Package ‘NMOF’

October 20, 2025
Type Package
Title Numerical Methods and Optimization in Finance
Version 2.11-0
Date 2025-10-20
Maintainer Enrico Schumann <es@enricoschumann.net>
Depends R (>=3.5)
Imports grDevices, graphics, parallel, stats, utils

Suggests MASS, PMwR, RUnit, Rglpk, datetimeutils, openxIsx, quadprog,
readxl, tinytest, zoo

Description Functions, examples and data from the first and
the second edition of * * Numerical Methods and Optimization in
Finance" by M. Gilli, D. Maringer and E. Schumann (2019,
ISBN:978-0128150658). The package provides implementations
of optimisation heuristics (Differential Evolution, Genetic
Algorithms, Particle Swarm Optimisation, Simulated Annealing
and Threshold Accepting), and other optimisation tools, such
as grid search and greedy search. There are also functions
for the valuation of financial instruments such as bonds and
options, for portfolio selection and functions that help
with stochastic simulations.

License GPL-3

URL https://enricoschumann.net/NMOF.htm, https://gitlab.com/NMOF ,
https://git.sr.ht/~enricoschumann/NMOF ,
https://github.com/enricoschumann/NMOF

LazyLoad yes

LazyData yes

ByteCompile yes

Classification/JEL C61, C63

NeedsCompilation no

Author Enrico Schumann [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7601-6576>)

1

https://enricoschumann.net/NMOF.htm
https://gitlab.com/NMOF
https://git.sr.ht/~enricoschumann/NMOF
https://github.com/enricoschumann/NMOF
https://orcid.org/0000-0001-7601-6576

2 Contents

Repository CRAN
Date/Publication 2025-10-20 14:50:02 UTC

Contents
NMOF-package o e 3
approxBondReturn L 5
bracketing 6
bundData e 8
bundFuture 9
callCF e 11
callHestoncf o e 13
callMerton e 15
colSubset e e e e 17
CPPL. . . . e 18
DEopt e e 20
divRatio L e e e e 24
drawdown e 25
EuropeanCall e 26
French e e e 27
fundData 29
GAODL . . o o e e 30
greedySearch 33
gridSearch L e 35
LSinfo e 38
LSopt . . . 39
MA e 43
maxSharpe e 45
INC & o v v e 46
minCVaR e 49
minMAD . . . e 50
MINVAT . . 0 v v o e 52
mvFrontier L e e 54
NS . e 56
NS e 57
optionData. e e e 59
PBO e 60
PO . o o e e e 61
PSopt . . e 62
putCallParity e 66
qTable 68
randomReturns 70
repairMatriX L. e e e e e 72
resampleC L 73
restartOPt e e e e e e e e e 74
Ritter e e e e e e 77

NMOF-package 3

SAOPE . . o e e e e 80
Shiller o o e e 84
showExample L e 85
TA.nfo L 87
TAOPt . . . o e e 89
testFunctions L 94
trackingPortfolio L 96
vanillaBond L 98
vanillaOptionEuropean 101
xtContractValue 105
XWGAUSS . . o oo e e e 106

Index 109

NMOF -package Numerical Methods and Optimization in Finance
Description

Functions, data and other R code from the book ‘Numerical Methods and Optimization in Finance’.
Comments/corrections/remarks/suggestions are very welcome (please contact the maintainer di-
rectly).

Details

The package contains implementations of several optimisation heuristics: Differential Evolution
(DEopt), Genetic Algorithms (GAopt), (Stochastic) Local Search (LSopt), Particle Swarm (PSopt),
Simuleated Annealing (SAopt) and Threshold Accepting (TAopt). The term heuristic is meant in
the sense of general-purpose optimisation method.

Dependencies: The package is completely written in R. A number of packages are suggested, but
they are not strictly required when using the NMOF package, and most of the package’s function-
ality is available without them. Specifically, package MASS is needed to run the complete example
for PSopt and also in one of the vignettes (PS1ms). Package parallel is optional for functions
bracketing, GAopt, gridSearch and restartOpt, and may become an option for other functions.
Package quadprog is needed for a vignette (TAportfolio), some tests, and it may be used for com-
puting mean-variance efficient portfolios. Package Rglpk is needed for function minCVaR. Package
readxl is needed to process the raw data in function Shiller; package datetimeutils is used by
French and Shiller. PMwR would be needed to run the examples of the backtesting examples in
the NMOF book. Finally, packages RUnit and tinytest are needed to run the tests in subdirectory
‘unitTests’.

Version numbering: package versions are numbered in the form major-minor-patch. The patch
level is incremented with any published change in a version. Minor version numbers are incre-
mented when a feature is added or an existing feature is substantially revised. (Such changes will
be reported in the NEWS file.) The major version number will only be increased if there were a
new edition of the book.

The source code of the NMOF package is also hosted at https://github.com/enricoschumann/
NMOF/. Updates to the package and new features are described at https://enricoschumann.net/
notes/NMOF/.

https://github.com/enricoschumann/NMOF/
https://github.com/enricoschumann/NMOF/
https://enricoschumann.net/notes/NMOF/
https://enricoschumann.net/notes/NMOF/

4 NMOF-package

Optimisation:

There are functions for Differential Evolution (DEopt), Genetic Algorithms (GAopt), (Stochastic)
Local Search (LSopt), Simuleated Annealing (SAopt), Particle Swarm (SAopt), and Threshold
Accepting (TAopt). The function restartOpt helps with running restarts of these methods; also
available are functions for grid search (gridSearch) and greedy search (greedySearch).

Pricing Financial Instruments:

For options: See vanillaOptionEuropean, vanillaOptionAmerican, putCallParity. For
pricing methods that use the characteristic function, see callCF.

For bonds and bond futures: See vanillaBond, bundFuture and xtContractValue.

Simulation:
See resampleC and mc.

Data:
See bundData, fundData and optionData.

Author(s)

Enrico Schumann

Maintainer: Enrico Schumann <es @enricoschumann.net>

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

Not run:
library("NMOF")

overview
packageDescription("”NMOF")
help(package = "NMOF")

code from book
showExample("equations.R", edition = 1)
showExample("Heur")

show NEWS file
news(Version >= "2.0-0", package = "NMOF")

vignettes

vignette(package = "NMOF")

nss <- vignette("DEnss"”, package = "NMOF")
print(nss)

edit(nss)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

approxBondReturn

book websites
browseURL("https://nmof.net")
browseURL("https://enricoschumann.net/NMOF/")

package websites
browseURL("https://enricoschumann.net/R/packages/NMOF/")
browseURL("https://cran.r-project.org/package=NMOF")
browseURL("https://git.sr.ht/~enricoschumann/NMOF")
browseURL ("https://github.com/enricoschumann/NMOF")

unit tests

file.show(system.file("unitTests/test_results.txt”, package = "NMOF"))

End(Not run)

test.rep <- readLines(system.file("unitTests/test_results.txt",

package = "NMOF"))

nt <- gsub(”.*\\(([0-91+) checks?\\).x", "\\1",
test.replgrep("\\(\\d+ checks?\\)", test.rep)])

message ("Number of unit tests:

n

, sum(as.numeric(nt)))

approxBondReturn

Approximate Total Return of Bond

Description

Approximate the total return of a bond by its current yield, duration and convexity.

Usage

approxBondReturn(yield, tm, n = 2, scale = 1/250, pad = NULL)

Arguments
yield
tm
n
scale

pad

Details

a numeric vector

a numeric vector: time-to-maturity
number of coupon payments per period
how to scale yield; see Details

how to pad the first observation: NULL (default) means to drop it; useful alterna-
tives are NA or @

The function approximates the total return of a bond investor, based on changes in yield. The
computation is based on a Taylor-series expansion. See the references, in particular concerning the
shortcomings of the approximation:

6 bracketing

1. approximation is based on par yield

2. itrelies on yield alone, so does not take into account defaults; so for indices, the approximation
should only used for issuers without defaults
Value

a numeric vector, with attributes duration and convexity

Note

Package treasuryTR implements the method as well.

Author(s)

Enrico Schumann

References

Swinkels, L. (2019). Treasury Bond Return Data Starting in 1962. Data. 4 (3).

Tuckman, B. and Serrat, A. (2012). Fixed Income Securities — Tools for Today’s Markets. 3rd
edition. Wiley.

