Pseudo-random number generation for 11 multivariate distributions: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart. The details of the method are explained in Demirtas (2004) <doi:10.22237/jmasm/1099268340>.
| Version: | 1.2.4 |
| Published: | 2021-03-05 |
| DOI: | 10.32614/CRAN.package.MultiRNG |
| Author: | Hakan Demirtas, Rawan Allozi, Ran Gao |
| Maintainer: | Ran Gao <rgao8 at uic.edu> |
| License: | GPL-2 | GPL-3 |
| NeedsCompilation: | no |
| In views: | Distributions |
| CRAN checks: | MultiRNG results |
| Reference manual: | MultiRNG.html , MultiRNG.pdf |
| Package source: | MultiRNG_1.2.4.tar.gz |
| Windows binaries: | r-devel: MultiRNG_1.2.4.zip, r-release: MultiRNG_1.2.4.zip, r-oldrel: MultiRNG_1.2.4.zip |
| macOS binaries: | r-release (arm64): MultiRNG_1.2.4.tgz, r-oldrel (arm64): MultiRNG_1.2.4.tgz, r-release (x86_64): MultiRNG_1.2.4.tgz, r-oldrel (x86_64): MultiRNG_1.2.4.tgz |
| Old sources: | MultiRNG archive |
| Reverse imports: | PDFEstimator |
| Reverse suggests: | phenology |
Please use the canonical form https://CRAN.R-project.org/package=MultiRNG to link to this page.