In addition, — and + are written as superscripts when used to indicate sign, as in =5 or
+10.

In TexiWEB, C’s reserved words are shown like this: int, struct, while. . .. Types defined
with typedef or with struct, union, and enum tags are shown the same way. Identifiers in
all capital letters (often names of macros) are shown like this: BUFSIZ, EOF, ERANGE. . ..
Other identifiers are shown like this: gete, argv, strien. . ..

Sometimes it is desirable to talk about mathematical expressions, as opposed to C expres-
sions. When this is done, mathematical operators (<, >) instead of C operators (<=, >=)
are used. In particular, mathematical equality is indicated with = instead of = in order to
minimize potential confusion.
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Code segments often contain references to other code segments, shown as a section name
and number within angle brackets. These act something like macros, in that they stand for
the corresponding replacement text. For instance, consider the following segment:

(Initialize hash table 15) =
hash—m = 13;
( Clear hash table entries 19)

See also §16.

This means that the code for ‘Clear hash table entries’ should be inserted as part of
‘Initialize hash table’. Because the name of a section explains what it does, it’s often
unnecessary to know anything more. If you do want more detail, the section number 19 in
( Clear hash table entries 19) can easily be used to find the full text and annotations for
‘Clear hash table entries’. At the bottom of section 19 you will find a note reading ‘This
code is included in §15.”, making it easy to move back to section 15 that includes it.

There’s also a note following the code in the section above: ‘See also §16.”. This demon-
strates how TexiWEB handles multiple sections that have the same name. When a name
that corresponds to multiple sections is referenced, code from all the sections with that
name is substituted, in order of appearance. The first section with the name ends with a
note listing the numbers of all other same-named sections. Later sections show their own
numbers in the left margin, but the number of the first section within angle brackets, to
make the first section easy to find. For example, here’s another line of code for ( Clear hash
table entries 15):

(Initialize hash table 15) +=
hash—n = 0;

Code segment references have one more feature: the ability to do special macro replace-
ments within the referenced code. These replacements are made on all words within the
code segment referenced and recursively within code segments that the segment references,
and so on. Word prefixes as well as full words are replaced, as are even occurrences within
comments in the referenced code. Replacements take place regardless of case, and the case
of the replacement mirrors the case of the replaced text. This odd feature is useful for
adapting a section of code written for one library having a particular identifier prefix for
use in a different library with another identifier prefix. For instance, the reference ‘( BST
types; bst = avl)’ inserts the contents of the segment named ‘BST types’, replacing ‘bst’
by ‘avl’ wherever the former appears at the beginning of a word.

When a TexiWEB program is converted to C, conversion conceptually begins from sec-
tions named for files; e.g., (‘foo.c’ 37). Within these sections, all section references are
expanded, then references within those sections are expanded, and so on. When expansion
is complete, the specified files are written out.

A final resource in reading a TexiWEB is the index, which contains an entry for the points
of declaration of every section name, function, type, structure, union, global variable, and
macro. Declarations within functions are not indexed.

See also: [Knuth 1992], “How to read a WEB”.
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1.3 Code Conventions

Where possible, the LIBAVL source code complies to the requirements imposed by
ANSI/ISO C89 and C99. Features present only in C99 are not used. In addition, most of
the GNU Coding Standards are followed. Indentation style is an exception to the latter:
in print, to conserve vertical space, K&R indentation style is used instead of GNU style.

See also: [ISO 1990]; [ISO 1999]; [FSF 2001], “Writing C”.

1.4 License

This book, including the code in it, is subject to the following license:
(License 1) =
/* GNU LIBAVL - library for manipulation of binary trees.

Copyright (© 1998-2002, 2004 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

The author may be contacted at <blp@gnu.org> on the Internet, or

write to Ben Pfaff, Stanford University, Computer Science Dept., 353

Serra Mall, Stanford CA 94305, USA.

*/
This code is included in §24, §25, §97, §98, §99, §142, §143, §186, §192, §193, §238, §247, §248, §290, §297,
§298, §330, §333, §334, §368, §372, §373, §411, §415, §416, §449, §452, §453, §482, 8486, §487, §515, §519,
8520, §548, §551, §552, 8583, §595, §599, §617, and §649.



Chapter 2: The Table ADT 7

2 The Table ADT

Most of the chapters in this book implement a table structure as some kind of binary
tree, so it is important to understand what a table is before we begin. That is this chapter’s
purpose.

This chapter begins with a brief definition of the meaning of “table” for the purposes
of this book, then moves on to describe in a more formal way the interface of a table used
by all of the tables in this book. The next chapter motivates the basic idea of a binary
tree starting from simple, everyday concepts. Experienced programmers may skip these
chapters after skimming through the definitions below.

2.1 Informal Definition

If you’ve written even a few programs, you’'ve probably noticed the necessity for search-
able collections of data. Compilers search their symbol tables for identifiers and network
servers often search tables to match up data with users. Many applications with graphical
user interfaces deal with mouse and keyboard activity by searching a table of possible ac-
tions. In fact, just about every nontrivial program, regardless of application domain, needs
to maintain and search tables of some kind.

In this book, the term “table” does not refer to any particular data structure. Rather,
it is the name for a abstract data structure or ADT, defined in terms of the operations that
can be performed on it. A table ADT can be implemented in any number of ways. Later
chapters will show how to implement tables in terms of various binary tree data structures.

The purpose of a table is to keep track of a collection of items, all of the same type.
Items can be inserted into and deleted from a table, with no arbitrary limit on the number
of items in the table. We can also search a table for items that match a given item.

Other operations are supported, too. Traversal is the most important of these: all of
the items in a table can be visited, in sorted order from smallest to largest, or from largest
to smallest. Traversals can also start from an item in the middle, or a newly inserted item,
and move in either direction.

The data in a table may be of any C type, but all the items in a table must be of the
same type. Structure types are common. Often, only part of each data item is used in item
lookup, with the rest for storage of auxiliary information. A table that contains two-part
data items like this is called a “dictionary” or an “associative array”. The part of table
data used for lookup, whether the table is a dictionary or not, is the key. In a dictionary,
the remainder is the value.

Our tables cannot contain duplicates. An attempt to insert an item into a table that
already contains a matching item will fail.

Exercises:

1. Suggest a way to simulate the ability to insert duplicate items in a table.
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2.2 Identifiers

In C programming it is necessary to be careful if we expect to avoid clashes between
our own names and those used by others. Any identifiers that we pick might also be used
by others. The usual solution is to adopt a prefix that is applied to the beginning of
every identifier that can be visible in code outside a single source file. In particular, most
identifiers in a library’s public header files must be prefixed.

LiBAVL is a collection of mostly independent modules, each of which implements the
table ADT. Each module has its own, different identifier prefix. Identifiers that begin with
this prefix are reserved for any use in source files that #include the module header file. Also
reserved (for use as macro names) are identifiers that begin with the all-uppercase version
of the prefix. Both sets of identifiers are also reserved as external names! throughout any
program that uses the module.

In addition, all identifiers that begin with libavl_ or LIBAVL_ are reserved for any use in
source files that #include any LIBAVL module. Likewise, these identifiers are reserved as
external names in any program that uses any LIBAVL module. This is primarily to allow
for future expansion, but see Section 2.5 [Memory Allocation], page 11 and Exercise 2.5-1
for a sample use.

The prefix used in code samples in this chapter is tbl_, short for “table”. This can be
considered a generic substitute for the prefix used by any of the table implementation. All of
the statements about these functions here apply equally to all of the table implementation
in later chapters, except that the tbl_ prefix must be replaced by the prefix used by the
chapter’s table implementation.

Exercises:
1. The following kinds of identifiers are among those that might appear in a header file.
Which of them can be safely appear unprefixed? Why?

a. Parameter names within function prototypes.

b. Macro parameter names.
c. Structure and union tags.
d.

Structure and union member names.

2. Suppose that we create a module for reporting errors. Why is err_ a poorly chosen prefix
for the module’s identifiers?

2.3 Comparison Function

The C language provides the void * generic pointer for dealing with data of unknown
type. We will use this type to allow our tables to contain a wide range of data types. This
flexibility does keep the table from working directly with its data. Instead, the table’s user
must provide means to operate on data items. This section describes the user-provided
functions for comparing items, and the next section describes two other kinds of user-
provided functions.

I External names are identifiers visible outside a single source file. These are, mainly, non-static functions
and variables declared outside a function.
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There is more than one kind of generic algorithm for searching. We can search by
comparison of keys, by digital properties of the keys, or by computing a function of the keys.
In this book, we are only interested in the first possibility, so we need a way to compare
data items. This is done with a user-provided function compatible with tbl_comparison_func,
declared as follows:

( Table function types 2) =
/* Function types. %/
typedef int tbl_comparison_func (const void *tbl_a, const void *tbl_b, void *tbl_param);

See also §4.
This code is included in §14.

A comparison function takes two pointers to data items, here called a and b, and com-
pares their keys. It returns a negative value if a < b, zero if a == b, or a positive value if
a > b. It takes a third parameter, here called param, which is user-provided.

A comparison function must work more or less like an arithmetic comparison within the
domain of the data. This could be alphabetical ordering for strings, a set of nested sort
orders (e.g., sort first by last name, with duplicates by first name), or any other comparison
function that behaves in a “natural” way. A comparison function in the exact class of
those acceptable is called a strict weak ordering, for which the exact rules are explained in
Exercise 5.

Here’s a function that can be used as a comparison function for the case that the void *

pointers point to single ints:
( Comparison function for ints 3) =
/* Comparison function for pointers to ints. param is not used. */
int compare_ints (const void *pa, const void *pb, void xparam) {

const int xa = pa;

const int xb = pb;

if (xa < *b) return ~1;

else if (xa > *b) return *1;

else return 0;

}

This code is included in §134.
Here’s another comparison function for data items that point to ordinary C strings:

/* Comparison function for strings. param is not used. */

int compare_strings (const void *pa, const void xpb, void xparam) {
return stremp (pa, pb);

}

See also: [FSF 1999], node “Defining the Comparison Function”; [ISO 1998], section 25.3,
“Sorting and related operations”; [SGI 1993], section “Strict Weak Ordering”.

Exercises:

1. In C, integers may be cast to pointers, including veid %, and vice versa. Explain why
it is not a good idea to use an integer cast to void * as a data item. When would such a
technique would be acceptable?

2. When would the following be an acceptable alternate definition for compare_ints()?
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int compare_ints (const void *pa, const void *pb, void *param) {
return x((int *) pa) — *((int %) pb);
}

3. Could stremp(), suitably cast, be used in place of compare_strings()?

4. Write a comparison function for data items that, in any particular table, are character
arrays of fixed length. Among different tables, the length may differ, so the third parameter
to the function points to a size_t specifying the length for a given table.

*5. For a comparison function f() to be a strict weak ordering, the following must hold for
all possible data items a, b, and c:

o Irreflexivity: For every a, f(a, a) == 0.

o Antisymmetry: If f(a, b) > 0, then f(b, a) < 0.

o Transitivity: If f(a, b) > 0 and f(b, ¢) > 0, then f(a, ¢) > 0.

o Transitivity of equivalence: If f(a, b) == 0 and f(b, ¢) == 0, then f(a, ¢) == 0.
Consider the following questions that explore the definition of a strict weak ordering.

a. Explain how compare_ints() above satisfies each point of the definition.

b. Can the standard C library function stremp() be used for a strict weak ordering?

c. Propose an irreflexive, antisymmetric, transitive function that lacks transitivity of
equivalence.

*6. LIBAVL uses a ternary comparison function that returns a negative value for <, zero for
=, positive for >. Other libraries use binary comparison functions that return nonzero for
< or zero for >. Consider these questions about the differences:

a. Write a C expression, in terms of a binary comparison function f() and two items a and
b, that is nonzero if and only if @ == b as defined by f(). Write a similar expression
for a > b.

b. Write a binary comparison function “wrapper” for a LIBAVL comparison function.

c. Rewrite bst_find() based on a binary comparison function. (You can use the wrapper
from above to simulate a binary comparison function.)

2.4 Item and Copy Functions

Besides tbl_comparison_func, there are two kinds of functions used in LIBAVL to manip-
ulate item data:

( Table function types 2) +=
typedef void tbl item_func (void xtbl_item, void *tbl_param);
typedef void *tbl_copy_func (void xtbl_item, void xtbl_param);

Both of these function types receive a table item as their first argument tbl_item and the
tbl_param associated with the table as their second argument. This tbl_param is the same
one passed as the third argument to tbl_comparison_func. LIBAVL will never pass a null
pointer as tbl_item to either kind of function.

A tbliitem_func performs some kind of action on tbl_item. The particular action that
it should perform depends on the context in which it is used and the needs of the calling
program.
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A tbl_copy_func creates and returns a new copy of tbi_item. If copying fails, then it
returns a null pointer.

2.5 Memory Allocation

The standard C library functions malloc() and free() are the usual way to obtain and
release memory for dynamic data structures like tables. Most users will be satisfied if
LiBAVL uses these routines for memory management. On the other hand, some users will
want to supply their own methods for allocating and freeing memory, perhaps even different
methods from table to table. For these users’ benefit, each table is associated with a memory
allocator, which provides functions for memory allocation and deallocation. This allocator
has the same form in each table implementation. It looks like this:

(Memory allocator 5) =

#ifndef LIBAVL_ALLOCATOR

#define LIBAVL_ALLOCATOR

/* Memory allocator. s/

struct libavl_allocator {
void *(xlibavl_malloc) (struct libavl_allocator *, size_t libavl_size);
void (xlibavl_free) (struct libavl_allocator *, void *libavl_block);

b

#endif

This code is included in §14, §99, and §649.

Members of struct libavl_allocator have the same interfaces as the like-named stan-
dard C library functions, except that they are each additionally passed a pointer to the
struct libavl_allocator * itself as their first argument. The table implementations never call
tbl_malloc() with a zero size or tbl_free() with a null pointer block.

The struct libavl_allocator type is shared between all of LIBAVL’s modules, so its name
begins with libavl_, not with the specific module prefix that we’ve been representing generi-
cally here as tbl_. This makes it possible for a program to use a single allocator with multiple
LiBAVL table modules, without the need to declare instances of different structures.

The default allocator is just a wrapper around malloc() and free(). Here it is:

( Default memory allocation functions 6) =
/* Allocates size bytes of space using malloc(). Returns a null pointer if allocation fails. */
void *tbl_malloc (struct libavl_allocator xallocator, size_t size) {

assert (allocator != NULL && size > 0);

return malloc (size);

}

/* Frees block. x/

void tbl_free (struct libavl allocator xallocator, void xblock) {
assert (allocator '= NULL && block != NULL);
free (block);

}

/* Default memory allocator that uses malloc() and free(). */
struct libavl_allocator tbl_allocator_default = {tbl_malloc, tbl_free};

This code is included in §29, §145, §196, §251, §300, §336, §375, §418, §455, §489, §522, §554, and §649.



§7

68

12 GNU libavl 2.0.2

The default allocator comes along with header file declarations:

( Default memory allocator header 7) =

/% Default memory allocator. */

extern struct libavl_allocator tbl_allocator_default;
void xtbl_malloc (struct libavl allocator *, size_t);
void tbl_free (struct libavl allocator x, void *);

This code is included in §14 and §649.
See also: [FSF 1999], nodes “Malloc Examples” and “Changing Block Size”.

Exercises:

1. This structure is named with a libavl_ prefix because it is shared among all of LIBAVL’s
module. Other types are shared among LIBAVL modules, too, such as tbl_item_func. Why
don’t the names of these other types also begin with lzbavl_?

2. Supply an alternate allocator, still using malloc() and free(), that prints an error message
to stderr and aborts program execution when memory allocation fails.

*3. Some kinds of allocators may need additional arguments. For instance, if memory for
each table is taken from a separate Apache-style “memory pool”, then a pointer to the pool
structure is needed. Show how this can be done without modifying existing types.

2.6 Creation and Destruction

This section describes the functions that create and destroy tables.

( Table creation function prototypes 8) =
/* Table functions. */
struct tbl_table xtbl_create (tbl_comparison_func *, void *, struct libavl_allocator *);
struct tbl_table xtbl_copy (const struct tbl_table x, tbl_copy_func *,
tbl_item_func x, struct libavl_allocator x);
void tbl_destroy (struct tbl_table x, tbl_item_func x*);

This code is included in §15.

o tbl_create(): Creates and returns a new, empty table as a struct tbl_table «. The table
is associated with the given arguments. The void * argument is passed as the third
argument to the comparison function when it is called. If the allocator is a null pointer,
then tbl_allocator_default is used.

e tbl_destroy(): Destroys a table. During destruction, the tbl item_func provided, if non-
null, is called once for every item in the table, in no particular order. The function, if
provided, must not invoke any table function or macro on the table being destroyed.

o tbl_copy(): Creates and returns a new table with the same contents as the existing
table passed as its first argument. Its other three arguments may all be null pointers.

If a tbl_copy_func is provided, then it is used to make a copy of each table item as it is
inserted into the new table, in no particular order (a deep copy). Otherwise, the void *
table items are copied verbatim (a shallow copy).

If the table copy fails, either due to memory allocation failure or a null pointer returned

by the tbl_copy_func, tbl_copy() returns a null pointer. In this case, any provided
tbl_item_func is called once for each new item already copied, in no particular order.
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By default, the new table uses the same memory allocator as the existing one. If non-
null, the struct libavl _allocator * given is used instead as the new memory allocator.
To use the tbl_allocator_default allocator, specify &tbl_allocator_default explicitly.

2.7 Count

This function returns the number of items currently in a table.

( Table count function prototype 9) =
size_t tbl_count (const struct tbl_table x);

The actual tables instead use a macro for implementation.
Exercises:

1. Implement tbl_count() as a macro, on the assumption that struct tbl table keeps the
number of items in the table in a size_t member named tbl_count.

2.8 Insertion and Deletion

These functions insert and delete items in tables. There is also a function for searching
a table without modifying it.

The design behind the insertion functions takes into account a couple of important issues:

e What should happen if there is a matching item already in the tree? If the items
contain only keys and no values, then there’s no point in doing anything. If the items
do contain values, then we might want to leave the existing item or replace it, depending
on the particular circumstances. The tbl_insert() and tbl_replace() functions are handy
in simple cases like these.

e Occasionally it is convenient to insert one item into a table, then immediately replace
it by a different item that has identical key data. For instance, if there is a good chance
that a data item already exists within a table, then it might make sense to insert data
allocated as a local variable into a table, then replace it by a dynamically allocated
copy if it turned out that the item wasn’t already in the table. That way, we save the
time required to make an additional copy of the item to insert. The tbl_probe() function
allows for this kind of flexibility.

( Table insertion and deletion function prototypes 10) =
void #xtbl_probe (struct tbl table x, void *);

void xtbl_insert (struct tbl_table %, void *);

void xtbl_replace (struct tbl_table *, void x);

void xtbl_delete (struct tbl_table %, const void x);

void *tbl_find (const struct tbl_table *, const void x);

This code is included in §15.

Each of these functions takes a table to manipulate as its first argument and a table item
as its second argument, here called table and item, respectively. Both arguments must be
non-null in all cases. All but tbl_probe() return a table item or a null pointer.

e tbl_probe(): Searches in table for an item matching item. If found, a pointer to the
void * data item is returned. Otherwise, item is inserted into the table and a pointer
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to the copy within the table is returned. Memory allocation failure causes a null pointer
to be returned.

The pointer returned can be used to replace the item found or inserted by a different
item. This must only be done if the replacement item has the same position relative
to the other items in the table as did the original item. That is, for existing item
e, replacement item 7, and the table’s comparison function f(), the return values of
f(e, ) and f(r, x) must have the same sign for every other item z currently in the
table. Calling any other table function invalidates the pointer returned and it must
not be referenced subsequently.

o tblinsert(): Inserts item into table, but not if a matching item exists. Returns a null
pointer if successful or if a memory allocation error occurs. If a matching item already
exists in the table, returns that item.

o tbl_replace(): Inserts item into table, replacing and returning any matching item. Re-
turns a null pointer if the item was inserted but there was no matching item to replace,
or if a memory allocation error occurs.

o tbl_delete(): Removes from table and returns an item matching item. Returns a null
pointer if no matching item exists in the table.

e tbl_find(): Searches table for an item matching item and returns any item found. Re-
turns a null pointer if no matching item exists in the table.

Exercises:

1. Functions tblinsert() and tbl_replace() return NULL in two very different situations: an
error or successful insertion. Why is this not necessarily a design mistake?

2. Suggest a reason for disallowing insertion of a null item.

3. Write generic implementations of tbl_insert() and tbl_replace() in terms of tbl_probe().

2.9 Assertions

Sometimes an insertion or deletion must succeed because it is known in advance that
there is no way that it can fail. For instance, we might be inserting into a table from a list
of items known to be unique, using a memory allocator that cannot return a null pointer.
In this case, we want to make sure that the operation succeeded, and abort if not, because
that indicates a program bug. We also would like to be able to turn off these tests for
success in our production versions, because we don’t want them slowing down the code.

( Table assertion function prototypes 11) =
void tbl_assert_insert (struct tbl_table *, void *);
void xtbl_assert_delete (struct tbl_table %, void *);

This code is included in §15.

These functions provide assertions for tbl_insert() and tbl_delete(). They expand, via
macros, directly into calls to those functions when NDEBUG, the same symbol used to turn
off assert() checks, is declared. As for the standard C header (assert.h), header files for
tables may be included multiple times in order to turn these assertions on or off.

Exercises:
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1. Write a set of preprocessor directives for a table header file that implement the behavior
described in the final paragraph above.

2. Write a generic implementation of tbl_assert_insert() and tbl_assert_delete() in terms of
existing table functions. Consider the base functions carefully. Why must we make sure
that assertions are always enabled for these functions?

3. Why must tbl_assert_insert() not be used if the table’s memory allocator can fail? (See
also Exercise 2.8-1.)

2.10 Traversers

A struct tbl_traverser is a table “traverser” that allows the items in a table to be exam-
ined. With a traverser, the items within a table can be enumerated in sorted ascending or
descending order, starting from either end or from somewhere in the middle.

The user of the traverser declares its own instance of struct tbl_traverser, typically as a
local variable. One of the traverser constructor functions described below can be used to
initialize it. Until then, the traverser is invalid. An invalid traverser must not be passed to
any traverser function other than a constructor.

Seen from the viewpoint of a table user, a traverser has only one attribute: the current
item. The current item is either an item in the table or the “null item”, represented by a
null pointer and not associated with any item.

Traversers continue to work when their tables are modified. Any number of insertions and
deletions may occur in the table without affecting the current item selected by a traverser,
with only a few exceptions:

e Deleting a traverser’s current item from its table invalidates the traverser (even if the
item is later re-inserted).

e Using the return value of tbl_probe() to replace an item in the table invalidates all
traversers with that item current, unless the replacement item has the same key data
as the original item (that is, the table’s comparison function returns 0 when the two
items are compared).

e Similarly, tbl_t_replace() invalidates all other traversers with the same item selected,
unless the replacement item has the same key data.

e Destroying a table with tbl_destroy() invalidates all of that table’s traversers.

There is no need to destroy a traverser that is no longer needed. An unneeded traverser
can simply be abandoned.

2.10.1 Constructors

These functions initialize traversers. A traverser must be initialized with one of these
functions before it is passed to any other traverser function.

( Traverser constructor function prototypes 12) =

/* Table traverser functions. */

void tbl_t_init (struct tbl traverser x, struct tbl table x);
void tbl_t_first (struct tbl_traverser x, struct tbl_table x);
void tbl_t_last (struct tbl_traverser x, struct tbl_table x);
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void *tbl_t_find (struct tbl_traverser x, struct tbl table x, void *);
void xtbl_t_insert (struct tbl_traverser *, struct tbl_table x, void x);
void *tbl_t_copy (struct tbl_traverser x, const struct tbl traverser x);
This code is included in §15.
All of these functions take a traverser to initialize as their first argument, and most take a
table to associate the traverser with as their second argument. These arguments are here
called trav and table. All, except tbl_t_init(), return the item to which trav is initialized,
using a null pointer to represent the null item. None of the arguments to these functions
may ever be a null pointer.

o tbl_t_init(): Initializes trav to the null item in table.

o tbl_t_first(): Initializes trav to the least-valued item in table. If the table is empty, then
trav is initialized to the null item.

o (bl t_last(): Same as tbl_t_first(), for the greatest-valued item in table.
o tbl_t_find(): Searches table for an item matching the one given. If one is found, initializes
trav with it. If none is found, initializes trav to the null item.

o tbl_t_insert(): Attempts to insert the given item into table. If it is inserted succesfully,
trav is initialized to its location. If it cannot be inserted because of a duplicate, the
duplicate item is set as trav’s current item. If there is a memory allocation error, trav
is initialized to the null item.

o tbl_t_copy(): Initializes trav to the same table and item as a second valid traverser.
Both arguments pointing to the same valid traverser is valid and causes no change in
either.

2.10.2 Manipulators

These functions manipulate valid traversers.

( Traverser manipulator function prototypes 13)
void *tbl_t_next (struct tbl_traverser x);
void *tbl_t_prev (struct tbl_traverser x);
void xtbl_t_cur (struct tbl_traverser x);
void xtbl_t_replace (struct tbl_traverser *, void x);

This code is included in §15.

Each of these functions takes a valid traverser, here called trav, as its first argument, and
returns a data item. All but tbl_t_replace() can also return a null pointer that represents
the null item. All arguments to these functions must be non-null pointers.

o tbl_t_next(): Advances trav to the next larger item in its table. If trav was at the null
item in a nonempty table, then the smallest item in the table becomes current. If trav
was already at the greatest item in its table or the table is empty, the null item becomes
current. Returns the new current item.

o tbl_t_prev(): Advances trav to the next smaller item in its table. If trav was at the null
item in a nonempty table, then the greatest item in the table becomes current. If trav
was already at the lowest item in the table or the table is empty, the null item becomes
current. Returns the new current item.

o tbl_t_cur(): Returns trav’s current item.
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o (bl_t_replace(): Replaces the data item currently selected in trav by the one provided.
The replacement item is subject to the same restrictions as for the same replacement
using tbl_probe(). The item replaced is returned. If the null item is current, the behavior
is undefined.

Seen from the outside, the traverser treats the table as a circular arrangement of items:

NULL

Moving clockwise in the circle is equivalent, under our traverser, to moving to the next item
with tbl_t_next(). Moving counterclockwise is equivalent to moving to the previous item
with tbl_t_prev().

An equivalent view is that the traverser treats the table as a linear arrangement of nodes:

QOO —D—Q

»NUL L <

From this perspective, nodes are arranged from least to greatest in left to right order, and
the null node lies in the middle as a connection between the least and greatest nodes.
Moving to the next node is the same as moving to the right and moving to the previous
node is motion to the left, except where the null node is concerned.

2.11 Table Headers

Here we gather together in one place all of the types and prototypes for a generic table.

