
Network Working Group M. A. Padlipsky
Request for Comments: 928 Mitre Corp.
 December 1984

 INTRODUCTION TO PROPOSED DOD STANDARD H-FP

Status Of This Memo

 This RFC suggests a proposed protocol for the ARPA-Internet
 community, and requests discussion and suggestions for improvements.
 Distribution of this memo is unlimited.

Important Prefatory Note

 The broad outline of the Host-Front End Protocol introduced here and
 described in RFC 929 is the result of the deliberations of a number
 of experienced H-FP designers, who sat as a committee of the DoD
 Protocol Standards Technical Panel under the author’s chairmanship.
 The particular protocol to be described is, however, the result of
 the deliberations of a small, ad hoc group, who sat as a de facto
 subcommittee of the H-FP committee, also under the author’s
 chairmanship. The protocol, then, follows the consensus of the full
 group as to what the new H-FP should "look like," but has not
 benefitted from painstaking study by a large number of experienced
 H-FP designers and implementers. (It has been looked at before
 release as an RFC by several of them, though.) Even if that were not
 the case, it would still be the intent of the designers that the
 protocol be subjected to multiple test implementations and probable
 iteration before being agreed upon as any sort of "standard".
 Therefore, the first order of business is to declare that THIS IS A
 PROPOSAL, NOT A FINAL STANDARD, and the second order of business is
 to request that any readers of these documents who are able to do
 test implementations (a) do so and (b) coordinate their efforts with
 the author (617-271-2978 or Padlipsky@USC-ISI.ARPA.).

Historical/Philosophical Context

 Late in May of 1971, the author was presenting a status report on
 whether the Multics ARPANET implementation would be ready by the
 July 1 deadline declared by the sponsor earlier that month. Some
 controversy developed over the fact that the Multics "NCP" (Network
 Control Program--actually a blanket term covering the Host-Host and
 Host-IMP protocol interpreters) did not queue requests for
 connections. As the specification explicitly declared the topic to
 be one of implementors’ choice, the author attempted to avoid the
 argument by asking the interrogator what he was up to these days.
 The answer was, "Oh, I’m working on the High-Speed Modular IMP now"
 (later the Pluribus IMP). And the proverbial coin dropped: The
 author replied, "I’ve got a great idea. Now that we’ve got some
 space to program in the IMP, why don’t we separate out most of the

Padlipsky [Page 1]

RFC 928 December 1984
Introduction to H-FP

 NCP and do it outboard: the only thing that really matters in the
 Host is associating sockets with processes, and if we had common
 implementations of all the bit-diddling stuff in the IMPs, we
 wouldn’t have disputes over the interpretation of the spec and we’d
 also save a lot of Host CPU cycles!"

 As far as the author knows, that incident was the beginning of what
 came to be called "Network Front-Ends" and, more recently, "Outboard
 Processing Environments." (The name change, by the way, was
 motivated by a desire to prevent further confusion between NETWORK
 Front Ends--always conceived of as distributed processing mechanisms
 for the offloading of intercomputer networking protocols from
 Hosts--and traditional communications front-ends, which have no
 connotation of bearing protocol interpreters invokable by Host-side
 programs.) At least, the idea was original to him and he later was a
 principal designer and the primary author of the first Host-Front End
 Protocol. So, on the one hand, the present document might be marred
 for some readers by undertones of parental pride, but on the other
 hand, if you like primary sources....

 The evolution of the outboard processing idea has been dealt with
 elsewhere [1]. For present purposes, it should suffice to observe
 that some half-a-dozen implementors of "NFE’s" of various sorts are
 known to the author to have met with success. The topic of why use
 an explicit protocol in the first place (as opposed to emulating a
 device, or devices, already known to the Host/operating system)
 deserves a word or two here, however. ([2] deals with it in more
 general terms.) The crucial consideration is that in the general
 case you wind up "not doing real networking" if you attach a Host to
 a network by known device emulation, where real networking is taken
 to mean what has been called "resource sharing" in the ARPANET
 literature, and what appears to be dubbed "open system
 interconnection" in the ISO literature: Operating systems’ built-in
 assumptions about known devices--whether terminals, terminal
 controllers, or RJE stations--tend to get in the way of the sort of
 process-process and eventually procedure-procedure communications
 that serve as the basis for applications more interesting than simple
 remote login. To those unfamiliar with the outboard processing
 approach, the premise that the way to attach is via an explicit
 protocol may be difficult to accept, but to those who have done it,
 it makes almost perfect sense.

 To those, by the way, who have worked in intercomputer networking
 from the perspective of inboard (Host-side) implementations of
 protocol suites, the outboard processing idea often seems to lead to
 less than optimal results, especially as to maximizing throughput.
 And it is difficult to argue that if a given Host were well and truly

Padlipsky [Page 2]

RFC 928 December 1984
Introduction to H-FP

 fine-tuned to "do networking" the insertion of an extra processor
 could somehow lead to better networking. However, for Hosts where
 conservation of CPU cycles is an issue, or even where memory is
 scarce (i.e., where it’s desirable to conserve the resources being
 shared), outboarding is clearly the way to go. For that matter,
 viewing outboard processing aright (as a form of distributed
 processing) it can be argued that even for extremely powerful
 "intelligent work stations"/"personal computers" which have the
 resources to spare it still makes sense to outboard in order not to
 have to do new implementations of entire protocol suites for each new
 such system--always assuming, of course, that the Host-Front End
 protocol in play is noticeably less complex than the offloaded
 protocols.

 None of this is meant to imply that outboard processing is the ONLY
 way to do intercomputer networking, of course. It is, however, meant
 to suggest that outboard processing can be advantageous in a number
 of contexts. Indeed, given the joint advents of microprocessors and
 Local Area Networks, a generic bus interface unit which also plays
 the role of a NFE (that is, is an Outboard Processing Environment)
 even allows for the original intent of "offloading to the IMP" to be
 realized, so that a free-standing, possibly fairly expensive NFE need
 not be interposed between Host and net. Note, by the way, that
 nothing in the OPE approach requires that ALL Hosts employ OPEs. That
 is, the only protocols "seen" beyond the Comm Subnet Processor are
 the common intercomputer networking protocols (e.g., all DDN IMPs see
 and read IP datagrams). H-FP is strictly a matter between a Host and
 its OPE.