Examples

yieldd <- 0.05

tm <- 20

cf <- c(rep(5, tm-1), 105)
duration(cf, 1:tm, yield@)

approxBondReturn(yield = c(yield@, 0.05), tm = tm, n = 1)
==> no price change, current yield is earned

approxBondReturn(yield = c(yieldo, 0.04), tm = tm, n = 1)
==> current yield + price changed is earned

bracketing Zero-Bracketing

Description

Bracket the zeros (roots) of a univariate function

Usage

bracketing(fun, interval, ...,
lower = min(interval), upper = max(interval),
n = 20L,
method = c("loop”, "vectorised”, "multicore”, "snow"),
mc.control = list(), cl = NULL)

bracketing 7

Arguments
fun a univariate function; it will be called as fun(x, ...) with x being a numeric
vector
interval a numeric vector, containing the end-points of the interval to be searched
further arguments passed to fun
lower lower end-point. Ignored if interval is specified.
upper upper end-point. Ignored if interval is specified.
n the number of function evaluations. Must be at least 2 (in which case fun is
evaluated only at the end-points); defaults to 20.
method can be loop (the default), vectorised, multicore or snow. See Details.
mc.control a list containing settings that will be passed tomclapply if method ismulticore.
Must be a list of named elements. See the documentation of mclapply in pack-
age parallel.
cl default is NULL. If method is snow, this must be a cluster object or an integer (the
number of cores to be used). See the documentation of packages parallel and
Snow.
Details

bracketing evaluates fun at equal-spaced values of x between (and including) lower and upper.
If the sign of fun changes between two consecutive x-values, bracketing reports these two x-
values as containing (‘bracketing’) a root. There is no guarantee that there is only one root within a
reported interval. bracketing will not narrow the chosen intervals.

The argument method determines how fun is evaluated. Default is 1oop. If method is "vectorised”,
fun must be written such that it can be evaluated for a vector x (see Examples). If method is
multicore, function mclapply from package parallel is used. Further settings for mclapply can
be passed through the list mc. control. If multicore is chosen but the functionality is not available
(eg, currently on Windows), then method will be set to loop and a warning is issued. If method
is snow, function clusterApply from package parallel is used. In this case, the argument cl
must either be a cluster object (see the documentation of clusterApply) or an integer. If an inte-
ger, a cluster will be set up via makeCluster(c(rep(”localhost”, cl)), type = "SOCK"), and
stopCluster is called when the function is exited. If snow is chosen but the package is not avail-
able or cl is not specified, then method will be set to loop and a warning is issued. In case that cl
is a cluster object, stopCluster will not be called automatically.

Value
A numeric matrix with two columns, named lower and upper. Each row contains one interval that
contains at least one root. If no roots were found, the matrix has zero rows.

Author(s)

Enrico Schumann

8 bundData

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

uniroot (in package stats)

Examples

Gilli/Maringer/Schumann (2011), p. 290
testFun <- function(x)
cos(1/x*2)

bracketing(testFun, interval = c(0.3, 0.9), n = 26L)
bracketing(testFun, interval = c(0.3, 0.9), n = 26L, method = "vectorised")

bundData German Government Bond Data

Description
A sample of data on 44 German government bonds. Contains ISIN, coupon, maturity and dirty price
as of 2010-05-31.

Usage

bundData

Format

bundData is a list with three components: cfList, tmList and bM. cfList is list of 44 numeric
vectors (the cash flows). tmList is a list of 44 character vectors (the payment dates) formatted as
YYYY-MM-DD. bM is a numeric vector with 44 elements (the dirty prices of the bonds).

Details

All prices are as of 31 May 2010. See chapter 14 in Gilli et al. (2011).

Source

The data was obtained from https://www.deutsche-finanzagentur.de/en/ . The data is also
freely available from the website of the Bundesbank https://www.bundesbank.de/en/ .

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://www.deutsche-finanzagentur.de/en/
https://www.bundesbank.de/en/

bundFuture 9

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

bundData
str(bundData)

get ISINs of bonds
names (bundData$cfList)

get a specific bond

thisBond <- "DE0@@@1135358"

data.frame(dates = as.Date(bundData$tmList[[thisBond]]),
payments = bundData$cfList[[thisBond]l])

bundFuture Theoretical Valuation of Euro Bund Future

Description

Compute theoretical prices of bund future.

Usage

bundFuture(clean, coupon, trade.date,
expiry.date, last.coupon.date,
r, cf)

bundFutureImpliedRate(future, clean, coupon,
trade.date, expiry.date,
last.coupon.date, cf)

Arguments
clean numeric: clean prices of CTD
future numeric: price of future
coupon numeric
trade.date Date or character in format YYYY-MM-DD
expiry.date Date or character in format YYYY-MM-DD

last.coupon.date
Date or character in format YYYY-MM-DD

r numeric: 0.01

cf numeric: conversion factor of CTD

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

10 bundFuture

Details

bundFuture computes the theoretical prices of the Bund Future, given the prices of the cheapest-
to-deliver eligible government bond.

bundFutureImpliedRate computes the implied refinancing rate.

Value

numeric

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

Bund-Future with expiry Sep 2017

CTD: DE0Q01102408 -- 0%, 15 Aug 2026

#H#

On 21 August 2017, the CTD traded (clean) at 97.769
the FGBL Sep 2017 closed at 164.44.

bundFuture(clean = 97.769, ## DEQ0Q1102408
coupon = @,
trade.date = "2017-8-21",
expiry.date = "2017-09-07", ## Bund expiry
last.coupon.date = "2017-08-15", ## last co
r = -0.0037,

cf = 0.594455) ## conversion factor (from Eurex website)

bundFutureImpliedRate(future = 164.44,
clean = 97.769,
coupon = @,
trade.date = "2017-8-21",
expiry.date = "2017-09-07",
last.coupon.date = "2017-08-15",
cf = 0.594455)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

callCF 11

callCF Price a Plain-Vanilla Call with the Characteristic Function

Description

Price a European plain-vanilla call with the characteric function.

Usage

callCF(cf, S, X, tau, r, g=20, ...,

implVol = FALSE, uniroot.control = list(), uniroot.info = FALSE)
cfBSM(om, S, tau, r, g, V)
cfMerton(om, S, tau, r, q, v, lambda, muJ, vJ)
cfBates(om, S, tau, r, q, v@0, vT, rho, k, sigma, lambda, muJ, vJ)
cfHeston(om, S, tau, r, g, v@, vT, rho, k, sigma)
cfVG(om, S, tau, r, g, nu, theta, sigma)

Arguments
cf characteristic function
S spot
X strike
tau time to maturity
r the interest rate
q the dividend rate
e arguments passed to the characteristic function
implVol logical: compute implied vol?

uniroot.control
A list. If there are elements named interval, tol or maxiter, these are passed
to uniroot. Any other elements of the list are ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the information re-
turned by uniroot. See paragraph Value below.

om a (usually complex) argument
vo a numeric vector of length one
vT a numeric vector of length one
v a numeric vector of length one
rho a numeric vector of length one
k a numeric vector of length one
sigma a numeric vector of length one
lambda a numeric vector of length one
muJ a numeric vector of length one
v] a numeric vector of length one
nu a numeric vector of length one

theta a numeric vector of length one

12 callCF

Details

The function computes the value of a plain vanilla European call under different models, using
the representation of Bakshi/Madan. Put values can be computed through put—call parity (see
putCallParity).

If implVol is TRUE, the function will compute the implied volatility necessary to obtain the same
value under Black—Scholes—Merton. The implied volatility is computed with uniroot from the
stats package. The default search interval is c(@.00001, 2); it can be changed through uniroot. control.

The function uses variances as inputs (not volatilities).

The function is not vectorised (but see the NMOF Manual for examples of how to efficiently price
more than one option at once).

Value

Returns the value of the call (numeric) under the respective model or, if implVol is TRUE, a list
of the value and the implied volatility. (If, in addition, uniroot.info is TRUE, the information
provided by uniroot is also returned.)

Note

If implVol is TRUE, the function will return a list with elements named value and impliedVol.
Prior to version 0.26-3, the first element was named callPrice.

Author(s)

Enrico Schumann

References
Bates, David S. (1996) Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in
Deutsche Mark Options. Review of Financial Studies 9 (1), 69-107.