( Table types 14) =

( Table function types 2)

(Memory allocator 5)

( Default memory allocator header 7)

This code is included in §24, §142, §192, §247, §297, §333, §372, §415, §452, §486, §519, and §551.

( Table function prototypes 15) =

( Table creation function prototypes 8)

( Table insertion and deletion function prototypes 10)
( Table assertion function prototypes 11)

( Table count macro 591 )

( Traverser constructor function prototypes 12)

( Traverser manipulator function prototypes 13)
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This code is included in §24, §142, §192, §247, §297, §333, §372, §415, §452, §486, §519, and §551.

All of our tables fit the specification given in Exercise 2.7-1, so ( Table count macro 591 ) is
directly included above.

2.12 Additional Exercises

Exercises:

*1. Compare and contrast the design of LIBAVL’s tables with that of the set container in
the C++ Standard Template Library.

2. What is the smallest set of table routines such that all of the other routines can be
implemented in terms of the interfaces of that set as defined above?
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3 Search Algorithms

In LiBAVL, we are primarily concerned with binary search trees and balanced binary
trees. If you're already familiar with these concepts, then you can move right into the code,
starting from the next chapter. But if you're not, then a little motivation and an explanation
of exactly what a binary search tree is can’t hurt. That’s the goal of this chapter.

More particularly, this chapter concerns itself with algorithms for searching. Searching
is one of the core problems in organizing a table. As it will turn out, arranging a table for
fast searching also facilitates some other table features.

3.1 Sequential Search

Suppose that you have a bunch of things (books, magazines, CDs, ...) in a pile, and
you're looking for one of them. You’d probably start by looking at the item at the top of
the pile to check whether it was the one you were looking for. If it wasn’t, you’d check the
next item down the pile, and so on, until you either found the one you wanted or ran out
of items.

In computer science terminology, this is a sequential search. It is easy to implement
sequential search for an array or a linked list. If, for the moment, we limit ourselves to
items of type int, we can write a function to sequentially search an array like this:

( Sequentially search an array of ints 16) =

/* Returns the smallest ¢ such that array[i] == key, or ~1 if key is not in array|].
array[] must be an array of n ints. x/

int seq_search (int array[], int n, int key) {

int 4;
for (1 =0; 1 < m; i++)
if (array(i] == key)
return 7;
return ~1;

}

This code is included in §595 and §600.

We can hardly hope to improve on the data requirements, space, or complexity of simple
sequential search, as they’re about as good as we can want. But the speed of sequential
search leaves something to be desired. The next section describes a simple modification
of the sequential search algorithm that can sometimes lead to big improvements in perfor-
mance.

See also: [Knuth 1998b], algorithm 6.1S; [Kernighan 1976], section 8.2; [Cormen 1990],
section 11.2; [Bentley 2000], sections 9.2 and 13.2, appendix 1.

Exercises:

1. Write a simple test framework for seg_search(). It should read sample data from stdin
and collect them into an array, then search for each item in the array in turn and compare
the results to those expected, reporting any discrepancies on stdout and exiting with an
appropriate return value. You need not allow for the possibility of duplicate input values
and may limit the maximum number of input values.
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3.2 Sequential Search with Sentinel

Try to think of some ways to improve the speed of sequential search. It should be clear
that, to speed up a program, it pays to concentrate on the parts that use the most time to
begin with. In this case, it’s the loop.

Consider what happens each time through the loop:
1. The loop counter ¢ is incremented and compared against n.
2. array[i] is compared against key.

If we could somehow eliminate one of these comparisons, the loop might be a lot faster.
So, let’s try. .. why do we need step 17 It’s because, otherwise, we might run off the end
of array[], causing undefined behavior, which is in turn because we aren’t sure that key is
in array[]. If we knew that key was in arrayl], then we could skip step 1.

But, hey! we can ensure that the item we’re looking for is in the array. How? By putting
a copy of it at the end of the array. This copy is called a sentinel, and the search technique
as a whole is called sequential search with sentinel. Here’s the code:

(Sequentially search an array of ints using a sentinel 17) =
/* Returns the smallest ¢ such that array[i] == key, or ~1 if key is not in array]].
array[] must be an modifiable array of n ints with room for a (n + 1)th element. */

int seq_sentinel_search (int array[], int n, int key) {

int xp;

array[n] = key;

for (p = array; xp = key; p++)

/* Nothing to do. */;
return p — array < n ? p — array : " 1;

}

This code is included in §600.

Notice how the code above uses a pointer, int *p, rather than a counter ¢ as in
( Sequentially search an array of ints 16 ) earlier. For the most part, this is simply a style
preference: for iterating through an array, C programmers usually prefer pointers to array
indexes. Under older compilers, code using pointers often compiled into faster code as
well, but modern C compilers usually produce the same code whether pointers or indexes
are used.

The return statement in this function uses two somewhat advanced features of C: the
conditional or “ternary” operator 7: and pointer arithmetic. The former is a bit like an
expression form of an if statement. The expression a ? b : ¢ first evaluates a. Then,
if a!=0, b is evaluated and the expression takes that value. Otherwise, a == 0, ¢ is
evaluated, and the result is the expression’s value.

Pointer arithmetic is used in two ways here. First, the expression p++ acts to advance
p to point to the next int in array. This is analogous to the way that ¢++ would increase
the value of an integer or floating point variable ¢ by one. Second, the expression p — array
results in the “difference” between p and array, i.e., the number of int elements between
the locations to which they point. For more information on these topics, please consult a
good C reference, such as [Kernighan 1988].

Searching with a sentinel requires that the array be modifiable and large enough to
hold an extra element. Sometimes these are inherently problematic—the array may not be
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modifiable or it might be too small—and sometimes they are problems because of external
circumstances. For instance, a program with more than one concurrent thread cannot
modify a shared array for sentinel search without expensive locking.

Sequential sentinel search is an improvement on ordinary sequential search, but as it
turns out there’s still room for improvement—especially in the runtime for unsuccessful
searches, which still always take n comparisons. In the next section, we’ll see one technique
that can reduce the time required for unsuccessful searches, at the cost of longer runtime
for successful searches.

See also: [Knuth 1998b], algorithm 6.1Q; [Cormen 1990], section 11.2; [Bentley 2000], section
9.2.

3.3 Sequential Search of Ordered Array

Let’s jump back to the pile-of-things analogy from the beginning of this chapter (see
Section 3.1 [Sequential Search|, page 19). This time, suppose that instead of being in
random order, the pile you're searching through is ordered on the property that you're
examining; e.g., magazines sorted by publication date, if you're looking for, say, the July
1988 issue.

Think about how this would simplify searching through the pile. Now you can sometimes
tell that the magazine you’re looking for isn’t in the pile before you get to the bottom,
because it’s not between the magazines that it otherwise would be. On the other hand, you
still might have to go through the entire pile if the magazine you’re looking for is newer
than the newest magazine in the pile (or older than the oldest, depending on the ordering
that you chose).

Back in the world of computers, we can apply the same idea to searching a sorted array:

( Sequentially search a sorted array of ints 18) =
/* Returns the smallest ¢ such that array[i] == key, or ~1 if key is not in array|].
array[] must be an array of n ints sorted in ascending order. */

int seq_sorted_search (int array[], int n, int key) {

int i;

for (1 = 0; ¢ < m; i++)

if (key <= array[i])
return key == arrayli] 7 i: ~1;
return ~1;

}

This code is included in §600.

At first it might be a little tricky to see exactly how seq_sorted_search() works, so we’ll
work through a few examples. Suppose that array[| has the four elements {3, 5, 6, 8}, so
that n is 4. If key is 6, then the first time through the loop the if condition is 6 <= 3, or
false, so the loop repeats with ¢ == 1. The second time through the loop we again have
a false condition, 6 <= 5, and the loop repeats again. The third time the if condition, 6
<= 6, is true, so control passes to the if statement’s dependent return. This return verifies
that 6 == 6 and returns %, or 2, as the function’s value.
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On the other hand, suppose key is 4, a value not in array[]. For the first iteration, when
i is 0, the if condition, 4 <= 3, is false, but in the second iteration we have 4 <= 5, which
is true. However, this time key == arrayl[i] is 4 == 5, or false, so ~1 is returned.

See also: [Sedgewick 1998], program 12.4.

3.4 Sequential Search of Ordered Array with Sentinel

When we implemented sequential search in a sorted array, we lost the benefits of having
a sentinel. But we can reintroduce a sentinel in the same way we did before, and obtain
some of the same benefits. It’s pretty clear how to proceed:

(Sequentially search a sorted array of ints using a sentinel 19) =
/* Returns the smallest ¢ such that array[i] == key, or ~1 if key is not in array|].
array[] must be an modifiable array of n ints, sorted in ascending order,
with room for a (n + 1)th element at the end. x/
int seq_sorted_sentinel_search (int array[], int n, int key) {
int xp;
array[n] = key;
for (p = array; *p < key; p++)
/* Nothing to do. */;
return p — array < n && *xp == key 7 p — array : "1,
}

This code is included in §600.

With a bit of additional cleverness we can eliminate one objection to this sentinel ap-
proach. Suppose that instead of using the value being searched for as the sentinel value,
we used the maximum possible value for the type in question. If we did this, then we could
use almost the same code for searching the array.

The advantage of this approach is that there would be no need to modify the array in
order to search for different values, because the sentinel is the same value for all searches.
This eliminates the potential problem of searching an array in multiple contexts, due to
nested searches, threads, or signals, for instance. (In the code below, we will still put the
sentinel into the array, because our generic test program won’t know to put it in for us in
advance, but in real-world code we could avoid the assignment.)

We can easily write code for implementation of this technique:

( Sequentially search a sorted array of ints using a sentinel (2) 20) =
/* Returns the smallest ¢ such that arrayli] == key, or 1 if key is not in array]].
array[] must be an array of n ints, sorted in ascending order,
with room for an (n + 1)th element to set to INT_MAX. x/
int seq_sorted_sentinel_search_2 (int arrayl], int n, int key) {
int xp;
array[n] = INT_MAX;
for (p = array; xp < key; p++)
/* Nothing to do. */;
return p — array < n && xp == key ? p — array : ~1;
}

This code is included in §600.
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Exercises:

1. When can’t the largest possible value for the type be used as a sentinel?

3.5 Binary Search of Ordered Array

At this point we’ve squeezed just about all the performance we can out of sequential
search in portable C. For an algorithm that searches faster than our final refinement of
sequential search, we’ll have to reconsider our entire approach.

What’s the fundamental idea behind sequential search? It’s that we examine array
elements in order. That’s a fundamental limitation: if we're looking for an element in the
middle of the array, we have to examine every element that comes before it. If a search
algorithm is going to be faster than sequential search, it will have to look at fewer elements.

One way to look at search algorithms based on repeated comparisons is to consider
what we learn about the array’s content at each step. Suppose that array[] has n elements
in sorted order, without duplicates, that array[j] contains key, and that we are trying to
learn the value j. In sequential search, we learn only a little about the data set from each
comparison with array[i]: either key == array[i] so that i == j, or key != arrayli] so that
i 1= j and therefore j > i. As a result, we eliminate only one possibility at each step.

Suppose that we haven’t made any comparisons yet, so that we know nothing about the
contents of arrayl]. If we compare key to array[i] for arbitrary 7 such that 0 < i < n, what
do we learn? There are three possibilities:

e key < array[i]: Now we know that key < array[i] < array[i + 1] < --- < array[n — 1].!
Therefore, 0 < j < 1.

o key == arrayli]: We're done: j == i.
e key > array[i]: Now we know that key > array[i| > array[i — 1] > --- > array|0].
Therefore, i < j < n.

So, after one step, if we're not done, we know that j > ¢ or that j < ¢. If we’re equally
likely to be looking for each element in arrayl], then the best choice of i is n / 2: for that
value, we eliminate about half of the possibilities either way. (If n is odd, we’ll round down.)

After the first step, we’re back to essentially the same situation: we know that key is in
array[j] for some j in a range of about n / 2. So we can repeat the same process. Eventually,
we will either find key and thus j, or we will eliminate all the possibilities.

Let’s try an example. For simplicity, let array|| contain the values 100 through 114 in
numerical order, so that array[i] is 100 + ¢ and n is 15. Suppose further that key is 110.
The steps that we’d go through to find j are described below. At each step, the facts are
listed: the known range that j can take, the selected value of i, the results of comparing
key to array[i], and what was learned from the comparison.

1. 0 <j <14: i becomes (0 + 14) /2 = 7. 110 > array[i] = 107, so now we know that
j>T.

L' This sort of notation means very different things in C and mathematics. In mathematics, writing a < b
< ¢ asserts both of the relations a < b and b < ¢, whereas in C, it expresses the evaluation of a < b,
then the comparison of the 0 or 1 result to the value of ¢. In mathematics this notation is invaluable,
but in C it is rarely meaningful. As a result, this book uses this notation only in the mathematical sense.
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2. 8 < j < 14: i becomes (8 + 14) / 2 = 11. 110 < array[i] = 111, so now we know
that j < 11.

3. 8 <j <10: i becomes (8 + 10) / 2= 9. 110 > array[i] = 109, so now we know that
Jj>09.

4. 10 < j < 10: i becomes (10 + 10) / 2 = 10. 110 = array[i] = 110, so we’re done
and i = j = 10.

In case you hadn’t yet figured it out, this technique is called binary search. We can
make an initial C implementation pretty easily:

§21  (Binary search of ordered array 21) =
/* Returns the offset within array[] of an element equal to key, or ~1 if key is not in array|].
array[] must be an array of n ints sorted in ascending order. x/
int binary_search (int array(], int n, int key) {
int min = 0;
int max = n — 1;
while (maz >= min) {
int i = (min + maz) / 2;
if (key < arrayli]) maz =i — 1;
else if (key > array[i]) min = i + 1,
else return i;
}
return ~1;

}

This code is included in §600.

The maximum number of comparisons for a binary search in an array of n elements
is about log,n, as opposed to a maximum of n comparisons for sequential search. For
moderate to large values of n, this is a lot better.

On the other hand, for small values of n, binary search may actually be slower because
it is more complicated than sequential search. We also have to put our array in sorted
order before we can use binary search. Efficiently sorting an n-element array takes time
proportional to nlog,n for large n. So binary search is preferred if n is large enough (see
the answer to Exercise 4 for one typical value) and if we are going to do enough searches
to justify the cost of the initial sort.

Further small refinements are possible on binary search of an ordered array. Try some
of the exercises below for more information.

See also: [Knuth 1998b], algorithm 6.2.1B; [Kernighan 1988]|, section 3.3; [Bentley 2000],
chapters 4 and 5, section 9.3, appendix 1; [Sedgewick 1998], program 12.6.

Exercises:

1. Function binary_search() above uses three local variables: min and max for the ends of
the remaining search range and ¢ for its midpoint. Write and test a binary search function
that uses only two variables: ¢ for the midpoint as before and m representing the width
of the range on either side of 7. You may require the existence of a dummy element just
before the beginning of the array. Be sure, if so, to specify what its value should be.
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2. The standard C library provides a function, bsearch(), for searching ordered arrays.
Commonly, bsearch() is implemented as a binary search, though ANSI C does not require
it. Do the following:

a. Write a function compatible with the interface for binary_search() that uses bsearch()
“under the hood.” You’ll also have to write an additional callback function for use by
bsearch().

b. Write and test your own version of bsearch(), implementing it using a binary search.
(Use a different name to avoid conflicts with the C library.)

3. An earlier exercise presented a simple test framework for seq_search(), but now we have
more search functions. Write a test framework that will handle all of them presented so
far. Add code for timing successful and unsuccessful searches. Let the user specify, on the
command line, the algorithm to use, the size of the array to search, and the number of
search iterations to run.

4. Run the test framework from the previous exercise on your own system for each algo-
rithm. Try different array sizes and compiler optimization levels. Be sure to use enough
iterations to make the searches take at least a few seconds each. Analyze the results: do
they make sense? Try to explain any apparent discrepancies.

3.6 Binary Search Tree in Array

Binary search is pretty fast. Suppose that we wish to speed it up anyhow. Then,
the obvious speed-up targets in (Binary search of ordered array 21) above are the while
condition and the calculations determining values of 4, min, and max. If we could eliminate
these, we’d have an incrementally faster technique, all else being equal. And, as it turns
out, we can eliminate both of them, the former by use of a sentinel and the latter by
precalculation.

Let’s consider precalculating ¢, min, and maz first. Think about the nature of the
choices that binary search makes at each step. Specifically, in ( Binary search of ordered
array 21) above, consider the dependence of min and maz upon i. Is it ever possible for
min and maz to have different values for the same i and n?

The answer is no. For any given ¢ and n, min and maz are fixed. This is important
because it means that we can represent the entire “state” of a binary search of an n-element
array by the single variable 7. In other words, if we know i and n, we know all the choices
that have been made to this point and we know the two possible choices of ¢ for the next
step.

This is the key insight in eliminating calculations. We can use an array in which the
items are labeled with the next two possible choices.

An example is indicated. Let’s continue with our example of an array containing the 16
integers 100 to 115. We define an entry in the array to contain the item value and the array
index of the item to examine next for search values smaller and larger than the item:

(Binary search tree entry 22) =
/* One entry in a binary search tree stored in an array. */
struct binary_tree_entry {

int value; /+ This item in the binary search tree. */
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int smaller; /+* Array index of next item for smaller targets. */
int larger; /x Array index of next item for larger targets. */
b
This code is included in §617.
Of course, it’s necessary to fill in the values for smaller and larger. A few moments’
reflection should allow you to figure out one method for doing so. Here’s the full array, for
reference:

const struct binary_tree_entry bins[16] = {

{100, 15, 15}, {101, 0, 2}, {102, 15, 15}, {103, 1, 5}, {104, 15, 15},

{105, 4, 6}, {106, 15, 15}, {107, 3, 11}, {108, 15, 15}, {109, 8, 10},

{110, 15, 15}, {111, 9, 13}, {112, 15, 15}, {113, 12, 14}, {114, 15, 15},

{0, 0, 0},
b

For now, consider only bins[]’s first 15 rows. Within these rows, the first column is value,

the item value, and the second and third columns are smaller and larger, respectively.
Values 0 through 14 for smaller and larger indicate the index of the next element of bins]]
to examine. Value 15 indicates “element not found”. Element array[15] is not used for
storing data.

Try searching for key == 110 in bins[], starting from element 7, the midpoint:
1. 4 == T7: 110 > bins[i].value == 107, so let i = bins[i].larger, or 11.
2. 4 == 11: 110 < bins[i].value == 111, so let i = bins[i].smaller, or 10.
3. i == 10: 110 == bins[i|.value == 110, so we're done.
We can implement this search in C code. The function uses the common C idiom of
writing for (;;) for an “infinite” loop:
(Search of binary search tree stored as array 23) =
/* Returns i such that array[i].value == key, or -1 if key is not in array]].
array(] is an array of n elements forming a binary search tree,

with its root at array[n / 2], and space for an (n + 1)th value at the end. */
int binary_search_tree_array (struct binary_tree_entry array[], int n, int key) {

int i =n /2
array[n].value = key;
for (;;)

if (key > arrayli].value) i = array[i].larger;
else if (key < arrayli].value) i = arrayli].smaller;
elsereturn i !l=n 7 7: ~1;

}

This code is included in §617.

Examination of the code above should reveal the purpose of bins[15]. It is used as a
sentinel value, allowing the search to always terminate without the use of an extra test on
each loop iteration.

The result of augmenting binary search with “pointer” values like smaller and larger is
called a binary search tree.

Exercises:
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1. Write a function to automatically initialize smaller and larger within bins]].

2. Write a simple automatic test program for binary_search_tree_array(). Let the user spec-
ify the size of the array to test on the command line. You may want to use your results
from the previous exercise.

3.7 Dynamic Lists

Up until now, we’ve considered only lists whose contents are fixed and unchanging, that
is, static lists. But in real programs, many lists are dynamic, with their contents changing
rapidly and unpredictably. For the case of dynamic lists, we need to reconsider some of the
attributes of the types of lists that we’ve examined.?

Specifically, we want to know how long it takes to insert a new element into a list and
to remove an existing element from a list. Think about it for each type of list examined so
far:

Unordered array
Adding items to the list is easy and fast, unless the array grows too large for
the block and has to be copied into a new area of memory. Just copy the new
item to the end of the list and increase the size by one.

Removing an item from the list is almost as simple. If the item to delete happens
to be located at the very end of the array, just reduce the size of the list by one.
If it’s located at any other spot, you must also copy the element that is located
at the very end onto the location that the deleted element used to occupy.

Ordered array
In terms of inserting and removing elements, ordered arrays are mechanically
the same as unordered arrays. The difference is that insertions and deletions
can only be at one end of the array if the item in question is the largest or
smallest in the list. The practical upshot is that dynamic ordered arrays are
only efficient if items are added and removed in sorted order.

Binary search tree
Insertions and deletions are where binary search trees have their chance to shine.
Insertions and deletions are efficient in binary search trees whether they’re made
at the beginning, middle, or end of the lists.

Clearly, binary search trees are superior to ordered or unordered arrays in situations that
require insertion and deletion in random positions. But insertion and deletion operations
in binary search trees require a bit of explanation if you’ve never seen them before. This is
what the next chapter is for, so read on.

2 These uses of the words “static” and “dynamic” are different from their meanings in the phrases “static
allocation” and “dynamic allocation.” See Appendix C [Glossary], page 331, for more details.
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4 Binary Search Trees

The previous chapter motivated the need for binary search trees. This chapter imple-
ments a table ADT backed by a binary search tree. Along the way, we’ll see how binary
search trees are constructed and manipulated in abstract terms as well as in concrete C
code.

The library includes a header file (bst.h 24) and an implementation file (bst.c 25),
outlined below. We borrow most of the header file from the generic table headers designed
a couple of chapters back, simply replacing tbl by bst, the prefix used in this table module.

(bst.h24) =
(License 1)
#ifndef BST_H
#define BST_H 1

#include (stddef.h)

( Table types; thl = bst 14)

(BST maximum height 28 )

(BST table structure 27)

(BST node structure 26 )

(BST traverser structure 61 )

( Table function prototypes; tbl = bst 15)
(BST extra function prototypes 88 )

#endif /+ bst.h */
( Table assertion function control directives; tbl = bst 593)

(bst.c 25) =
(License 1)
#include ( assert.h)
#include (stdio.h)
#include (stdlib.h)
#include (string.h)
#include “bst.h”

(BST operations 29)
Exercises:

1. What is the purpose of #ifndef BST_H ... #endif in (bst.h 24) above?

4.1 Vocabulary

When binary search trees, or BSTs, were introduced in the previous chapter, the reason
that they were called binary search trees wasn’t explained. The diagram below should help
to clear up matters, and incidentally let us define some BST-related vocabulary:
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This diagram illustrates the binary search tree example from the previous chapter. The
circle or node at the top, labeled 107, is the starting point of any search. As such, it is called
the root of the tree. The node connected to it below to the left, labeled 103, is the root’s
left child, and node 111 to its lower right is its right child. A node’s left child corresponds
to smaller from the array-based BST of the previous chapter, and a right child corresponds
to larger.

Some nodes, such as 106 here, don’t have any children. Such a node is called a leaf or
terminal node. Although not shown here, it’s also possible for a node to have only one child,
either on the left or the right side. A node with at least one child is called a nonterminal
node.

Each node in a binary search tree is, conceptually, the root of its own tree. Such a tree
is called a subtree of the tree that contains it. The left child of a node and recursively all of
that child’s children is a subtree of the node, called the left subtree of the node. The term
right subtree is defined similarly for the right side of the node. For instance, above, nodes
104, 105, and 106 are the right subtree of node 103, with 105 as the subtree’s root.

A BST without any nodes is called an empty tree. Both subtrees of all even-numbered
nodes in the BST above are empty trees.

In a binary search tree, the left child of a node, if it exists, has a smaller value than the
node, and the right child of a node has a larger value. The more general term binary tree,
on the other hand, refers to a data structure with the same form as a binary search tree,
but which does not necessarily share this property. There are also related, but different,
structures simply called “trees”.

In this book, all our binary trees are binary search trees, and this book will not discuss
plain trees at all. As a result, we will often be a bit loose in terminology and use the term
“binary tree” or “tree” when “binary search tree” is the proper term.

Although this book discusses binary search trees exclusively, it is instructive to occa-
sionally display, as a counterexample, a diagram of a binary tree whose nodes are out of
order and therefore not a BST. Such diagrams are marked *x to reinforce their non-BST
nature to the casual browser.

See also: [Knuth 1997], section 2.3; [Knuth 1998b], section 6.2.2; [Cormen 1990], section
13.1; [Sedgewick 1998], section 5.4.

4.1.1 Aside: Differing Definitions

The definitions in the previous section are the ones used in this book. They are the defi-
nitions that programmers often use in designing and implementing real programs. However,
they are slightly different from the definitions used in formal computer science textbooks.
This section gives these formal definitions and contrasts them against our own.
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The most important difference is in the definition of a binary tree itself. Formally, a
binary tree is either an “external node” or an “internal node” connected to a pair of binary
trees called the internal node’s left subtree and right subtree. Internal nodes correspond to
our notion of nodes, and external nodes correspond roughly to nodes’ empty left or right
subtrees. The generic term “node” includes both internal and external nodes.

Every internal node always has exactly two children, although those children may be
external nodes, so we must also revise definitions that depend on a node’s number of chil-
dren. Then, a “leaf” is an internal node with two external node children and a “nonterminal
node” is an internal node at least one of whose children is an internal node. Finally, an
“empty tree” is a binary tree that contains of only an external node.

Tree diagrams in books that use these formal definitions show both internal and external
nodes. Typically, internal nodes are shown as circles, external nodes as square boxes. Here’s
an example BST in the format used in this book, shown alongside an identical BST in the
format used in formal computer science books:

See also: [Sedgewick 1998], section 5.4.

4.2 Data Types

The types for memory allocation and managing data as veid * pointers were discussed
previously (see Chapter 2 [The Table ADT], page 7), but to build a table implementation
using BSTs we must define some additional types. In particular, we need struct bst_node to
represent an individual node and struct bst_table to represent an entire table. The following
sections take care of this.

4.2.1 Node Structure

When binary search trees were introduced in the last chapter, we used indexes into an
array to reference items’ smaller and larger values. But in C, BSTs are usually constructed
using pointers. This is a more general technique, because pointers aren’t restricted to
references within a single array.

(BST node structure 26) =
/* A binary search tree node. x/
struct bst_node {

struct bst_node xbst_link[2]; /x Subtrees. x/

void *bst_data; /+ Pointer to data. x/
b
This code is included in §24.

In struct bst_node, bst_link[0] takes the place of smaller, and bst_link[1] takes the place

of larger. If, in our array implementation of binary search trees, either of these would have
pointed to the sentinel, it instead is assigned NULL, the null pointer constant.
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In addition, bst_data replaces value. We use a void * generic pointer here, instead of int
as used in the last chapter, to let any kind of data be stored in the BST. See Section 2.3
[Comparison Function], page 8, for more information on void * pointers.

