Package ‘M ADMMplasso’

October 27, 2025
Title Multi Variate Multi Response ADMM with Interaction Effects

Version 1.0.1

Description This system allows one to model a multi-variate, multi-response
problem with interaction effects. It combines the usual squared error loss
for the multi-response problem with some penalty terms to encourage
responses that correlate to form groups and also allow for modeling main and
interaction effects that exit within the covariates.
The optimization method employed is the Alternating Direction Method of
Multipliers (ADMM). The implementation is based on the methodology
presented on Quachie Asenso, T., & Zucknick, M. (2023)
<doi:10.48550/arXiv.2303.11155>.

Imports Matrix, MASS, Rcpp, ReppArmadillo, foreach, doParallel, class,
graphics, parallel, stats, spatstat.sparse, methods

LinkingTo Rcpp, ReppArmadillo
Suggests testthat (>= 3.0.0), lintr
License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2
Config/testthat/edition 3

Date 2025-10-27

Language en-GB
NeedsCompilation yes

Author Theophilus Quachie Asenso [aut],
Manuela Zucknick [aut],
Waldir Leoncio [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6719-6162>),
Chi Zhang [aut]

Maintainer Waldir Leoncio <w.1.netto@medisin.uio.no>
Repository CRAN
Date/Publication 2025-10-27 14:00:07 UTC

https://doi.org/10.48550/arXiv.2303.11155
https://orcid.org/0000-0002-6719-6162

2 admm_MADMMplasso

Contents

admm_MADMMBDPIasso e
admm_MADMMBDPIassO_CPp - -« - v v e e e
compute_pliable
cV_MADMMDPIAssO e e
GENErate_MY_W o i e e e e e e e e e e e e e e e e
MADMMBDIAsSO o e
predict MADMMDPIAssO oo e e e e
SIM2 . . o o e e
TrEE_PAMIS . « « . o v v v e et e e e e e e e e e e e e e e e

Index

admm_MADMMplasso Fit the ADMM part of model for the given lambda values

Description

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

admm_MADMMplasso(
betao,
thetao,
beta,
beta_hat,
theta,
rhot,

Y,

e.abs,
e.rel,
alpha,
lambda,
alph,
svd.w,
tree,
my_print,
invmat,
gg = 0.2

admm_MADMMplasso 3

Arguments

beta®
theta®
beta
beta_hat

theta

rhol

max_it

W_hat

Xty

e.abs
e.rel

alpha

lambda
alph

svd.w

tree

my_print

invmat

gg

a vector of length ncol(y) of estimated beta_0 coefficients
matrix of the initial theta_0 coefficients ncol(Z) by ncol(y)
a matrix of the initial beta coefficients ncol(X) by ncol(y)

a matrix of the initial beta and theta coefficients (ncol(X)+ncol(X) by ncol(Z))
by ncol(y)

an array of initial theta coefficients ncol(X) by ncol(Z) by ncol(y)

the Lagrange variable for the ADMM which is usually included as rho in the
MADMMplasso call.

N by p matrix of predictors

N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

maximum number of iterations in loop for one lambda during the ADMM opti-
mization

N by (p+(p by nz)) of the main and interaction predictors. This generated inter-
nally when MADMMplasso is called or by using the function generate_my_w.

a matrix formed by multiplying the transpose of X by y.

N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

nrow(X)
absolute error for the ADMM
relative error for the ADMM

mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.

user specified lambda_3 values.

an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

singular value decomposition of W

The results from the hierarchical clustering of the response matrix. The easy
way to obtain this is by using the function (tree_parms) which gives a default
clustering. However, user decide on a specific structure and then input a tree
that follows such structure.

Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

A list of length ncol(y), each containing the C_d part of equation 32 in the paper

penalty terms for the tree structure for lambda_1 and lambda_2 for the ADMM
call.