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Heston, S.L. (1993) A Closed-Form Solution for Options with Stochastic Volatility with Applica-
tions to Bonds and Currency options. Review of Financial Studies 6 (2), 327-343.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

callHestoncf

Examples

S <- 100; X <- 100; tau <- 1

r <- 0.02; q <- 0.08

vQ <- 0.2%2 ## variance, not volatility
vT <- 0.2%2 ## variance, not volatility
v <= vT

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

callHestoncf 13

rho <- -0.3; k <- .2
sigma <- 0.3

jump parameters (Merton and Bates)
lambda <- 0.1

muJ <- -0.2

v] <- 0.1"2

get Heston price and BSM implied volatility
callHestoncf(S, X, tau, r, q, v@, vT, rho, k, sigma, implVol = FALSE)
callCF(cf = cfHeston, S=S, X=X, tau=tau, r=r, q = q,

vl = v@, vT = vT, rho = rho, k = k, sigma = sigma, implVol = FALSE)

Black-Scholes-Merton
callCF(cf = cfBSM, S=S, X=X, tau = tau, r = r, q = q,
v = v, implVol = TRUE)

Bates

callCF(cf = cfBates, S=S, X=X, tau=tau, r=r, q =q,
vl = v@, vT = vT, rho = rho, k = k, sigma = sigma,
lambda = lambda, muJ = muJ, vJ = vJ, implVol = FALSE)

Merton
callCF(cf = cfMerton, S =S, X =X, tau =tau, r=r, q =g,
v = v, lambda = lambda, muJ = muJ, vJ = vJ, implVol = FALSE)

variance gamma
nu <- 0.1; theta <- -0.1; sigma <- 0.15
callCF(cf = cfVG, S=S, X=X, tau=tau, r=r, q = q,
nu = nu, theta = theta, sigma = sigma, implVol = FALSE)

callHestoncf Price of a European Call under the Heston Model

Description

Computes the price of a European Call under the Heston model (and the equivalent Black—Scholes—
Merton volatility)

Usage

callHestoncf(S, X, tau, r, q, v0, vT, rho, k, sigma, implVol = FALSE,

uniroot.control = list(), uniroot.info = FALSE)
Arguments

S current stock price

X strike price

14 callHestoncf

tau time to maturity

r risk-free rate

q dividend rate

Vo current variance

vT long-run variance (theta in Heston’s paper)

rho correlation between spot and variance

k speed of mean-reversion (kappa in Heston’s paper)

sigma volatility of variance. A value smaller than 0.01 is replaced with 0.01.
implVol compute equivalent Black—Scholes—Merton volatility? Default is FALSE.

named arguments, passed to integrate

uniroot.control

A list. If there are elements named interval, tol or maxiter, these are passed
to uniroot. Other elements of the list are ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the information re-
turned by uniroot. See section Value below.

Details

The function computes the value of a plain vanilla European call under the Heston model. Put
values can be computed through put—call-parity.

If implVol is TRUE, the function will compute the implied volatility necessary to obtain the same
price under Black—Scholes—Merton. The implied volatility is computed with uniroot from the stats
package (the default search interval is c(@.00001, 2); it can be changed through uniroot.control).

Note that the function takes variances as inputs (not volatilities).

Value

Returns the value of the call (numeric) under the Heston model or, if implVol is TRUE, a list of
the value and the implied volatility. If uniroot.info is TRUE, then instead of only the computed
volatility, the complete output of uniroot is included in the result.

Note

If implVol is TRUE, the function will return a list with elements named value and impliedVol.
Prior to version 0.26-3, the first element was named callPrice.

Author(s)

Enrico Schumann

callMerton 15

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Heston, S.L. (1993) A Closed-Form Solution for Options with Stochastic Volatility with Applica-
tions to Bonds and Currency options. Review of Financial Studies 6(2), 327-343.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

callCF, EuropeanCall

Examples

S <- 100; X <- 100; tau <- 1; r <- 0.02; g <- 0.01
vd <- 0.2%2 ## variance, not volatility

vT <- 0.2%2 ## variance, not volatility

rho <- -0.7; k <- 0.2; sigma <- 0.5

get Heston price and BSM implied volatility

result <- callHestoncf(S =S, X =X, tau = tau, r=r, q = q,
v@ = v@, vT = vT, rho = rho, k =k,
sigma = sigma, implVol = TRUE)

Heston price
result[[1L]]

price BSM with implied volatility
vol <- result[[2L]]
dl <= (log(S/X) + (r - g + vol*2 / 2)xtau) / (volxsqgrt(tau))
d2 <- d1 - volxsgrt(tau)
callBSM <- S x exp(-g * tau) * pnorm(dl) -
X * exp(-r * tau) * pnorm(d2)
callBSM ## should be (about) the same as result[[1L]]

callMerton Price of a European Call under Merton’s Jump-Diffusion Model

Description
Computes the price of a European Call under Merton’s jump—diffusion model (and the equivalent
Black—Scholes—Merton volatility)

Usage

callMerton(S, X, tau, r, q, v, lambda, muJ, vJ, N, implVol = FALSE)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

16 callMerton

Arguments

S current stock price

X strike price

tau time to maturity

r risk-free rate

q dividend rate

v variance

lambda jump intensity

muJ mean jump-size

v] variance of log jump-size

N The number of jumps. See Details.

implVol compute equivalent Black—Scholes—Merton volatility? Default is FALSE.
Details

The function computes the value of a plain-vanilla European call under Merton’s jump—diffusion
model. Put values can be computed through put—call-parity (see putCallParity). If implVol is
TRUE, the function also computes the implied volatility necessary to obtain the same price under
Black—Scholes—Merton. The implied volatility is computed with uniroot from the stats package.

Note that the function takes variances as inputs (not volatilities).

The number of jumps N typically can be set 10 or 20. (Just try to increase N and see how the results
change.)

Value
Returns the value of the call (numeric) or, if implVol is TRUE, a list of the value and the implied
volatility.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Merton, R.C. (1976) Option Pricing when Underlying Stock Returns are Discontinuous. Journal of
Financial Economics 3(1-2), 125-144.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

callCF, EuropeanCall

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

colSubset 17

Examples

S <- 100; X <- 100; tau <- 1

r <- 0.0075; q <- 0.00

v <- 0.2"2

lambda <- 1; muJ <- -0.2; vJ <- 0.6"2
N <- 20

jumps can make a difference
callMerton(S, X, tau, r, q, v, lambda, muJ, vJ, N, implVol
callCF(cf = cfMerton, S =S, X =X, tau=tau, r=r, q =g,

v = v, lambda = lambda, muJ = muJ, vJ = vJ, implVol = TRUE)
vanillaOptionEuropean(s, X, tau,r,q,v, greeks = FALSE)

TRUE)

lambda <- @ ## no jumps
callMerton(S, X, tau, r, g, v, lambda, muJ, vJ, N, implVol = FALSE)
vanillaOptionEuropean(S,X,tau,r,q,v, greeks = FALSE)

lambda <- 1; muJ <- @; vJ <- 0.0%2 ## no jumps, either
callMerton(S, X, tau, r, q, v, lambda, muJ, vJ, N, implVol = FALSE)
vanillaOptionEuropean(S, X, tau,r,q,v, greeks = FALSE)

colSubset Full-rank Column Subset

Description

Select a full-rank subset of columns of a matrix.

Usage

colSubset(x)

Arguments

X a numeric matrix

Details

Uses qr.

Value

A list:

columns indices of columns

multiplier a matrix

18 CPPI

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

repairMatrix

Examples

nc <- 3 ## columns
nr <- 10 ## rows
M <- array(rnorm(nr * nc), dim = c(nr, nc))

C <- array(0.5, dim = c(nc, nc))
diag(C) <- 1

M <= M %*% chol(C)

M<-ML ,c(1,1,1,2,3)]

M

(tmp <- colSubset(M))

C <- cor(M[,tmp$columns])

nc <- ncol(C)

nr <- 100

X <- array(rnorm(nr*nc), dim = c(nr, nc))
X <= X %*% chol(C)

X <= X %*% tmp$multiplier

head(X)

cor(X)

CPPI Constant-Proportion Portfolio Insurance

Description

Simulate constant-proportion portfolio insurance (CPPI) for a given price path.

Usage

CPPI(S, multiplier, floor, r, tau =1, gap = 1)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

CPPI 19

Arguments
S numeric: price path of risky asset
multiplier numeric
floor numeric: a percentage, should be smaller than 1
r numeric: interest rate (per time period tau)
tau numeric: time periods
gap numeric: how often to rebalance. 1 means every timestep, 2 means every second
timestep, and so on.
Details

Based on Dietmar Maringer’s MATLAB code (function CPPIgap, Listing 9.1).
See Gilli, Maringer and Schumann, 2011, chapter 9.

Value
A list:
v normalised value (always starts at 1)
C cushion
B bond investment
F floor
E exposure
N units of risky asset
S price path
Author(s)

Original MATLAB code: Dietmar Maringer. R implementation: Enrico Schumann.