4.2.2 Tree Structure

The struct bst_table structure ties together all of the data needed to keep track of a
table implemented as a binary search tree:

(BST table structure 27) =

/* Tree data structure. x/

struct bst_table {
struct bst_node xbst_root; /+ Tree’s root. */
bst_comparison_func xbst_compare; /+ Comparison function. x/
void *bst_param; /* Extra argument to bst_compare. */
struct libavl_allocator *bst_alloc; /+ Memory allocator. */
size_t bst_count; /x Number of items in tree. */
unsigned long bst_generation; /* Generation number. x/

};

This code is included in §24, §142, and §192.

Most of struct bst_table’s members should be familiar. Member bst_root points to the
root node of the BST. Together, bst_compare and bst_param specify how items are compared
(see Section 2.4 [Item and Copy Functions], page 10). The members of bst_alloc specify how
to allocate memory for the BST (see Section 2.5 [Memory Allocation|, page 11). The number
of items in the BST is stored in bst_count (see Section 2.7 [Count|, page 13).

The final member, bst_generation, is a generation number. When a tree is created, it
starts out at zero. After that, it is incremented every time the tree is modified in a way
that might disturb a traverser. We’ll talk more about the generation number later (see
Section 4.9.3 [Better Iterative Traversal], page 53).

Exercises:

*1. Why is it a good idea to include bst_count in struct bst_table? Under what circum-
stances would it be better to omit it?

4.2.3 Maximum Height

For efficiency, some of the BST routines use a stack of a fixed maximum height. This
maximum height affects the maximum number of nodes that can be fully supported by
LIBAVL in any given tree, because a binary tree of height n contains at most 2™ — 1 nodes.

The BST_MAX_HEIGHT macro sets the maximum height of a BST. The default value of
32 allows for trees with up to 232 — 1 = 4,294,967,295 nodes. On today’s common 32-bit
computers that support only 4 GB of memory at most, this is hardly a limit, because
memory would be exhausted long before the tree became too big.

The BST routines that use fixed stacks also detect stack overflow and call a routine to
“balance” or restructure the tree in order to reduce its height to the permissible range. The
limit on the BST height is therefore not a severe restriction.

(BST maximum height 28) =
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/* Maximum BST height. */
#ifndef BST_MAX_HEIGHT
#define BST_MAX_HEIGHT 32
#endif

This code is included in §24, §142, §297, §415, and §519.
Exercises:

1. Suggest a reason why the BST_MAX_HEIGHT macro is defined conditionally. Are there any
potential pitfalls?

4.3 Rotations

Soon we’ll jump right in and start implementing the table functions for BSTs. But
before that, there’s one more topic to discuss, because they’ll keep coming up from time to
time throughout the rest of the book. This topic is the concept of a rotation. A rotation is
a simple transformation of a binary tree that looks like this:

a b b ¢

In this diagram, X and Y represent nodes and a, b, and ¢ are arbitrary binary trees
that may be empty. A rotation that changes a binary tree of the form shown on the left to
the form shown on the right is called a right rotation on Y. Going the other way, it is a
left rotation on X.

This figure also introduces new graphical conventions. First, the line leading vertically
down to the root explicitly shows that the BST may be a subtree of a larger tree. Also,
(possible empty) subtrees, as opposed to individual nodes, are indicated by lowercase letters
not enclosed by circles.

A rotation changes the local structure of a binary tree without changing its ordering
as seen through inorder traversal. That’s a subtle statement, so let’s dissect it bit by bit.
Rotations have the following properties:

Rotations change the structure of a binary tree.
In particular, rotations can often, depending on the tree’s shape, be used to
change the height of a part of a binary tree.

Rotations change the local structure of a binary tree.
Any given rotation only affects the node rotated and its immediate children.
The node’s ancestors and its children’s children are unchanged.

Rotations do not change the ordering of a binary tree.
If a binary tree is a binary search tree before a rotation, it is a binary search
tree after a rotation. So, we can safely use rotations to rearrange a BST-based
structure, without concerns about upsetting its ordering.

See also: [Cormen 1990], section 14.2; [Sedgewick 1998], section 12.8.
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Exercises:

1. For each of the binary search trees below, perform a right rotation at node 4.

(4) (4) (4)
2 ® @ (2) (6)
D 3 D ONONONO

2. Write a pair of functions, one to perform a right rotation at a given BST node, one to
perform a left rotation. What should be the type of the functions’ parameter?

4.4 Operations

Now can start to implement the operations that we’ll want to perform on BSTs. Here’s
the outline of the functions we’ll implement. We use the generic table insertion convenience
functions from Exercise 2.8-3 to implement bst_insert() and bst_replace(), as well the generic
assertion function implementations from Exercise 2.9-2 to implement tbl_assert_insert() and
tbl_assert_delete(). We also include a copy of the default memory allocation functions for
use with BSTs:

§29 (BST operations 29) =

(BST creation function 30)
(BST search function 31)

(BST item insertion function 32)
( Table insertion convenience functions; thl = bst 592 )
(BST item deletion function 37)
(BST traversal functions 63 )
(BST copy function 83)

(BST destruction function 84)
(BST balance function 87)

( Default memory allocation functions; tbl = bst 6)
( Table assertion functions; tbl = bst 594 )

This code is included in §25.

4.5 Creation

We need to write bst_create() to create an empty BST. All it takes is a little bit of
memory allocation and initialization:
§30 (BST creation function 30) =
struct bst_table xbst_create (bst_comparison_func xcompare, void xparam,
struct libavl_allocator xallocator) {
struct bst_table xtree;

assert (compare != NULL);

if (allocator == NULL)
allocator = &bst_allocator_default;

tree = allocator—libavl_malloc (allocator, sizeof xtree);
if (tree == NULL)
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return NULL;
tree—bst_root = NULL;
tree—bst_compare = compare;
tree—bst_param = param;
tree—bst_alloc = allocator;
tree—bst_count = 0;
tree—bst_generation = 0;

return tree;

}

This code is included in §29, §145, and §196.

4.6 Search

Searching a binary search tree works just the same way as it did before when we were
doing it inside an array. We can implement bst_find() immediately:
(BST search function 31) =
void xbst_find (const struct bst_table xiree, const void xitem) {
const struct bst_node *p;
assert (tree != NULL && item != NULL);
for (p = tree—bst_root; p = NULL; ) {
int cmp = tree—bst_compare (item, p—bst_data, tree—bst_param);
if (ecmp < 0) p = p—bst_link[0];
else if (cmp > 0) p = p—bst_link[1];
else /x cmp == 0 */ return p—bst_data;
}
return NULL;

}

This code is included in §29, §145, §196, §489, §522, and §554.

See also: [Knuth 1998b], section 6.2.2; [Cormen 1990], section 13.2; [Kernighan 1988], sec-
tion 3.3; [Bentley 2000], chapters 4 and 5, section 9.3, appendix 1; [Sedgewick 1998], program
12.7.

4.7 Insertion

Inserting new nodes into a binary search tree is easy. To start out, we work the same
way as in a search, traversing the tree from the top down, as if we were searching for the
item that we’re inserting. If we find one, the item is already in the tree, and we need not
insert it again. But if the new item is not in the tree, eventually we “fall off” the bottom of
the tree. At this point we graft the new item as a child of the node that we last examined.

An example is in order. Consider this binary search tree:

(5)
(3) (8)
2 @ ©
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Suppose that we wish to insert a new item, 7, into the tree. 7 is greater than 5, so

examine 5’s right child, 8. 7 is less than 8, so examine 8’s left child, 6. 7 is greater than 6,
but 6 has no right child. So, make 7 the right child of 6:

We cast this in a form compatible with the abstract description as follows:

(BST item insertion function 32) =
void sxbst_probe (struct bst_table xtree, void xitem) {

}

struct bst_node *p, *¢; /* Current node in search and its parent. x/
int dir; /+ Side of ¢ on which p is located. */
struct bst_node xn; /+x Newly inserted node. */

assert (tree != NULL && item != NULL);

for (¢ = NULL, p = tree—bst_root; p != NULL; q = p, p = p—bst_link[dir]) {
int cmp = tree—bst_compare (item, p—bst_data, tree—bst_param);
if (cmp == 0)
return &p—bst_data;
dir = cmp > 0;
}
n = tree—bst_alloc—libavi_malloc (tree—bst_alloc, sizeof *p);
if (n == NULL)
return NULL;
tree—bst_count—++;
n—bst_link[0] = n—bst_link[1] = NULL;
n—bst_data = item;
if (¢ != NULL)
q—bst_link[dir] = n;
else tree—bst_root = n;

return &n—bst_data;

This code is included in §29.

See also: [Knuth 1998b], algorithm 6.2.2T; [Cormen 1990], section 13.3; [Bentley 2000],
section 13.3; [Sedgewick 1998], program 12.7.

Exercises:

1. Explain the expression p = (struct bst_node *) &tree—bst_root. Suggest an alternative.

2. Rewrite bst_probe() to use only a single local variable of type struct bst_node xx.

3. Suppose we want to make a new copy of an existing binary search tree, preserving the
original tree’s shape, by inserting items into a new, currently empty tree. What constraints
are there on the order of item insertion?
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4. Write a function that calls a provided bst_item_func for each node in a provided BST in
an order suitable for reproducing the original BST, as discussed in Exercise 3.

4.7.1 Aside: Root Insertion

One side effect of the usual method for BST insertion, implemented in the previous
section, is that items inserted more recently tend to be farther from the root, and therefore
it takes longer to find them than items inserted longer ago. If all items are equally likely
to be requested in a search, this is unimportant, but this is regrettable for some common
usage patterns, where recently inserted items tend to be searched for more often than older
items.

In this section, we examine an alternative scheme for insertion that addresses this prob-
lem, called “insertion at the root” or “root insertion”. An insertion with this algorithm
always places the new node at the root of the tree. Following a series of such insertions,
nodes inserted more recently tend to be nearer the root than other nodes.

As a first attempt at implementing this idea, we might try simply making the new node
the root and assigning the old root as one of its children. Unfortunately, this and similar
approaches will not work because there is no guarantee that nodes in the existing tree have
values all less than or all greater than the new node.

An approach that will work is to perform a conventional insertion as a leaf node, then
use a series of rotations to move the new node to the root. For example, the diagram below
illustrates rotations to move node 4 to the root. A left rotation on 3 changes the first tree
into the second, a right rotation on 5 changes the second into the third, and finally a left
rotation on 1 moves 4 into the root position:

D D
(5) (5)
3y ®U (4)
2 @ (3)
(2)

The general rule follows the pattern above. If we moved down to the left from a node x
during the insertion search, we rotate right at z. If we moved down to the right, we rotate
left.

The implementation is straightforward. As we search for the insertion point we keep
track of the nodes we’ve passed through, then after the insertion we return to each of them
in reverse order and perform a rotation:

(BST item insertion function, root insertion version 33) =
void xxbst_probe (struct bst_table xtree, void xitem) {
( rb_probe() local variables; rb = bst 198 )

(Step 1: Search BST for insertion point, root insertion version 34 )
(Step 2: Insert new BST node, root insertion version 35 )
(Step 3: Move BST node to root 36 )

return &n—bst_data;
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}

(Step 1: Search BST for insertion point, root insertion version 34) =
pal0] = (struct bst_node *) &tree—bst_root;
da0] = 0;
k=1,
for (p = tree—bst_root; p = NULL; p = p—bst_link[dalk — 1]]) {
int cmp = tree—bst_compare (item, p—bst_data, tree—bst_param);
if (ecmp == 0)
return &p—bst_data;
if (k >= BST_MAX_HEIGHT) {
bst_balance (tree);
return bst_probe (tree, item);

}

palk] = p;

da[k++] = cmp > 0;
}

This code is included in §33.

(Step 2: Insert new BST node, root insertion version 35) =
n = palk — 1]—bst_link[dalk — 1]] =

tree—bst_alloc—libavl_malloc (tree—bst_alloc, sizeof *xn);
if (n == NULL)

return NULL;

n—bst_link[0] = n—bst_link[1] = NULL;
n—bst_data = item;
tree—bst_count++;
tree—bst_generation++;

This code is included in §33.

(Step 3: Move BST node to root 36) =
for G k> 1;k——) {

struct bst_node xq = palk — 1];

if (da[k — 1] == 0) {
q—bst_link[0] = n—bst_link[1];
n—bst_link[1] = g;

}else /x dalk — 1] == 1/ {
q—bst_link[l] = n—bst_link[0];
n—bst_link[0] = g¢;

}

palk — 2]—bst_link[da[k — 2]] = n;

}

This code is included in §33, §622, and §627.
See also: [Sedgewick 1998], section 12.8.

Exercises:

GNU libavl 2.0.2

1. Root insertion will prove useful later when we write a function to join a pair of disjoint
BSTs (see Section 4.13 [Joining BSTs]|, page 78). For that purpose, we need to be able to



Chapter 4: Binary Search Trees 39

insert a preallocated node as the root of an arbitrary tree that may be a subtree of some
other tree. Write a function to do this matching the following prototype:

static int root_insert (struct bst_table xtree, struct bst_node xxroot,
struct bst_node xnew_node);

Your function should insert new_node at xroot using root insertion, storing new_node into
xroot, and return nonzero only if successful. The subtree at xroot is in tree. You may
assume that no node matching new_node exists within subtree root.

2. Now implement a root insertion as in Exercise 1, except that the function is not allowed
to fail, and rebalancing the tree is not acceptable either. Use the same prototype with the
return type changed to void.

*3. Suppose that we perform a series of root insertions in an initially empty BST. What
kinds of insertion orders require a large amount of stack?

4.8 Deletion

Deleting an item from a binary search tree is a little harder than inserting one. Before we
write any code, let’s consider how to delete nodes from a binary search tree in an abstract
fashion. Here’s a BST from which we can draw examples during the discussion:

It is more difficult to remove some nodes from this tree than to remove others. Here, we
recognize three distinct cases (Exercise 4.8-1 offers a fourth), described in detail below in
terms of the deletion of a node designated p.

Case 1: p has no right child

It is trivial to delete a node with no right child, such as node 1, 4, 7, or 8 above. We
replace the pointer leading to p by p’s left child, if it has one, or by a null pointer, if not.
In other words, we replace the deleted node by its left child. For example, the process of
deleting node 8 looks like this:
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Case 2: p’s right child has no left child

This case deletes any node p with a right child r that itself has no left child. Nodes 2,
3, and 6 in the tree above are examples. In this case, we move r into p’s place, attaching
p’s former left subtree, if any, as the new left subtree of r. For instance, to delete node 2
in the tree above, we can replace it by its right child 3, giving node 2’s left child 1 to node
3 as its new left child. The process looks like this:

Case 3: p’s right child has a left child

This is the “hard” case, where p’s right child r has a left child. but if we approach it
properly we can make it make sense. Let p’s inorder successor, that is, the node with the
smallest value greater than p, be s. Then, our strategy is to detach s from its position in
the tree, which is always an easy thing to do, and put it into the spot formerly occupied
by p, which disappears from the tree. In our example, to delete node 5, we move inorder
successor node 6 into its place, like this:

@ @

But how do we know that node s exists and that we can delete it easily? We know that
it exists because otherwise this would be case 1 or case 2 (consider their conditions). We
can easily detach from its position for a more subtle reason: s is the inorder successor of p
and is therefore has the smallest value in p’s right subtree, so s cannot have a left child. (If
it did, then this left child would have a smaller value than s, so it, rather than s, would be
p’s inorder successor.) Because s doesn’t have a left child, we can simply replace it by its
right child, if any. This is the mirror image of case 1.

Implementation

The code for BST deletion closely follows the above discussion. Let’s start with an
outline of the function:

(BST item deletion function 37) =

void xbst_delete (struct bst_table xtree, const void *xitem) {
struct bst_node *p, xq; /* Node to delete and its parent. %/
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int ¢cmp; /* Comparison between p—bst_data and item. */
int dir; /* Side of ¢ on which p is located. */

assert (tree != NULL && item != NULL);

(Step 1: Find BST node to delete 38)

(Step 2: Delete BST node 39)

(Step 3: Finish up after deleting BST node 44)

}

This code is included in §29.

We begin by finding the node to delete, in much the same way that bst_find() did. But,
in every case above, we replace the link leading to the node being deleted by another node
or a null pointer. To do so, we have to keep track of the pointer that led to the node to be
deleted. This is the purpose of ¢ and dir in the code below.

§38  (Step 1: Find BST node to delete 38) =
p = (struct bst_node *) &tree—bst_root;

for (ecmp = ~1; emp = 0; ecmp = tree—bst_compare (item, p—bst_data, tree—bst_param)) {
dir = cmp > 0;
q = D;

p = p—bst_link[dir];
if (p == NULL)
return NULL;

}

item = p—bst_data;
This code is included in §37.

Now we can actually delete the node. Here is the code to distinguish between the three
cases:

§39  (Step 2: Delete BST node 39) =
if (p—bst_link[1] == NULL) { (Case 1 in BST deletion 40) }
else {
struct bst_node xr = p—bst_link[1];
if (r—bst_link[0] == NULL) {
(Case 2 in BST deletion 41)
} else {
(Case 3 in BST deletion 42)
}

}

This code is included in §37.
In case 1, we simply replace the node by its left subtree:
§40 (Case 1 in BST deletion 40) =
q—bst_link[dir] = p—bst_link[0];
This code is included in §39.

In case 2, we attach the node’s left subtree as its right child r’s left subtree, then replace
the node by r:

§41 (Case 2 in BST deletion 41) =
r—bst_link[0] = p—bst_link[0];
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q—bst_link[dir] = r;
This code is included in §39.
We begin case 3 by finding p’s inorder successor as s, and the parent of s as r. Node

p’s inorder successor is the smallest value in p’s right subtree and that the smallest value
in a tree can be found by descending to the left until a node with no left child is found:

(Case 3 in BST deletion 42) =
struct bst_node xs;

for (;;) {

s = r—bst_link|[0];

if (s—bst_link[0] == NULL)
break;
r=3s;

}

See also §43.
This code is included in §39.
Case 3 wraps up by adjusting pointers so that s moves into p’s place:
(Case 3 in BST deletion 42) +=
r—bst_link[0] = s—bst_link[1];
s—bst_link[0] = p—bst_link[0];
s—bst_link[1] = p—bst_link[1];
q—bst_link[dir] = s;
As the final step, we decrement the number of nodes in the tree, free the node, and
return its data:
(Step 3: Finish up after deleting BST node 44) =
tree—bst_alloc—libavl_free (tree—bst_alloc, p);
tree—bst_count——;
tree—bst_generation++;
return (void x) item;
This code is included in §37.
See also: [Knuth 1998b], algorithm 6.2.2D; [Cormen 1990], section 13.3.

Exercises:
1. Write code for a case 1.5 which handles deletion of nodes with no left child.

2. In the code presented above for case 3, we update pointers to move s into p’s position,
then free p. An alternate approach is to replace p’s data by s’s and delete s. Write code to
use this approach. Can a similar modification be made to either of the other cases?

*3. The code in the previous exercise is a few lines shorter than that in the main text, so
it would seem to be preferable. Explain why the revised code, and other code based on the
same idea, cannot be used in LIBAVL. (Hint: consider the semantics of LIBAVL traversers.)

4.8.1 Aside: Deletion by Merging

The LiBAVL algorithm for deletion is commonly used, but it is also seemingly ad-hoc
and arbitrary in its approach. In this section we’ll take a look at another algorithm that
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may seem a little more uniform. Unfortunately, though it is conceptually simpler in some
ways, in practice this algorithm is both slower and more difficult to properly implement.

The idea behind this algorithm is to consider deletion as breaking the links between the
deleted node and its parent and children. In the most general case, we end up with three
disconnected BSTs, one that contains the deleted node’s parent and two corresponding to
the deleted node’s former subtrees. The diagram below shows how this idea works out for
the deletion of node 5 from the tree on the left:

Of course, the problem then becomes to reassemble the pieces into a single binary search
tree. We can do this by merging the two former subtrees of the deleted node and attaching
them as the right child of the parent subtree. As the first step in merging the subtrees,
we take the minimum node 7 in the former right subtree and repeatedly perform a right
rotation on its parent, until it is the root of its subtree. The process up to this point looks
like this for our example, showing only the subtree containing r:

(9 r
® o
S
& ® . _

Now, because r is the root and the minimum node in its subtree, r has no left child.
Also, all the nodes in the opposite subtree are smaller than r. So to merge these subtrees,
we simply link the opposite subtree as r’s left child and connect r in place of the deleted
node:

(8

The function outline is straightforward:

§45 (BST item deletion function, by merging 45) =
void xbst_delete (struct bst_table xtree, const void *xitem) {
struct bst_node *p; /* The node to delete, or a node part way to it. */
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struct bst_node *q; /+ Parent of p. %/
int cmp, dir; /* Result of comparison between item and p. */

assert (tree != NULL && item != NULL);

(Step 1: Find BST node to delete by merging 46 )
(Step 2: Delete BST node by merging 47)
(Step 3: Finish up after BST deletion by merging 48 )

return (void x) item;

First we search for the node to delete, storing it as p and its parent as ¢:

§46  (Step 1: Find BST node to delete by merging 46) =
p = (struct bst_node *) &tree—bst_root;

for (cmp = ~1; ecmp != 0; cmp = tree—bst_compare (item, p—bst_data, tree—bst_param)) {
dir = c¢cmp > 0;
q=0Dp;

p = p—bst_link[dir];
if (p == NULL)
return NULL;

}

This code is included in §45.

The actual deletion process is not as simple. We handle specially the case where p
has no right child. This is unfortunate for uniformity, but simplifies the rest of the code
considerably. The main case starts off with a loop on variable r to build a stack of the nodes
in the right subtree of p that will need to be rotated. After the loop, r is the minimum value
in p’s right subtree. This will be the new root of the merged subtrees after the rotations,
so we set r as ¢’s child on the appropriate side and r’s left child as p’s former left child.
After that the only remaining task is the rotations themselves, so we perform them and
we’re done:

§47  (Step 2: Delete BST node by merging 47) =
if (p—bst_link[1] != NULL) {
struct bst_node *pa[BST_MAX_HEIGHT|; /+ Nodes on stack. */
unsigned char da[BST_MAX_HEIGHT]; / Directions moved from stack nodes. */
int £ = 0; /* Stack height. */
struct bst_node xr; /x Iterator; final value is minimum node in subtree. */
for (r = p—bst_link[1]; r—bst_link[0] != NULL; r = r—bst_link[0]) {
if (k >= BST_MAX_HEIGHT) {
bst_balance (tree);
return bst_delete (tree, item);
}
palk] = r;
dalk++] = 0;
}
q—bst_link[dir] = ;
r—bst_link[0] = p—bst_link[0];
for (; k > 0; k——) {
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struct bst_node xy = palk — 1];
struct bst_node xz = y—bst_link[0];
y—bst_link[0] = z—bst_link[1];
z—bst_link[1] = y;
if (k > 1)
palk — 2]—bst_link[dalk — 2]] = z;
}

}

else q—bst_link[dir] = p—bst_link[0];

This code is included in §45.

Finally, there’s a bit of obligatory bookkeeping:

(Step 3: Finish up after BST deletion by merging 48) =
item = p—bst_data;

tree—bst_alloc—libavl_free (tree—bst_alloc, p);
tree—bst_count——;

tree—bst_generation+-+;

This code is included in §45.
See also: [Sedgewick 1998], section 12.9.

4.9 Traversal

After we’ve been manipulating a binary search tree for a while, we will want to know
what items are in it. The process of enumerating the items in a binary search tree is called
traversal. LIBAVL provides the bst_t_x functions for a particular kind of traversal called
inorder traversal, so-called because items are enumerated in sorted order.

In this section we’ll implement three algorithms for traversal. Each of these algorithms is
based on and in some way improves upon the previous algorithm. The final implementation
is the one used in LIBAVL, so we will implement all of the bst_t_x functions for it.

Before we start looking at particular algorithms, let’s consider some criteria for evaluating
traversal algorithms. The following are not the only criteria that could be used, but they
are indeed important:!

complexity
Is it difficult to describe or to correctly implement the algorithm? Complex
algorithms also tend to take more code than simple ones.

efficiency Does the algorithm make good use of time and memory? The ideal traversal
algorithm would require time proportional to the number of nodes traversed
and a constant amount of space. In this chapter we will meet this ideal time
criterion and come close on the space criterion for the average case. In future
chapters we will be able to do better even in the worst case.

1 Some of these terms are not generic BST vocabulary. Rather, they have been adopted for these particular
uses in this text. You can consider the above to be our working definitions of these terms.
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convenience
Is it easy to integrate the traversal functions into other code? Callback functions
are not as easy to use as other methods that can be used from for loops (see
Section 4.9.2.1 [Improving Convenience], page 50).

reliability Are there pathological cases where the algorithm breaks down? If so, is it
possible to fix these problems using additional time or space?

generality Does the algorithm only allow iteration in a single direction? Can we begin
traversal at an arbitrary node, or just at the least or greatest node?

resilience If the tree is modified during a traversal, is it possible to continue traversal, or
does the modification invalidate the traverser?

The first algorithm we will consider uses recursion. This algorithm is worthwhile pri-
marily for its simplicity. In C, such an algorithm cannot be made as efficient, convenient,
or general as other algorithms without unacceptable compromises. It is possible to make it
both reliable and resilient, but we won’t bother because of its other drawbacks.

We arrive at our second algorithm through a literal transformation of the recursion in the
first algorithm into iteration. The use of iteration lets us improve the algorithm’s memory
efficiency, and, on many machines, its time efficiency as well. The iterative algorithm also
lets us improve the convenience of using the traverser. We could also add reliability and
resilience to an implementation of this algorithm, but we’ll save that for later. The only
problem with this algorithm, in fact, lies in its generality: it works best for moving only in
one direction and starting from the least or greatest node.

The importance of generality is what draws us to the third algorithm. This algorithm
is based on ideas from the previous iterative algorithm along with some simple observa-
tions. This algorithm is no more complex than the previous one, but it is more general,
allowing easily for iteration in either direction starting anywhere in the tree. This is the
algorithm used in LIBAVL, so we build an efficient, convenient, reliable, general, resilient
implementation.

4.9.1 Traversal by Recursion

To figure out how to traverse a binary search tree in inorder, think about a BST’s
structure. A BST consists of a root, a left subtree, and right subtree. All the items in the
left subtree have smaller values than the root and all the items in the right subtree have
larger values than the root.

That’s good enough right there: we can traverse a BST in inorder by dealing with its
left subtree, then doing with the root whatever it is we want to do with each node in the
tree (generically, visit the root node), then dealing with its right subtree. But how do we
deal with the subtrees? Well, they’re BSTs too, so we can do the same thing: traverse its
left subtree, then visit its root, then traverse its right subtree, and so on. Eventually the
process terminates because at some point the subtrees are null pointers, and nothing needs
to be done to traverse an empty tree.