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

4 admm_MADMMplasso_cpp

Value
predicted values for the ADMM part beta0: estimated beta_0 coefficients having a size of 1 by
ncol(y)
beta: estimated beta coefficients having a matrix ncol(X) by ncol(y)

BETA_hat: estimated beta and theta coefficients having a matrix (ncol(X)+ncol(X) by ncol(Z)) by
ncol(y)

thetaO: estimated theta_0 coefficients having a matrix ncol(Z) by ncol(y)

theta: estimated theta coefficients having a an array ncol(X) by ncol(Z) by ncol(y) converge: did
the algorithm converge?

Y_HAT: predicted response nrow(X) by ncol(y)

admm_MADMMplasso_cpp Fit the ADMM part of model for a given lambda vale

Description

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

admm_MADMMplasso_cpp(
betao,
thetao,
beta,
beta_hat,
theta,
rhot,

Y,

e_abs,
e_rel,
alpha,
lambda,
alph,
svd_w_tu,
svd_w_tv,
svd_w_d,
C,

W,

gg,

admm_MADMMplasso_cpp 5

my_print = TRUE

)

Arguments
beta®
theta®
beta
beta_hat

theta
rho1

max_it

W_hat

Xty

N
e_abs
e_rel

alpha

lambda

alph

svd_w_tu
svd_w_tv
svd_w_d
C

CwW

a vector of length ncol(y) of estimated beta_0 coefficients
matrix of the initial theta_0 coefficients ncol(Z) by ncol(y)
a matrix of the initial beta coefficients ncol(X) by ncol(y)

a matrix of the initial beta and theta coefficients (ncol(X)+ncol(X) by ncol(Z))
by ncol(y)

an array of initial theta coefficients ncol(X) by ncol(Z) by ncol(y)

the Lagrange variable for the ADMM which is usually included as rho in the
MADMMplasso call.

n by p matrix of predictors

n by nz matrix of modifying variables. The elements of z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

maximum number of iterations in loop for one lambda during the ADMM opti-
mization. This is usually included in the MADMMplasso call

N by (p+(p by nz)) of the main and interaction predictors. This generated inter-
nally when MADMMplasso is called or by using the function generate_my_w.

a matrix formed by multiplying the transpose of X by y.

N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

nrow(X)
absolute error for the ADMM. This is included int the call of MADMMplasso.
relative error for the ADMM. This is included int the call of MADMMplasso.

mixing parameter, usually obtained from the MADMMplasso call. When the
goal is to include more interactions, alpha should be very small and vice versa.

a vector lambda_3 values for the ADMM call with length ncol(y). This is usually
calculated in the MADMMDplasso call. In our current setting, we use the same
the lambda_3 value for all responses.

an overrelaxation parameter in [1, 1.8], usually obtained from the MADMM-
plasso call.

the transpose of the U matrix from the SVD of W_hat
the transpose of the V matrix from the SVD of W_hat
the D matrix from the SVD of W_hat

the trained tree

weights for the trained tree The easy way to obtain this is by using the func-
tion (tree_parms) which gives a default clustering. However, user decide on a
specific structure and then input a tree that follows such structure.

6 cv_MADMMplasso

gg penalty terms for the tree structure for lambda_1 and lambda_2 for the ADMM
call.
my_print Should information form each ADMM iteration be printed along the way? De-

fault TRUE. This prints the dual and primal residuals

Value

predicted values for the ADMM part

compute_pliable Compute the interaction part of the model.

Description

Compute the interaction part of the model.

Usage

compute_pliable(X, Z, theta)

Arguments
X N by p matrix of predictors
Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.
theta theta coefficients for a single response ncol(X) by ncol(Z)
Value

a vector of length N of the calculated interaction term for a single response

cv_MADMMplasso Carries out cross-validation for a MADMMplasso model over a path
of regularization values