References

Chapter 9 of Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization
in Finance. 2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

tau <- 2
S <- gbm(npaths = 1, timesteps = taux256,
r=2=0.02, v=20.2*2, tau = tau, S0 = 100)

rebalancing every day
sol <- CPPI(S, multiplier = 5, floor = 0.9, r = 0.01,
tau = tau, gap = 1)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

20 DEopt

par(mfrow = c(3,1), mar = c(3,3,1,1))
plot(0: (length(S)-1), S, type = "s", main = "stock price”)
plot(@: (length(S)-1), sol$V, type = "s”, main = "value")
plot(@: (length(S)-1), 100*solE/solV, type = "s",

main = "% invested in risky asset"”)

rebalancing every 5th day
sol <- CPPI(S, multiplier = 5, floor = 0.9, r
tau = tau, gap = 5)

par(mfrow = c(3,1), mar = c(3,3,1,1))
plot(0: (length(S)-1), S, type = "s", main = "stock price")
plot(@: (length(S)-1), sol$V, type = "s", main = "value”)
plot(@: (length(S)-1), 100*solE/solV, type = "s",

main = "% invested in risky asset")

0.01,

DEopt Optimisation with Differential Evolution

Description

The function implements the standard Differential Evolution algorithm.

Usage
DEopt (OF, algo = list(), ...)
Arguments
OF The objective function, to be minimised. See Details.
algo A list with the settings for algorithm. See Details and Examples.
Other pieces of data required to evaluate the objective function. See Details and
Examples.
Details

The function implements the standard Differential Evolution (no jittering or other features). Dif-
ferential Evolution (DE) is a population-based optimisation heuristic proposed by Storn and Price
(1997). DE evolves several solutions (collected in the ‘population’) over a number of iterations
(‘generations’). In a given generation, new solutions are created and evaluated; better solutions
replace inferior ones in the population. Finally, the best solution of the population is returned. See
the references for more details on the mechanisms.

To allow for constraints, the evaluation works as follows: after a new solution is created, it is (i)
repaired, (ii) evaluated through the objective function, (iii) penalised. Step (ii) is done by a call to
OF; steps (i) and (iii) by calls to algo$repair and algo$pen. Step (i) and (iii) are optional, so the
respective functions default to NULL. A penalty is a positive number added to the ‘clean’ objective
function value, so it can also be directly written in the OF. Writing a separate penalty function is
often clearer; it can be more efficient if either only the objective function or only the penalty function

DEopt 21

can be vectorised. (Constraints can also be added without these mechanisms. Solutions that violate
constraints can, for instance, be mapped to feasible solutions, but without actually changing them.
See Maringer and Oyewumi, 2007, for an example.)

Conceptually, DE consists of two loops: one loop across the generations and, in any given genera-
tion, one loop across the solutions. DEopt indeed uses, as the default, two loops. But it does not mat-
ter in what order the solutions are evaluated (or repaired or penalised), so the second loop can be vec-
torised. This is controlled by the variables algo$loopOF, algo$loopRepair and algo$loopPen,
which all default to TRUE. Examples are given in the vignettes and in the book. The respective
algo$loopFun must then be set to FALSE.

All objects that are passed through . . . will be passed to the objective function, to the repair function
and to the penalty function.

The list algo collects the the settings for the algorithm. Strictly necessary are only min and max (to
initialise the population). Here are all possible arguments:

CR probability for crossover. Defaults to 0.9. Using default settings may not be a good idea.

F The step size. Typically a numeric vector of length one; default is 0.5. Using default settings may
not be a good idea. (F can also be a vector with different values for each decision variable.)

nP population size. Defaults to 50. Using default settings may not be a good idea.
nG number of generations. Defaults to 300. Using default settings may not be a good idea.

min, max vectors of minimum and maximum parameter values. The vectors min and max are
used to determine the dimension of the problem and to randomly initialise the population.
Per default, they are no constraints: a solution may well be outside these limits. Only if
algo$minmaxConstr is TRUE will the algorithm repair solutions outside the min and max range.

minmaxConstr if TRUE, algo$min and algo$max are considered constraints. Default is FALSE.
pen a penalty function. Default is NULL (no penalty).

initP optional: the initial population. A matrix of size length(algo$min) times algo$nP, or a
function that creates such a matrix. If a function, it should take no arguments.

repair arepair function. Default is NULL (no repairing).
loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through a loop? Defaults
to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated through a loop? Defaults
to TRUE.

printDetail If TRUE (the default), information is printed. If an integer i greater then one, infor-
mation is printed at very ith generation.

printBar If TRUE (the default), a txtProgressBar is printed.

storeF if TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions defaultis FALSE. If TRUE, the solutions (ie, decision variables) in every generation
are stored and returned as a list P in list x1ist (see Value section below). To check, for
instance, the solutions at the end of the ith generation, retrieve x1ist[[c (1L, i)]]. This will
be a matrix of size length(algo$min) times algo$nP. (To be consistent with other functions,
x1list is itself a list. In the case of DEopt, it contains just one element.)

22 DEopt

classify Logical; default is FALSE. If TRUE, the result will have a class attribute TAopt attached.
This feature is experimental: the supported methods may change without warning.

drop If FALSE (the default), the dimension is not dropped from a single solution when it is passed
to a function. (That is, the function will receive a single-column matrix.)

Value
A list:
xbest the solution (the best member of the population), which is a numeric vector
OFvalue objective function value of best solution
popF a vector. The objective function values in the final population.
Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP containing the
objective function values of all solutions over the generations; else NA.
xlist if algo$storeSolutions is TRUE, a list that contains a list P of matrices and a

matrix initP (the initial solution); else NA.

initial.state the value of .Random. seed when the function was called.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Maringer, D. and Oyewumi, O. (2007). Index Tracking with Constrained Portfolios. Intelligent
Systems in Accounting, Finance and Management, 15(1), pp. 57-71.

Schumann, E. (2012) Remarks on ’A comparison of some heuristic optimization methods’. https:
//enricoschumann.net/R/remarks.htm

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Storn, R., and Price, K. (1997) Differential Evolution — a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), pp. 341-359.
See Also

GAopt, PSopt

Examples

Example 1: Trefethen's 100-digit challenge (problem 4)
https://people.maths.ox.ac.uk/trefethen/hundred.html

OF <- tfTrefethen #i## see ?testFunctions
algo <- list(nP = 50L, ### population size
nG = 300L, ### number of generations

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/R/remarks.htm
https://enricoschumann.net/R/remarks.htm
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

DEopt

F =20.6, ### step size
CR =10.9, ### prob of crossover
min = c¢(-10, -10), ### range for initial population
max = c(10, 10))

sol <- DEopt(OF = OF, algo = algo)

correct answer: -3.30686864747523
format(sol$OFvalue, digits = 12)

check convergence of population

sd(sol$popF)

ts.plot(sol$Fmat, xlab = "generations”, ylab = "OF")

Example 2: vectorising the evaluation of the population

OF <- tfRosenbrock ### see ?testFunctions
size <- 3L ### define dimension

X <- rep.int(1, size) ### the known solution ...
OF (x) ### ... should give zero

algo <- list(printBar = FALSE,

nP = 30L,
nG = 300L,

F=0.6,
CR = 0.9,

min = rep(-100, size),
max = rep(100, size))

run DEopt

(t1 <- system.time(sol <- DEopt(OF = OF, algo = algo)))
sol$xbest

sol$OFvalue ### should be zero (with luck)

a vectorised Rosenbrock function: works only with a *matrixx x
OF2 <- function(x) {

n <- dim(x)[1L]

xi <- x[seq_len(n - 1L), 1]

colSums (100 * (x[2L:n,] - xi * xi)*2 + (1 - xi)*2)
3

(]

random solutions (every column of 'x' is one solution)
x <- matrix(rnorm(size * algo$nP), size, algo$nP)
all.equal (OF2(x)[1:3],

c(OF(xL ,1L1), OF(x[,2L]), OF(x[,3L1)))

run DEopt and compare computing time

algo$loopOF <- FALSE

(t2 <- system.time(sol2 <- DEopt(OF = OF2, algo = algo)))
sol2$xbest

sol2$0Fvalue ### should be zero (with luck)
t1[[3L11/t2[[3L]] ### speedup

23

24

divRatio

divRatio

Diversification Ratio

Description

Compute the diversification ratio of a portfolio.

Usage

divRatio(w, var)

Arguments

w

var

Details

numeric: a vector of weights

numeric matrix: the variance—covariance matrix

The function provides an efficient implementation of the diversification ratio, suitable for optimisa-

tion.

Value

a numeric vector of length one

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.

2nd edition. Elsevier. doi:10.1016/C2017001621X

Yves Choueifaty and Yves Coignard (2008) Toward Maximum Diversification. Journal of Portfolio
Management 35(1), 40-51.