Writing the traversal function is almost trivial. We use bst_item_func to visit a node
(see Section 2.4 [Item and Copy Functions|, page 10):

(Recursive traversal of BST 49) =
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static void traverse_recursive (struct bst_node xnode, bst_item_func xaction, void xparam) {
if (node != NULL) {
traverse_recursive (node—bst_link[0], action, param);
action (node—bst_data, param);
traverse_recursive (node—bst_link[1], action, param);

}

See also §50.

We also want a wrapper function to insulate callers from the existence of individual tree
nodes:

(Recursive traversal of BST 49) +=

void walk (struct bst_table xtree, bst_item_func xaction, void *param) {
assert (tree != NULL && action != NULL);
traverse_recursive (tree—bst_root, action, param);

}

See also: [Knuth 1997], section 2.3.1; [Cormen 1990], section 13.1; [Sedgewick 1998], pro-
gram 12.8.

Exercises:

1. Instead of checking for a null node at the top of traverse_recursive(), would it be better
to check before calling in each place that the function is called? Why or why not?

2. Some languages, such as Pascal, support the concept of nested functions, that is, func-
tions within functions, but C does not. Some algorithms, including recursive tree traversal,
can be expressed much more naturally with this feature. Rewrite walk(), in a hypothetical
C-like language that supports nested functions, as a function that calls an inner, recursively
defined function. The nested function should only take a single parameter. (The GNU C
compiler supports nested functions as a language extension, so you may want to use it to
check your code.)

4.9.2 Traversal by Iteration

The recursive approach of the previous section is one valid way to traverse a binary
search tree in sorted order. This method has the advantages of being simple and “obviously
correct”. But it does have problems with efficiency, because each call to traverse_recursive()
receives its own duplicate copies of arguments action and param, and with convenience,
because writing a new callback function for each traversal is unpleasant. It has other
problems, too, as already discussed, but these are the ones to be addressed immediately.

Unfortunately, neither problem can be solved acceptably in C using a recursive method,
the first because the traversal function has to somehow know the action function and the
parameter to pass to it, and the second because there is simply no way to jump out of and
then back into recursive calls in C.?2 Our only option is to use an algorithm that does not
involve recursion.

2 Thisis possible in some other languages, such as Scheme, that support “coroutines” as well as subroutines.
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The simplest way to eliminate recursion is by a literal conversion of the recursion to
iteration. This is the topic of this section. Later, we will consider a slightly different, and
in some ways superior, iterative solution.

Converting recursion into iteration is an interesting problem. There are two main ways
to do it:

tail recursion elimination
If a recursive call is the last action taken in a function, then it is equivalent to a
goto back to the beginning of the function, possibly after modifying argument
values. (If the function has a return value then the recursive call must be a
return statement returning the value received from the nested call.) This form
of recursion is called tail recursion.

save-and-restore recursion elimination
In effect, a recursive function call saves a copy of argument values and local
variables, modifies the arguments, then executes a goto to the beginning of the
function. Accordingly, the return from the nested call is equivalent to restoring
the saved arguments and local variables, then executing a goto back to the point
where the call was made.

We can make use of both of these rules in converting traverse_recursive() to iterative
form. First, does traverse_recursive() ever call itself as its last action? The answer is yes,
so we can convert that to an assignment plus a goto statement:

(Iterative traversal of BST, take 1 51) =
static void traverse_iterative (struct bst_node xnode, bst_item_func xaction, void xparam) {
start:
if (node != NULL) {
traverse_iterative (node—bst_link[0], action, param);
action (node—bst_data, param);
node = node—bst_link[1];
goto start;

Sensible programmers are not fond of goto. Fortunately, it is easy to eliminate by
rephrasing in terms of a while loop:

(Iterative traversal of BST, take 2 52) =
static void traverse_iterative (struct bst_node xnode, bst_item_func *action, void xparam) {
while (node != NULL) {
traverse_iterative (node—bst_link[0], action, param);
action (node—bst_data, param);
node = node—bst_link[1];

This still leaves another recursive call, one that is not tail recursive. This one must be
eliminated by saving and restoring values. A stack is ideal for this purpose. For now, we
use a stack of fixed size BST_MAX_HEIGHT and deal with stack overflow by aborting. Later,
we’ll handle overflow more gracefully. Here’s the code:
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853  (Iterative traversal of BST, take 3 53) =
static void traverse_iterative (struct bst_node xnode, bst_item_func *action, void xparam) {
struct bst_node *stack[BST_MAX_HEIGHT];
size_t height = 0;
start:
while (node != NULL) {
if (height >= BST_MAX_HEIGHT) {
forintf (stderr, "tree_ too_ deep\n");
exit (EXIT_FAILURE);
}
stack[height++] = node;
node = node—bst_link|0];
goto start;

resume:
action (node—bst_data, param);
node = node—bst_link[1];

}

if (height > 0) {
node = stack[——height];
goto resume;

This code, an ugly mash of statements, is a prime example of why goto statements are
discouraged, but its relationship with the earlier code is clear. To make it acceptable for real
use, we must rephrase it. First, we can eliminate label resume by recognizing that it can
only be reached from the corresponding goto statement, then moving its code appropriately:

§54  (Iterative traversal of BST, take 4 54) =
static void traverse_iterative (struct bst_node xnode, bst_item_func *action, void xparam) {
struct bst_node *stack[BST_MAX_HEIGHT];
size_t height = 0;
start:
while (node != NULL) {
if (height >= BST_MAX_HEIGHT) {
forintf (stderr, "tree too_ deep\n");
exit (EXIT_FAILURE);
}
stack[height++] = node;
node = node—bst_link|0];
goto start;
}
if (height > 0) {
node = stack[——height];
action (node—bst_data, param);
node = node—bst_link[1];
goto start;
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The first remaining goto statement can be eliminated without any other change, because
it is redundant; the second, by enclosing the whole function body in an “infinite loop”:

§55  (Iterative traversal of BST, take 5 55) =
static void traverse_iterative (struct bst_node xnode, bst_item_func *action, void xparam) {
struct bst_node *stack[BST_MAX_HEIGHT];
size_t height = 0;
for (;;) {
while (node != NULL) {
if (height >= BST_MAX_HEIGHT) {
forintf (stderr, "tree too,deep\n");
exit (EXIT_FAILURE);
}
stack[height++] = node;
node = node—bst_link|[0];
}
if (height == 0)
break;
node = stack[——height];
action (node—bst_data, param);
node = node—bst_link[1];

This initial iterative version takes care of the efficiency problem.
Exercises:

1. Function traverse_iterative() relies on stack[], a stack of nodes yet to be visited, which
as allocated can hold up to BST_MAX_HEIGHT nodes. Consider the following questions con-
cerning stack||:

a. What is the maximum height this stack will attain in traversing a binary search tree
containing n nodes, if the binary tree has minimum possible height?

b. What is the maximum height this stack can attain in traversing any binary tree of n
nodes? The minimum height?

¢. Under what circumstances is it acceptable to use a fixed-size stack as in the example
code?

d. Rewrite traverse_iterative() to dynamically expand stack[] in case of overflow.

e. Does traverse_recursive() also have potential for running out of “stack” or “memory”?
If so, more or less than traverse_iterative() as modified by the previous part?

4.9.2.1 Improving Convenience

Now we can work on improving the convenience of our traversal function. But, first,
perhaps it’s worthwhile to demonstrate how inconvenient it really can be to use walk(),
regardless of how it’s implemented internally.
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Suppose that we have a BST of character strings and, for whatever reason, want to know
the total length of all the strings in it. We could do it like this using walk():

( Summing string lengths with walk() 56 ) =

static void process_node (void *data, void xparam) {
const char xstring = data;
size_t xtotal = param;

xtotal += strlen (string);

}

size_t total_length (struct bst_table xtree) {
size_t total = 0;
walk (tree, process_node, &total);
return total;

}

With the functions first_item() and nezt_item() that we’ll write in this section, we can
rewrite these functions as the single function below:

( Summing string lengths with nezt_item() 57) =
size_t total_length (struct bst_table xtree) {
struct traverser ¢;
const char xstring;
size_t total = 0;
for (string = first_item (tree, &t); string != NULL; string = next_item (&t))
total += strlen (string);
return total;

You're free to make your own assessment, of course, but many programmers prefer
the latter because of its greater brevity and fewer “unsafe” conversions to and from void
pointers.

Now to actually write the code. Our task is to modify traverse_iterative() so that,
instead of calling action, it returns node— bst_data. But first, some infrastructure. We
define a structure to contain the state of the traversal, equivalent to the relevant argument
and local variables in traverse_iterative(). To emphasize that this is not our final version of
this structure or the related code, we will call it struct traverser, without any name prefix:
(Iterative traversal of BST, take 6 58) =
struct traverser {

struct bst_table xtable; /x Tree being traversed. */
struct bst_node xnode; /% Current node in tree. */
struct bst_node *stack[BST_MAX_HEIGHT]; /* Parent nodes to revisit. %/
size_t height; /* Number of nodes in stack. */
b
See also §59 and §60.

Function first_item() just initializes a struct traverser and returns the first item in the
tree, deferring most of its work to nezt_item():
(Iterative traversal of BST, take 6 58) +=
/* Initializes trav for tree.
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Returns data item in tree with the smallest value, or NULL if tree is empty.
In the former case, next_item() may be called with trav
to retrieve additional data items. */
void xfirst_item (struct bst_table xtree, struct traverser xtrav) {
assert (tree != NULL && trav != NULL);
trav—table = tree;
trav—mnode = tree—bst_root;
trav—height = 0;
return next_item (trav);

Function nezt_item() is, for the most part, a simple modification of traverse_iterative():

(Tterative traversal of BST, take 6 58) +=
/* Returns the next data item in inorder within the tree being traversed with trav,
or if there are no more data items returns NULL.
In the former case next_item() may be called again to retrieve the next item. %/
void xnext_item (struct traverser xtrav) {
struct bst_node xnode;

assert (trav != NULL);
node = trav—node;
while (node != NULL) {
if (tT’aU—>h€ight >= BST_MAX_HEIGHT) {
forintf (stderr, "tree too_ deep\n");
exit (EXIT_FAILURE);

}

trav—stack[trav—height++] = node;
node = node—bst_link|[0];

}
if (trav—height == 0)

return NULL;
node = trav—stack|——trav—height];
trav—node = node—bst_link[1];
return node—bst_data;

}
See also: [Knuth 1997], algorithm 2.3.1T; [Knuth 1992], p. 50-54, section “Recursion Elim-
ination” within article “Structured Programming with go to statements”.

Exercises:

1. Make next_item() reliable by providing alternate code to execute on stack overflow. This
code will work by calling bst_balance() to “balance” the tree, reducing its height such that
it can be traversed with the small stack that we use. We will develop bst_balance() later.
For now, consider it a “black box” that simply needs to be invoked with the tree to balance
as an argument. Don’t forget to adjust the traverser structure so that later calls will work
properly, too.

2. Without modifying next_item() or first_item(), can a function prev_item() be written
that will move to and return the previous item in the tree in inorder?
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4.9.3 Better Iterative Traversal

We have developed an efficient, convenient function for traversing a binary tree. In the
exercises, we made it reliable, and it is possible to make it resilient as well. But its algorithm
makes it difficult to add generality. In order to do that in a practical way, we will have to
use a new algorithm.

Let us start by considering how to understand how to find the successor or predecessor of
any node in general, as opposed to just blindly transforming code as we did in the previous
section. Back when we wrote bst_delete(), we already solved half of the problem, by figuring
out how to find the successor of a node that has a right child: take the least-valued node
in the right subtree of the node (see [Deletion Case 3], page 40).

The other half is the successor of a node that doesn’t have a right child. Take a look at
the code for one of the previous traversal functions—recursive or iterative, whichever you
better understand—and mentally work out the relationship between the current node and
its successor for a node without a right child. What happens is that we move up the tree,
from a node to its parent, one node at a time, until it turns out that we moved up to the
right (as opposed to up to the left) and that is the successor node. Think of it this way: if
we move up to the left, then the node we started at has a lesser value than where we ended
up, so we’ve already visited it, but if we move up to the right, then we’re moving to a node
with a greater value, so we’ve found the successor.

Using these instructions, we can find the predecessor of a node, too, just by exchanging
“left” and “right”. This suggests that all we have to do in order to generalize our traversal
function is to keep track of all the nodes above the current node, not just the ones that are
up and to the left. This in turn suggests our final implementation of struct bst_traverser,
with appropriate comments:

(BST traverser structure 61) =
/% BST traverser structure. */
struct bst_traverser {
struct bst_table xbst_table; /+ Tree being traversed. */
struct bst_node xbst_node; /+ Current node in tree. */
struct bst_node xbst_stack[BST_MAX_HEIGHT|; /* All the nodes above bst_node. */
size_t bst_height; /* Number of nodes in bst_parent. x/
unsigned long bst_generation; /* Generation number. */
};
This code is included in §24, §142, and §192.

Because user code is expected to declare actual instances of struct bst_traverser, struct
bst_traverser must be defined in (bst.h 24) and therefore all of its member names are
prefixed by bst_ for safety.

The only surprise in struct bst_traverser is member bst_generation, the traverser’s gener-
ation number. This member is set equal to its namesake in struct bst_table when a traverser
is initialized. After that, the two values are compared whenever the stack of parent pointers
must be accessed. Any change in the tree that could disturb the action of a traverser will
cause their generation numbers to differ, which in turn triggers an update to the stack. This
is what allows this final implementation to be resilient.

We need a utility function to actually update the stack of parent pointers when differing
generation numbers are detected. This is easy to write:
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(BST traverser refresher 62) =
/* Refreshes the stack of parent pointers in trav
and updates its generation number. */
static void trav_refresh (struct bst_traverser xtrav) {
assert (trav != NULL);

trav—bst_generation = trav—bst_table—bst_generation;

if (trav—bst_node != NULL) {
bst_comparison_func xcmp = trav—bst_table—bst_compare;
void *param = trav—bst_table—bst_param;
struct bst_node xnode = trav—bst_node;
struct bst_node xi;

trav—bst_height = 0;
for (i = trav—bst_table—bst_root; i '= node; ) {
assert (trav—bst_height < BST_MAX_HEIGHT);
assert (i != NULL);
trav—bst_stack[trav—bst_height++] = i;
i = i—bst_link[cmp (node—bst_data, i—bst_data, param) > 0],

}

This code is included in §63 and §178.

The following sections will implement all of the traverser functions bst_t_(). See Sec-
tion 2.10 [Traversers|, page 15, for descriptions of the purpose of each of these functions.

The traversal functions are collected together into ( BST traversal functions 63 ):

(BST traversal functions 63) =

(BST traverser refresher 62 )

(BST traverser null initializer 64 )

(BST traverser least-item initializer 65)
(BST traverser greatest-item initializer 66 )
(BST traverser search initializer 67 )
(BST traverser insertion initializer 68 )
(BST traverser copy initializer 69 )

(BST traverser advance function 70)
(BST traverser back up function 73 )
(BST traverser current item function 74 )
(BST traverser replacement function 75)

This code is included in §29.
Exercises:
1. The bst_probe() function doesn’t change the tree’s generation number. Why not?

*2. The main loop in trav_refresh() contains the assertion
assert (trav—bst_height < BST_MAX_HEIGHT);

Prove that this assertion is always true.
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3. In trav_refresh(), it is tempting to avoid calls to the user-supplied comparison function
by comparing the nodes on the stack to the current state of the tree; e.g., move up the
stack, starting from the bottom, and for each node verify that it is a child of the previous
one on the stack, falling back to the general algorithm at the first mismatch. Why won’t
this work?

4.9.3.1 Starting at the Null Node

The trav_t_init() function just initializes a traverser to the null item, indicated by a null
pointer for bst_node.

(BST traverser null initializer 64) =
void bst_t_init (struct bst_traverser xtrav, struct bst_table xtree) {
trav—bst_table = tree;
trav—bst_node = NULL;
trav—bst_height = 0;
trav—bst_generation = tree—bst_generation;

}

This code is included in §63 and §178.

4.9.3.2 Starting at the First Node

To initialize a traverser to start at the least valued node, we simply descend from the
root as far down and left as possible, recording the parent pointers on the stack as we go.
If the stack overflows, then we balance the tree and start over.

(BST traverser least-item initializer 65) =
void xbst_t_first (struct bst_traverser xtrav, struct bst_table xtree) {
struct bst_node *z;

assert (tree != NULL && trav != NULL);

trav—bst_table = tree;
trav—bst_height = 0;
trav—bst_generation = tree—bst_generation;

T = tree—bst_root;
if (z |= NULL)
while (z—bst_link[0] != NULL) {
if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (tree);
return bst_t_first (trav, tree);

}

trav—bst_stack[trav—bst_height++] = x;
z = z—bst_link[0];

}

trav—bst_node = ;
return z != NULL ? z—bst_data : NULL;

}

This code is included in §63.
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Exercises:

*1. Show that bst_t_first() will never make more than one recursive call to itself at a time.

4.9.3.3 Starting at the Last Node

The code to start from the greatest node in the tree is analogous to that for starting
from the least node. The only difference is that we descend to the right instead:

(BST traverser greatest-item initializer 66) =
void *bst_t_last (struct bst_traverser xtrav, struct bst_table xtree) {
struct bst_node *z;

assert (tree != NULL && trav != NULL);

trav—bst_table = tree;
trav—bst_height = 0;
trav—bst_generation = tree—bst_generation;

r = tree—bst_root;
if (z = NULL)
while (z—bst_link[1] != NULL) {
if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (tree);
return bst_t_last (trav, tree);
}
trav—bst_stack[trav—bst_height++] = x;
x = z—bst_link[1];
}
trav—bst_node = x;
return z != NULL 7 z—bst_data : NULL;

}

This code is included in §63.

4.9.3.4 Starting at a Found Node

Sometimes it is convenient to begin a traversal at a particular item in a tree. This
function works in the same was as bst_find(), but records parent pointers in the traverser
structure as it descends the tree.

(BST traverser search initializer 67) =
void xbst_t_find (struct bst_traverser xtrav, struct bst_table xtree, void xitem) {
struct bst_node xp, *q¢;

assert (trav != NULL && tree != NULL && item != NULL);
trav—bst_table = tree;
trav—bst_height = 0;
trav—bst_generation = tree—bst_generation;
for (p = tree—bst_root; p != NULL; p = q) {
int cmp = tree—bst_compare (item, p—bst_data, tree—bst_param);
if (emp < 0) ¢ = p—bst_link|0];
else if (cmp > 0) ¢ = p—bst_link[1];
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else /x ecmp == 0 %/ {
trav—bst_node = p;
return p—bst_data;

}

if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (trav—bst_table);
return bst_t_find (trav, tree, item);

}

trav—bst_stack[trav—bst_height++] = p;
}
trav—bst_height = 0;
trav—bst_node = NULL;
return NULL;

}

This code is included in §63.

4.9.3.5 Starting at an Inserted Node

Another operation that can be useful is to insert a new node and construct a traverser
to the inserted node in a single operation. The following code does this:
§68 (BST traverser insertion initializer 68) =
void xbst_t_insert (struct bst_traverser xtrav, struct bst_table xtree, void xitem) {
struct bst_node *xq;
assert (tree |= NULL && item != NULL);

trav—bst_table = tree;
trav—bst_height = 0;
q = &tree—bst_root;
while (x¢q != NULL) {
int cmp = tree—bst_compare (item, (xq)—bst_data, tree—bst_param);
if (emp == 0) {
trav—bst_node = xq;
trav—bst_generation = tree—bst_generation;
return (xq)—bst_data;

}

if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (tree);
return bst_t_insert (trav, tree, item);

}

trav—bst_stack[trav—bst_height++] = xq;
q = &(*xq)—bst_link[cmp > 0];
}

trav—bst_node = xq = tree—bst_alloc—libavl_malloc (tree—bst_alloc, sizeof *xq);
if (xq == NULL) {

trav—bst_node = NULL;

trav—bst_generation = tree—bst_generation;
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return NULL;

}

(xq)—bst_link[0] = (xq)—bst_link[1] = NULL;
(xq)—bst_data = item;

tree—bst_count—++;

trav—bst_generation = tree—bst_generation;
return (xq)—bst_data;

}

This code is included in §63.

4.9.3.6 Initialization by Copying

This function copies one traverser to another. It only copies the stack of parent pointers
if they are up-to-date:

(BST traverser copy initializer 69) =
void *bst_t_copy (struct bst_traverser xtrav, const struct bst_traverser xsrc) {
assert (trav != NULL && src != NULL);
if (trav != src) {
trav—bst_table = src—bst_table;
trav—bst_node = src—bst_node;
trav—bst_generation = src—bst_generation;
if (trav—bst_generation == trav—bst_table—bst_generation) {
trav—bst_height = src—bst_height;
memcpy (trav—bst_stack, (const void *) src—bst_stack,
sizeof xtrav—bst_stack * trav—bst_height);

}

return trav—bst_node '= NULL ? trav—bst_node—bst_data : NULL;

}

This code is included in §63 and §178.
Exercises:

1. Without the check that trav != src before copying src into trav, what might happen?

4.9.3.7 Advancing to the Next Node

The algorithm of bst_t_next(), the function for finding a successor, divides neatly into
three cases. Two of these are the ones that we discussed earlier in the introduction to this
kind of traverser (see Section 4.9.3 [Better Iterative Traversal|, page 53). The third case
occurs when the last node returned was NULL, in which case we return the least node in the
table, in accordance with the semantics for LIBAVL tables. The function outline is this:

(BST traverser advance function 70) =
void xbst_t_next (struct bst_traverser xtrav) {
struct bst_node *z;

assert (trav != NULL);
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if (trav—bst_generation != trav—bst_table—bst_generation)
trav_refresh (trav);

x = trav—bst_node;
if (z == NULL) {
return bst_t_first (trav, trav—bst_table);
} else if (z—bst_link[1] != NULL) {
(Handle case where z has a right child 71)

} else {

(Handle case where z has no right child 72)
}

trav—bst_node = x;

return r—bst_data;

}

This code is included in §63.

The case where the current node has a right child is accomplished by stepping to the
right, then to the left until we can’t go any farther, as discussed in detail earlier. The only
difference is that we must check for stack overflow. When stack overflow does occur, we
recover by calling trav_balance(), then restarting bst_t_next() using a tail-recursive call. The
tail recursion will never happen more than once, because trav_balance() ensures that the
tree’s height is small enough that the stack cannot overflow again:

§71 (Handle case where z has a right child 71) =
if (trav—0bst_height >= BST_MAX_HEIGHT) {
bst_balance (trav—bst_table);
return bst_t_next (trav);

}
trav—bst_stack[trav—bst_height++] = x;
x = z—bst_link[1];
while (z—bst_link[0] != NULL) {
if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (trav—bst_table);
return bst_t_next (trav);

}
trav—bst_stack[trav—bst_height++] = x;
z = z—bst_link[0];

}

This code is included in §70.

In the case where the current node has no right child, we move upward in the tree
based on the stack of parent pointers that we saved, as described before. When the stack
underflows, we know that we’ve run out of nodes in the tree:

§72  (Handle case where z has no right child 72) =
struct bst_node xy;
do {
if (trav—bst_height == 0) {
trav—bst_node = NULL;
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return NULL;
}
Y=
x = trav—bst_stack|——trav—bst_height];
} while (y == z—bst_link[1]);
This code is included in §70.

4.9.3.8 Backing Up to the Previous Node

Moving to the previous node is analogous to moving to the next node. The only differ-
ence, in fact, is that directions are reversed from left to right.

§73  (BST traverser back up function 73) =
void xbst_t_prev (struct bst_traverser xtrav) {
struct bst_node *z;

assert (trav != NULL);

if (trav—bst_generation != trav—bst_table—bst_generation)
trav_refresh (trav);

T = trav—bst_node;
if (z == NULL) {
return bst_t_last (trav, trav—bst_table);
} else if (z—bst_link[0] != NULL) {
if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (trav—bst_table);
return bst_t_prev (trav);

}
trav—bst_stack[trav—bst_height++] = x;
r = x—bst_link[0];
while (z—bst_link[1] != NULL) {
if (trav—bst_height >= BST_MAX_HEIGHT) {
bst_balance (trav—bst_table);
return bst_t_prev (trav);

}
trav—bst_stack[trav—bst_height++] = x;
r = z—bst_link[1];
}
} else {
struct bst_node *y;
do {
if (trav—bst_height == 0) {
trav—bst_node = NULL;
return NULL;
}
y =1
x = trav—bst_stack|——trav—bst_height];
} while (y == z—bst_link[0]);
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}

trav—bst_node = x;
return r—bst_data;

}

This code is included in §63.

4.9.3.9 Getting the Current Item

(BST traverser current item function 74) =
void xbst_t_cur (struct bst_traverser xtrav) {
assert (trav != NULL);

return trav—bst_node '= NULL ? trav—bst_node—bst_data : NULL;

}

This code is included in §63, §178, §268, §395, §502, and §546.

4.9.3.10 Replacing the Current Item

(BST traverser replacement function 75) =
void xbst_t_replace (struct bst_traverser *trav, void *new) {
void *old;
assert (trav != NULL && trav—bst_node != NULL && new != NULL);
old = trav—bst_node—bst_data;
trav—bst_node—bst_data = new;
return old;

}

This code is included in §63, §178, §268, §395, §502, and §546.

4.10 Copying

In this section, we're going to write function bst_copy() to make a copy of a binary tree.
This is the most complicated function of all those needed for BST functionality, so pay
careful attention as we proceed.

4.10.1 Recursive Copying

The “obvious” way to copy a binary tree is recursive. Here’s a basic recursive copy,
hard-wired to allocate memory with malloc() for simplicity:

( Recursive copy of BST, take 1 76) =
/* Makes and returns a new copy of tree rooted at z. */
static struct bst_node xbst_copy_recursive_1 (struct bst_node *z) {
struct bst_node xy;
if (z == NULL)
return NULL;
y = malloc (sizeof xy);
if (y == NULL)
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return NULL;

y—bst_data = z—bst_data;

y—bst_link[0] = bst_copy_recursive_1 (x—bst_link[0]);
y—bst_link[1] = bst_copy_recursive_1 (x—bst_link[1]);
return y;

But, again, it would be nice to rewrite this iteratively, both because the iterative version
is likely to be faster and for the sheer mental exercise of it. Recall, from our earlier discussion
of inorder traversal, that tail recursion (recursion where a function calls itself as its last
action) is easier to convert to iteration than other types. Unfortunately, neither of the
recursive calls above are tail-recursive.

Fortunately, we can rewrite it so that it is, if we change the way we allocate data:

(Recursive copy of BST, take 2 77) =
/* Copies tree rooted at z to y, which latter is allocated but not yet initialized. %/
static void bst_copy_recursive_2 (struct bst_node xz, struct bst_node *y) {
y—bst_data = x—bst_data;
if (x—bst_link[0] != NULL) {
y—bst_link[0] = malloc (sizeof xy—bst_link[0]);
bst_copy-recursive_2 (x—bst_link[0], y—bst_link[0]);
}
else y—bst_link[0] = NULL;
if (x—bst_link[1] = NULL) {
y—bst_link[1] = malloc (sizeof xy—bst_link[1]);
bst_copy-recursive_2 (x—bst_link[1], y—bst_link[1]);
}
else y—bst_link[1] = NULL;

}

Exercises:

1. When malloc() returns a null pointer, bst_copy_recursive_1() fails “silently”, that is,
without notifying its caller about the error, and the output is a partial copy of the original
tree. Without removing the recursion, implement two different ways to propagate such
errors upward to the function’s caller:

a. Change the function’s prototype to:
static int bst_robust_copy-recursive_1 (struct bst_node *, struct bst_node xx);
b. Without changing the function’s prototype. (Hint: use a statically declared struct
bst_node).