 It is also important to be aware that, given the advent of several
 different suites of protocols in the networking world, it might well
 be the case that the only reasonable way to achieve
 "interoperability" might well be to use a suitable H-FP (such as the
 one to be presented in the companion RFC) and an Outboard Processing
 Environment which is capable of parallel invocation of protcol suites
 (with the choice of suite for a given connection being dependent, of
 course, on the native suite of the desired target Host and/or
 application).

 The unquestionable advantages, then, of the approach, based on ten or
 more years of experience and analysis, would seem to be as
 follows--always recalling the assumption that the work to implement
 and execute the H-FP in play is small compared to the full protocol
 suite in question: As noted, common implementation of a protocol
 suite has the automatic advantage of mutual consistency; further,
 particularly in the DOD context, it’s far easier to procure common

Padlipsky [Page 3]

RFC 928 December 1984
Introduction to H-FP

 implementations of standard protocols than to procure different ones
 on a per-Host type basis. Also as noted, if the resources to be
 shared are viewed as being the participating Hosts’

 CPU cycles and memories, these resources are conserved by doing as
 much as possible of the networking protocols in an OPE rather than in
 the mainframe. Another, less evident advantage is that having an OPE
 effectively insulates a Host against changes in the
 outboarded/offloaded protocols--or even changes of the protocols,
 should the nascent international protocol standards ever mature
 sufficiently to supplant the in-place DOD standards. (That is, given
 an abstract enough interface--in the spirit of the Principle of
 Layering--a Host could, for example, go from doing TCP as its
 "Host-Host" protocol to, say, ECMA Class 4 as its "Transport"
 protocol without taking any particular cognizance of the change,
 however unattractive such a change would be to advocates of the
 APRANET Reference Model such as the author. See [3] for more on the
 implied "Reference Model" issues.) Finally, although a few rather
 specialized points could also be adduced, it should be noted that for
 network security architectures which are predicated on the ability to
 control all means of egress from and ingress to "the net", uniform
 use of OPEs is clearly desirable.

 If we can stipulate that an OPE is/can be a good thing, then the
 remaining problem is just what the protocol interpreted by a Host and
 its OPE ought to be, once it’s observed that a standard protocol is
 desirable in order to allow for as much commonality as possible among
 Host-side interpreters of the protocol. That is, we envision the
 evolution of paradigmatic H-FP PIs which can more or less
 straightforwardly be integrated with various operating systems, on
 the one hand, and the ability simply to transplant an H-FP PI from
 one instance of a given operating system to other instances of the
 same system, much as is currently being attempted in the DODIIS NFE
 program. Again, the major motivation in the DOD context is the
 minimizing of procurement problems.

Technical Context

 As noted, some half-a-dozen Host-Front End protocols have been seen
 by the author. Indeed, in December of 1982, a meeting was convened
 to allow the developers of those H-FPs to compare their experiences,
 with an eye to coming up with a proposal for a DOD standard H-FP;
 this paper is a direct result of that meeting. In the current
 section, we present the consensus of the meeting as to the broad
 outline of the protocol; in the accompanying document, the current
 version of the proposed protocol will be presented, as detailed by
 the author and Richard Mandell and Joel Lilienkamp (both of SDC).

Padlipsky [Page 4]

RFC 928 December 1984
Introduction to H-FP

 Note, by the way, that in some sense we should probably have changed
 the name from H-FP to H-OPEP (or something), but the habit of saying
 "H-FP" seems too deeply engrained, despite the fact that it does seem
 worthwhile to stop saying "NFE" and start saying "OPE." (Besides,
 H-OPEP looks rather silly.)

 A final preliminary: all the designers and implementors of H-FPs
 present at the December meeting concurred that the true test of any
 protocol is how well it implements. Therefore, until several
 implementations of the "new" protocol have been performed and
 assessed, it must be understood that the proposed protocol is
 precisely that: a proposal, not a standard.

 Not too surprisingly, the first point on which consensus was reached
 is that there are three separable aspects (or "layers") to an H-FP:
 At bottom, there must be some physical means for conveying bits from
 Host to OPE and from OPE to Host. As it has always been a premise of
 outboard processing that the Host’s convenience is paramount, just
 what this physical layer is can vary: typically, a bit-serial
 interface is customary, but parallel/DMA interfaces, if available for
 the Host and interfaceable to a given OPE, are fair game. (So would
 teleporting the bits be, for that matter.)

 In the middle, there must be a layer to manage the multiplexing of
 network "connections" and the control of the flow between Host and
 OPE. If we agree to call the lowest layer the Link and the middle
 layer the Channel, one thing which must be noted is that between the
 two of them, the Link and Channel layers must be responsible for
 reliably conveying the bits between Host and OPE. After all, an OPE’d
 Host should not be "weaker" than one with an inboard implementation
 of a robust Host-Host protocol such as TCP. It should be noted that
 any Host which "comes with" a suitable implementation of the X.25
 interface protocol (where the definition of "suitable" is rather too
 complex to deal with here) could, given an OPE conditioned to accept
 it, quite cheerfully satisfy the requirements of the lower two
 layers. This is not to say that X.25 "is" the mechanization of H-FP’s
 Link and Channel layers, however; merely that it could be used. The
 protocol spec itself will detail an alternative, less cumbersome
 channel layer for Hosts which don’t have or want X.25.