Description

Carries out cross-validation for a MADMMplasso model over a path of regularization values

cv_MADMMplasso 7

Usage

cv_MADMMplasso(
fit,
nfolds,
X,
Z,
Y,
alpha = 0.5,
lambda = fit$Lambdas,
max_it = 50000,

e.abs = 0.001,
e.rel = 0.001,
nlambda,

rho = 5,

my_print = FALSE,
alph =1,

foldid = NULL,
pal = cl == 1L,
gg = c(7, 0.5),

1T,
tol = 1e-04,
cl = 1L,
legacy = FALSE
)
Arguments
fit object returned by the MADMMplasso function
nfolds number of cross-validation folds
X N by p matrix of predictors
Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.
y N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call
alpha mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.
lambda user specified lambda_3 values.
max_it maximum number of iterations in loop for one lambda during the ADMM opti-
mization
e.abs absolute error for the ADMM
e.rel relative error for the ADMM
nlambda number of lambda_3 values desired. Similar to maxgrid but can have a value

less than or equal to maxgrid.

rho

my_print

alph

foldid
pal
gg

T

tol
cl
legacy

Value

cv_MADMMplasso

the Lagrange variable for the ADMM. This value is updated during the ADMM
call based on a certain condition.

Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

vector with values in 1:K, indicating folds for K-fold CV. Default NULL
Should the lapply function be applied for an alternative to parallelization.

penalty term for the tree structure. This is a 2x2 matrix values in the first row
representing the maximum to the minimum values for lambda_1 and the second
row representing the maximum to the minimum values for lambda_2. In the
current setting, we set both maximum and the minimum to be same because
cross validation is not carried across the lambda_1 and lambda_2. However,
setting different values will work during the model fit.

The results from the hierarchical clustering of the response matrix. This should
same as the parameter tree used during the MADMMplasso call.

threshold for the non-zero coefficients
The number of CPUs to be used for parallel processing

If TRUE, use the R version of the algorithm

results containing the CV values

Examples

Train the model

generate some data
set.seed(1235)

N <- 100
p <- 50
nz <- 4
K <- nz

X <- matrix(rnorm(n = N * p), nrow = N, ncol = p)

mx <- colMeans(X)

sx <- sqgrt(apply(X, 2, var))

X <- scale(X, mx, sx)

X <- matrix(as.numeric(X), N, p)
Z <- matrix(rnorm(N * nz), N, nz)

mz <- colMeans(Z)

sz <- sqgrt(apply(z, 2, var))

Z <- scale(Z, mz,

beta_1 <-
beta_2 <-
beta_3 <-
beta_4 <-
beta_5 <-
beta_6 <-

rep(x

rep(x =

rep(x
rep(x
rep(x
rep(x

sz)

0, times = p)
0, times = p)
0, times = p)
0, times = p)
0, times = p)
0, times = p)

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

cv_MADMMplasso

beta_1[1:5] <- c(2, 2, 2, 2, 2)
beta_2[1:51 <- c(2, 2, 2, 2, 2)
beta_3[6:10] <- c(2, 2, 2, -2, -2)
beta_4[6:10] <- c(2, 2, 2, -2, -2)
beta_5[11:15] <- c(-2, -2, -2, -2, -2)
beta_6[11:15] <- c(-2, -2, -2, -2, -2)

Beta <- cbind(beta_1, beta_2, beta_3, beta_4, beta_5, beta_6)
colnames(Beta) <- 1:6

theta <- array(o, c(p, K, 6))

thetal1, 1, 1] <- 2
thetal[3, 2, 1] <- 2
thetal4, 3, 1] <- -2
theta[5, 4, 1] <- -2
thetal1, 1, 2] <- 2
thetal3, 2, 2] <- 2
thetal[4, 3, 2] <- -2
thetal[5, 4, 2] <- -2
thetal[6, 1, 3] <- 2
thetal8, 2, 3] <- 2
thetal[9, 3, 3] <- -2

thetal[10, 4, 3] <- -2
thetal6, 1, 4] <- 2
thetal8, 2, 4] <- 2
thetal[9, 3, 4] <- -2

theta[10, 4, 4] <- -2
thetal11, 1, 5] <- 2
theta[13, 2, 5] <- 2
theta[14, 3, 5] <- -2
theta[15, 4, 5] <- -2
thetal[11, 1, 6] <- 2
thetal[13, 2, 6] <- 2
theta[14, 3, 6] <- -2
thetal[15, 4, 6] <- -2

pliable <- matrix(@, N, 6)
for (e in 1:6) {

pliable[, e] <- compute_pliable(X, Z, thetal, , el)
3

esd <- diag(6)

e <- MASS::mvrnorm(N, mu = rep(@, 6), Sigma = esd)
y_train <- X %*% Beta + pliable + e

y <- y_train

colnames(y) <- paste@("y", 1:ncol(y))
TT <- tree_parms(y)

plot(TT$h_clust)

ggl <- matrix(o, 2, 2)

gg1l1, 1 <- c(0.02, 0.02)

ggll2, 1 <- c(0.02, 0.02)