In each case make sure that any allocated memory is safely freed if an allocation error
occurs.

2. bst_copy_recursive_2() is even worse than bst_copy_recursive_1() at handling allocation
failure. It actually invokes undefined behavior when an allocation fails. Fix this, changing
it to return an int, with nonzero return values indicating success. Be careful not to leak
memory.
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4.10.2 Iterative Copying

Now we can factor out the recursion, starting with the tail recursion. This process is
very similar to what we did with the traversal code, so the details are left for Exercise 1.
Let’s look at the results part by part:

§78  (Iterative copy of BST 78) =
/* Copies org to a newly created tree, which is returned. */
struct bst_table xbst_copy_iterative (const struct bst_table xorg) {
struct bst_node *stack[2 * (BST_MAX_HEIGHT + 1)]; /* Stack. */
int height = 0; /* Stack height. /
See also §79, §80, and§81.

This time, our stack will have two pointers added to it at a time, one from the original
tree and one from the copy. Thus, the stack needs to be twice as big. In addition, we’ll
see below that there’ll be an extra item on the stack representing the pointer to the tree’s
root, so our stack needs room for an extra pair of items, which is the reason for the “+ 1”
in stack[]’s size.

§79  (Iterative copy of BST 78) +=
struct bst_table xnew; /x New tree. */
const struct bst_node xx; /+* Node currently being copied. */
struct bst_node xy; /* New node being copied from z. */

new = bst_create (org—bst_compare, org—bst_param, org—bst_alloc);
new—bst_count = org—bst_count;
if (new—bst_count == 0)

return new;

xz = (const struct bst_node x) &org—bst_root;
y = (struct bst_node x) &new—bst_root;
This is the same kind of “dirty trick” already described in Exercise 4.7-1.
§80  (Iterative copy of BST 78) +=
for (;;) {
while (z—bst_link[0] != NULL) {
y—bst_link[0] = org—bst_alloc—libavi_malloc (org—bst_alloc,
sizeof xy—bst_link[0]);
stack[height++] = (struct bst_node x) z;
stack[height++] = y;
z = z—bst_link[0];
y = y—>bst_link[0];
}
y—bst_link[0] = NULL;

This code moves x down and to the left in the tree until it runs out of nodes, allocating
space in the new tree for left children and pushing nodes from the original tree and the copy
onto the stack as it goes. The cast on z suppresses a warning or error due to z, a pointer
to a const structure, being stored into a non-constant pointer in stack[]. We won'’t ever try
to store into the pointer that we store in there, so this is legitimate.

We’ve switched from using malloc() to using the allocation function provided by the
user. This is easy now because we have the tree structure to work with. To do this earlier,
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we would have had to somehow pass the tree structure to each recursive call of the copy
function, wasting time and space.

(Iterative copy of BST 78) +=
for (;;) {

y—bst_data = z—bst_data;

if (x—bst_link[1] = NULL) {
y—bst_link[1] = org—bst_alloc—libavl_malloc (org—bst_alloc,

sizeof xy—bst_link[1]);

z = z—bst_link[1];
y = y—bst_link[1];
break;

}

else y—bst_link[1] = NULL;

if (height <= 2)
return new;

y = stack[——height];

x = stack[——height];

We do not pop the bottommost pair of items off the stack because these items contain
the fake struct bst_node pointer that is actually the address of bst_root. When we get down
to these items, we’re done copying and can return the new tree.

See also: [Knuth 1997], algorithm 2.3.1C; [ISO 1990], section 6.5.2.1.
Exercises:

1. Suggest a step between bst_copy_recursive_2() and bst_copy_iterative().

4.10.3 Error Handling

So far, outside the exercises, we’ve ignored the question of handling memory allocation
errors during copying. In our other routines, we’ve been careful to implement to handle
allocation failures by cleaning up and returning an error indication to the caller. Now we
will apply this same policy to tree copying, as LIBAVL semantics require (see Section 2.6
[Creation and Destruction], page 12): a memory allocation error causes the partially copied
tree to be destroyed and returns a null pointer to the caller.

This is a little harder to do than recovering after a single operation, because there are
potentially many nodes that have to be freed, and each node might include additional user
data that also has to be freed. The new BST might have as-yet-uninitialized pointer fields
as well, and we must be careful to avoid reading from these fields as we destroy the tree.

We could use a number of strategies to destroy the partially copied tree while avoiding
uninitialized pointers. The strategy that we will actually use is to initialize these pointers
to NULL, then call the general tree destruction routine bst_destroy(). We haven’t yet written
bst_destroy(), so for now we’ll treat it as a black box that does what we want, even if we
don’t understand how.
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Next question: which pointers in the tree are not initialized? The answer is simple:
during the copy, we will not revisit nodes not currently on the stack, so only pointers in the
current node (y) and on the stack can be uninitialized. For its part, depending on what
we're doing to it, ¥ might not have any of its fields initialized. As for the stack, nodes are
pushed onto it because we have to come back later and build their right subtrees, so we
must set their right child pointers to NULL.

We will need this error recovery code in a number of places, so it is worth making it into
a small helper function:

(BST copy error helper function 82) =
static void copy_error_recovery (struct bst_node xxstack, int height,
struct bst_table xnew, bst_item_func *xdestroy) {
assert (stack != NULL && height >= 0 && new != NULL);
for (; height > 2; height —= 2)
stack[height — 1]—bst_link[1] = NULL;
bst_destroy (new, destroy);

}

This code is included in §83 and §185.

Another problem that can arise in copying a binary tree is stack overflow. We will
handle stack overflow by destroying the partial copy, balancing the original tree, and then
restarting the copy. The balanced tree is guaranteed to have small enough height that it
will not overflow the stack.

The code below for our final version of bst_copy() takes three new parameters: two
function pointers and a memory allocator. The meaning of these parameters was explained
earlier (see Section 2.6 [Creation and Destruction], page 12). Their use within the function
should be self-explanatory.

(BST copy function 83) =
(BST copy error helper function 82 )

struct bst_table xbst_copy (const struct bst_table xorg, bst_copy_func *copy,
bst_item_func xdestroy, struct libavl_allocator xallocator) {
struct bst_node xstack[2 x (BST_MAX_HEIGHT + 1)];
int height = 0;
struct bst_table xnew;
const struct bst_node *z;
struct bst_node xy;

assert (org != NULL);
new = bst_create (org—bst_compare, org—bst_param,
allocator '= NULL 7 allocator : org—bst_alloc);

if (new == NULL)

return NULL;
new—bst_count = org—bst_count;
if (new—bst_count == 0)

return new;

x = (const struct bst_node *) &org—bst_root;
y = (struct bst_node x) &new—bst_root;
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for (;;) {
while (z—bst_link[0] != NULL) {

if (height >= 2 * (BST_MAX_HEIGHT + 1)) {
y—bst_data = NULL;
y—bst_link[0] = y—bst_link[1] = NULL;
copy_error_recovery (stack, height, new, destroy);
bst_balance ((struct bst_table x) org);
return bst_copy (org, copy, destroy, allocator);

}

y—bst_link[0] = new—bst_alloc—libavl_malloc (new—bst_alloc,
sizeof xy—bst_link[0]);
if (y—bst_link][0] == NULL) {
if (y != (struct bst_node *) &new—bst_root) {
y—bst_data = NULL;
y—bst_link[1] = NULL,;

}

copy-error_recovery (stack, height, new, destroy);
return NULL;

}

stack[height++] = (struct bst_node x) z;
stack[height++] = y;
r = z—bst_link[0];
y = y—bst_link[0];
}
y—bst_link[0] = NULL;
for (;;) {
if (copy == NULL)
y—bst_data = x—bst_data;
else {
y—bst_data = copy (z—bst_data, org—bst_param);
if (y—bst_data == NULL) {
y—bst_link[1] = NULL;
copy-error_recovery (stack, height, new, destroy);
return NULL;

}
}
if (z—bst_link[1] != NULL) {
y—bst_link[1] = new—bst_alloc—libavl_malloc (new—bst_alloc,
sizeof xy—bst_link[1]);
if (y—bst_link[1] == NULL) {
copy-error_recovery (stack, height, new, destroy);
return NULL;

}
z = z—bst_link[1];
y = y—bst_link[1];
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break;
}
else y—bst_link[1] = NULL;
if (height <= 2)
return new;
y = stack|——height];
z = stack[——height];

}

This code is included in §29.

4.11 Destruction

Eventually, we’ll want to get rid of the trees we’ve spent all this time constructing. When
this happens, it’s time to destroy them by freeing their memory.

4.11.1 Destruction by Rotation

The method actually used in LIBAVL for destruction of binary trees is somewhat novel.
This section will cover this method. Later sections will cover more conventional techniques
using recursive or iterative postorder traversal.

To destroy a binary tree, we must visit and free each node. We have already covered one
way to traverse a tree (inorder traversal) and used this technique for traversing and copying
a binary tree. But, both times before, we were subject to both the explicit constraint that
we had to visit the nodes in sorted order and the implicit constraint that we were not to
change the structure of the tree, or at least not to change it for the worse.

Neither of these constraints holds for destruction of a binary tree. As long as the tree
finally ends up freed, it doesn’t matter how much it is mangled in the process. In this case,
“the end justifies the means” and we are free to do it however we like.

So let’s consider why we needed a stack before. It was to keep track of nodes whose left
subtree we were currently visiting, in order to go back later and visit them and their right
subtrees. Hmm. . .what if we rearranged nodes so that they didn’t have any left subtrees?
Then we could just descend to the right, without need to keep track of anything on a stack.

We can do this. For the case where the current node p has a left child ¢, consider the
transformation below where we rotate right at p:

(P) (9

a b b ¢

where a, b, and ¢ are arbitrary subtrees or even empty trees. This transformation shifts
nodes from the left to the right side of the root (which is now ¢). If it is performed enough
times, the root node will no longer have a left child. After the transformation, ¢ becomes
the current node.
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For the case where the current node has no left child, we can just destroy the current
node and descend to its right. Because the transformation used does not change the tree’s
ordering, we end up destroying nodes in inorder. It is instructive to verify this by simulating
with paper and pencil the destruction of a few trees this way.

The code to implement destruction in this manner is brief and straightforward:

(BST destruction function 84) =
void bst_destroy (struct bst_table xtree, bst_item_func xdestroy) {
struct bst_node xp, *q¢;

assert (tree != NULL);

for (p = tree—bst_root; p != NULL; p = q)
if (p—bst_link[0] == NULL) {
q = p—bst_link[1];
if (destroy != NULL && p—bst_data != NULL)
destroy (p—bst_data, tree—bst_param);
tree—bst_alloc—libavl_free (tree—bst_alloc, p);
} else {
q = p—bst_link|[0];
p—bst_link[0] = g—bst_link[1];
q—bst_link[1] = p;

}

tree—bst_alloc—libavl_free (tree—bst_alloc, tree);

}

This code is included in §29, §145, §196, §489, §522, and §554.

See also: [Stout 1986], tree_to_vine procedure.
Exercises:

1. Before calling destroy() above, we first test that we are not passing it a NULL pointer,
because we do not want destroy() to have to deal with this case. How can such a pointer
get into the tree in the first place, since bst_probe() refuses to insert such a pointer into a
tree?

4.11.2 Aside: Recursive Destruction

The algorithm used in the previous section is easy and fast, but it is not the most
common method for destroying a tree. The usual way is to perform a traversal of the tree,
in much the same way we did for tree traversal and copying. Once again, we’ll start from
a recursive implementation, because these are so easy to write. The only tricky part is
that subtrees have to be freed before the root. This code is hard-wired to use free() for
simplicity:

(Destroy a BST recursively 85) =
static void bst_destroy_recursive (struct bst_node xnode) {
if (node == NULL)
return;
bst_destroy_recursive (node—bst_link[0]);
bst_destroy_recursive (node—bst_link[1]);
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free (node);
}

4.11.3 Aside: Iterative Destruction

As we’ve done before for other algorithms, we can factor the recursive destruction algo-
rithm into an equivalent iteration. In this case, neither recursive call is tail recursive, and
we can’t easily modify the code so that it is. We could still factor out the recursion by our
usual methods, although it would be more difficult, but this problem is simple enough to
figure out from first principles. Let’s do it that way, instead, this time.

The idea is that, for the tree’s root, we traverse its left subtree, then its right subtree,
then free the root. This pattern is called a postorder traversal.

Let’s think about how much state we need to keep track of. When we’re traversing the
root’s left subtree, we still need to remember the root, in order to come back to it later.
The same is true while traversing the root’s right subtree, because we still need to come
back to free the root. What’s more, we need to keep track of what state we’re in: have we
traversed the root’s left subtree or not, have we traversed the root’s right subtree or not?

This naturally suggests a stack that holds two-part items (root, state), where root is the
root of the tree or subtree and state is the state of the traversal at that node. We start
by selecting the tree’s root as our current node p, then pushing (p, 0) onto the stack and
moving down to the left as far as we can, pushing as we go. Then we start popping off
the stack into (p, state) and notice that state is 0, which tells us that we’ve traversed p’s
left subtree but not its right. So, we push (p, 1) back onto the stack, then we traverse p’s
right subtree. When, later, we pop off that same node back off the stack, the 1 tells us that
we’ve already traversed both subtrees, so we free the node and keep popping. The pattern
follows as we continue back up the tree.

That sounds pretty complicated, so let’s work through an example to help clarify. Con-
sider this binary search tree:

OO
D &

Abstractly speaking, we start with 4 as p and an empty stack. First, we work our way
down the left-child pointers, pushing onto the stack as we go. We push (4, 0), then (2, 0),
then (1, 0), and then p is NULL and we’ve fallen off the bottom of the tree. We pop the top
item off the stack into (p, state), getting (1, 0). Noticing that we have 0 for state, we push
(1, 1) on the stack and traverse 1’s right subtree, but it is empty so there is nothing to do.
We pop again and notice that state is 1, meaning that we’ve fully traversed 1’s subtrees, so
we free node 1. We pop again, getting 2 for p and 0 for state. Because state is 0, we push
(2, 1) and traverse 2’s right subtree, which means that we push (3, 0). We traverse 3’s null
right subtree (again, it is empty so there is nothing to do), pushing and popping (3, 1),
then free node 3, then move back up to 2. Because we’ve traversed 2’s right subtree, state
is 1 and p is 2, and we free node 2. You should be able to figure out how 4 and 5 get freed.

A straightforward implementation of this approach looks like this:
(Destroy a BST iteratively 86) =
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void bst_destroy (struct bst_table xtree, bst_item_func xdestroy) {
struct bst_node *stack[BST_MAX_HEIGHT];
unsigned char state[BST_MAX_HEIGHT];
int height = 0;

struct bst_node x*p;

assert (tree != NULL);
p = tree—bst_root;
for (;;) {
while (p != NULL) {
if (h@ight >= BST_MAX_HEIGHT) {
fprintf (stderr, "tree too_deep\n");
ezit (EXIT_FAILURE);
}
stack|height] = p;
state[height] = 0;
height++;

p = p—bst_link[0];

}
for (;;) {
if (height == 0) {
tree—bst_alloc—libavl_free (tree—bst_alloc, tree);
return;
}
height——;
p = stack[height];
if (state[height] == 0) {
statelheight++] = 1;
p = p—bst_link[1];
break;
} else {
if (destroy != NULL && p—bst_data != NULL)
destroy (p—bst_data, tree—bst_param);
tree—bst_alloc—libavl_free (tree—bst_alloc, p);
}
}

}

See also: [Knuth 1997], exercise 13 in section 2.3.1.

4.12 Balance

Sometimes binary trees can grow to become much taller than their optimum height. For
example, the following binary tree was one of the tallest from a sample of 100 15-node trees
built by inserting nodes in random order:



§87

§38

Chapter 4: Binary Search Trees 71

The average number of comparisons required to find a random node in this tree is (1 +
24+ (3x2)+(4x4)+(5x4)+6+7+8)/15 = 4.4 comparisons. In contrast, the corresponding
optimal binary tree, shown below, requires only (1 + (2 x 2) + (3 x 4) 4+ (4 x 8))/15 = 3.3
comparisons, on average. Moreover, the optimal tree requires a maximum of 4, as opposed
to 8, comparisons for any search:

Besides this inefficiency in time, trees that grow too tall can cause inefficiency in space,
leading to an overflow of the stack in bst_t_next(), bst_copy(), or other functions. For both
reasons, it is helpful to have a routine to rearrange a tree to its minimum possible height,
that is, to balance the tree.

The algorithm we will use for balancing proceeds in two stages. In the first stage, the
binary tree is “flattened” into a pathological, linear binary tree, called a “vine.” In the
second stage, binary tree structure is restored by repeatedly “compressing” the vine into a
minimal-height binary tree.

Here’s a top-level view of the balancing function:

(BST balance function 87) =
(BST to vine function 89)
( Vine to balanced BST function 90)

void bst_balance (struct bst_table xtree) {
assert (tree != NULL);

tree_to_vine (tree);
vine_to_tree (tree);
tree—bst_generation+-;

}

This code is included in §29.
(BST extra function prototypes 88) =

/* Special BST functions. */
void bst_balance (struct bst_table xtree);
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This code is included in §24, §247, §372, and §486.

See also: [Stout 1986], rebalance procedure.

4.12.1 From Tree to Vine

The first stage of balancing converts a binary tree into a linear structure resembling a
linked list, called a vine. The vines we will create have the greatest value in the binary
tree at the root and decrease descending to the left. Any binary search tree that contains a
particular set of values, no matter its shape, corresponds to the same vine of this type. For
instance, all binary search trees of the integers 0. . .4 will be transformed into the following
vine:

The method for transforming a tree into a vine of this type is similar to that used for
destroying a tree by rotation (see Section 4.11.1 [Destroying a BST by Rotation|, page 67).
We step pointer p through the tree, starting at the root of the tree, maintaining pointer ¢
as p’s parent. (Because we’re building a vine, p is always the left child of ¢.) At each step,
we do one of two things:

e If p has no right child, then this part of the tree is already the shape we want it to be.
We step p and g down to the left and continue.

e If p has aright child r, then we rotate left at p, performing the following transformation:

where a, b, and ¢ are arbitrary subtrees or empty trees. Node r then becomes the
new p. If ¢ is an empty tree, then, in the next step, we will continue down the tree.
Otherwise, the right subtree of p is smaller (contains fewer nodes) than previously, so
we’re on the right track.

This is all it takes:

(BST to vine function 89) =

/* Converts tree into a vine. %/

static void tree_to_vine (struct bst_table xtree) {
struct bst_node ¢, *p;

q = (struct bst_node x) &tree—bst_root;
p = tree—bst_root;
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while (p != NULL)

if (p—bst_link[1] == NULL) {
q =D
p = p—bst_link[0];

}

else {
struct bst_node xr = p—bst_link[1];
p—bst_link[1] = r—bst_link[0];
r—bst_link[0] = p;
p=r;
q—bst_link[0] = r;

This code is included in §87, §511, and §679.

See also: [Stout 1986], tree_to_vine procedure.

4.12.2 From Vine to Balanced Tree

Converting the vine, once we have it, into a balanced tree is the interesting and clever
part of the balancing operation. However, at first it may be somewhat less than obvious
how this is actually done. We will tackle the subject by presenting an example, then the
generalized form.

Suppose we have a vine, as above, with 2" — 1 nodes for positive integer n. For the sake
of example, take n = 4, corresponding to a tree with 15 nodes. We convert this vine into a
balanced tree by performing three successive compression operations.

To perform the first compression, move down the vine, starting at the root. Conceptually
assign each node a “color”, alternating between red and black and starting with red at the
root.> Then, take each red node, except the bottommost, and remove it from the vine,
making it the child of its black former child node.

After this transformation, we have something that looks a little more like a tree. Instead
of a 15-node vine, we have a 7-node black vine with a 7-node red vine as its right children
and a single red node as its left child. Graphically, this first compression step on a 15-node
vine looks like this:

3 These colors are for the purpose of illustration only. They are not stored in the nodes and are not related
to those used in a red-black tree.
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To perform the second compression, recolor all the red nodes to white, then change the
color of alternate black nodes to red, starting at the root. As before, extract each red node,
except the bottommost, and reattach it as the child of its black former child node. Attach
each black node’s right subtree as the left subtree of the corresponding red node. Thus, we
have the following:

The third compression is the same as the first two. Nodes 12 and 4 are recolored red,
then node 12 is removed and reattached as the right child of its black former child node 8§,
receiving node 8’s right subtree as its left subtree:

The result is a fully balanced tree.

4.12.2.1 General Trees

A compression is the repeated application of a right rotation, called in this context a
“compression transformation”, once for each black node, like so:
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So far, all of the compressions we’ve performed have involved all 2¥ — 1 nodes composing the
“main vine.” This works out well for an initial vine of exactly 2" — 1 nodes. In this case, a
total of n—1 compressions are required, where for successive compressions &k = n,n—1,...,2.

For trees that do not have exactly one fewer than a power of two nodes, we need to begin
with a compression that does not involve all of the nodes in the vine. Suppose that our
vine has m nodes, where 2" —1 < m < 2""! — 1 for some value of n. Then, by applying the
compression transformation shown above m — (2" — 1) times, we reduce the length of the
main vine to exactly 2" — 1 nodes. After that, we can treat the problem in the same way
as the former case. The result is a balanced tree with n full levels of nodes, and a bottom
level containing m — (2™ — 1) nodes and (2" — 1) — m vacancies.

An example is indicated. Suppose that the vine contains m = 9 nodes numbered from
1to09. Then n = 3 since we have 2° —1=7 <9 < 15 =2* — 1, and we must perform the
compression transformation shown above 9 — (2® — 1) = 2 times initially, reducing the main
vine’s length to 7 nodes. Afterward, we treat the problem the same way as for a tree that
started off with only 7 nodes, performing one compression with £ = 3 and one with k£ =
2. The entire sequence, omitting the initial vine, looks like this:

(8) (6) (4)
D
B @ o @ 5 @O O© O 63 6 (8)

@5 QL 3 @ ©

Now we have a general technique that can be applied to a vine of any size.

4.12.2.2 Implementation

Implementing this algorithm is more or less straightforward. Let’s start from an outline:

( Vine to balanced BST function 90) =
(BST compression function 95)

/* Converts tree, which must be in the shape of a vine, into a balanced tree. */
static void vine_to_tree (struct bst_table xtree) {

unsigned long vine; /* Number of nodes in main vine. %/

unsigned long leaves; /* Nodes in incomplete bottom level, if any. */

int height; /x Height of produced balanced tree. %/

( Calculate leaves 91)

{Reduce vine general case to special case 92)

( Make special case vine into balanced tree and count height 93 )
( Check for tree height in range 94)
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This code is included in §87.

The first step is to calculate the number of compression transformations necessary to
reduce the general case of a tree with m nodes to the special case of exactly 2™ — 1 nodes,
i.e., calculate m — (2" — 1), and store it in variable leaves. We are given only the value of
m, as tree—bst_count. Rewriting the calculation as the equivalent m + 1 — 2", one way to
calculate it is evident from looking at the pattern in binary:

m n m—+1 2" m-4+1-—2"
1 1 2 =00010, 2 = 00010, 0 = 00000
2 1 3 =00011, 2 =00010, 1 = 00001,
3 2 4 = 00100, 4 = 00100 0 = 00000
4 2 5 = 00101, 4 = 00100 1 = 00001,
) 2 6 = 00110, 4 = 00100, 2 = 00010,
6 2 7=00111, 4 = 00100, 3 = 00011,
7 3 8 = 01000, 8 = 01000, 0 = 000002
8 3 9 = 01001, 8 = 01000, 1 = 00000
9 3 10 =01001, 8 = 01000 2 = 00000

See the pattern? It’s simply that m + 1 — 2" is m with the leftmost 1-bit turned off. So,
if we can find the leftmost 1-bit in m + 1 we can figure out the number of leaves.

In turn, there are numerous ways to find the leftmost 1-bit in a number. The one used
here is based on the principle that, if z is a positive integer, then z & (z — 1) is = with its
rightmost 1-bit turned off.

Here’s the code that calculates the number of leaves and stores it in leaves:

( Calculate leaves 91) =
leaves = tree—bst_count + 1;
for (;;) {
unsigned long next = leaves & (leaves — 1);
if (next == 0)
break;
leaves = next;

}

leaves = tree—bst_count + 1 — leaves;
This code is included in §90, §285, §512, and §680.
Once we have the number of leaves, we perform a compression composed of leaves com-

pression transformations. That’s all it takes to reduce the general case to the 2™ — 1 special
case. We'll write the compress() function itself later:

(Reduce vine general case to special case 92) =
compress ((struct bst_node *) &tree—bst_root, leaves);
This code is included in §90, §512, and §680.

The heart of the function is the compression of the vine into the tree. Before each
compression, vine contains the number of nodes in the main vine of the tree. The number
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of compression transformations necessary for the compression is vine / 2; e.g., when the
main vine contains 7 nodes, 7/2 = 3 transformations are necessary. The number of nodes
in the vine afterward is the same number (see page 73).

At the same time, we keep track of the height of the balanced tree. The final tree always
has height at least 1. Each compression step means that it is one level taller than that. If
the tree needed general-to-special-case transformations, that is, leaves > 0, then it’s one
more than that.

(Make special case vine into balanced tree and count height 93) =
vine = tree—bst_count — leaves;
height = 1 + (leaves > 0);
while (vine > 1) {
compress ((struct bst_node x) &tree—bst_root, vine /| 2);
vine /= 2;
height++;

}

This code is included in §90, §512, and §680.

Finally, we make sure that the height of the tree is within range for what the func-
tions that use stacks can handle. Otherwise, we could end up with an infinite loop, with
bst_t_next() (for example) calling bst_balance() repeatedly to balance the tree in order to
reduce its height to the acceptable range.

( Check for tree height in range 94) =
if (height > BST_MAX_HEIGHT) {
fprintf (stderr, "libavl: Tree too_big (%1lu_ nodes) to_handle.",
(unsigned long) tree—bst_count);
exit (EXIT_FAILURE);

}

This code is included in §90.

4.12.2.3 Implementing Compression

The final bit of code we need is that for performing a compression. The following code
performs a compression consisting of count applications of the compression transformation
starting at root:

(BST compression function 95) =
/* Performs a compression transformation count times, starting at root. */
static void compress (struct bst_node *root, unsigned long count) {

assert (root != NULL);

while (count——) {
struct bst_node xred = root—bst_link[0];
struct bst_node *xblack = red—bst_link[0];
root—bst_link[0] = black;
red—bst_link[0] = black—bst_link[1];
black—bst_link[1] = red;
root = black;
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}

This code is included in §90 and §512.