 The top layer of H-FP is the most important: we refer to it as the
 Command layer. Here is where the peer H-FP modules in a given Host
 and OPE communicate with each other. Indeed, the segregation of JUST
 multiplexing and flow control (plus reliability) into the Channel
 Layer is done--in addition to making it easier for Hosts that possess
 preexisting software/hardware which could be turned to the
 purpose--so as to clarify "what the H-FP is": it’s the commands and

Padlipsky [Page 5]

RFC 928 December 1984
Introduction to H-FP

 responses of the Command layer wherewith the Host’s processes are
 able to manipulate the outboard implementations of the members of a
 protocol suite. The use of the phrase "commands and responses" is
 rather significant, as it happens. For in the protocol to be proposed
 for DOD standardization, unlike all but one of its predecessors,
 binary encoded "headers" are not employed; rather, the H-FP commands
 are indeed ASCII strings, and the responses (following the practice
 of ARPANET FTP) ASCII-encoded numbers.

 There are various reasons for this departure, which initially stemmed
 from a desire to have the same NFE be usable for terminal traffic as
 well as Host offloading, but the one that seemed to dominate when
 consensus was arrived on it as the basis for the new standard is that
 it is very much in the original spirit of H-FP. That is, if you want
 to "make things as easy as possible for the Host", it makes a great
 deal of sense to offload in a fashion that only requires some sort of
 scenario or script ("exec-com"/"command file"/"shell command" are
 approximations on some systems) in the Host, rather than requiring a
 program, possibly of more complexity than we would like. This is not
 to say that we envision all--or even most--Hosts will take the
 scenario approach to H-FP mechanization, but rather that the command
 orientation chosen allows for the possibility. (It would be useful to
 recall that the Channel layer does all the necessary
 multiplexing/demultiplexing, so that each channel’s metaphorical
 state machine--at least on the Host side--really has very little to
 worry about other than "doing its thing.")

 It should be noted that the proposed protocol provides a mechanism
 for offloading "all" protocols. That is, although most "first
 generation NFEs" only handled ARPANET Reference Model Layers II and I
 (Host-Host and Network Interface--approximately ISO levels 4-1, with
 some of L5’s functionality included when it comes to service
 identifications being handled via Well-Known Sockets in L II), it is
 assumed that OPEs will be evolved to handle L III offloading as well
 (ISO 5-7). Indeed, it should also be noted that what is being
 addressed here is "the protocol", not "the" OPE. More will be said
 on this topic below, and in the protocol spec itself, but it is
 important to realize from the outset that the H-FP being proposed is
 intended to be implementable by any number of OPE suppliers/vendors,
 so "an" OPE may or may not choose to implement, say, a given file
 transfer protocol, but provided it says so in proper H-FP terms and
 does offload some other protocols it’s still an OPE in our sense of
 the term. (Cf. "Issues" and "Non-Issues", below.)

Padlipsky [Page 6]

RFC 928 December 1984
Introduction to H-FP

Issues

 The following items are either in some sense still open issues or
 bear special emphasis:

 Command Approach

 The most striking feature of the new H-FP, especially to those who
 have seen older H-FPs, is the decision to employ
 character-oriented commands rather than the more conventional
 binary-oriented headers at the Command Layer. As noted, the
 primary motivation was the report that the approach worked well
 when it was employed in an H-FP for the Platform Network called
 NAP (Network Access Protocol) [4]. In discussions with NAP’s
 originator, Gerry Bailey, the author was convinced of the
 fundamental reasonableness of the approach, but of course that
 doesn’t have to convince others. Additional rationales emerged in
 discussions with Gary Grossman, the originator of the DCA/DTI
 H-FP [5], which is probably the best-known current H-FP and which
 furnished the default Channel Layer for the new one: In the first
 place, the text approach makes parsing for the ends of
 variable-length parameters easier. In the second place, it allows
 for the possibility of creating a terminal-supporting OPE in a
 very straightforward fashion should any OPE developer elect to do
 so. (See below for more on the distinction between OPE developers
 and H-FP implementors.) Finally, there’s nothing sacred about
 binary headers anyway, and just because the text approach is
 different doesn’t make it "wrong". So, although it’s not out of
 the question that the new protocol should back off from the text
 approach if reviewers and/or implementors come up with compelling
 reasons for doing so, the already frequently encountered reaction
 of "it feels funny" isn’t compelling. (It was, indeed, the
 author’s own initial reaction.) Besides, "nobody" (not even Gary)
 really liked the top layer of the DCA/DTI H-FP.

 X.25 Appropriateness

 Of more concern than how text "feels" is whether X.25 "works".
 That is, we understand that many system proprietors would greatly
 prefer being able to use "off-the-shelf" software and hardware to
 the greatest extent feasible and still be able to do intercomputer
 networking according to DOD Standards, which is a major reason why
 we decided to take the H-FP commands out of the Channel Layer of
 the DCA/DTI H-FP even before we decided to encode them as text.
 However, it is by no means clear that any old vendor supplied
 "X.25" will automatically be usable as a new H-FP Channel and Link
 layer mechanization. As noted, it all depends upon how Host

Padlipsky [Page 7]

RFC 928 December 1984
Introduction to H-FP

 programs (the Command Layer/H-FP Protocol Interpreter in
 particular) are able to invoke X.25 on particular systems. Also,
 there might be peculiarities in the handling of some constructs
 (the Group and Member fields--or whatever they’re called--are a
 strong candidate) which could militate against getting JUST
 demultiplexing and flow control out of X.25-as-Channel
 Link/Layers. For that matter, it’s conceivable that on some
 systems only one process can "own" the presumed DCE, but there’s
 no interprocess communication available between it and the
 processes that want to use H-FP. What that all amounts to, then,
 is that we don’t pretend to be sufficiently versed in the vagaries
 of vendor-idiosyncratic X.25 implementations to claim more than
 that we THINK the new H-FP Command Layer should fit "on top of"
 X.25 in a Host such that a suitably crafted OPE could look like a
 DCE to the low-level Host software and still be an OPE in our
 sense of the term. Finally, some reports on bit-transfer rates
 attainable through typical X.25 interfaces give rise to concern as
 to whether such a lash-up would be "good" even if it were
 feasible.