10

generate_my_w

nlambda <- 3

e.abs <- 1E-3

e.rel <- 1E-1

alpha <- 0.2

tol <- 1E-2

fit <- MADMMplasso(
X, Z, y, alpha = alpha, my_lambda = NULL, lambda_min = ©0.001, max_it = 100,
e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda, nlambda = nlambda, rho = 5,
tree = TT, my_print = FALSE, alph = 1, gg = ggl, tol = tol, cl = 2L

)

cv_admp <- cv_MADMMplasso(
fit, nfolds = 5, X, Z, y, alpha = alpha, lambda = fit$Lambdas, max_it = 100,
e.abs = e.abs, e.rel = e.rel, nlambda, rho = 5, my_print = FALSE, alph =1,
foldid = NULL, gg = fit$gg, TT = TT, tol = tol

)

plot(cv_admp)

generate_my_w Generate the matrix W as seen in equation 8 for use in the function.

Description

Generate the matrix W as seen in equation 8 for use in the function.

Usage

generate_my_w(X = matrix(), Z = matrix())

Arguments
X N by p matrix of predictors
Z N by nz matrix of modifying variables. The elements of z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.
Value

Generated W matrix nrow(X) by (ncol(X)+ncol(X) by ncol(Z))

MADMMplasso 11

MADMMplasso MADMMplasso: Multi Variate Multi Response ADMM with Interac-
tion Effects

Description

This system allows one to model a multi-variate, multi-response problem with interaction effects.
It combines the usual squared error loss for the multi-response problem with some penalty terms to
encourage responses that correlate to form groups and also allow for modeling main and interaction
effects that exit within the covariates. The optimization method employed is the Alternating Direc-
tion Method of Multipliers (ADMM). The implementation is based on the methodology presented
on Quachie Asenso, T., & Zucknick, M. (2023) doi:10.48550/arXiv.2303.11155.

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

MADMMplasso(
X,
Z,
Y,
alpha,
my_lambda = NULL,
lambda_min = 0.001,
max_it = 50000,

e.abs = 0.001,
e.rel = 0.001,
maxgrid,
nlambda,
rho = 5,
my_print = FALSE,
alph = 1.8,
tree,
pal = cl == 1L,
gg = NULL,
tol = 1e-04,
cl =1L,
legacy = FALSE
)
Arguments
X N by p matrix of predictors
Z N by K matrix of modifying variables. The elements of Z may represent quan-

titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

https://doi.org/10.48550/arXiv.2303.11155

12

alpha

my_lambda

lambda_min

max_it

e.abs
e.rel
maxgrid

nlambda

rho

my_print

alph

tree

pal
gg

tol
cl
legacy

Value

MADMMplasso

N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.

user specified lambda_3 values

the smallest value for lambda_3 , as a fraction of max(lambda_3), the (data
derived (lammax)) entry value (i.e. the smallest value for which all coefficients
are zero)

maximum number of iterations in loop for one lambda during the ADMM opti-
mization

absolute error for the ADMM
relative error for the ADMM
number of lambda_3 values desired

number of lambda_3 values desired. Similar to maxgrid but can have a value
less than or equal to maxgrid.

the Lagrange variable for the ADMM. This value is updated during the ADMM
call based on a certain condition.

Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

The results from the hierarchical clustering of the response matrix. The easy
way to obtain this is by using the function (tree_parms) which gives a default
clustering. However, user decide on a specific structure and then input a tree
that follows such structure.