See Also

pm, drawdown

Examples
na <- 10
rho <- 0.5

v_min <- 0.2
v_max <- 0.4

number of assets
correlation
minimum vol
maximum vol

set up a covariance matrix S

https://doi.org/10.1016/C2017-0-01621-X

drawdown 25

C <- array(rho, dim = c(na,na))

diag(C) <- 1

vols <- seq(v_min, v_max, length.out = na)
S <- outer(vols, vols) * C

w <- rep(1/na, na) ## weights
divRatio(w, S)

drawdown Drawdown

Description

Compute the drawdown of a time series.

Usage

drawdown(v, relative = TRUE, summary = TRUE)

Arguments
Y% a price series (a numeric vector)
relative if TRUE, maximum drawdown is chosen according to percentage losses; else in
units of v
summary if TRUE, provide maximum drawdown and time when it occured; else return
drawdown vector
Details

The drawdown at position ¢ of a time series v is the difference between the highest peak that was
reached before ¢ and the current value. If the current value represents a new high, the drawdown is
Zero.

Value
If summary is FALSE, a vector of the same length as v. If summary is TRUE, a list
maximum maximum drawdown
high the max of v
high.position position of high

low the min of v

low.position position of low

Author(s)

Enrico Schumann

26 EuropeanCall

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual
See Also

drawdowns

Examples

v <= cumprod(1 + rnorm(20) * 0.02)
drawdown (v)

EuropeanCall Computing Prices of European Calls with a Binomial Tree

Description

Computes the fair value of a European Call with the binomial tree of Cox, Ross and Rubinstein.

Usage

EuropeanCall(Se, X, r, tau, sigma, M = 101)
EuropeanCallBE(SQ, X, r, tau, sigma, M = 101)

Arguments

S0 current stock price

X strike price

r risk-free rate

tau time to maturity

sigma volatility

M number of time steps
Details

Prices a European Call with the tree approach of Cox, Ross, Rubinstein.

The algorithm in EuropeanCallBE does not construct and traverse a tree, but computes the terminal
prices via a binomial expansion (see Higham, 2002, and Chapter 5 in Gilli/Maringer/Schumann,
2011).

Value

Returns the value of the call (numeric).

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

French

Author(s)

Enrico Schumann

References

27

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

M. Gilli and Schumann, E. (2009) Implementing Binomial Trees. COMISEF Working Paper Series
No. 008. https://enricoschumann.net/COMISEF/wps008.pdf

Higham, D. (2002) Nine Ways to Implement the Binomial Method for Option Valuation in MAT-
LAB. SIAM Review, 44(4), pp. 661-677. doi:10.1137/S0036144501393266 .

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.

net/NMOF . htm#NMOFmanual

See Also
callHestoncf
Examples
price
EuropeanCall(S@ = 100, X = 100, 0.02, tau = 1, sigma = 0.20, M = 50)
EuropeanCallBE(S@ = 100, X = 100, r = 0.02, tau = 1, sigma = 0.20, M = 50)
a Greek: delta
h <- 1e-8
C1 <- EuropeanCall(Se = 100 + h, X = 100, r = 0.02, tau = 1,
sigma = 0.20, M = 50)
C2 <- EuropeanCall(Se = 100 , X =100, r = 0.02, tau = 1,
sigma = 0.20, M = 50)
(C1 -C2) / h
French Download Datasets from Kenneth French’s Data Library
Description

Download datasets from Kenneth French’s Data Library.

Usage

French(dest.dir,

dataset = "F-F_Research_Data_Factors_CSV.zip",
weighting = "value”, frequency = "monthly”,

price.series = FALSE, na.rm = FALSE,
adjust.frequency = TRUE,
return.class = "data.frame")

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/COMISEF/wps008.pdf
https://doi.org/10.1137/S0036144501393266
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

28 French

Arguments
dest.dir string: a path to a directory
dataset a character string: the CSV file name. Also supported are the keywords ‘market’
and ‘rf’.
weighting a character string: "equal” or "value”
frequency a character string: daily, monthly or annual. Whether it is used or ignored

depends on the particular dataset.
price.series logical: convert the returns series into prices series?
na.rm logical: remove missing values in the calculation of price series?
adjust.frequency

logical: if TRUE, frequency is switched to ‘"daily"”’ when the word ‘"daily
appears in the dataset’s name

ns

return.class a string: ‘data.frame’ (the default) or ‘zoo’

Details

The function downloads data provided by Kenneth French at https://mba. tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html. The download file gets a date prefix (current
date in format YYYYMMDD) and is stored in directory dest.dir. Before any download is attempted,
the function checks whether a file with today’s prefix exist in dest.dir; if yes, the file is used.

In the original data files, missing values are coded as -99 or similar. These numeric values are
replaced by NA.

Calling the function without any arguments will print the names of the supported datasets (and
return them insivibly).

For dataset ‘market’, the function downloads the three-factor dataset, and adds excess return and
risk-free rate. For dataset ‘rf’, only the risk-free rate is returned.

Value

A data.frame, with contents depending on the particular dataset, or an object as specified by
return.class.

If the download fails, the function evaluates to NULL, typically with warnings.

Author(s)

Enrico Schumann

References

Fama, Eugene F. and French, Kenneth R. (2023) Production of U.S. Rm-Rf, SMB, and HML in the
Fama-French Data Library, Chicago Booth Research Paper No. 23-22. doi:10.2139/ssrn.4629613

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://doi.org/10.2139/ssrn.4629613
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

fundData 29

See Also
Shiller

Examples

list all supported files
French()

fetch names of files from Kenneth French's website
try({
txt <- readLines(paste@("https://mba.tuck.dartmouth.edu/pages/"”,
"faculty/ken.french/data_library.html"))
csv <- txt[grep("ftp/.*CSV.zip", txt, ignore.case = TRUE)]
gsub(".xftp/(.*x?CSV.zip).*", "\1", csv, ignore.case = TRUE)

»
Not run:
archive.dir <- "~/Downloads/French”

if (!dir.exists(archive.dir))
dir.create(archive.dir)
French(archive.dir, "F-F_Research_Data_Factors_CSV.zip")

End(Not run)

fundData Mutual Fund Returns

Description

A matrix of 500 rows (return scenarios) and 200 columns (mutual funds). The elements in the
matrix are weekly returns.

Usage

fundData

Format

A plain numeric matrix.

Details

The scenarios were created with a bootstrapping technique. The data set is only meant to provide
example data on which to test algorithms.

30 GAopt

Source

Schumann, E. (2010) Essays on Practical Financial Optimisation, (chapter 4), PhD thesis, Univer-
sity of Geneva.

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

apply(fundData, 2, summary)

GAopt Optimisation with a Genetic Algorithm

Description

A simple Genetic Algorithm for minimising a function.

Usage
GAopt (OF, algo = list(), ...)
Arguments
OF The objective function, to be minimised. See Details.
algo A list with the settings for algorithm. See Details and Examples.
Other pieces of data required to evaluate the objective function. See Details and
Examples.
Details

The function implements a simple Genetic Algorithm (GA). A GA evolves a collection of solu-
tions (the so-called population), all of which are coded as vectors containing only zeros and ones.
(In GAopt, solutions are of mode logical.) The algorithm starts with randomly-chosen or user-
supplied population and aims to iteratively improve this population by mixing solutions and by
switching single bits in solutions, both at random. In each iteration, such randomly-changed solu-
tions are compared with the original population and better solutions replace inferior ones. In GAopt,
the population size is kept constant.

GA language: iterations are called generations; new solutions are called offspring or children (and
the existing solutions, from which the children are created, are parents); the objective function is
called a fitness function; mixing solutions is a crossover; and randomly changing solutions is called
mutation. The choice which solutions remain in the population and which ones are discarded is

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

GAopt 31

called selection. In GAopt, selection is pairwise: a given child is compared with a given parent; the
better of the two is kept. In this way, the best solution is automatically retained in the population.

To allow for constraints, the evaluation works as follows: after new solutions are created, they are
(1) repaired, (ii) evaluated through the objective function, (iii) penalised. Step (ii) is done by a call
to OF; steps (i) and (iii) by calls to algo$repair and algo$pen. Step (i) and (iii) are optional, so
the respective functions default to NULL. A penalty can also be directly written in the OF, since it
amounts to a positive number added to the ‘clean’ objective function value; but a separate function
is often clearer. A separate penalty function is advantagous if either only the objective function or
only the penalty function can be vectorised.