 DCA/DTI Channel Layer Appropriateness

 The Channel Layer of the DCA/DTI H-FP has been implemented for a
 few Host types already, and is being implemented for others (in
 particular, as part of the DODIIS NFE project). A delicate
 decision is whether to alter the header structure (e.g.--and
 perhaps i.e.--to remove the now-superfluous command and response
 fields). On the "con" side are the considerations that
 implementations DO exist, and that it’s well specified. On the
 "pro" side are that keeping the header as it is is in some sense
 "wasteful" and that somebody’s going to have to go over the spec
 again anyway, to remove that which no longer applies. (It should
 be noted that Gary Grossman was initially tempted to scuttle the
 Group and Member trick, but the presence of a similar
 dichotomizing in X.25 seems to rule that out.) One of the
 interesting issues during the review phase of the new H-FP, then,
 will be the decision about which way to go on the Channel Layer
 header in its non-X.25 version. (NOBODY considers going X.25
 only, be it noted.) By the time the protocol is finalized, it
 will, of course, be made clear in the protocol spec, but I’ll
 probably leave this in the final version of the Introduction just
 for historical interest anyway.

 Syntax

 Another point which probably needs close scrutiny during the
 review process is the "syntax" of the command lines. Basically,

Padlipsky [Page 8]

RFC 928 December 1984
Introduction to H-FP

 we just took our best shot, but without any claims that it’s the
 best possible way to express things. So comments and/or
 alternatives are earnestly solicited on this one.

 L III Offloading

 Contrary to the expectations of some, we are allowing for the
 offloading of Process/Applications Layer (ARPANET Reference Model
 L III) protocols. Both Bailey and Grossman reported favorably on
 the feasibility of this. Two points should be made, however: It’s
 perfectly fair for a GIVEN OPE implementation not to offload a
 given L III protocol, although it would presumably not sell as
 well as ones which did. That is, we’re not claiming that by
 inventing a mechanization of the feature in the spec we levy a
 constraint on everybody who implements "the protocol", (Cf.
 Fabrication under Non-Issues, below). Just as we were feeling our
 way on syntax in general, we’re really feeling our way when it
 comes to the L III stuff. (I’m not even sure I managed to convey
 what I meant for "mediation level" to Joel and Dick.) Again,
 suggestions are solicited.

 Security

 During the detailed design pass, we had an intensive discussion
 with some of the Blacker design team on the interplay between the
 new H-FP and a meant-to-be multilevel-secure OPE such as Blacker.
 The conclusion was that by and large "Security" is to be an aspect
 of an enhanced H-FP, rather than the standard one. The reasoning
 was rather involved, but seems to amount to the following: Hosts
 that are NOT MLS (or "Compartmented") have two significant
 properties in our context: They’re in the vast majority of
 present-day systems. They have no legitimate need even to tell
 their OPEs what they "think" their current System High or
 Dedicated Mode level is; that information should be furnished by
 some trusted portion of a network security architecture (e.g., a
 security enhanced OPE, or a table in a "secure" comm subnet
 processor).

 Thus, even having the optional security label/level field in the
 Begin command is in some sense overkill, because we’re not sure of
 any sensible circumstances in which it would be useful, but we put
 it in "just in case". On the other hand, Hosts that ARE
 MLS/Compartmented by definition can be permitted to assert what
 the level of a given transmission (or perhaps of a given
 connection) should be, and their OPEs need to have a mechanism for
 learning this. But it is by no means clear that a given Host (or
 even a given OPE) will be so structured as to make the H-FP PI,

Padlipsky [Page 9]

RFC 928 December 1984
Introduction to H-FP

 the Channel PI, and the Link PI ALL trustworthy--as they’d have to
 be if the security labeling were part of H-FP. So, we envision
 the labeling’s being handled by trusted code in both Host and OPE
 that will be inserted into the normal processing route at the
 appropriate point for the given architecture (presumably "at the
 very bottom" of the Host, and "the very top" of the OPE), and that
 will place the label in a convenient, known position in the
 Host-OPE transmission "chunk" (block/packet/data unit) as the
 circumstances dictate. (It’s likely--but we wouldn’t swear to
 it--that a good place would be just before the H-FP command, and
 if that’s the case then semi-clearly the security enhanced H-FP
 PIs would have to "make room" for it in the sense of handing the
 Channel Layer a suitably lengthened "chunk".)

 The Host and its OPE should be viewed as a single entity with
 regard to labeling requirements in the non-MLS/C case, and either
 the OPE will be conditioned to emit the right label or the CSNP
 will "know" anyway; in the MLS/C Host and OPE case (and it should
 be noted that it’s just about impossible to envision a MLS/C Host
 which IS outboarded which DOESN’T have a MLS/C OPE) it will depend
 on the given security architectures as to whether each "chunk"
 needs labeling (i.e., there COULD be trusted H-FP, Channel, and
 Link PIs, so that only at channel establishment time does the
 label need to be passed), but it seems likely each "chunk" would
 need labeling, and we can see how that would happen (as sketched
 above).

 This is all, of course, subject to reappraisal when the full-time
 Security folks get in the act, but for now, H-FP per se is viewed
 as playing no direct role in "Security"--except indirectly, as
 noted below under the Symmetric Begins Non-Issue. (In case
 anybody’s worrying about the case where the OPE is physically
 remote from its Host, by the way, that line would have to be
 protected anyway, so the Host/OPE-asa-single-unit view should hold
 up.)

 How It Implements

 The final issue to take note of is that one of the central
 premises of the Outboard Processing approach has always been that
 H-FPs can be invented which implement more compactly on the Host
 side than the code they’re allowing to be offloaded. We certainly
 think the new H-FP will fulfill that condition, but we’d certainly
 like to hear of any evidence to the contrary.