Should the lapply function be applied for an alternative to parallelization.

penalty term for the tree structure. This is a 2x2 matrix values in the first row
representing the maximum to the minimum values for lambda_1 and the second
row representing the maximum to the minimum values for lambda_2. In the
current setting, we set both maximum and the minimum to be same because
cross validation is not carried across the lambda_1 and lambda_2. However,
setting different values will work during the model fit.

threshold for the non-zero coefficients
The number of CPUs to be used for parallel processing

If TRUE, use the R version of the algorithm

predicted values for the MADMMplasso object with the following components: path: a table con-
taining the summary of the model for each lambda_3.

beta0: a list (length=nlambda) of estimated beta_0 coefficients each having a size of 1 by ncol(y)

beta: a list (length=nlambda) of estimated beta coefficients each having a matrix ncol(X) by ncol(y)

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

MADMMplasso

13

BETA_hat: a list (Iength=nlambda) of estimated beta and theta coefficients each having a matrix

(ncol(X)+ncol(X) by ncol(Z)) by ncol(y)

thetaO: a list (length=nlambda) of estimated theta_0 coefficients each having a matrix ncol(Z) by

ncol(y)

theta: a list (length=nlambda) of estimated theta coefficients each having a an array ncol(X) by
ncol(Z) by ncol(y)

Lambdas: values of lambda_3 used
non_zero: number of nonzero betas for each model in path
LOSS: sum of squared of the error for each model in path

Y_HAT: alist (Iength=nlambda) of predicted response nrow(X) by ncol(y)

gg: penalty term for the tree structure (lambda_1 and lambda_2) for each lambda_3 nlambda by 2

Author(s)

Maintainer: Waldir Leoncio <w.1.netto@medisin.uio.no> (ORCID)

Authors:

* Theophilus Quachie Asenso <t.q.asenso@medisin.uio.no>
* Manuela Zucknick <Manuela.zucknick@medisin.uio.no>

* Chi Zhang <andreachizhang@yahoo.com>

Examples

Train the model
generate some data

set.seed(1235)
N <- 100
p <- 50
nz <- 4
K <- nz

X <- matrix(rnorm(n = N * p), nrow = N, ncol = p)

mx <- colMeans(X)
sx <- sqrt(apply(X, 2, var))
X <- scale(X, mx, sx)

X <- matrix(as.numeric(X), N, p)
Z <- matrix(rnorm(N * nz), N, nz)

mz <- colMeans(Z)
sz <- sqgrt(apply(z, 2, var))
Z <- scale(Z, mz,

beta_1 <- rep(x
beta_2 <- rep(x
beta_3 <- rep(x
beta_4 <- rep(x
beta_5 <- rep(x
beta_6 <- rep(x

sz)

, times
, times
, times
times
, times
, times

[SENSENSEES RS B S

beta_1[1:5] <- c(2, 2, 2, 2,
beta_2[1:5] <- c(2, 2, 2, 2,

https://orcid.org/0000-0002-6719-6162

14

beta_3[6:10] <- c(2, 2, 2,
beta_4[6:10] <- c(2, 2, 2,
beta_5[11:15]1 <- c(-2, -2,
beta_6[11:15] <- c(-2, -2,

Beta <- cbind(beta_1, beta_2, beta_3, beta_4, beta_5, beta_6)

colnames(Beta) <- 1:6

theta <- array(o, c(p, K, 6))

thetal1, 1, 1] <- 2
thetal3, 2, 1] <- 2
thetal4, 3, 1] <- -2
thetal5, 4, 1] <- -2
thetal1, 1, 2] <- 2
thetal3, 2, 2] <- 2
thetal[4, 3, 2] <- -2
thetal[5, 4, 2] <- -2
thetal6, 1, 3] <- 2
thetal8, 2, 3] <- 2
thetal[9, 3, 3] <- -2

theta[10, 4, 3]