Conceptually a GA consists of two loops: one loop across the generations and, in any given gener-
ation, one loop across the solutions. This is the default, controlled by the variables algo$1loopOF,
algo$loopRepair and algo$loopPen, which all default to TRUE. But it does not matter in what
order the solutions are evaluated (or repaired or penalised), so the second loop can be vectorised.
The respective algo$loopFun must then be set to FALSE. (See also the examples for DEopt and
PSopt.)

The evaluation of the objective function in a given generation can even be distributed. For this, an
argument algo$methodOF needs to be set; see below for details (and Schumann, 2011, for exam-
ples).

All objects that are passed through . . . will be passed to the objective function, to the repair function
and to the penalty function.

The list algo contains the following items:

nB number of bits per solution. Must be specified.
nP population size. Defaults to 50. Using default settings may not be a good idea.

nG number of iterations (‘generations’). Defaults to 300. Using default settings may not be a good
idea.

crossover The crossover method. Default is "onePoint”; also possible is “uniform”.
prob The probability for switching a single bit. Defaults to 0.01; typically a small number.
pen a penalty function. Default is NULL (no penalty).

repair arepair function. Default is NULL (no repairing).

initP optional: the initial population. A logical matrix of size length(algo$nB) times algo$nP,
or a function that creates such a matrix. If a function, it must take no arguments. If mode (mP)
is not logical, then storage.mode(mP) will be tried (and a warning will be issued).

loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through a loop? Defaults
to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated through a loop? Defaults
to TRUE.

methodOF loop (the default), vectorised, snow or multicore. Setting vectorised is equivalent
to having algo$1loopOF set to FALSE (and methodOF overrides 1oopOF). snow and multicore
use functions clusterApply and mclapply, respectively. For snow, an object algo$cl needs
to be specified (see below). For multicore, optional arguments can be passed through algo$mc. control
(see below).

cl acluster object or the number of cores. See documentation of package parallel.

32 GAopt

mc.control a list of named elements; optional settings for mclapply (for instance,
list(mc.set.seed = FALSE))

printDetail If TRUE (the default), information is printed.
printBar If TRUE (the default), a txtProgressBar is printed.

storeF If TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions If TRUE, the solutions (ie, binary strings) in every generation are stored and re-
turned as a list P in list x1ist (see Value section below). To check, for instance, the solutions
at the end of the ith generation, retrieve x1ist[[c(1L, i)]]. This will be a matrix of size
algo$nB times algo$nP.

classify Logical; default is FALSE. If TRUE, the result will have a class attribute TAopt attached.
This feature is experimental: the supported methods may change without warning.

Value
A list:
xbest the solution (the best member of the population)
OFvalue objective function value of best solution
popF a vector. The objective function values in the final population.
Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP containing the
objective function values of all solutions over the generations; else NA
xlist if algo$storeSolutions is TRUE, a list that contains a list P of matrices and a

matrix initP (the initial solution); else NA.

initial.state the value of .Random.seed when the function was called.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

DEopt, PSopt

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

greedySearch 33

Examples

a *very* simple problem (why?):
match a binary (logical) string y

size <- 20L ### the length of the string

OF <- function(x, y) sum(x !=y)

y <- runif(size) > 0.5

X <- runif(size) > 0.5

OF(y, vy) ### the optimum value is zero

OF(x, y)

algo <- list(nB = size, nP = 20L, nG = 100L, prob = 0.002)
sol <- GAopt(OF, algo = algo, y = y)

show differences (if any: marked by a '*')
cat(as.integer(y), "\n", as.integer(sol$xbest), "\n",
ifelse(y == sol$xbest , " ", "*"), "\n", sep = "")

algo$nP <- 3L ### that shouldn't work so well
sol2 <- GAopt(OF, algo = algo, y =vy)

show differences (if any: marked by a '*')
cat(as.integer(y), "\n", as.integer(sol2$xbest), "\n",

ifelse(y == sol2$xbest , " ", "*"), "\n", sep = "")
greedySearch Greedy Search
Description
Greedy Search
Usage
greedySearch(OF, algo, ...)
Arguments
OF The objective function, to be minimised. Its first argument needs to be a solu-
tion; . .. arguments are also passed.
algo List of settings. See Details.
Other variables to be passed to the objective function and to the neighbourhood
function. See Details.
Details

A greedy search works starts at a provided initial solution (called the current solution) and searches
a defined neighbourhood for the best possible solution. If this best neighbour is not better than the
current solution, the search stops. Otherwise, the best neighbour becomes the current solution, and
the search is repeated.

34 greedySearch

Value
A list:
xbest best solution found.
OFvalue objective function value associated with best solution.
Fmat a matrix with two columns. Fmat[, 1L] contains the proposed solution over all
iterations; Fmat[, 2L] contains the accepted solutions.
xlist a list

initial.state the value of .Random.seed when the function was called.

X0 the initial solution
iterations the number of iterations after which the search stopped
Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also
LSopt
Examples
na <- 100
inc <- 5
R <- randomReturns(na = na,
ns = 1000,
sd = seq(0.01, 0.02, length.out = 100),
rho = 0.5)
S <- cov(R)
OF <- function(x, S, ...) {

w <= 1/sum(x)
sum(w * w * S[x, x])

3

x <- logical(na)
x[1:inc] <- TRUE

all.neighbours <- function(x, ...) {
true <- which(x)
false <- which(!x)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

gridSearch

ans
for

ans

algo <-

<- list()

35

(i in true) {
for (j in false) {
ans1 <- x
ans1[i] <- !x[i]
ans1[j] <- 'x[j]
ans <- c(ans, list(ans1))

list(loopOF = TRUE,
maxit = 1000,
all.neighbours = all.neighbours,

X0 =

x)

system.time(sol.gs <- greedySearch(OF, algo = algo, S = S))
sqrt(sol.gs$0Fvalue)

gridSearch

Grid Search

Description

Evaluate a function for a given list of arguments.

Usage
gridSearch(fun, levels, ..., lower, upper, npar = 1L, n = 5L,
printDetail = TRUE,
method = NULL,
mc.control = list(), cl = NULL,
keepNames = FALSE, asList = FALSE)
Arguments
fun a function of the form fun(x, ...), with x being a numeric vector or a list
levels a list of levels for the arguments (see Examples)
objects passed to fun
lower a numeric vector. Ignored if levels are explicitly specified.
upper a numeric vector. Ignored if levels are explicitly specified.
npar the number of parameters. Must be supplied if lower and upper are to be ex-
panded; see Details. Ignored when levels are explicitly specified, or when
lower/upper are used and at least one has length greater than one. See Exam-
ples.
n the number of levels. Default is 5. Ignored if levels are explicitly specified.

36 gridSearch

printDetail print information on the number of objective function evaluations

method can be loop (the default), multicore or snow. See Details.

mc.control a list containing settings that will be passed tomclapply if method ismulticore.
Must be a list of named elements; see the documentation of mclapply in paral-
lel.

cl default is NULL. If method snow is used, this must be a cluster object or an integer

(the number of cores).

keepNames logical: should the names of levels be kept?
asList does fun expect a list? Default is FALSE.
Details

A grid search can be used to find ‘good’ parameter values for a function. In principle, a grid search
has an obvious deficiency: as the length of x (the first argument to fun) increases, the number of
necessary function evaluations grows exponentially. Note that gridSearch will not warn about an
unreasonable number of function evaluations, but if printDetail is TRUE it will print the required
number of function evaluations.

In practice, grid search is often better than its reputation. If a function takes only a few parameters,
it is often a reasonable approach to find ‘good’ parameter values.

The function uses the mechanism of expand. grid to create the list of parameter combinations for
which fun is evaluated; it calls lapply to evaluate fun if method == "1oop"” (the default).

If method is multicore, then function mclapply from package parallel is used. Further settings for
mclapply can be passed through the list mc.control. If multicore is chosen but the functionality
is not available, then method will be set to 1loop and a warning is issued. If method == "snow", the
function clusterApply from package parallel is used. In this case, the argument c1 must either
be a cluster object (see the documentation of clusterApply) or an integer. If an integer, a cluster
will be set up via makeCluster(c(rep(”localhost”, cl)), type = "SOCK") (and stopCluster
is called when the function is exited). If snow is chosen but not available or c1 is not specified, then
method will be set to 1loop and a warning is issued.