Padlipsky [Page 10]

RFC 928 December 1984
Introduction to H-FP

Non-Issues

 The following items are declared to be non-issues, in the sense that
 even though some people have expressed concern over them we believe
 that they are either "not part of the protocol" or resolved already
 for reasons that were overlooked by those worried about them:

 Fabrication

 Who builds OPEs isn’t within our purview, except to the extent of
 hoping a few volunteers come forward to do testcase
 implementations of what is, at present, only a paper protocol.
 However, beyond agreeing that a few points should be marked as
 "Notes to Entrepreneurs" in the spec, we didn’t attempt to dictate
 how an OPE vendor would behave, beyond the explicit and implicit
 dictates of the protocol per se. For example, if a given OPE
 doesn’t offload SMTP, it jolly well ought to respond with the
 appropriate "Function not implemented" code, and if a vendor
 claims to accept X.25 for Channel and Link disagreements over what
 X.25 "is" are the province of the vendor and the customer, not of
 the H-FP spec. As OPE’S are supposed to be offloading COMMON
 protocols in a COMMON fashion, a given OPE should be able to
 interoperate with another Host irrespective of whether that Host
 even has an OPE, much less whose OPE it is if it’s there. Thus,
 for example, even though you’d expect to find OPEs that "come
 with" their own LANs as a fairly frequent product, we don’t appeal
 to the notion in the conceptual model; nor do we attempt to
 dictate "chunk" sizes at the Channel level. A protocol spec isn’t
 an implementation spec.

 Symmetric Begins

 For almost as long as there have been H-FPs, there has been
 disagreement over whether only the Host can begin a connection or
 if the OPE can also take the initiative. I am delighted to be
 able to resolve this one finally: It turns out there IS a
 compelling reason for insisting that THE PROTOCOL include
 provision for OPE --> Host Begins, so it’s "in" the protocol--but
 any Host that doesn’t need to deal with them doesn’t have to (just
 "spell" the "Function not implemented" response code correctly).

 (In case anybody cares, the compelling reason is that if you HAD
 an MLS OPE which happened to use a security kernel and a process
 per level, you’d need IT to be listening for incoming connection
 requests "from the net" rather than having the Host tell it to do
 so, for various esoteric reasons--but in order to cater to the
 possibility, we want the function in the protocol from the

Padlipsky [Page 11]

RFC 928 December 1984
Introduction to H-FP

 beginning, on the grounds that we can envision SOME other uses for
 it even in non-MLS environments [unlike the security labeling
 trick discussed above, which only seems to make sense for MLS
 Hosts/OPEs--that is, it doesn’t burden the Host to reject a Begin
 every once in a while but it would to go around labeling "chunks"
 unnecessarily all the time].)

 Routing

 Concern has been voiced over the issue of what provisions the
 protocol should make to deal with the situation where a Host,
 probably for traffic/load reasons, has multiple OPEs and the
 question arises of which OPE to use/route to. I claim this is a
 non-issue at the protocol level. If the Host-side H-FP PI gets a
 "No resources" response to a Begin, it can go off to another OPE
 if it wants to. "Not our department". The conceptual model is
 that of a Host and AN OPE--which "ought to" be expandable to carry
 more load at some level. If you want multiple links for some
 reason, the simplest solution would seem to be to have multiple
 Channel Layers as well, but the whole thing just gets too iffy to
 have anything sensible to prescribe in the protocol. In other
 words, extending the concept to deal with discrete multiple OPEs
 is either a Fabrication sort of thing, or a Notes to Host-side
 Implementors sort of thing on a per specific OPE basis.

 Operator Interface

 It’s probably implicit in the foregoing, but it might be worth
 saying explicitly that the operator interface to a specific OPE is
 a non-issue in terms of the protocol, beyond the provision we’re
 made for "Shutdown coming" responses as a reflection of a probable
 operator interface action we imagine most operator interfaces
 would provide. (It might also be worth noting that if your Host
 does "color changes", your OPE had better have a trustworthy way
 of being told to change the label it plops on all IP datagrams it
 emits, but that comes under the heading of an Aside to Specialized
 Implementors.)

Padlipsky [Page 12]

RFC 928 December 1984
Introduction to H-FP

Fine Points

 There are a couple of known "loose ends" which are exceedingly fine
 points in some sense that do bear separate mention:

 The Allocate Event

 While mentally testing to see if the new H-FP would indeed
 off-load TCP, we came up against an interesting question: Viewing
 H-FP as "just an interface at a distance" to a TCP PI, what about
 the Allocate "Interface Event" in the TCP spec? As far as I’m
 concerned, this could be classed as a non-issue, because I submit
 that the spec is wrong in declaring that there is such a thing as
 a MANDATORY Interface Event whereby the user of a TCP PI lets the
 PI know how much data it can take. Granted, you might find such a
 thing in most implementations, but what if you were in a virtual
 memory environment with segment sharing (or a distributed
 supervisor) and you wanted to avoid copies, so all that passed at
 the interface to the PI (or even at the interface from the PI) was
 a pointer? That is, the "DOD version" of the TCP spec has fallen
 into the trap of assuming things about the execution environment
 that it shouldn’t have.

 One moral of this is that

 AN INTERFACE TO AN INTERPRETER OF A PROTOCOL IS N*O*T "THE
 PROTOCOL".

 Another moral is that the interface to the Host-side H-FP PI is
 hard to say much about, but is where the equivalent functionality
 will be found if you’ve offloaded TCP. That is, it’s reasonable
 to let the user "tell" the outboard PI at Begin time if big or
 small buffers are expected to be in play "net-ward" as part of the
 protocol, but the outboard PI is expected to deliver bits to the
 Host as they come unless throttled by the Channel Layer, or by
 some to-be-invented other discipline to force the OPE to buffer.
 (For present purposes, we envision letting the Channel Layer
 handle it, but nifty mechanizations of encouraging the OPE to
 "make like a buffer" would be at least looked at.) As a
 Fabrication issue, it is the case that "equity" has to be dealt
 with with regard to the use of the OPE’s resources (especially
 buffers) across H-FP connections/channels, but that’s a different
 issue anyway, touched upon in the final fine point.