The operation of compress() should be obvious, given the discussion earlier. See Sec-
tion 4.12.2.1 [Balancing General Trees|, page 74, above, for a review.

See also: [Stout 1986], vine_to_tree procedure.

4.13 Aside: Joining BSTs

Occasionally we may want to take a pair of BSTs and merge or “join” their contents,
forming a single BST that contains all the items in the two original BSTs. It’s easy to
do this with a series of calls to bst_insert(), but we can optimize the process if we write a
function exclusively for the purpose. We’ll write such a function in this section.

There are two restrictions on the trees to be joined. First, the BSTs’ contents must
be disjoint. That is, no item in one may match any item in the other. Second, the BSTs
must have compatible comparison functions. Typically, they are the same. Speaking more
precisely, if f() and ¢() are the comparison functions, p and ¢ are nodes in either BST, and
r and s are the BSTSs’ user-provided extra comparison parameters, then the expressions
f(p, q, 1), f(p, q, s), g(p, ¢, r), and g(p, q, s) must all have the same value for all possible
choices of p and g.

Suppose we're trying to join the trees shown below:

a(4) (7)b
@ © 0O G

Our first inclination is to try a “divide and conquer” approach by reducing the problem
of joining a and b to the subproblems of joining a’s left subtree with b’s left subtree and
joining a’s right subtree with b’s right subtree. Let us postulate for the moment that we
are able to solve these subproblems and that the solutions that we come up with are the
following:

To convert this partial solution into a full solution we must combine these two subtrees into
a single tree and at the same time reintroduce the nodes a and b into the combined tree.
It is easy enough to do this by making a (or b) the root of the combined tree with these
two subtrees as its children, then inserting b (or a) into the combined tree. Unfortunately,
in neither case will this actually work out properly for our example. The diagram below
illustrates one possibility, the result of combining the two subtrees as the child of node 4,
then inserting node 7 into the final tree. As you can see, nodes 4 and 5 are out of order:*

4 The #* notation in the diagram emphasizes that this is a counterexample.
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Now let’s step back and analyze why this attempt failed. It was essentially because,
when we recombined the subtrees, a node in the combined tree’s left subtree had a value
larger than the root. If we trace it back to the original trees to be joined, we see that this
was because node 5 in the left subtree of b is greater than a. (If we had chosen 7 as the
root of the combined tree we would have found instead node 6 in the right subtree of b to
be the culprit.)

On the other hand, if every node in the left subtree of a had a value less than b’s value,
and every node in the right subtree of a had a value greater than b’s value, there would
be no problem. Hey, wait a second... we can force that condition. If we perform a root
insertion (see Section 4.7.1 [Root Insertion in a BST], page 37) of b into subtree a, then we
end up with one pair of subtrees whose node values are all less than 7 (the new and former
left subtrees of node 7) and one pair of subtrees whose node values are all greater than 7
(the new and former right subtrees of node 7). Conceptually it looks like this, although in
reality we would need to remove node 7 from the tree on the right as we inserted it into the

tree on the left:
(1) (7)
(4 @ @ ©
a ©® 0 &
2

We can then combine the two subtrees with values less than 7 with each other, and similarly
for the ones with values greater than 7, using the same algorithm recursively, and safely
set the resulting subtrees as the left and right subtrees of node 7, respectively. The final
product is a correctly joined binary tree:

Of course, since we’'ve defined a join recursively in terms of itself, there must be some
maximum depth to the recursion, some simple case that can be defined without further
recursion. This is easy: the join of an empty tree with another tree is the second tree.
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Implementation

It’s easy to implement this algorithm recursively. The only nonobvious part of the code
below is the treatment of node b. We want to insert node b, but not b’s children, into the
subtree rooted at a. However, we still need to keep track of b’s children. So we temporarily
save b’s children as b0 and b1 and set its child pointers to NULL before the root insertion.

This code makes use of root_insert() from (Robust root insertion of existing node in
arbitrary subtree 625 ).

§96 (BST join function, recursive version 96 ) =
/* Joins a and b, which are subtrees of tree, and returns the resulting tree. */
static struct bst_node xjoin (struct bst_table xtree, struct bst_node *a, struct bst_node *b) {
if (b == NULL)
return a;
else if (a == NULL)
return b;
else {
struct bst_node xb0 = b—bst_link[0];
struct bst_node xb1 = b—bst_link[1];
b—bst_link[0] = b—bst_link[1] = NULL;
root_insert (tree, &a, b);
a—bst_link[0] = join (tree, b0, a—bst_link[0]);
a—bst_link[1] = join (tree, b1, a—bst_link[1]);
return a;

}

/* Joins a and b, which must be disjoint and have compatible comparison functions.
b is destroyed in the process. */
void bst_join (struct bst_table xa, struct bst_table xb) {
a—bst_root = join (a, a—bst_root, b—bst_root);
a—bst_count += b—bst_count;
free (b);
}

See also: [Sedgewick 1998|, program 12.16.
Exercises:

1. Rewrite bst_join() to avoid use of recursion.

4.14 Testing

Whew! We're finally done with building functions for performing BST operations. But
we haven’t tested any of our code. Testing is an essential step in writing programs, because
untested software cannot be assumed to work.

Let’s build a test program that exercises all of the functions we wrote. We’ll also do our
best to make parts of it generic, so that we can reuse test code in later chapters when we
want to test other BST-based structures.
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The first step is to figure out how to test the code. One goal in testing is to exercise
as much of the code as possible. Ideally, every line of code would be executed sometime
during testing. Often, this is difficult or impossible, but the principle remains valid, with
the goal modified to testing as much of the code as possible.

In applying this principle to the BST code, we have to consider why each line of code is
executed. If we look at the code for most functions in (bst.c 25), we can see that, if we
execute them for any BST of reasonable size, most or all of their code will be tested.

This is encouraging. It means that we can just construct some trees and try out the
BST functions on them, check that the results make sense, and have a pretty good idea
that they work. Moreover, if we build trees in a random fashion, and delete their nodes in
a random order, and do it several times, we’ll even have a good idea that the bst_probe()
and bst_delete() cases have all come up and worked properly. (If you want to be sure, then
you can insert printf() calls for each case to record when they trip.) This is not the same
as a proof of correctness, but proofs of correctness can only be constructed by computer
scientists with fancy degrees, not by mere clever programmers.

There are three notably missing pieces of code coverage if we just do the above. These
are stack overflow handling, memory allocation failure handling, and traverser code to deal
with modified trees. But we can mop up these extra problems with a little extra effort:®

e Stack overflow handling can be tested by forcing the stack to overflow. Stack overflow
can occur in many places, so for best effect we must test each possible spot. We will
write special tests for these problems.

e Memory allocation failure handling can be tested by simulating memory allocation
failures. We will write a replacement memory allocator that “fails” after a specified
number of calls. This allocator will also allow for memory leak detection.

e Traverser code to deal with modified trees. This can be tested by modifying trees
during traversal and making sure that the traversal functions still work as expected.

The testing code can be broken into the following groups of functions:

Testing and verification
These functions actually try out the BST routines and do their best to make
sure that their results are correct.

Test set generation
Generates the order of node insertion and deletion, for use during testing.

Memory manager
Handles memory issues, including memory leak detection and failure simulation.

User interaction
Figures out what the user wants to test in this run.

Main program
Glues everything else together by calling functions in the proper order.

Utilities =~ Miscellaneous routines that don’t fit comfortably into another category.

5 Some might scoff at this amount of detail, calling it wasted effort, but this thorough testing in fact
revealed a number of subtle bugs during development of LIBAVL that had otherwise gone unnoticed.
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Most of the test code will also work nicely for testing other binary tree-based structures.
This code is grouped into a single file, (test.c 97), which has the following structure:

897 (test.c97) =
(License 1)
#include (assert.h)
#include (limits.h)
#include (stdarg.h)
#include (stdio.h)
#include (stdlib.h)
#include (string.h)
#include (time.h)
#include “test.h”

( Test declarations 121)

( Test utility functions 134 )

(Memory tracker 126)

( Option parser 586 )

( Command line parser 589 )

(Insertion and deletion order generation 642 )
(Random number seeding 643 )

( Test main program 140)

The code specifically for testing BSTs goes into (bst-test.c 98), outlined like this:

898 (bst-test.c 98) =
(License 1)
#include (assert.h)
#include (limits.h)
#include (stdio.h)
#include “bst.h”
#include “test.h”

(BST print function 119)

(BST traverser check function 104 )

( Compare two BSTs for structure and content 106 )

( Recursively verify BST structure 113)

(BST verify function 109)

(BST test function 100)

(BST overflow test function 122)

The interface between (test.c 97) and (bst-test.c 98) is contained in (test.h 99):

§99 (test.h 99) =

(License 1)

#ifndef TEST_H

#define TEST_H 1

( Memory allocator 5 )
( Test prototypes 101)
#endif /+ test.h x/

Although much of the test program code is nontrivial, only some of the interesting
parts fall within the scope of this book. The remainder will be listed without comment or
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relegated to the exercises. The most tedious code is listed in an appendix (see Appendix B
[Supplementary Code|, page 323).

4.14.1 Testing BSTs

As suggested above, the main way we will test the BST routines is by using them
and checking the results, with checks performed by slow but simple routines. The idea
is that bugs in the BST routines are unlikely to be mirrored in the check routines, and
vice versa. This way, identical results from the BST and checks tend to indicate that both
implementations are correct.

The main test routine is designed to exercise as many of the BST functions as possible.
It starts by creating a BST and inserting nodes into it, then deleting the nodes. Midway,
various traversals are tested, including the ability to traverse a tree while its content is
changing. After each operation that modifies the tree, its structure and content are verified
for correspondence with expectations. The function for copying a BST is also tested. This
function, test(), has the following outline:

(BST test function 100) =
/* Tests tree functions.
insert[] and delete[] must contain some permutation of values 0...n — 1.
Uses allocator as the allocator for tree and node data.
Higher values of verbosity produce more debug output. */
int test_correctness (struct libavl_allocator *allocator,
int insert|], int delete|], int n, int verbosity) {
struct bst_table xtree;
int okay = 1;
int ¢;
( Test creating a BST and inserting into it 102)
( Test BST traversal during modifications 103 )
( Test deleting nodes from the BST and making copies of it 105)
( Test deleting from an empty tree 107)
( Test destroying the tree 108)

return okay;

}

This code is included in §98, §186, §238, §330, §368, §449, §482, §548, and §583.

( Test prototypes 101) =
int test_correctness (struct libavl allocator xallocator,
int insert||, int delete|], int n, int verbosity);

See also §123 and §135.
This code is included in §99.

The first step is to create a BST and insert items into it in the order specified by
the caller. We use the comparison function compare_ints() from ( Comparison function for
ints 3) to put the tree’s items into ordinary numerical order. After each insertion we call
verify_tree(), which we’ll write later and which checks that the tree actually contains the
items that it should:

(Test creating a BST and inserting into it 102) =
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tree = bst_create (compare_ints, NULL, allocator);

if (tree == NULL) {
if (verbosity >= 0) printf ("_,0ut_of memory creating tree.\n");
return 1;

}

for (1 =0; ¢ < m; i++) {
if (verbosity >= 2) printf ("L Inserting %d...\n", insert[i]);
/* Add the ith element to the tree. */

{

void sxp = bst_probe (tree, &insert[i]);

if (p == NULL) {
if (verbosity >= 0) printf ("LuuoOutyof memory_ in insertion.\n");
bst_destroy (tree, NULL);
return 1;

}

if (xp |= &insert[i]) printf ("LuuouDuplicate item in tree!\n");

}

if (verbosity >= 3) print_whole_tree (tree, "Ly uAfterward");
if (lverify_tree (tree, insert, i + 1))
return 0;

}

This code is included in §100 and §295.

If the tree is being modified during traversal, that causes a little more stress on the tree
routines, so we should test this specially. We initialize one traverser, z, at a selected item,
then delete and reinsert a different item in order to invalidate that traverser. We make a
copy, ¥y, of the traverser in order to check that bst_t_copy() works properly and initialize a
third traverser, z, with the inserted item. After the deletion and reinsertion we check that
all three of the traversers behave properly.

(Test BST traversal during modifications 103) =
for (1 =0; ¢ < m; i++) {
struct bst_traverser z, ¥y, z;
int xdeleted;
if (insert[i] == delete[i])
continue;
if (verbosity >= 2)
printf ("_uuChecking traversal from_ item_ %d...\n", insert[i]);
if (bst_t_find (&z, tree, &insert[i]) == NULL) {
printf ("LuuoCan’t finditem %d in tree!\n", insert[i]);
continue;

}

okay &= check_traverser (&z, insert[i], n, "Predeletion");
if (verbosity >= 3) printf ("LuuuDeleting item,%d.\n", delete[i]);

deleted = bst_delete (tree, &deleteli]);
if (deleted == NULL || xdeleted = deletel[i]) {
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okay = 0;
if (deleted == NULL)
printf ("_uuoDeletion failed.\n");
else printf ("_uuuWrong node %d returned.\n", xdeleted);

}

bst_t_copy (&y, &z);

if (verbosity >= 3) printf ("LuuuReinserting item%d.\n", delete[i]);

if (bst_t_insert (&z, tree, &delete[i]) == NULL) {
if (verbosity >= 0) printf ("LuuuOutyof memory reinserting item.\n");
bst_destroy (tree, NULL);
return 1;

}

okay &= check_traverser (&z, insert[i], n, "Postdeletion");
okay &= check_traverser (&y, insert[i], n, "Copied");
okay &= check_traverser (&z, delete[i], n, "Insertion");
if (lverify_tree (tree, insert, n))
return 0;

}

This code is included in §100 and §295.

The check_traverser() function used above checks that a traverser behaves properly, by
checking that the traverser is at the correct item and that the previous and next items are
correct as well.

§104 (BST traverser check function 104) =
/* Checks that the current item at trav is ¢
and that its previous and next items are as they should be.
label is a name for the traverser used in reporting messages.
There should be n items in the tree numbered 0...n — 1.
Returns nonzero only if there is an error. x/
static int check_traverser (struct bst_traverser xtrav, int 7, int n, const char *label) {
int okay = 1;
int xcur, xprev, xnext;
prev = bst_t_prev (trav);
if ((i == 0 && prev !=NULL) || (i > 0 && (prev == NULL || xprev !=1i — 1))) {
printf ("Luuhsutraverser ahead of %d, but_should be ahead of_%d.\n",
label, prev != NULL ? sprev : ~1,i==07 “1: 4 — 1);
okay = 0;
}

bst_t_next (trav);
cur = bst_t_cur (trav);
if (cur == NULL || *cur != 1) {
printf ("Luuksutraverser at,kd, but,should be at, %d.\n",
label, cur = NULL ? xcur : ~1, i);
okay = 0;
}

next = bst_t_next (trav);
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if (i == n — 1 && next != NULL)
|| (i !'=n — 1 && (next == NULL || *next '= 1 + 1))) {
printf ("_uuksutraverser behind %d,_ but should be behind %d.\n",
label, next != NULL ? snext : "1, i ==n—17 "1:4+ 1);
okay = 0;
}

bst_t_prev (trav);

return okay;
}
This code is included in §98, §186, §238, §290, §330, §368, §411, §449, §482, §515, §548, and §583.
We also need to test deleting nodes from the tree and making copies of a tree. Here’s
the code to do that:
§105 (Test deleting nodes from the BST and making copies of it 105) =
for (i = 0; 1 < n; i++) {
int xdeleted;
if (verbosity >= 2) printf ("LuDeleting %d...\n", delete[i]);
deleted = bst_delete (tree, &deleteli]);
if (deleted == NULL || xdeleted = delete[i]) {
okay = 0;
if (deleted == NULL)
printf ("LuuuDeletion failed.\n");
else printf ("_uuuWrong node %d_ returned.\n", xdeleted);

}

if (verbosity >= 3) print_whole_tree (tree, ", uAfterward");
if (lverify_tree (tree, delete + i + 1, n — i — 1))
return 0;
if (verbosity >= 2) printf ("LuCopying tree and comparing...\n");

/* Copy the tree and make sure it’s identical. */

{

struct bst_table xcopy = bst_copy (tree, NULL, NULL, NULL);
if (copy == NULL) {
if (verbosity >= 0) printf (" ,0ut of memory, in copy\n");
bst_destroy (tree, NULL);
return 1;
}
okay &= compare_trees (tree—bst_root, copy—bst_root);
bst_destroy (copy, NULL);

}

This code is included in §100 and §295.
The actual comparison of trees is done recursively for simplicity:

§106 (Compare two BSTs for structure and content 106 ) =
/* Compares binary trees rooted at a and b, making sure that they are identical. */
static int compare_trees (struct bst_node xa, struct bst_node *b) {
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int okay;

if (o == NULL || b == NULL) {
assert (a == NULL && b == NULL);
return 1;

}
if (x(int *) a—bst_data != *(int x) b—bst_data
|| ((a—bst_link[0] != NULL) != (b—bst_link[0] != NULL))
|| ((a—bst_link[1] = NULL) != (b—bst_link[1] != NULL))) {
printf (" Copied nodes differ: a=%d_b=%d_a:",
«(int *) a—bst_data, *(int *) b—bst_data);
if (a—bst_link[0] != NULL) printf ("1");
if (a—bst_link[1] != NULL) printf ("r");
printf ("Ub:");
if (b—bst_link[0] != NULL) printf ("1");
if (b—bst_link[1] '= NULL) printf ("x");

printf ("\n");
return 0;

}
okay = 1;

if (a—bst_link[0] != NULL) okay &= compare_trees (a—bst_link[0], b—bst_link[0]);
if (a—bst_link[1] != NULL) okay &= compare_trees (a—bst_link[1], b—bst_link[1]);

return okay;

}

This code is included in §98.

87

As a simple extra check, we make sure that attempting to delete from an empty tree

fails in the expected way:

§107 (Test deleting from an empty tree 107) =
if (bst_delete (tree, &insert[0]) != NULL) {
printf (“uDeletion._,fromuemptyutree._,succeeded.\n“);
okay = 0;
}
This code is included in §100.
Finally, we’re done with the tree and can get rid of it.
§108 (Test destroying the tree 108) =
/* Test destroying the tree. x/
bst_destroy (tree, NULL);

This code is included in §100 and §295.
Exercises:

1. Which functions in (bst.c 25) are not exercised by test()?

2. Some errors within test() just set the okay flag to zero, whereas others cause an immediate
unsuccessful return to the caller without performing any cleanup. A third class of errors

causes cleanup followed by a successful return. Why and how are these distinguished?
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4.14.1.1 BST Verification

After each change to the tree in the testing program, we call verify_tree() to check that
the tree’s structure and content are what we think they should be. This function runs
through a full gamut of checks, with the following outline:

(BST verify function 109) =
/* Checks that tree is well-formed
and verifies that the values in array|] are actually in tree.
There must be n elements in array[] and tree.
Returns nonzero only if no errors detected. */
static int verify_tree (struct bst_table xtree, int array||, size_t n) {
int okay = 1;
( Check tree—bst_count is correct 110)
if (okay) { (Check BST structure 111) }
if (okay) { (Check that the tree contains all the elements it should 115) }
if (okay) { ( Check that forward traversal works 116) }
if (okay) { ( Check that backward traversal works 117) }
if (okay) { (Check that traversal from the null element works 118) }

return okay;

~— — ~— —

}

This code is included in §98, §411, and §515.

The first step just checks that the number of items passed in as n is the same as
tree—bst_count.

( Check tree—bst_count is correct 110) =
/* Check tree’s bst_count against that supplied. */
if (bst_count (tree) !=n) {
printf (" Tree count is_%lu, but,should be %lu.\n",
(unsigned long) bst_count (tree), (unsigned long) n);
okay = 0;

}

This code is included in §109, §190, §244, and §294.

Next, we verify that the BST has proper structure and that it has the proper number
of items. We’ll do this recursively because that’s easiest and most obviously correct way.
Function recurse_verify_tree() for this returns the number of nodes in the BST. After it
returns, we verify that this is the expected number.

( Check BST structure 111) =
/* Recursively verify tree structure. */
size_t count;

recurse_verify_tree (tree—bst_root, &okay, &count, 0, INT_MAX);
( Check counted nodes 112)

This code is included in §109 and §294.

( Check counted nodes 112) =
if (count !=n) {
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printf ("_Tree_ has_ %lu nodes, but_ should have, %lu.\n",
(unsigned long) count, (unsigned long) n);
okay = 0;
}

This code is included in §111, §191, and §246.

The function recurse_verify-tree() does the recursive verification. It checks that nodes’
values increase down to the right and decrease down to the left. We also use it to count the
number of nodes actually in the tree:

( Recursively verify BST structure 113) =
/* Examines the binary tree rooted at node.
Zeroes xokay if an error occurs. Otherwise, does not modify xokay.
Sets xcount to the number of nodes in that tree, including node itself if node != NULL.
All the nodes in the tree are verified to be at least min but no greater than maxz. %/
static void recurse_verify_tree (struct bst_node xnode, int xokay, size_t *count,
int min, int maz) {
int d; /* Value of this node’s data. */
size_t subcount[2]; /* Number of nodes in subtrees. */
if (node == NULL) {
xcount = 0;
return;

}

d = *(int *) node—bst_data;
( Verify binary search tree ordering 114 )

recurse_verify_tree (node—bst_link[0], okay, &subcount[0], min, d — 1);
recurse_verify_tree (node—bst_link[1], okay, &subcount[1], d + 1, maz);
xcount = 1 + subcount|0] + subcount[1];

}

This code is included in §98.

( Verify binary search tree ordering 114) =
if (min > mazx) {
printf ("_Parents of node %d constrain it to_empty_ range %d...%d.\n",
d, min, max);
xokay = 0;
}else if (d < min || d > maz) {
printf (" Node %d is not,in range %d...%d implied by its parents.\n",
d, min, max);
xokay = 0;

}

This code is included in §113, §188, §240, §293, §332, §370, §414, §451, §484, §517, §550, and §585.
The third step is to check that the BST indeed contains all of the items that it should:

( Check that the tree contains all the elements it should 115) =
/* Check that all the values in array[] are in tree. %/

size_t i;

for (i = 0; 1 < n; i++)
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if (bst_find (tree, &array[i]) == NULL) {
printf ("_Tree_does not,contain expected value_ %d.\n", array[i]);
okay = 0;

}

This code is included in §109, §190, §244, and §294.

The final steps all check traversal of the BST, first by traversing in forward order from
the beginning to the end, then in reverse order, then by checking that the null item behaves
correctly. The forward traversal checks that the proper number of items are in the BST.
It could appear to have too few items if the tree’s pointers are screwed up in one way, or
it could appear to have too many items if they are screwed up in another way. We try to
figure out how many items actually appear in the tree during traversal, but give up if the
count gets to be more than twice that expected, assuming that this indicates a “loop” that
will cause traversal to never terminate.

§116 (Check that forward traversal works 116) =
/* Check that bst_t_first() and bst_t_next() work properly. */
struct bst_traverser trav;
size_t ;
int prev = ~1;
int xitem;
for (i = 0, item = bst_t_first (&trav, tree); i < 2 x n && item != NULL;
i++, item = bst_t_next (&trav)) {
if (xitem <= prev) {
printf (" Tree out 0f jorder: %d follows,kd, in traversal\n", xitem, prev);
okay = 0;
}
prev = xitem;
}
if (i 1=n) {
printf ("_Tree_should have_ %lu items, but_has_ %lu in traversal\n",
(unsigned long) n, (unsigned long) 7);
okay = 0;
}

This code is included in §109, §190, §244, and §294.
We do a similar traversal in the reverse order:

§117 (Check that backward traversal works 117) =
/* Check that bst_t_last() and bst_t_prev() work properly. */
struct bst_traverser trav;
size_t i;
int next = INT_MAX;
int xitem;
for (i = 0, item = bst_t_last (&trav, tree); i < 2 x n && item != NULL;
i++, item = bst_t_prev (&trav)) {
if (xitem >= neat) {
printf ("_Tree out of order: %d_precedes_ %d_ in traversal\n", xitem, next);
okay = 0;
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}
nexrt = xitem;
}
if (i 1= n) {
printf ("_Tree_ should have %lu items, but _has_%lu,in reverse\n",
(unsigned long) n, (unsigned long) 7);
okay = 0;

}

This code is included in §109, §190, §244, and §294.

The final check to perform on the traverser is to make sure that the traverser null item
works properly. We start out a traverser at the null item with bst_t_init(), then make sure
that the next item after that, as reported by bst_t_nezt(), is the same as the item returned
by bst_t_init(), and similarly for the previous item:

( Check that traversal from the null element works 118) =
/* Check that bst_t_init() works properly. */
struct bst_traverser init, first, last;
int xcur, xprev, *next;
bst_t_init (&init, tree);
bst_t_first (&first, tree);
bst_t_last (&last, tree);
cur = bst_t_cur (&init);
if (cur != NULL) {
printf (", Inited traverser should be null, but is actually, %d.\n", xcur);
okay = 0;
}
next = bst_t_next (&init);
if (next = bst_t_cur (&first)) {
printf ("_Next_after null should be,%d, but is actually %d.\n",
«(int *) bst_t_cur (&first), xnext);
okay = 0;
}
bst_t_prev (&init);
prev = bst_t_prev (&init);
if (prev = bst_t_cur (&last)) {
printf (" _Previous before null should, be %d, but is actually, %d.\n",
«(int *) bst_t_cur (&last), xprev);
okay = 0;
}

bst_t_next (&init);
This code is included in §109, §190, §244, and §294.

Exercises:

1. Many of the segments of code in this section cast size_t arguments to printf () to unsigned
long. Why?

2. Does test() work properly for testing trees with only one item in them? Zero items?
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4.14.1.2 Displaying BST Structures

The print_tree_structure() function below can be useful for debugging, but it is not used
very much by the testing code. It prints out the structure of a tree, with the root first, then
its children in parentheses separated by a comma, and their children in inner parentheses,
and so on. This format is easy to print but difficult to visualize, so it’s a good idea to have
a notebook on hand to sketch out the shape of the tree. Alternatively, this output is in the
right format to feed directly into the texitree program used to draw the tree diagrams in
this book, which can produce output in plain text or PostScript form.

§119 (BST print function 119) =
/* Prints the structure of node, which is level levels from the top of the tree. x/
static void print_tree_structure (const struct bst_node xnode, int level) {
/* You can set the maximum level as high as you like.
Most of the time, you’ll want to debug code using small trees,
so that a large level indicates a “loop”, which is a bug. */
if (level > 16) {
printf ("[...1");

return;

}

if (node == NULL)
return;

printf ("%d", *(int *) node—bst_data);
if (node—bst_link[0] != NULL || node—bst_link[1] != NULL) {
putchar (> (?);

print_tree_structure (node—bst_link[0], level + 1);
if (node—bst_link[1] = NULL) {
putchar (°,7);
print_tree_structure (node—bst_link[1], level + 1);

}

putchar (°)?);

}

See also §120.
This code is included in §98, §186, §238, §515, §548, and §583.