< -2

thetal6, 1, 4] <- 2
thetal8, 2, 4] <- 2
thetal[9, 3, 4] <- -2

theta[10, 4, 4]
thetal11, 1, 5]
theta[13, 2, 5]
thetal14, 3, 5]
thetal[15, 4, 5]
thetal11, 1, 6]
thetal[13, 2, 6]
thetal14, 3, 6]
thetal[15, 4, 6]

pliable <- matrix(@, N, 6)

for (e in 1:6) {

pliable[, e] <- compute_pliable(X, Z, theta[,

}

esd <- diag(6)

e <- MASS::mvrnorm(N, mu
y_train <- X %*% Beta + pliable + e

y <- y_train

colnames(y) <- c(paste@(

TT <- tree_parms
plot(TT$h_clust)

ggl <- matrix(o, 2, 2)
ggll1, 1 <- c(0.02, 0.02)
ggll2, 1 <- c(0.02, 0.02)

nlambda <- 1
e.abs <- 1E-4

<- -2
<=2
<-2
<- -2
<- -2
<-2
<-2
<- -2
<- -2

)

-2)
-2)

rep(@, 6), Sigma

seg_len(ncol(y))))

MADMMplasso

predict. MADMMplasso 15

e.rel <- 1E-2
alpha <- 0.2
tol <- 1E-3
fit <- MADMMplasso(
Xr Zr Y,
alpha = alpha, my_lambda = matrix(rep(@.2, ncol(y)), 1),
lambda_min = 0.001, max_it = 1000, e.abs = e.abs, e.rel = e.rel,
maxgrid = nlambda, nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE,
alph = TRUE, gg = ggl, tol = tol, cl = 2L

predict.MADMMplasso Compute predicted values from a fitted MADMMplasso object. Make
predictions from a fitted MADMMplasso model

Description

Compute predicted values from a MADMMplasso object. Make predictions from a fitted MAD-
MMplasso model

Usage

S3 method for class 'MADMMplasso'
predict(object, X, Z, y, lambda = NULL, ...)

Arguments
object object returned from a call to MADMMplasso
X N by p matrix of predictors
Z N by nz matrix of modifying variables. These may be observed or the predic-
tions from a supervised learning algorithm that predicts z from test features x
and possibly other features.
y N by D matrix of responses.
lambda values of lambda at which predictions are desired. If NULL (default), the path
of lambda values from the fitted model. are used. If lambda is not NULL, the
predictions are made at the closest values to lambda in the lambda path from the
fitted model
additional arguments to the generic predict() method
Value

predicted values

16 tree_parms

sim2 Simulate data for the model. This is the second simulation data used
in the paper

Description

Simulate data for the model

Usage
sim2(p = 500, n = 100, m = 24, nz = 4, rho = 0.4, B.elem = 0.5)

Arguments
p column for X which is the main effect
n number of observations
m number of responses
nz number of modifiers
rho values to be used in the covariance matrix when generating X
B.elem the value of the non-zero elements in beta?
Value

The simulated data with the following components: Beta: matrix of actual beta coefficients p by m
Theta: a m by p by K array of actual theta coefficients Y: a N by m matrix of response variables X:
a N by p matrix of covariates Z: a N by K matrix of modifiers

tree_parms Fit the hierarchical tree structure

Description

Fit the hierarchical tree structure

Usage

tree_parms(y =y, h=0.7)

Arguments

y N by D matrix of response variables

h is the tree cut off

tree_parms 17

Value

A trained tree with the following components: Tree: the tree matrix stored in 1s and Os Tw: tree
weights associated with the tree matrix. Each weight corresponds to a row in the tree matrix.
h_clust: Summary of the hclust call y.colnames: names of the response

Index

admm_MADMMplasso, 2
admm_MADMMplasso_cpp, 4

compute_pliable, 6
cv_MADMMplasso, 6

generate_my_w, 10

MADMMplasso, 11
MADMMplasso-package (MADMMplasso), 11

predict.MADMMplasso, 15
sim2, 16

tree_parms, 16

18

	admm_MADMMplasso
	admm_MADMMplasso_cpp
	compute_pliable
	cv_MADMMplasso
	generate_my_w
	MADMMplasso
	predict.MADMMplasso
	sim2
	tree_parms
	Index