Padlipsky [Page 13]

RFC 928 December 1984
Introduction to H-FP

 Precedence

 Clearly, the existence of a notion of Precedence in DOD protocols
 has to get reflected in the outboard PI’s implementations. Just
 what, if any, role it has in the H-FP, per se, is, however, by no
 means clear. That is, if the Host doesn’t take Begins from the
 OPE and is "full up" on the number of Server Telnet connections
 it’s willing to handle, what should happen if a high precedence
 SYN comes in on the Telnet Well-Known Socket (in present day
 terms)? Probably the OPE should arbitrarily close a low
 precedence connection to make room for the new one, and signal the
 Host, but even that assumes the Host will always hurry to be
 prepared to do a new passive Begin. Perhaps we’ve stumbled across
 still another argument in favor of "Symmetric Begins".... At any
 rate, Precedence does need further study--although it shouldn’t
 deter us from making "the rest" of the protocol work while we’re
 waiting for inspiration on how to handle Precedence too.

A Note on Host Integration

 The most important thing about Hosts in any intercomputer network is
 that they furnish the resources to be shared. The most significant
 obstacle to sharing those resources, however, is the fact that almost
 invariably they were designed under the assumption that the Host was
 a fully autonomous entity. That is, few operating systems currently
 deployed "expect" to be members of a heterogeneous community of
 operating systems. In many cases, this built-in insularity goes so
 far as to have applications programs cognizant of the particular type
 of terminal from which they will be invoked.

 Intercomputer networking protocols attempt to resolve the problems of
 heterogeneity by virtue of presenting appropriate common intermediate
 representations (or "virtualizations") of the constructs and concepts
 necessary to do resource sharing. A Host-Host protocol such as TCP
 "is" a virtual interprocess communication mechanism; a virtual
 terminal protocol such as Telnet obviously is a mechanism for
 defining and dealing with virtual terminals; FTP offers common
 representations of files; and so on. It cannot be stressed strongly
 enough, though, that this entire approach to intercomputer networking
 is predicated on the assumption that the modules which interpret the
 protocols (PIs, as we’ll refer to them often) will be PROPERLY
 integrated into the various participating operating systems. Even in
 the presence of powerful OPEs, wherein the bulk of the work of the
 various PIs is performed outboard of the Host, the inboard "hooks"
 which serve to interface the outboard PIs to the native system must
 not only be present, they must be "right". The argument parallels
 the analysis of the flexible vs. rigid front-ending attachment

Padlipsky [Page 14]

RFC 928 December 1984
Introduction to H-FP

 strategy issue of [1]; to borrow an example, if you attempt to
 integrate FTP by "looking like" a native terminal user and the
 operator forces a message to all terminals, you’ve got an undetected
 pollution of your data stream. So the key issue in attaching Hosts to
 networks is not what sort of hardware is required or what sort of
 protocol is interpreted by the Host and the OPE (or comm subnet
 processor, for that matter), but how the PIs (full or partial) are
 made to interrelate with the pre-existing environment.

 It would be well beyond the scope of this document to attempt even to
 sketch (much less specify) how to integrate H-FP PIs into each type
 of operating system which will be found in the DoD. An example,
 though, should be of use and interest. Therefore, because it is the
 implementation with which we are most intimately familiar, even
 though it’s been several years, we propose to sketch the Multics
 operating system integration of the original ARPANET Network Control
 Program (NCP)--which is functionally equivalent to an H-FP PI for
 offloading ARM L II and L I--and Telnet. (A few comments will also
 be made about FTP.) Note, by the way, that the sketch is for a
 "full-blown" H-FP; that is, shortcuts along the lines of the
 scenario-driven approach mentioned above are not dealt with here.

 One of the particularly interesting features of Multics is the fact
 that each process possesses an extremely large "segmented virtual
 memory". That is, memory references other than to the segment at
 hand (which can itself be up to 256K 36-bit words long) indirect
 through a descriptor segment, which is in principle "just another
 segment", by segment number and offset within the segment, so that a
 single process--or "scheduling and access control entity"--can
 contain rather impressive amounts of code and data. Given that the
 code is "pure procedure" (or "re-entrant"), a "distributed
 supervisor" approach is natural; each process, then, appears to have
 in its address space a copy of each procedure segment (with
 system-wide and process-specific data segments handled
 appropriately). Without going too far afield, the distributed
 supervisor approach allows interrupts to be processed by whichever
 process happens to be running at a given time, although, of course,
 interprocess communication may well be a consequence of processing a
 particular interrupt.

 A few other necessary background points: A distinguished process,
 called the Answering Service, exists, originally to field interrupts
 from terminals and in general to create processes after
 authenticating them. Other shared resources such as line printers
 are also managed by distinguished processes, generically known as
 "Daemons". Device driver code, as is customary on many operating
 systems, resides at least in part in the supervisor (or hard core

Padlipsky [Page 15]

RFC 928 December 1984
Introduction to H-FP

 operating system). Finally (for our purposes, at least), within a
 process all interfaces are by closed subroutine calls and all I/O is
 done by generic function calls on symbolically named streams; also,
 all system commands (and, of course, user written programs which need
 to) use the streams "user_input" and "user_output" for the obvious
 purposes. (At normal process creation time, both user I/O streams
 are "attached" to the user’s terminal, but either or both can be
 attached to any other I/O system interface module instead--including
 to one which reads and writes files, which is handy for consoleless
 processes.)

 All that almost assuredly doesn’t do justice to Multics, but equally
 likely is more than most readers of this document want to know, so
 let’s hope it’s enough to make the following integration sketch
 comprehensible. (There will be some conscious omissions in the
 sketch, and doubtless some unconscious ones, but if memory serves, no
 known lies have been included.)

 Recalling that NCP is functionally equivalent to H-FP, let’s start
 with it. In the first place, the device driver for the 1822 spec
 hardware interface resides in the supervisor. (For most systems, the
 PI for H-FP’s link protocol probably would too.) In Multics,
 interrupt time processing can only be performed by supervisor
 segments, so in the interests of efficiency, both the IMP-Host (1822
 software) Protocol PI and the multiplexing/demultiplexing aspects of
 the Host-Host Protocol PI also reside in the supervisor. (An H-FP PI
 would probably also have its multiplexing/demultiplexing there; that
 is, that portion of the Channel Layer code which mediates access to
 the OPE and/or decides what process a given message is to be sent to
 might well be in the supervisor for efficiency reasons. It is not,
 however, a hard and fast rule that it would be so. The system’s
 native interprocess communications mechanism’s characteristics might
 allow all the Channel Layer to reside outside of the supervisor.)