A function print-whole_tree() is also provided as a convenient wrapper for printing an
entire BST’s structure.

§120 (BST print function 119) +=
/* Prints the entire structure of tree with the given title. x/
void print_whole_tree (const struct bst_table xtree, const char xtitle) {
printf (“%hs:.", title);
print_tree_structure (tree—bst_root, 0);
putchar (°\n’);
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4.14.2 Test Set Generation

We need code to generate a random permutation of numbers to order insertion and
deletion of items. We will support some other orders besides random permutation as well
for completeness and to allow for overflow testing. Here is the complete list:

( Test declarations 121) =
/* Insertion order. */
enum insert_order {
INS_RANDOM, /* Random order. */
INS_ASCENDING, /* Ascending order. */
INS_DESCENDING, /* Descending order. x/
INS_BALANCED, /* Balanced tree order. /
INS_ZIGZAG, /* Zig-zag order. %/
INS_ASCENDING_SHIFTED, / Ascending from middle, then beginning. */
INS_CUSTQM, /+ Custom order. %/

INS_CNT /% Number of insertion orders. */

b

/* Deletion order. x/

enum delete_order {
DEL_RANDOM, /+ Random order. */
DEL_REVERSE, /x Reverse of insertion order. */
DEL_SAME, /% Same as insertion order. %/
DEL_CUSTOM, /+ Custom order. */

DEL_CNT /% Number of deletion orders. */
b
See also §125, §133, §138, §139, and§141.
This code is included in §97.

The code to actually generate these orderings is left to the exercises.
Exercises:

1. Write a function to generate a random permutation of the n ints between 0 and n — 1
into a provided array.

*2. Write a function to generate an ordering of ints that, when inserted into a binary tree,
produces a balanced tree of the integers from min to maxz inclusive. (Hint: what kind of
recursive traversal makes this easy?)

3. Write one function to generate an insertion order of n integers into a provided array
based on an enum insert_order and the functions written in the previous two exercises.
Write a second function to generate a deletion order using similar parameters plus the
order of insertion.

*4, By default, the C random number generator produces the same sequence every time
the program is run. In order to generate different sequences, it has to be “seeded” using
srand() with a unique value. Write a function to select a random number seed based on
the current time.
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4.14.3 Testing Overflow

Testing for overflow requires an entirely different set of test functions. The idea is to
create a too-tall tree using one of the pathological insertion orders (ascending, descending,
zig-zag, shifted ascending), then try out each of the functions that can overflow on it and
make sure that they behave as they should.

There is a separate test function for each function that can overflow a stack but which
is not tested by test(). These functions are called by driver function test_overflow(), which
also takes care of creating, populating, and destroying the tree.

(BST overflow test function 122) =
( Overflow testers 124 )

/* Tests the tree routines for proper handling of overflows.
Inserting the n elements of order]|] should produce a tree
with height greater than BST_MAX_HEIGHT.
Uses allocator as the allocator for tree and node data.
Use verbosity to set the level of chatter on stdout. */
int test_overflow (struct libavl allocator xallocator, int order[], int n, int verbosity) {
/* An overflow tester function. */
typedef int test_func (struct bst_table x, int n);

/* An overflow tester. x/
struct test {
test_func *func; /% Tester function. %/
const char xname; /* Test name. */
I8
/* All the overflow testers. %/
static const struct test test[] = {
{test_bst_t_first, "first item"},
{test_bst_t_last, "last item"},
{test_bst_t_find, "find item"},
{test_bst_t_insert, "insert_ item"},
{test_bst_t_next, "next item"},
{test_bst_t_prev, "previous item"},
{test_bst_copy, "copy tree"},
b
const struct test xi; /x Iterator. x/
/* Run all the overflow testers. x/
for (i = test; i < test + sizeof test / sizeof xtest; i++) {
struct bst_table xtree;
int j;
if (verbosity >= 2) printf ("LuRunning %s_ test...\n", i—name);
tree = bst_create (compare_ints, NULL, allocator);
if (tree == NULL) {
printf ("LuouOutof memory creating tree.\n");
return 1;
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for (j = 0; 5 < n; j++) {
void xxp = bst_probe (tree, &order[j]);
if (p == NULL || xp != &order[j]) {
if (p == NULL && verbosity >= 0)
printf ("LuuuOut,of memory,in insertion.\n");
else if (p != NULL) printf ("_uu.Duplicate item in tree!\n");
bst_destroy (tree, NULL);
return p == NULL;
}
}
if (i—func (tree, n) == 0)
return 0;
if (verify_tree (tree, order, n) == 0)
return 0;
bst_destroy (tree, NULL);

}

return 1;

}
This code is included in §98, §186, §238, §290, §330, §368, §411, §449, §482, §515, §548, and §583.
§123 (Test prototypes 101) +=
int test_overflow (struct libavl allocator x, int order[], int n, int verbosity);
There is an overflow tester for almost every function that can overflow. Here is one
example:
§124 (Overflow testers 124) =
static int test_bst_t_first (struct bst_table xtree, int n) {
struct bst_traverser trav;
int xfirst;
first = bst_t_first (&trav, tree);
if (first == NULL || xfirst != 0) {
printf ("LuuoFirstyitem test failed: expected 0, got %kd\n",
first 1= NULL ? xfirst : ~1);
return 0;

}

return 1;

}

See also §644.
This code is included in §122.

Exercises:

1. Write the rest of the overflow tester functions. (The test_overflow() function lists all of
them.)

4.14.4 Memory Manager

We want to test our code to make sure that it always releases allocated memory and
that it behaves robustly when memory allocations fail. We can do the former by building
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our own memory manager that keeps tracks of blocks as they are allocated and freed. The
memory manager can also disallow allocations according to a policy set by the user, taking
care of the latter.

The available policies are:

( Test declarations 121) +=
/* Memory tracking policy. */
enum mt_policy {

MT_TRACK, /* Track allocation for leak detection. */

MT_NO_TRACK, /* No leak detection. */

MT_FAIL_COUNT, /« Fail allocations after a while. */

MT_FAIL_PERCENT, /x Fail allocations randomly. %/

MT_SUBALLOC /# Suballocate from larger blocks. */
b
MT_TRACK and MT_NO_TRACK should be self-explanatory. = MT_FAIL_COUNT takes an
argument specifying after how many allocations further allocations should always fail.
MT_FAIL_PERCENT takes an argument specifying an integer percentage of allocations to
randomly fail.

MT_SUBALLOC causes small blocks to be carved out of larger ones allocated with malloc().
This is a good idea for two reasons: malloc() can be slow and malloc() can waste a lot of
space dealing with the small blocks that LIBAVL uses for its node. Suballocation cannot be
implemented in an entirely portable way because of alignment issues, but the test program
here requires the user to specify the alignment needed, and its use is optional anyhow.

The memory manager keeps track of allocated blocks using struct block:

(Memory tracker 126 ) =
/* Memory tracking allocator. */

/* A memory block. */
struct block {
struct block *next; /+ Next in linked list. */

int idz; /+ Allocation order index number. */
size_t size; /* Size in bytes. %/
size_t used; /+ MT_SUBALLOC: amount used so far. %/
void xcontent; /* Allocated region. %/
b
See also §127, §128, §129, §130, §131, and§132.
This code is included in §97.

The next member of struct block is used to keep a linked list of all the currently allocated
blocks. Searching this list is inefficient, but there are at least two reasons to do it this way,
instead of using a more efficient data structure, such as a binary tree. First, this code is for
testing binary tree routines—using a binary tree data structure to do it is a strange idea!
Second, the ISO C standard says that, with few exceptions, using the relational operators
(<, <=, >, >=) to compare pointers that do not point inside the same array produces
undefined behavior, but allows use of the equality operators (==, !=) for a larger class of
pointers.
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We also need a data structure to keep track of settings and a list of blocks. This
memory manager uses the technique discussed in Exercise 2.5-3 to provide this structure to
the allocator.

{Memory tracker 126) +=

/* Indexes into arg[] within struct mt_allocator. x/

enum mt_arg_index {
MT_COUNT = 0, /+ MT_FAIL_COUNT: Remaining successful allocations. */
MT_PERCENT = 0, /* MT_FAIL_PERCENT: Failure percentage. */
MT_BLOCK_SIZE = 0, /+ MT_SUBALLOC: Size of block to suballocate. x/
MT_ALIGN = 1 /% MT_SUBALLOC: Alignment of suballocated blocks. */

b

/* Memory tracking allocator. %/

struct mt_allocator {
struct libavl_allocator allocator; /+ Allocator. Must be first member. */

/* Settings. */
enum mt_policy policy; /+ Allocation policy. */
int arg[2]; /x Policy arguments. */
int verbosity; /* Message verbosity level. x/
/* Current state. x/
struct block *head, *tail; /x Head and tail of block list. */
int alloc_idz; /* Number of allocations so far. */
int block_cnt; /* Number of still-allocated blocks. */
};

Function mt_create() creates a new instance of the memory tracker. It takes an allocation
policy and policy argument, as well as a number specifying how verbose it should be in
reporting information. It uses utility function zmalloc(), a simple wrapper for malloc()
that aborts the program on failure. Here it is:

(Memory tracker 126 ) +=
static void s«mt_allocate (struct libavl allocator *, size_t);
static void mt_free (struct libavl allocator x*, void *);

/* Initializes the memory manager for use
with allocation policy policy and policy arguments arg|],
at verbosity level verbosity, where 0 is a “normal” value. */
struct mt_allocator *mt_create (enum mt_policy policy, int arg[2], int verbosity) {
struct mt_allocator xmt = xmalloc (sizeof xmt);
mt—allocator.libavl_malloc = mt_allocate;
mt—allocator.libavl_free = mit_free;
mt—policy = policy;
mt—arg[0] = arg[0];
mt—arg[1l] = arg[1];
mt—uverbosity = verbosity;
mt—head = mt—tail = NULL;
mt—alloc_idx = 0;
mt—block_cnt = 0;

return mt;
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After allocations and deallocations are done, the memory manager must be freed with
mt_destroy(), which also reports any memory leaks. Blocks are removed from the block list
as they are freed, so any remaining blocks must be leaked memory:

(Memory tracker 126 ) +=
/* Frees and destroys memory tracker mt, reporting any memory leaks. x/
void mt_destroy (struct mt_allocator xmt) {

assert (mt != NULL);

if (mt—block_cnt == 0) {
if (mt—policy '= MT_NO_TRACK && mt—wverbosity >= 1)
printf ("LuNo memoryleaks.\n");
} else {

struct block xiter, xnext;

if (mt—policy '= MT_SUBALLQC) printf ("__Memory leaks detected:\n");
for (iter = mt—head; iter != NULL; iter = next) {
if (mt—policy '= MT_SUBALLOC)
printf ("Luuublock #%d: %lu bytes\n",
iter—idz, (unsigned long) iter—size);

next = iter—next;
free (iter—content);
free (iter);

}

free (mt);

For the sake of good encapsulation, mit_allocator() returns the struct libavl allocator
associated with a given memory tracker:

(Memory tracker 126 ) +=
/* Returns the struct libavl_allocator associated with mt. */
void s«mft_allocator (struct mt_allocator xmt) {
return &mi—allocator;
}

The allocator function mt_allocate() is in charge of implementing the selected alloca-
tion policy. It delegates most of the work to a pair of helper functions new_block() and
reject_request() and makes use of utility function zmalloc(), a simple wrapper for malloc()
that aborts the program on failure. The implementation is straightforward:

(Memory tracker 126 ) +=
/* Creates a new struct block containing size bytes of content
and returns a pointer to content. */
static void *new_block (struct mt_allocator xmt, size_t size) {
struct block xnew;

/* Allocate and initialize new struct block. x/
new = xmalloc (sizeof xnew);
new—nexrt = NULL;
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new—idr = mt—alloc_idz+-+;
new—size = Size;
new—used = 0;
new—content = xmalloc (size);
/* Add block to linked list. */
if (mt—head == NULL)
mt—head = new;
else mt—tail—next = new;
mt—tail = new;
/* Alert user. */
if (mt—verbosity >= 3)
printf ("_uuublock #%d: allocated, %lu bytes\n",
new—idz, (unsigned long) size);

/* Finish up and return. */
mt—block_cnt++;
return new—content;

}

/* Prints a message about a rejected allocation if appropriate. */
static void reject_request (struct mt_allocator xmt, size_t size) {
if (mt—verbosity >= 2)
printf ("_uuublock #%d: rejected request_ for,)lu bytes\n",
mt—alloc_idz++, (unsigned long) size);

}

/* Allocates and returns a block of size bytes. */
static void smt_allocate (struct libavl allocator xallocator, size_t size) {
struct mt_allocator xmt = (struct mt_allocator *) allocator;

/* Special case. */
if (size == 0)
return NULL;
switch (mt—policy) {
case MT_TRACK: return new_block (mt, size);

case MT_NO_TRACK: return zmalloc (size);

case MT_FAIL_COUNT:
if (mt—arg[MT_COUNT] == 0) {
reject_request (mt, size);
return NULL;
}
mt— arg[MT_COUNT|——;
return new_block (mt, size);
case MT_FAIL_PERCENT:
if (rand () / (RAND_MAX / 100 + 1) < mt—arg[MT_PERCENT]) {
reject_request (mt, size);
return NULL;

}

else return new_block (mt, size);
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case MT_SUBALLOC:
if (mt—tail == NULL
|| mt—tail—used + size > (size_t) mt—arg[MT_BLOCK_SIZE])
new_block (mt, mt—arg[MT_BLOCK_SIZE]);
if (mt—tail—used + size <= (size_t) mt—arg[MT_BLOCK_SIZE]) {
void xp = (char %) mt—tail—content + mt—tail—used;
size = ((size + mt—arg[MT_ALIGN] — 1)
/ mt—arg[MT_ALIGN] x mt—arg[MT_ALIGN));
mt—tail—used += size;
if (mt—wverbosity >= 3)
printf ("Luuublock #%d: suballocated %lu bytes\n",
mt—tail—idz, (unsigned long) size);
return p;
}
else fail ("blocksize %lu too,small for %lubyte allocation",
(unsigned long) mt—tail—size, (unsigned long) size);

default: assert (0);

}

The corresponding function mi_free() searches the block list for the specified block,
removes it, and frees the associated memory. It reports an error if the block is not in the
list:

§132 (Memory tracker 126) +=
/* Releases block previously returned by mi_allocate(). x/
static void mt_free (struct libavl_allocator xallocator, void *block) {
struct mt_allocator xmt = (struct mt_allocator *) allocator;
struct block xiter, xprev;

/* Special cases. */

if (block == NULL || mt—policy == MT_NO_TRACK) {
free (block);
return,;

}

if (mt—policy == MT_SUBALLOC)
return;
/% Search for block within the list of allocated blocks. x/
for (prev = NULL, iter = mt—head; iter; prev = iter, iter = iter—next) {
if (iter—content == block) {
/* Block found. Remove it from the list. */
struct block xnext = iter—next;
if (prev == NULL)
mt—head = next;
else prev—next = next;
if (next == NULL) mt—tail = prev;
/x Alert user. x/
if (mt—verbosity >= 4)
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printf ("Luuublock #%d: freed, )lu_bytes\n",
iter—idzr, (unsigned long) iter—size);
/* Free block. x/
free (iter—content);
free (iter);
/* Finish up and return. */
mt—block_cnt——;
return;

}
/* Block not in list. */
printf ("Luuuattempt to,free unknown block, )p,(already freed?)\n", block);

}
See also: [ISO 1990], sections 6.3.8 and 6.3.9.

Exercises:

1. As its first action, mt_allocate() checks for and special-cases a size of 0. Why?

4.14.5 User Interaction

This section briefly discusses LIBAVL’s data structures and functions for parsing
command-line arguments. For more information on the command-line arguments accepted
by the testing program, refer to the LIBAVL reference manual.

The main way that the test program receives instructions from the user is through the
set of arguments passed to main(). The program assumes that these arguments can be
controlled easily by the user, presumably through some kind of command-based “shell”
program. It allows for two kinds of options: traditional UNIX “short options” that take
the form ‘-0’ and GNU-style “long options” of the form ‘~-option’. Kither kind of option
may take an argument.

Options are specified using an array of struct option, terminated by an all-zero structure:

( Test declarations 121) +=
/* A single command-line option. */
struct option {
const char xlong_name; /* Long name ("-name"). %/
int short_name; /+ Short name ("n"); value returned. */
int has_arg; /+* Has a required argument? */
};
There are two public functions in the option parser:
struct option_state xoption_init (struct option xoptions, char xxargs)
Creates and returns a struct option_state, initializing it based on the array of
arguments passed in. This structure is used to keep track of the option parsing
state. Sets options as the set of options to parse.

int option_get (struct option_state xstate, char xxargp)
Parses the next option from state and returns the value of the short_name
member from its struct option. Sets xargp to the option’s argument or NULL if
none. Returns ~1 and destroys state if no options remain.
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These functions’ implementation are not too interesting for our purposes, so they are
relegated to an appendix. See Section B.1 [Option Parser|, page 323, for the full story.

The option parser provides a lot of support for parsing the command line, but of course
the individual options have to be handled once they are retrieved by option_get(). The
parse_command_line() function takes care of the whole process:

void parse_command_line (char sxargs, struct test_options xoptions)
Parses the command-line arguments in args[|, which must be terminated with
an element set to all zeros, using option_init() and option_get(). Sets up options
appropriately to correspond.

See Section B.2 [Command-Line Parser], page 326, for source code. The struct
test_options initialized by parse_command_line() is described in detail below.

4.14.6 Utility Functions

The first utility function is compare_ints(). This function is not used by (test.c 97)
but it is included there because it is used by the test modules for all the individual tree
structures.

( Test utility functions 134) =
/* Utility functions. */
( Comparison function for ints 3)
See also §136 and §137.
This code is included in §97.
It is prototyped in (test.h 99):
( Test prototypes 101) +=
int compare_ints (const void *pa, const void *pb, void xparam);
The fail() function prints a provided error message to stderr, formatting it as with
printf(), and terminates the program unsuccessfully:

( Test utility functions 134) +=
/* Prints message on stderr, which is formatted as for printf(),
and terminates the program unsuccessfully. */
static void fail (const char xmessage, ...) {
va_list args;
forintf (stderr, "hs:u", pgm_name);
va_start (args, message);
vfprintf (stderr, message, args);
va_end (args);
putchar (°\n’);
exit (EXIT_FAILURE);

Finally, the zmalloc() function is a malloc() wrapper that aborts the program if allocation
fails:
( Test utility functions 134) +=
/* Allocates and returns a pointer to size bytes of memory.
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Aborts if allocation fails. */
static void xzmalloc (size_t size) {
void xblock = malloc (size);
if (block == NULL && size = 0)
fail ("out of memory");
return block;

}
4.14.7 Main Program

Everything comes together in the main program. The test itself (default or overflow) is
selected with enum test:

( Test declarations 121) +=
/* Test to perform. */
enum test {
TST_CORRECTNESS, /* Default tests. /
TST_OVERFLOW, /* Stack overflow test. */
TST_NULL /% No test, just overhead. */
b
The program’s entire behavior is controlled by struct test_options, defined as follows:
( Test declarations 121) +=
/* Program options. */
struct test_options {
enum test test; /* Test to perform. */
enum insert_order insert_order; /« Insertion order. */
enum delete_order delete_order; /+ Deletion order. */

enum mt_policy alloc_policy; /+ Allocation policy. */
int alloc_arg[2]; /* Policy arguments. */
int alloc_incr; /* Amount to increment alloc_arg each iteration. x/

int node_cnt; /* Number of nodes in tree. */
int iter_cnt; /* Number of runs. x/

int seed_given; /x Seed provided on command line? x*/
unsigned seed; /* Random number seed. */

int verbosity; /+ Verbosity level, 0=default. x/
int nonstop; /* Don’t stop after one error? */
b
The main() function for the test program is perhaps a bit long, but simple. It begins
by parsing the command line and allocating memory, then repeats a loop once for each
repetition of the test. Within the loop, an insertion and a deletion order are selected, the
memory tracker is set up, and test function (either test() or test-overflow()) is called.

( Test main program 140 ) =

int main (int argc, char xargv[]) {
struct test_options opts; /* Command-line options. */
int xinsert, xdelete; /x Insertion and deletion orders. */
int success; /* Everything okay so far? x/
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/* Initialize pgm_name, using argv[0] if sensible. %/
pgm_name = argu[0] != NULL && argv[0][0] != *\0’ ? argv[0] : "bsttest";
/* Parse command line into options. x/
parse_.command_line (argv, &opts);
if (opts.verbosity >= 0)
fouts ("bsttest,for GNU_ libavl2.0.2; use ~help to,get help.\n", stdout);
if (lopts.seed_given) opts.seed = time_seed () % 32768u;

insert = xmalloc (sizeof xinsert x opts.node_cnt);
delete = xmalloc (sizeof xdelete * opts.node_cnt);

/* Run the tests. */
success = 1;
while (opts.iter_ent——) {
struct mt_allocator *alloc;
if (opts.verbosity >= 0) {
printf ("Testing ;seed=%u", opts.seed);
if (opts.alloc_incr) printf (", alloc arg=%d", opts.alloc_arg[0]);
printf ("...\n");
fflush (stdout);
}

/* Generate insertion and deletion order.
Seed them separately to ensure deletion order is
independent of insertion order. */
srand (opts.seed);
gen_insertions (opts.node_cnt, opts.insert_order, insert);
srand (++opts.seed);
gen_deletions (opts.node_cnt, opts.delete_order, insert, delete);
if (opts.verbosity >= 1) {
int 4;
printf ("_,Insertion order:");
for (i = 0; ¢ < opts.node_cnt; i++)
printf ("uhd", insertli]);
printf (".\n");
if (opts.test == TST_CORRECTNESS) {
printf ("Deletion order:");
for (i = 0; i < opts.node_cnt; i++)
printf ("Lhd", delete[i]);
printf (".\n");

}

alloc = mt_create (opts.alloc_policy, opts.alloc_arg, opts.verbosity);

{
int okay;
struct libavl_allocator xa = mt_allocator (alloc);

switch (opts.test) {
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case TST_CORRECTNESS:
okay = test_correctness (a, insert, delete, opts.node_cnt, opts.verbosity);
break;

case TST_OVERFLOW:
okay = test_overflow (a, insert, opts.node_cnt, opts.verbosity);

break;
case TST_NULL: okay = 1; break;
default: assert (0);
}

if (okay) {
if (opts.verbosity >= 1)
printf ("_uNoerrors.\n");
} else {

success = 0;
printf ("LuError!\n");

}

mt_destroy (alloc);
opts.alloc_arg[0] += opts.alloc_incr;

if (Isuccess && lopts.nonstop)
break;

}
free (delete);
free (insert);
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}
This code is included in §97.
The main program initializes our single global variable, pgm_name, which receives the
name of the program at start of execution:
§141 (Test declarations 121) +=

/* Program name. */
char xpgm_name;

4.15 Additional Exercises

Exercises:

1. Sentinels were a main theme of the chapter before this one. Figure out how to apply
sentinel techniques to binary search trees. Write routines for search and insertion in such a
binary search tree with sentinel. Test your functions. (You need not make your code fully
generic; e.g., it is acceptable to “hard-code” the data type stored in the tree.)
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5 AVL Trees

In the last chapter, we designed and implemented a table ADT using binary search trees.
We were interested in binary trees from the beginning because of their promise of speed
compared to linear lists.

But we only get these speed improvements if our binary trees are arranged more or less
optimally, with the tree’s height as small as possible. If we insert and delete items in the
tree in random order, then chances are that we’ll come pretty close to this optimal tree.!

In “pathological” cases, search within binary search trees can be as slow as sequential
search, or even slower when the extra bookkeeping needed for a binary tree is taken into
account. For example, after inserting items into a BST in sorted order, we get something
like the vines on the left and the right below. The BST in the middle below illustrates a
more unusual case, a “zig-zag” BST that results from inserting items from alternating ends
of an ordered list.

Unfortunately, these pathological cases can easily come up in practice, because sorted
data in the input to a program is common. We could periodically balance the tree using
some heuristic to detect that it is “too tall”. In the last chapter, in fact, we used a weak
version of this idea, rebalancing when a stack overflow force it. We could abandon the idea
of a binary search tree, using some other data structure. Finally, we could adopt some
modifications to binary search trees that prevent the pathological case from occurring.

For the remainder of this book, we’re only interested in the latter choice. We’ll look at
two sets of rules that, when applied to the basic structure of a binary search tree, ensure
that the tree’s height is kept within a constant factor of the minimum value. Although
this is not as good as keeping the BST’s height at its minimum, it comes pretty close, and
the required operations are much faster. A tree arranged to rules such as these is called a
balanced tree. The operations used for minimizing tree height are said to rebalance the tree,
even though this is different from the sort of rebalancing we did in the previous chapter,
and are said to maintain the tree’s “balance.”

A balanced tree arranged according to the first set of rebalancing rules that we’ll examine
is called an AVL tree, after its inventors, G. M. Adel’son-Vel’skii and E. M. Landis. AVL
trees are the subject of this chapter, and the next chapter will discuss red-black trees,
another type of balanced tree.

In the following sections, we’ll construct a table implementation based on AVL trees.
Here’s an outline of the AVL code:

6142 (avl.h 142) =

1 This seems true intuitively, but there are some difficult mathematics in this area. For details, refer to
[Knuth 1998b] theorem 6.2.2H, [Knuth 1977], and [Knuth 1978].
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(License 1)
#ifndef AVL_H
#define AVL_H 1

#include (stddef.h)

( Table types; tbl = avl 14)

(BST maximum height; bst = avl 28)
(BST table structure; bst = avl 27)

( AVL node structure 144 )

(BST traverser structure; bst = avl 61)

( Table function prototypes; tbl = avl 15)

#endif /+ avl.h */

(avl.c 143) =
(License 1)
#include (assert.h)
#include (stdio.h)
#include (stdlib.h)
#include (string.h)
#include “avl.h”

(AVL functions 145)
See also: [Knuth 1998b], sections 6.2.2 and 6.2.3; [Cormen 1990], section 13.4.

5.1 Balancing Rule

A binary search tree is an AVL tree if the difference in height between the subtrees of
each of its nodes is between ~1 and T1. Said another way, a BST is an AVL tree if it is an
empty tree or if its subtrees are AVL trees and the difference in height between its left and
right subtree is between ~1 and T1.

Here are some AVL trees:

Fo £ >

These binary search trees are not AVL trees:

£

In an AVL tree, the height of a node’s right subtree minus the height of its left subtree
is called the node’s balance factor. Balance factors are always ~1, 0, or 1. They are often
represented as one of the single characters —, 0, or +. Because of their importance in AVL
trees, balance factors will often be shown in this chapter in AVL tree diagrams along with or
instead of data items. Here are the AVL trees from above, but with balance factors shown
in place of data values:
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See also: [Knuth 1998b], section 6.2.3.