Value

A list.

minfun the minimum of fun.

minlevels the levels that give this minimum.

values a list. All the function values of fun.

levels a list. All the levels for which fun was evaluated.
Author(s)

Enrico Schumann

gridSearch 37

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

testFun <- function(x)
x[1L] + x[2L]*2

sol <- gridSearch(fun = testFun, levels = list(1:2, c(2, 3, 5)))
sol$minfun
sol$minlevels

specify all levels

levels <- list(a =1:2, b = 1:3)
res <- gridSearch(testFun, levels)
res$minfun

sol$minlevels

specify lower, upper and npar

lower <- 1; upper <- 3; npar <- 2

res <- gridSearch(testFun, lower = lower, upper = upper, npar = npar)
res$minfun

sol$minlevels

specify lower, upper, npar and n

lower <- 1; upper <- 3; npar <- 2; n <- 4

res <- gridSearch(testFun, lower = lower, upper = upper, npar = npar, n = n)
res$minfun

sol$minlevels

specify lower, upper and n

lower <- c(1,1); upper <- c(3,3); n <-4

res <- gridSearch(testFun, lower = lower, upper = upper, n
res$minfun

sol$minlevels

n)

specify lower, upper (auto-expanded) and n

lower <- c(1,1); upper <- 3; n <- 4

res <- gridSearch(testFun, lower = lower, upper = upper, n = n)
res$minfun

sol$minlevels

non-numeric inputs

test_fun <- function(x) {
-(length(x$S) + x$N1 + x3$N2)

3

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

38 LS.info

ans <- gridSearch(test_fun,
levels = list(S = list("a", c("a", "b"), c("a", "b", "c")),
N1 = 1:5,
N2 = 101:105),
asList = TRUE, keepNames = TRUE)

ans$minlevels

$S

[1] "a" "b" "c"
##

$N1

[1]1 5

##

$N2

[1] 105

LS.info Local-Search Information

Description
The function can be called from the objective and neighbourhood function during a run of LSopt;
it provides information such as the current iteration.
Usage
LS.info(n = @L)

Arguments

n generational offset; see Details.

Details

This function is still experimental.

The function can be called in the neighbourhood function or the objective function during a run of
LSopt. It evaluates to a list with the state of the optimisation run, such as the current iteration.

LS.info relies on parent. frame to retrieve its information. If the function is called within another
function in the neighbourhood or objective function, the argument n needs to be increased.

Value

A list

iteration current iteration

step same as ‘iteration’

LSopt 39

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

LSopt, TA.info

Examples

MINIMAL EXAMPLE for LSopt

objective function evaluates to a constant
fun <- function(x)
()

neighbourhood function does not even change the solution,

but it reports information

nb <- function(x) {
tmp <- LS.info()
cat("current iteration
X

n

, tmp$iteration, "\n")
3

run LS

algo <- list(nS = 5,
x0 = rep(@, 5),
neighbour = nb,
printBar = FALSE)

ignore <- LSopt(fun, algo)

LSopt Stochastic Local Search

Description

Performs a simple stochastic Local Search.

Usage
LSopt(OF, algo = list(), ...)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

40 LSopt
Arguments
OF The objective function, to be minimised. Its first argument needs to be a solu-
tion; ... arguments are also passed.
algo List of settings. See Details.
Other variables to be passed to the objective function and to the neighbourhood
function. See Details.
Details

Local Search (LS) changes an initial solution for a number of times, accepting only such changes
that lead to an improvement in solution quality (as measured by the objective function OF). More
specifically, in each iteration, a current solution xc is changed through a function algo$neighbour.
This function takes xc as an argument and returns a new solution xn. If xn is not worse than xc, ie,
if OF (xn, .. .)<=0F (xc, .. .), then xn replaces xc.

The list algo contains the following items:

nS The number of steps. The default is 1000; but this setting depends very much on the problem.

nI Total number of iterations, with default NULL. If specified, it will override nS. The option is
provided to makes it easier to compare and switch between functions LSopt, TAopt and SAopt.

x@ The initial solution. This can be a function; it will then be called once without arguments to
compute an initial solution, ie, x@ <- algo$x@(). This can be useful when LSopt is called in
a loop of restarts and each restart is to have its own starting value.

neighbour The neighbourhood function, called as neighbour(x, ...). Its first argument must be
a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i greater then one, infor-
mation is printed at very ith step.

printBar If TRUE (the default), a txtProgressBar (from package utils) is printed). The progress
bar is not shown if printDetail is an integer greater than 1.

storeF if TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions defaultis FALSE. If TRUE, the solutions (ie, decision variables) in every generation
are stored and returned in list x1ist (see Value section below). To check, for instance, the
current solution at the end of the ith generation, retrieve x1ist[[c(2L, i)]].

OF . target Numeric; when specified, the algorithm will stop when an objective-function value as
low as OF . target (or lower) is achieved. This is useful when an optimal objective-function
value is known: the algorithm will then stop and not waste time searching for a better solution.

At the minimum, algo needs to contain an initial solution x@ and a neighbour function.

LS works on solutions through the functions neighbour and OF, which are specified by the user.
Thus, a solution need not be a numeric vector, but can be any other data structure as well (eg, a list
or a matrix).

To run silently (except for warnings and errors), algo$printDetail and algo$printBar must be
FALSE.

LSopt 41

Value
A list:
xbest best solution found.
OFvalue objective function value associated with best solution.
Fmat a matrix with two columns. Fmat[, 1L] contains the proposed solution over all
iterations; Fmat[,2L] contains the accepted solutions.
xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neighbour solu-

tions at a given iteration (xn) and the current solutions (xc). Example: Fmat[1i,
2L1] is the objective function value associated with x1ist[[c(2L, i)]].

initial.state the value of .Random. seed when the function was called.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

TAopt, restartOpt. Package neighbours (also on CRAN) offers helpers for creating neighbour-
hood functions.

Examples

Aim: find the columns of X that, when summed, give y

random data set

nc <- 25L ## number of columns in data set
nr <- 5L ## number of rows in data set
howManyCols <- 5L ## length of true solution

X <- array(runif(nrxnc), dim = c(nr, nc))

XTRUE <- sample(1L:nc, howManyCols)

Xt <- X[, xTRUE, drop = FALSE]

y <- rowSums(Xt)

a random solution x0 ...

makeRandomSol <- function(nc) {
ii <- sample.int(nc, sample.int(nc, 1L))
x@ <- logical(nc); x@[ii] <- TRUE
x0

}

x@ <- makeRandomSol(nc)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

42

LSopt

... but probably not a good one
sum(y - rowSums(X[, xTRUE, drop = FALSE])) ## should be @
sum(y - rowSums(X[, x@, drop = FALSE]))

a neighbourhood function: switch n elements in solution
neighbour <- function(xc, Data) {

xn <- Xxc

p <- sample.int(Data$nc, Data$n)

xn[p]l <= !xn[p]

if (sum(xn) < 1L)

xn <- xc
xn

a greedy neighbourhood function
neighbourG <- function(xc, Data) {
of <- function(x)
abs(sum(Data$y - rowSums(Data$X[,x, drop = FALSE])))
xbest <- xc
Fxbest <- of(xbest)
for (i in 1L:Data$nc) {
Xn <- xc; p <-1
xn[pl <- !xn[p]
if (sum(xn) >= 1L) {
Fxn <- of(xn)
if (Fxn < Fxbest) {
xbest <- xn
Fxbest <- Fxn

xbest

3

an objective function
OF <- function(xn, Data)
abs(sum(Data$y - rowSums(Data$X[,xn, drop = FALSE])))

(1) GREEDY SEARCH
note: this could be done in a simpler fashion, but the
#t redundancies/overhead here are small, and the example is to
#it show how LSopt can be used for such a search
Data <- list(X =X, y =y, nc =nc, nr =nr, n = 1L)
algo <- list(nS = 500L, neighbour = neighbourG, x@ = x0,
printBar = FALSE, printDetail = FALSE)
solG <- LSopt(OF, algo = algo, Data = Data)

after how many iterations did we stop?
iterG <- min(which(solG$Fmat[,2L] == solG$OFvalue))
solG$0Fvalue ## the true solution has OF-value @

(2) LOCAL SEARCH

MA

algo$neighbour <- neighbour

solLS <- LSopt(OF, algo = algo, Data = Data)

iterLS <- min(which(solLS$Fmat[,2L] == solLS$OFvalue))
solLS$0Fvalue ## the true solution has OF-value @