 Even with a very large virtual memory, though, there are
 administrative biases against putting too much in the supervisor, so
 "everything else" lives outside the supervisor. In fact, there are
 two places where the rest of the Host-Host Protocol is interpreted on
 Multics, although it is not necessarily the case that an H-FP PI
 would follow the same partitioning even on Multics, much less on some
 other operating system. However, with NCP, because there is a
 distinguished "control link" over which Host-Host commands are sent
 in the NCP’s Host-Host protocol, the Multics IMP-Host Protocol PI
 relegates such traffic to a Network Daemon process, which naturally
 is a key element in the architecture. (Things would be more
 efficient, though, if there weren’t a separate Daemon, because other
 processes then have to get involved with interprocess communication

Padlipsky [Page 16]

RFC 928 December 1984
Introduction to H-FP

 to it; H-FP PI designers take note.) To avoid traversing the Daemon
 for all traffic, though, normal reads and writes (i.e., noncontrol
 link traffic) are done by the appropriate user process. By virtue of
 the distributed supervisor approach, then, there is a supervisor call
 interface to "the NCP" available to procedures (programs) within user
 processes. (The Daemon process uses the same interface, but by virtue
 of its ID has the ability to exercise certain privileged primitives
 as well.)

 If a native process (perhaps one meaning to do "User Telnet", but not
 limited to that) wanted to use the network, it would call the open
 primitive of "the NCP", do reads and writes, and so on. An
 interesting point has to do with just how this interface works: The
 reads are inherently asynchronous; that is, you don’t know just when
 the data from the net are going to be available. In Multics, there’s
 an "event" mechanism that’s used in the NCP interface that allows the
 calling process to decide whether or not it will go blocked waiting
 for input when it reads the net (it might want to stay active in
 order to keep outputting, but need to be prepared for input as well),
 so asynchrony can be dealt with. In the version of Unix (tm) on
 which an early NFE was based, however, native I/O was always
 synchronous; so in order to deal with both input from the terminal
 and input from the net, that system’s User Telnet had to consist of
 two processes (which is not very efficient of system resources).
 Similar considerations might apply to other operating systems
 integrating H-FP; native I/O and interprocess communication
 disciplines have to be taken into account in designing. (Nor can one
 simply posit a brand new approach for "the network", because Telnet
 will prove to rely even more heavily on native mode assumptions.)

 The other aspect of NCP integration which we should at least touch
 on--especially because process-level protocols make no sense without
 it--is how "Well-Known Sockets" (WKSs) work. In broad terms, on
 Multics the Network Daemon initially "owns" all sockets. For
 Well-Known Sockets, where a particular process-level protocol will be
 in effect after a successful connection to a given WKS, code is added
 to the Answering Service to call upon the NCP at system
 initialization time to be the process "listening" on the WKSs. (This
 is a consequence of the fact that the Answering Service is/was the
 only Multics process which can create processes; strategies on other
 systems would differ according to their native process creation
 disciplines.) How to get the "right kind of process" will be
 sketched in the discussions of the process level protocols, but the
 significant notion for now is that typically SOME sort of prior
 arrangement would be done by any networked Host to associate the
 right kind of process with a WKS.

Padlipsky [Page 17]

RFC 928 December 1984
Introduction to H-FP

 Now, we don’t expect that the foregoing will enable even the world’s
 greatest system jock to go out and design the integration of an H-FP
 PI for a system that had never been networked (in the ARPANET style
 of networking) before. But we propose to stop there and turn to some
 comments on process level protocols, for two reasons: In the first
 place, it would take us much too far afield to go into significantly
 greater detail; and in the second place, because of the functional
 equivalence of H-FP and NCP combined with the number of operating
 systems which have integrated NCP and, for that matter, TCP/IP, which
 are also functionally equivalent to H-FP (used for offloading L II
 and L I), models are available in the ARPANET community and concerned
 H-FP PI implementors can follow them.

 Turning to Telnet integration, and returning to Multics as an
 example, we note that "User Telnet" is straightforward. "All you
 need" (for small values of "all") from an INBOARD User Telnet is a
 command that gives the user some sort of interface, converts between
 the native Multics character set and terminal discipline and the
 Network Virtual Terminal equivalents (and as Multics is very generic
 when it comes to I/O, that’s not hard), and writes and reads "the
 net" (more accurately, calls upon the Host-Host protocol PI--or upon
 the H-FP PI to get at the H-HP--appropriately). (One point that’s
 not obvious: make the Well-Known Socket "on the other side" a
 parameter, defaulting to the Telnet WKS, because you’ll want to use
 the same command to get at other process-level protocols.) If
 there’s an OPE in play which offloads User Telnet, however, things
 can be even simpler: the inboard command just reads and writes the
 terminal and lets the OUTBOARD User Telnet PI handle the conversion
 to and from the Virtual Terminal form (presumably, from and to the
 desired local form).

 When it comes to the incoming ("Server") aspects of Telnet, life can
 get complicated on some systems for an inboard implementation.
 However, fortunately for our purposes,

 Multics’ native mechanisms lend themselves readily to integration; an
 awareness of the inboard issues will be useful even if in response to
 a connection attempt on the Telnet WKS, the (Server) Host is
 obligated to associate the connection (the actual logic is somewhat
 more complex under the ARPANET Host-Host Protocol, which employs
 paired simplex connections) with a process that is prepared to
 translate between Telnet and native mode representations and
 otherwise "look like" a local user process--that is, in particular
 the connection becomes an I/O source/sink to the native command
 processor on time-sharing systems. As indicated, process creation is
 taken care of in Multics by having the Answering Service process
 listen on the WKS. Because the Answering Service is in some sense

Padlipsky [Page 18]

RFC 928 December 1984
Introduction to H-FP

 just another Multics process, it too does user I/O through the normal
 system mechanisms. So while for local terminals the user I/O streams
 are attached through a module called "ttydim" (where "dim" stands for
 "device interface module"), NVTs are attached through a functionally
 equivalent and identically invoked module called "nttydim" (the
 Answering Service knows which DIM to use based on the symbolic
 designator of the "line" on which it received the interrupt, as it
 happens).