5.1.1 Analysis

How good is the AVL balancing rule? That is, before we consider how much complication
it adds to BST operations, what does this balancing rule guarantee about performance?
This is a simple question only if you're familiar with the mathematics behind computer
science. For our purposes, it suffices to state the results:

An AVL tree with n nodes has height between log,(n + 1) and 1.441og,(n +
2)—.328. An AVL tree with height h has between 2328 /1.44 and 2" — 1 nodes.
For comparison, an optimally balanced BST with n nodes has height
[log, (n+1)]. An optimally balanced BST with height & has between 2"~
and 2" — 1 nodes.

The average speed of a search in a binary tree depends on the tree’s height, so the results
above are quite encouraging: an AVL tree will never be more than about 50% taller than
the corresponding optimally balanced tree. Thus, we have a guarantee of good performance
even in the worst case, and optimal performance in the best case.

See also: [Knuth 1998b], theorem 6.2.3A.

5.2 Data Types

We need to define data types for AVL trees like we did for BSTs. AVL tree nodes contain
all the fields that a BST node does, plus a field recording its balance factor:
( AVL node structure 144) =
/* An AVL tree node. */
struct avl node {

struct avl node xavl_link[2]; /* Subtrees. x/
void *avl_data; /* Pointer to data. %/
signed char avl_balance; /+ Balance factor. x/
b
This code is included in §142.
We're using avl_ as the prefix for all AVL-related identifiers.

The other data structures for AVL trees are the same as for BSTs.

5.3 Operations

Now we’ll implement for AVL trees all the operations that we did for BSTs. Here’s the
outline. Creation and search of AVL trees is exactly like that for plain BSTs, and the generic
table functions for insertion convenience, assertion, and memory allocation are still relevant,
so we just reuse the code. Of the remaining functions, we will write new implementations
of the insertion and deletion functions and revise the traversal and copy functions.

( AVL functions 145) =
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(BST creation function; bst = avl 30)

(BST search function; bst = avl 31)

(AVL item insertion function 146 )

( Table insertion convenience functions; thl = avl 592)
( AVL item deletion function 164 )

( AVL traversal functions 178 )

( AVL copy function 185)

(BST destruction function; bst = avl 84)

( Default memory allocation functions; tbl = avl 6)

( Table assertion functions; tbl = avl 594 )

This code is included in §143.

5.4 Insertion

The insertion function for unbalanced BSTs does not maintain the AVL balancing rule,
so we have to write a new insertion function. But before we get into the nitty-gritty details,
let’s talk in generalities. This is time well spent because we will be able to apply many of
the same insights to AVL deletion and insertion and deletion in red-black trees.

Conceptually, there are two stages to any insertion or deletion operation in a balanced
tree. The first stage may lead to violation of the tree’s balancing rule. If so, we fix it in the
second stage. The insertion or deletion itself is done in the first stage, in much the same
way as in an unbalanced BST, and we may also do a bit of additional bookkeeping work,
such as updating balance factors in an AVL tree, or swapping node “colors” in red-black
trees.

If the first stage of the operation does not lead to a violation of the tree’s balancing rule,
nothing further needs to be done. But if it does, the second stage rearranges nodes and
modifies their attributes to restore the tree’s balance. This process is said to rebalance the
tree. The kinds of rebalancing that might be necessary depend on the way the operation
is performed and the tree’s balancing rule. A well-chosen balancing rule helps to minimize
the necessity for rebalancing.

When rebalancing does become necessary in an AVL or red-black tree, its effects are
limited to the nodes along or near the direct path from the inserted or deleted node up to
the root of the tree. Usually, only one or two of these nodes are affected, but, at most,
one simple manipulation is performed at each of the nodes along this path. This property
ensures that balanced tree operations are efficient (see Exercise 1 for details).

That’s enough theory for now. Let’s return to discussing the details of AVL insertion.
There are four steps in LIBAVL’s implementation of AVL insertion:

1. Search for the location to insert the new item.
2. Insert the item as a new leaf.
3. Update balance factors in the tree that were changed by the insertion.
4. Rebalance the tree, if necessary.
Steps 1 and 2 are the same as for insertion into a BST. Step 3 performs the additional

bookkeeping alluded to above in the general description of balanced tree operations. Finally,
step 4 rebalances the tree, if necessary, to restore the AVL balancing rule.
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The following sections will cover all the details of AVL insertion. For now, here’s an
outline of avl_probe():

(AVL item insertion function 146 ) =
void sxavl_probe (struct avl_table xiree, void *item) {
( avl_probe() local variables 147 )

assert (tree != NULL && item != NULL);

(Step 1: Search AVL tree for insertion point 148 )

(Step 2: Insert AVL node 149)

(Step 3: Update balance factors after AVL insertion 150 )
(Step 4: Rebalance after AVL insertion 151)

}

This code is included in §145.

( avl_probe() local variables 147) =

struct avl node xy, *z; /* Top node to update balance factor, and parent. */
struct avl.node *p, *q; /* Iterator, and parent. */

struct avl.node *n; /+* Newly inserted node. */

struct avl node xw; /+x New root of rebalanced subtree. x/

int dir; /* Direction to descend. */

unsigned char da[AVL_MAX_HEIGHT]; /+ Cached comparison results. */
int £ = 0; /* Number of cached results. */

This code is included in §146, §301, and §419.
See also: [Knuth 1998b], algorithm 6.2.3A.

Exercises:

*1. When rebalancing manipulations are performed on the chain of nodes from the inserted
or deleted node to the root, no manipulation takes more than a fixed amount of time. In
other words, individual manipulations do not involve any kind of iteration or loop. What
can you conclude about the speed of an individual insertion or deletion in a large balanced
tree, compared to the best-case speed of an operation for unbalanced BSTs?

5.4.1 Step 1: Search

The search step is an extended version of the corresponding code for BST insertion in
(BST item insertion function 32). The earlier code had only two variables to maintain: the
current node the direction to descend from p. The AVL code does this, but it maintains some
other variables, too. During each iteration of the for loop, p is the node we are examining,
q is p’s parent, y is the most recently examined node with nonzero balance factor, z is y’s
parent, and elements 0. . .k — 1 of array dal| record each direction descended, starting from
z, in order to arrive at p. The purposes for many of these variables are surely uncertain
right now, but they will become clear later.

(Step 1: Search AVL tree for insertion point 148 ) =

z = (struct avl node x) &tree—avl_root;

y = tree—avl_root;

dir = 0;

for (¢ = z, p = y; p |= NULL; ¢ = p, p = p—avl-link[dir]) {
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int cmp = tree—avi_compare (item, p—avi_data, tree—avl_param);
if (cmp == 0)
return &p—avl_data;
if (p—avl_balance = 0)
z=q,y=p k=0
da[k++] = dir = cmp > 0;

}

This code is included in §146.

5.4.2 Step 2: Insert

Following the search loop, ¢ is the last non-null node examined, so it is the parent of the
node to be inserted. The code below creates and initializes a new node as a child of ¢ on
side dir, and stores a pointer to it into n. Compare this code for insertion to that within
(BST item insertion function 32).

(Step 2: Insert AVL node 149) =
n = g—avl_link[dir] = tree—avl_alloc—libavi_malloc (tree—avl_alloc, sizeof xn);
if (n == NULL)
return NULL;
tree—avl_count+-+;
n—avl_data = item;
n—avl_link[0] = n—avl_link[1] = NULL;
n—avl_balance = 0;
if (y == NULL)
return &n—avl_data;
This code is included in §146.

Exercises:

1. How can y be NULL? Why is this special-cased?

5.4.3 Step 3: Update Balance Factors

When we add a new node n to an AVL tree, the balance factor of n’s parent must
change, because the new node increases the height of one of the parent’s subtrees. The
balance factor of n’s parent’s parent may need to change, too, depending on the parent’s
balance factor, and in fact the change can propagate all the way up the tree to its root.

At each stage of updating balance factors, we are in a similar situation. First, we are
examining a particular node p that is one of n’s direct ancestors. The first time around,
p is n’s parent, the next time, if necessary, p is n’s grandparent, and so on. Second, the
height of one of p’s subtrees has increased, and which one can be determined using daf[].

In general, if the height of p’s left subtree increases, p’s balance factor decreases. On
the other hand, if the right subtree’s height increases, p’s balance factor increases. If we
account for the three possible starting balance factors and the two possible sides, there are
six possibilities. The three of these corresponding to an increase in one subtree’s height are
symmetric with the others that go along with an increase in the other subtree’s height. We
treat these three cases below.
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Case 1: p has balance factor 0

If p had balance factor 0, its new balance factor is — or 4, depending on the side of the
root to which the node was added. After that, the change in height propagates up the tree
to p’s parent (unless p is the tree’s root) because the height of the subtree rooted at p’s
parent has also increased.

The example below shows a new node n inserted as the left child of a node with balance
factor 0. On the far left is the original tree before insertion; in the middle left is the tree
after insertion but before any balance factors are adjusted; in the middle right is the tree
after the first adjustment, with p as n’s parent; on the far right is the tree after the second
adjustment, with p as n’s grandparent. Only in the trees on the far left and far right are
all of the balance factors correct.

o Q O o
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Case 2: p’s shorter subtree has increased in height

If the new node was added to p’s shorter subtree, then the subtree has become more
balanced and its balance factor becomes 0. If p started out with balance factor +, this
means the new node is in p’s left subtree. If p had a — balance factor, this means the new
node is in the right subtree. Since tree p has the same height as it did before, the change
does not propagate up the tree any farther, and we are done. Here’s an example that shows
pre-insertion and post-balance factor updating views:

(0) (0)
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Case 3: p’s taller subtree has increased in height

If the new node was added on the taller side of a subtree with nonzero balance factor,
the balance factor becomes *2 or ~2. This is a problem, because balance factors in AVL
trees must be between ~1 and 1. We have to rebalance the tree in this case. We will cover
rebalancing later. For now, take it on faith that rebalancing does not increase the height of
subtree p as a whole, so there is no need to propagate changes any farther up the tree.

Here’s an example of an insertion that leads to rebalancing. On the left is the tree before
insertion; in the middle is the tree after insertion and updating balance factors; on the right
is the tree after rebalancing to. The ~2 balance factor is shown as two minus signs (——).
The rebalanced tree is the same height as the original tree before insertion.

S
O, . f
® . ¥ ©
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As another demonstration that the height of a rebalanced subtree does not change after
insertion, here’s a similar example that has one more layer of nodes. The trees below follow
the same pattern as the ones above, but the rebalanced subtree has a parent. Even though
the tree’s root has the wrong balance factor in the middle diagram, it turns out to be correct
after rebalancing.

Implementation

Looking at the rules above, we can see that only in case 1, where p’s balance factor is
0, do changes to balance factors continue to propagate upward in the tree. So we can start
from n’s parent and move upward in the tree, handling case 1 each time, until we hit a
nonzero balance factor, handle case 2 or case 3 at that node, and we’re done (except for
possible rebalancing afterward).

Wait a second—there is no efficient way to move upward in a binary search tree!> Fortu-
nately, there is another approach we can use. Remember the extra code we put into ( Step
1: Search AVL tree for insertion point 148 )7 This code kept track of the last node we’'d
passed through that had a nonzero balance factor as s. We can use s to move downward,
instead of upward, through the nodes whose balance factors are to be updated.

Node s itself is the topmost node to be updated; when we arrive at node n, we know
we're done. We also kept track of the directions we moved downward in da[]. Suppose that
we’'ve got a node p whose balance factor is to be updated and a direction d that we moved
from it. We know that if we moved down to the left (d == 0) then the balance factor must
be decreased, and that if we moved down to the right (d == 1) then the balance factor
must be increased.

Now we have enough knowledge to write the code to update balance factors. The results
are almost embarrassingly short:

(Step 3: Update balance factors after AVL insertion 150) =
for (p =y, k =0; p!=n; p=p—avllink[da[k]], k++)
if (dalk] == 0)
p—avl_balance——;
else p—avl_balance++;

This code is included in §146, §301, and §419.

Now p points to the new node as a consequence of the loop’s exit condition. Variable
p will not be modified again in this function, so it is used in the function’s final return
statement to take the address of the new node’s avl_data member (see ( AVL item insertion
function 146 ) above).

2 We could make a list of the nodes as we move down the tree and reuse it on the way back up. We'll do
that for deletion, but there’s a simpler way for insertion, so keep reading.
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Exercises:
1. Can case 3 be applied to the parent of the newly inserted node?

2. For each of the AVL trees below, add a new node with a value smaller than any already
in the tree and update the balance factors of the existing nodes. For each balance factor
that changes, indicate the numbered case above that applies. Which of the trees require
rebalancing after the insertion?

(0) (+)
) ORONRO
© © © ©

3. Earlier versions of LIBAVL used chars, not unsigned chars, to cache the results of compar-
isons, as the elements of da[] are used here. At some warning levels, this caused the GNU
C compiler to emit the warning “array subscript has type ‘char’” when it encountered
expressions like g—avl_link[da[k]]. Explain why this can be a useful warning message.

()
©

4. If our AVL trees won’t ever have a height greater than 32, then we can portably use the
bits in a single unsigned long to compactly store what the entire da|] array does. Write
a new version of step 3 to use this form, along with any necessary modifications to other
steps and avl_probe()’s local variables.

5.4.4 Step 4: Rebalance

We’ve covered steps 1 through 3 so far. Step 4, rebalancing, is somewhat complicated,
but it’s the key to the entire insertion procedure. It is also similar to, but simpler than,
other rebalancing procedures we’ll see later. As a result, we're going to discuss it in detail.
Follow along carefully and it should all make sense.

Before proceeding, let’s briefly review the circumstances under which we need to rebal-
ance. Looking back a few sections, we see that there is only one case where this is required:
case 3, when the new node is added in the taller subtree of a node with nonzero balance
factor.

Case 3 is the case where y has a =2 or *2 balance factor after insertion. For now, we’ll
just consider the ~2 case, because we can write code for the T2 case later in a mechanical
way by applying the principle of symmetry. In accordance with this idea, step 4 branches
into three cases immediately, one for each rebalancing case and a third that just returns
from the function if no rebalancing is necessary:

(Step 4: Rebalance after AVL insertion 151) =
if (y—avl_balance == ~2)

{ (Rebalance AVL tree after insertion in left subtree 152) }
else if (y—avl_balance == 72)

{ (Rebalance AVL tree after insertion in right subtree 157) }
else return &n—avl_data;

See also §153 and §154.
This code is included in §146.
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We will call y’s left child z. The new node is somewhere in the subtrees of z. There
are now only two cases of interest, distinguished on whether x has a + or — balance factor.
These cases are almost entirely separate:

(Rebalance AVL tree after insertion in left subtree 152) =
struct avl node xz = y—avl_link[0];
if (z—avl_balance == 1)
{ (Rotate right at y in AVL tree 155) }
else { (Rotate left at = then right at y in AVL tree 156) }

This code is included in §151 and §162.

In either case, w receives the root of the rebalanced subtree, which is used to update the
parent’s pointer to the subtree root (recall that z is the parent of y):

(Step 4: Rebalance after AVL insertion 151) +=
z—avl_link[y = z—avl_link[0]] = w;

Finally, we increment the generation number, because the tree’s structure has changed.
Then we’re done and we return to the caller:

(Step 4: Rebalance after AVL insertion 151) +=
tree—avl_generation—++;
return &n—avi_data;

Case 1: = has — balance factor

For a — balance factor, we just rotate right at y. Then the entire process, including
insertion and rebalancing, looks like this:

y(-) y (0) x
x (0] c U x c U af (0)Y
a b ar b b ¢

This figure also introduces some new graphical conventions. When both balance factors
and node labels are shown in a figure, node labels are shown beside the node circles, instead
of inside them. Second, the change in subtree a between the first and second diagrams is
indicated by an asterisk (*).® In this case, it indicates that the new node was inserted in
subtree a.

The code here is similar to rotate_right() in the solution to Exercise 4.3-2:
(Rotate right at y in AVL tree 155) =
w = T;
y—avl_link[0] = z—avl_link[1];
z—avl link[1] = y;
r—avl_balance = y—avl_balance = 0;

This code is included in §152 and §529.

3 A “prime” (1) is traditional, but primes are easy to overlook.
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Case 2: = has + balance factor

This case is just a little more intricate. First, let z’s right child be w. Either w is the
new node, or the new node is in one of w’s subtrees. To restore balance, we rotate left at x,
then rotate right at y (this is a kind of “double rotation”). The process, starting just after
the insertion and showing the results of each rotation, looks like this:

y y
w
X dD Wde y
a w X cC
a b ¢
b <c a

At the beginning, the figure does not show the balance factor of w. This is because there
are three possibilities:

Case 2.1: w has balance factor 0.
This means that w is the new node. a, b, ¢, and d have height 0. After the
rotations, z and y have balance factor 0.

Case 2.2: w has balance factor —.
a, b, and d have height h > 0, and ¢ has height h — 1.

Case 2.3: w has balance factor +.
a, ¢, and d have height A > 0, and b has height h — 1.

(Rotate left at  then right at y in AVL tree 156 ) =

assert (z—avl_balance == T1);

w = z—avl_link[1];

z—avl_link[1] = w—avl_link[0];

w—avl_link[0] = x;

y—avl_link[0] = w—avl_link[1];

w—avl_link[1] = y;

if (w—avl_balance == ~1) z—avl_balance = 0, y—avl_balance = 1;

else if (w—avl_balance == 0) z—avl_balance = y—avl_balance = 0;

else /x w—avl_balance == 1 x/ z—avl_balance = ~1, y—avl_balance = 0;

w—avl_balance = 0;
This code is included in §152, §177, §307, §427, and §530.

Exercises:
1. Why can’t the new node be x rather than a node in z’s subtrees?
2. Why can’t z have a 0 balance factor?

3. For each subcase of case 2, draw a figure like that given for generic case 2 that shows
the specific balance factors at each step.

4. Explain the expression z—avl_link[y |= z—avl_link[0]] = w in the second part of ( Step
4: Rebalance after AVL insertion 151 ) above. Why would it be a bad idea to substitute the
apparent equivalent z—avl_link[y == z—avl_link[1]] = w?



§157

§158

§159

118 GNU libavl 2.0.2

5. Suppose that we wish to make a copy of an AVL tree, preserving the original tree’s shape,
by inserting nodes from the original tree into a new tree, using avl_probe(). Will inserting
the original tree’s nodes in level order (see the answer to Exercise 4.7-4) have the desired
effect?

5.4.5 Symmetric Case

Finally, we need to write code for the case that we chose not to discuss earlier, where the
insertion occurs in the right subtree of y. All we have to do is invert the signs of balance
factors and switch avl_link|[] indexes between 0 and 1. The results are this:

(Rebalance AVL tree after insertion in right subtree 157) =
struct avl.node xz = y—avl_link[1];
if (z—avl_balance == 1)
{ (Rotate left at y in AVL tree 158) }
else { (Rotate right at = then left at y in AVL tree 159) }

This code is included in §151 and §162.

(Rotate left at y in AVL tree 158) =
w = z;

y—avl_link[1] = z—avl_link[0];
z—avl_link[0] = y;

rx—avl_balance = y—avl_balance = 0;

This code is included in §157 and §532.

(Rotate right at = then left at y in AVL tree 159) =
assert (z—avl_balance == ~1);

w = z—avl_link[0];

z—avl_link[0] = w—avl_link[1];

w—avl_link[1] = x;

y—avl_link[1] = w—avl_link[0];

w—avl_link[0] = y;

if (w—avl_balance == *1) z—avl_balance = 0, y—avil_balance = ~1;

else if (w—avl_balance == 0) z—avl_balance = y—avl_balance = 0;

else /x w—avl_balance == ~1 x/ x—avl_balance = T1, y—avl_balance = 0;

w—avl_balance = 0;

This code is included in §157, §174, §310, §428, and §533.

5.4.6 Example

We'’re done with writing the code. Now, for clarification, let’s run through an example
designed to need lots of rebalancing along the way. Suppose that, starting with an empty
AVL tree, we insert 6, 5, and 4, in that order. The first two insertions do not require
rebalancing. After inserting 4, rebalancing is needed because the balance factor of node 6
would otherwise become ~2, an invalid value. This is case 1, so we perform a right rotation
on 6. So far, the AVL tree has evolved this way:
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If we now insert 1, then 3, a double rotation (case 2.1) becomes necessary, in which we
rotate left at 1, then rotate right at 4:

(5) (5)
(5) (5)
@ 0 (4 © (A © - a7 %
@ & & DL @
3 D

Inserting a final item, 2, requires a rlght rotation (case 1) on 5:

g

5.4.7 Aside: Recursive Insertion

In previous sections we first looked at recursive approaches because they were simpler
and more elegant than iterative solutions. As it happens, the reverse is true for insertion
into an AVL tree. But just for completeness, we will now design a recursive implementation
of avl_probe().

Our first task in such a design is to figure out what arguments and return value the
recursive core of the insertion function will have. We’ll begin by considering AVL insertion
in the abstract. Our existing function avl_probe() works by first moving down the tree,
from the root to a leaf, then back up the tree, from leaf to root, as necessary to adjust
balance factors or rebalance. In the existing iterative version, down and up movement are
implemented by pushing nodes onto and popping them off from a stack. In a recursive
version, moving down the tree becomes a recursive call, and moving up the tree becomes a
function return.

While descending the tree, the important pieces of information are the tree itself (to
allow for comparisons to be made), the current node, and the data item we’re inserting.
The latter two items need to be modifiable by the function, the former because the tree
rooted at the node may need to be rearranged during a rebalance, and the latter because
of avl_probe()’s return value.

While ascending the tree, we’ll still have access to all of this information, but, to allow
for adjustment of balance factors and rebalancing, we also need to know whether the subtree
visited in a nested call became taller. We can use the function’s return value for this.

Finally, we know to stop moving down and start moving up when we find a null pointer
in the tree, which is the place for the new node to be inserted. This suggests itself naturally
as the test used to stop the recursion.
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Here is an outline of a recursive insertion function directly corresponding to these con-
siderations:

(Recursive insertion into AVL tree 160) =
static int probe (struct avl table xiree, struct avl node xxp, void xxxdata) {
struct avl.node *y; /* The current node; shorthand for *p. */

assert (tree != NULL && p != NULL && data != NULL);
Yy = *p;
if (y == NULL)
{ (Found insertion point in recursive AVL insertion 161) }
else /x y |= NULL %/ { (Move down then up in recursive AVL insertion 162) }

}

See also §163.

Parameter p is declared as a double pointer (struct avl node **) and data as a triple
pointer (void #xx). In both cases, this is because C passes arguments by value, so that
a function modifying one of its arguments produces no change in the value seen in the
caller. As a result, to allow a function to modify a scalar, a pointer to it must be passed
as an argument; to modify a pointer, a double pointer must be passed; to modify a double
pointer, a triple pointer must be passed. This can result in difficult-to-understand code, so
it is often advisable to copy the dereferenced argument into a local variable for read-only
use, as *p is copied into y here.

When the insertion point is found, a new node is created and a pointer to it stored into
«p. Because the insertion causes the subtree to increase in height (from 0 to 1), a value of
1 is then returned:

(Found insertion point in recursive AVL insertion 161) =
y = *p = tree—avl_alloc—libavl_malloc (tree—avl_alloc, sizeof *y);
if (y == NULL) {

xdata = NULL;

return 0;

}

y—avl_data = *xdata;

xdata = &y—avl_data;

y—avl_link[0] = y—avl_link[1] = NULL;
y—avl_balance = 0;
tree—avl_count++;
tree—avl_generation—++;

return 1;
This code is included in §160.

When we're not at the insertion point, we move down, then back up. Whether to move
down to the left or the right depends on the value of the item to insert relative to the value
in the current node y. Moving down is the domain of the recursive call to probe(). If the
recursive call doesn’t increase the height of a subtree of y, then there’s nothing further
to do, so we return immediately. Otherwise, on the way back up, it is necessary to at
least adjust y’s balance factor, and possibly to rebalance as well. If only adjustment of the
balance factor is necessary, it is done and the return value is based on whether this subtree
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has changed height in the process. Rebalancing is accomplished using the same code used
in iterative insertion. A rebalanced subtree has the same height as before insertion, so the
value returned is 0. The details are in the code itself:

§162 (Move down then up in recursive AVL insertion 162) =
struct avl node xw; /* New root of this subtree; replaces *p. */
int cmp;
cmp = tree—avl_compare (xxdata, y—avl_data, tree—avl_param);
if (emp < 0) {
if (probe (tree, &y—avl_link[0], data) == 0)
return 0;
if (y—avl_balance == *1) {
y—avl_balance = 0;

return 0;

}

else if (y—avl_balance == 0) {
y—avl_balance = ~1;
return 1;

} else { (Rebalance AVL tree after insertion in left subtree 152) }
} else if (emp > 0) {
struct avl node x7; /+ Right child of y, for rebalancing. */
if (probe (tree, &y—avl_link[1], data) == 0)
return 0;
if (y—avl_balance == 1) {
y—avl_balance = 0;
return 0;
}
else if (y—avl_balance == 0) {
y—avl_balance = *1;
return 1;
} else { (Rebalance AVL tree after insertion in right subtree 157) }
}else /x cmp == 0 %/ {
xdata = &y—avl_data;

return 0;
}
*p = w;
return 0;

This code is included in §160.

Finally, we need a wrapper function to start the recursion off correctly and deal with
passing back the results:

§163 (Recursive insertion into AVL tree 160) +=
/* Inserts item into tree and returns a pointer to item’s address.
If a duplicate item is found in the tree,
returns a pointer to the duplicate without inserting item.
Returns NULL in case of memory allocation failure. */
void *xavl_probe (struct avl_table xtree, void xitem) {
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void *xret = &item;
probe (tree, &tree—avl_root, &ret);

return ret;

5.5 Deletion

Deletion in an AVL tree is remarkably similar to insertion. The steps that we go through
are analogous:

1. Search for the item to delete.
Delete the item.
Update balance factors.

Rebalance the tree, if necessary.

Ot N

Finish up and return.

The main difference is that, after a deletion, we may have to rebalance at more than one
level of a tree, starting from the bottom up. This is a bit painful, because it means that we
have to keep track of all the nodes that we visit as we search for the node to delete, so that
we can then move back up the tree. The actual updating of balance factors and rebalancing
steps are similar to those used for insertion.

The following sections cover deletion from an AVL tree in detail. Before we get started,
here’s an outline of the function.
§164 (AVL item deletion function 164) =
void xavl_delete (struct avl_table xtree, const void xitem) {
/* Stack of nodes. */
struct avl node *pa[AVL_MAX_HEIGHT]; /* Nodes. x/
unsigned char da[AVL_MAX_HEIGHT|; /* avl_link[] indexes. */
int k; /* Stack pointer. x/
struct avl node *p; /* Traverses tree to find node to delete. */
int cmp; /* Result of comparison between item and p.