 [The notion of "attaching" the streams bears a bit more explanation:
 Attach is a primitive of the Multics generic I/O mechanism which
 associates a stream name and a particular DIM (or I/O system
 interface module in later terminology); the other I/O primitives
 (read, write, etc.) are invoked with the stream name as a parameter
 and an I/O "switch" causes the entry point corresponding to the
 primitive to be invoked in whichever DIM the stream is currently
 attached to. So a Server Telnet process starts life attached
 through nttydim to a particular network connection, while a local
 process starts life attached through ttydim to a particular physical
 line, and both processes proceed indistinguishably (viewed from
 outside the I/O switch, anyway).]

 The pre-existing orderliness that makes things easy on Multics does
 not, unfortunately, appear in all operating systems. Indeed,
 delicate choices occasionally have to be made as to WHICH native
 terminal to map to on systems that don’t do generic I/O in native
 mode, and it is likely that for some systems the particular mapping
 to bring into play in Server Telnet might be determined by the
 particular application program invoked. This issue can become very
 touchy when the application "expects" a "data entry terminal", say.
 The Server Telnet for such a system would naturally attempt to
 negotiate the "DET" option with the corresponding User Telnet. But
 the user might be at a physical terminal that isn’t a member of the
 DET class, so that User Telnet must either refuse to negotiate the
 option or--and we would recommend this alternative strongly, as it
 seems to be within the "spirit" of the protocol--offer some sort of
 simulation, however crude, of the behavior of a DET. Also,
 something sensible has to be done on systems where there is no clear
 analog of the command processor expected to be managing the Server
 process. (Say, when a "menu" of applications is always displayed on
 an available terminal in native mode.)

 A final Telnet integration issue (although other points could be
 noted, we’re not pretending to be exhaustive and this should be
 enough to "give the flavor"): The Telnet Interrupt Process generic
 function calls for particularly careful integration. Here, the
 intent of the function is to virtualize what is called the "quit

Padlipsky [Page 19]

RFC 928 December 1984
Introduction to H-FP

 button" on some systems. That is, the user wants the system to
 interrupt his process (which may, for example, be in a loop) and get
 back to the command processor (or "the system" itself). On native
 character-at-a-time systems, the native mechanism is usually the
 entering of a particular "control character"; on native
 line-at-a-time systems, the native mechanism is usually the striking
 of the "ATTN" or Interrupt button or the "Break" key (sometimes more
 than once, to distinguish it from a communication to the executing
 program). But the native mechanisms typically involve interrupt time
 code, and Server Telnet typically wouldn’t be executing at that
 level, so the solution (omitting the intricacies of the interaction
 with the NCP or the H-FP PI, which also get into the act) would be to
 make use of--in the Multics case--a pre-existing INTRAprocess signal,
 or to add such a mechanism (unless the architecture chosen has a
 Server Telnet Daemon of some sort, in which case an INTERprocess
 signal would be needed).

 The extension of the foregoing to an outboard Server Telnet may not
 be obvious, but we won’t expend a great deal of time on it here.
 Even if "the protocol" is being handled in an OPE, the Host-side
 software must be able to associate an H-FP connection with the
 command language interpreter of a user process and to respond
 appropriately to an H-FP Signal command if it arrives, and the OPE
 must know not only the desired character set but also the local
 equivalents of Erase and Kill, at the minimum.

 We’ll skip FTP integration, on the grounds that this note is already
 too lengthy, except to mention that in the OUTBOARD case it’s still
 going to be necessary to convey the name of the appropriate file and
 directory to/from some appropriate Host-side code. (Similar problems
 must be dealt with for outboard handling of "mail" if it’s not part
 of FTP.)

 One other "integration" issue, which has been hinted at earlier and
 about which not much can be said beyond some general guidelines: The
 "top edge" of a Host-side H-FP protocol interpreter (i.e., the Host
 user program interface, for

 Hosts that are "doing real networking" rather than just using the OPE
 to get at User Telnet and/or FTP and to offer Server Telnet and/or
 FTP [and maybe "mail"], presumably in the "scenario-driven" fashion
 sketched earlier) MUST BE APPROPRIATE TO THE HOST. In other words,
 on Multics, where "everything" is closed subroutines, there would
 presumably be a closed subroutine interface with event channels for
 reads, pointers to buffers, and all that sort of thing, but on some
 other style of operating system, the interface to the H-FP PI might
 turn out to be "all" interprocess communication, or to "look like" a

Padlipsky [Page 20]

RFC 928 December 1984
Introduction to H-FP

 device of some special class, or "all" system
 calls/JSYSs/EOTs/Whatevers. We can’t be much more specific, but we’d
 be remiss to convey any impression that H-FP is a "free lunch". As
 noted, an H-FP PI requires the same kind of integration as a generic
 NCP--it’s just smaller, and serves as insulation against changes (in
 the offloaded protocols in general, or in the proximate comm subnet
 in particular).

References

 (References [1]-[3] will be available in M. A. Padlipsky’s "The
 Elements of Networking Style", Prentice Hall, 1985.)

 [1] Padlipsky, M. A., "The Host-Front End Protocol Approach", MTR
 3996, Vol. III, MITRE Corp., 1980.

 [2] Padlipsky, M. A., "The Elements of Networking Style", M81-41,
 MITRE Corp., 1981.

 [3] Padlipsky, M. A., "A Perspective on the ARPANET Reference Model",
 M82-47, MITRE Corp., 1982.

 [4] Bailey, G., "Network Access Protocol", S-216,718, National
 Security Agency Central Security Service, 1982.

 [5] Day, J. D., G. R. Grossman, and R. H. Howe, "WWMCCS Host to Front
 End Protocol", 78012.C-INFE.14, Digital Technology Incorporated,
 1979.

Padlipsky [Page 21]