(3) *Threshold Accepting*

algo$nT <- 10L

algo$nS <- ceiling(algo$nS/algo$nT)

algo$qg <- 0.99

solTA <- TAopt(OF, algo = algo, Data = Data)

iterTA <- min(which(solTA$Fmat[,2L] == solTA$OFvalue))
solTA$OFvalue ## the true solution has OF-value @

look at the solution
all <- sort(unique(c(which(solTA$xbest),
which(solLS$xbest),
which(solG$xbest),
XTRUE)))
ta <- 1s <- greedy <- true <- character(length(all))
true[match(xTRUE, all)] <- "o"
greedy[match(which(solG$xbest), all)] <- "o"
1s[match(which(solLS$xbest), all)] <- "o"
tal match(which(solTA$xbest), all)] <- "o"
data.frame(true = true, greedy = greedy, LS = 1ls , TA = ta,
row.names=all)

plot results

par(ylog = TRUE, mar = c(5,5,1,6), las = 1)

plot(solTA$Fmat[seq_len(iterTA) ,2L],type = "1", log = "y",
ylim = c(le-4,

max (pretty(c(solG$Fmat,solLS$Fmat,solTA$Fmat)))),

xlab = "iterations”, ylab = "OF value”, col = grey(0.5))
lines(cummin(solTA$Fmat[seq_len(iterTA), 2L]1), type = "1")

lines(solG$Fmat[seq_len(iterG), 2L], type = "p”, col = "blue")
lines(solLS$Fmat[seq_len(iterLS), 2L], type = "1", col = "goldenrod3")

legend(x = "bottomleft”,
legend = c("TA best solution”, "TA current solution”,
"Greedy", "LS current/best solution”),
1ty = ¢(1,1,0,1),
col = c("black”,grey(0.5),"blue”,"goldenrod2"),
pch = c(NA,NA,21,NA))
axis(4, at = c(solG$OFvalue, solLS$OFvalue, solTA$OFvalue),
labels = NULL, las = 1)
lines(x = c(iterG, par()$usr[2L]), y = rep(solG$OFvalue,?2),
col = "blue”, 1ty = 3)
lines(x = c(iterTA, par()$usr[2L]), ¥y
col = "black"”, 1ty = 3)
lines(x = c(iterLS, par()$usr[2L]), y = rep(solLS$OFvalue,?2),
col = "goldenrod3", 1ty = 3)

rep(solTA$OFvalue,2),

43

MA Simple Moving Average

44 MA

Description

The function computes a moving average of a vector.

Usage
MA(y, order, pad = NULL)

Arguments
y a numeric vector
order An integer. The order of the moving average. The function is defined such that
order one returns y (see Examples).
pad Defaults to NULL. If not NULL, all elements of the returned moving average with
position smaller than order are replaced by the value of pad. Sensible values
may be NA or 0.
Value

Returns a vector of length length(y).

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

MA(1:10, 3)
MA(1:10, 3, pad = NA)

y <- seq(1, 4, by = 0.3)

z <- MA(y, 1)

all(y == z) ### (typically) FALSE
all.equal(y, z) #i## should be TRUE

'Relative strength index'
rsi <- function(y, t) {
y <- diff(y)
ups <-y + abs(y)
downs <- y - abs(y)
RS <- -MA(ups, t) / MA(downs, t)
RS/(1 + RS)
3
x <- cumprod(c(100, 1 + rnorm(100, sd = 0.01)))

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

maxSharpe 45

par(mfrow = c(2,1))
plot(x, type = "1")
plot(rsi(x, 14), ylim = c(0,1), type = "1")

maxSharpe Maximum-Sharpe-Ratio/Tangency Portfolio

Description

Compute maximum Sharpe-ratio portfolios, subject to lower and upper bounds on weights.

Usage

maxSharpe(m, var, min.return,
wmin = -Inf, wmax = Inf, method = "gp”,
groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

Arguments
m vector of expected (excess) returns.
var the covariance matrix: a numeric (real), symmetric matrix
min.return minimumm required return. This is a technical parameter, used only for QP.
wmin numeric: a lower bound on weights. May also be a vector that holds specific
bounds for each asset.
wmax numeric: an upper bound on weights. May also be a vector that holds specific
bounds for each asset.
method character. Currently, only "qp"” is supported.
groups a list of group definitions
groups.wmin a numeric vector
groups.wmax a numeric vector
Details

The function uses solve.QP from package quadprog. Because of the algorithm that solve.QP
uses, var has to be positive definit (i.e. must be of full rank).

Value

a numeric vector (the portfolio weights) with an attribute variance (the portfolio’s variance)

Author(s)

Enrico Schumann

46 mc

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Schumann, E. (2012) Computing the global minimum-variance portfolio. https://enricoschumann.
net/R/minvar.htm

See Also

minvar, mvPortfolio, mvFrontier

Examples

S <- var(R <- NMOF::randomReturns(3, 10, 0.03))
x <- solve(S, colMeans(R))

x/sum(x)

x <- coef(Im(rep(1, 10) ~ -1 + R))

unname (x/sum(x))

maxSharpe(m = colMeans(R), var

S)

maxSharpe(m = colMeans(R), var = S, wmin = @, wmax = 1)
mc Option Pricing via Monte-Carlo Simulation
Description

Functions to calculate the theoretical prices of options through simulation.

Usage

gbm(npaths, timesteps, r, v, tau, SO,
exp.result = TRUE, antithetic = FALSE)

gbb(npaths, timesteps, S@, ST, v, tau,
log = FALSE, exp.result = TRUE)

Arguments
npaths the number of paths
timesteps timesteps per path
r the mean per unit of time
v the variance per unit of time
tau time

S0 initial value

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/R/minvar.htm
https://enricoschumann.net/R/minvar.htm

ST
log
exp.result

antithetic

Details

47

final value of Brownian bridge
logical: construct bridge from log series?
logical: compute exp of the final path, or return log values?

logical: if TRUE, random numbers for only npaths/2 are drawn, and the random
numbers are mirrored

gbm generates sample paths of geometric Brownian motion.

gbb generates sample paths of a Brownian bridge by first creating paths of Brownian motion W
from time @ to time T, with W_0 equal to zero. Then, at each t, it subtracts t/T * W_T and adds
SO*(1-t/T)+ST*(t/T).

Value

A matrix of sample paths; each column contains the price path of an asset. Even with only a single
time-step, the matrix will have two rows (the first row is S@).

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

vanillaOptionEuropean

Examples

price a European option

... parameters
npaths <- 5000
timesteps <- 1

increase number to get more precise results

S0 <- 100

ST <- 100

tau <-1

r <- 0.01

v <= 0.25"2

... create paths

paths <- gbm(npaths, timesteps, r, v, tau, S0 = SQ)

... a helper function

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

48

mc <- function(paths, payoff, ...)
payoff(paths, ...)
... a payoff function (European call)

payoff <- function(paths, X, r, tau)
exp(-r * tau) * mean(pmax(paths[NROW(paths), 1 - X, 0))

... compute and check
mc(paths, payoff, X = 100, r = r, tau = tau)

vanillaOptionEuropean(S@, X = 100, tau = tau, r = r, v = v)$value

compute delta via forward difference

(see Gilli/Maringer/Schumann, ch. 9)

h <- 1e-6 ## a small number

rnorm(1) ## make sure RNG is initialised
rnd.seed <- .Random.seed #i# store current seed

paths1 <- gbm(npaths, timesteps, r, v, tau, SO = S0)
.Random. seed <- rnd.seed

paths2 <- gbm(npaths, timesteps, r, v, tau, SO = S@ + h)

delta.mc <- (mc(paths2, payoff, X = 100, r = r, tau = tau)-
mc(paths1, payoff, X = 100, r = r, tau = tau))/h
delta <- vanillaOptionEuropean(S@, X = 100, tau = tau,
r=r, v =yv)$delta
delta.mc - delta

a fanplot

steps <- 100

paths <- results <- gbhm(1000, steps, r = 0, v = 0.2"2,
tau = 1, SO = 100)

levels <- seq(@.01, 0.49, length.out = 20)
greys <- seq(@.9, .50, length.out = length(levels))

start with an empty plot ...
plot(@:steps, rep(100, steps+1), ylim = range(paths),
xlab = "", ylab = "", 1ty = @, type = "1")

... and add polygons
for (level in levels) {

1 <- apply(paths, 1, quantile, level)

u <- apply(paths, 1, quantile, 1 - level)

col <- grey(greys[level == levels])

polygon(c(@:steps, steps:0), c(l, rev(u)),
col = col, border = NA)

add border lines
lines(@:steps, 1, col = grey(0.4))

minCVaR 49

lines(@:steps, u, col = grey(0.4))

minCVaR Minimum Conditional-Value-at-Risk (CVaR) Portfolios

Description

Compute minimum-CVaR portfolios, subject to lower and upper bounds on weights.

Usage

minCVaR(R, q = 0.1, wmin = @, wmax = 1,
min.return = NULL, m = NULL,
method = "Rglpk”,
groups = NULL, groups.wmin = NULL, groups.wmax = NULL,
Rglpk.control = list())

Arguments

R the scenario matrix: a numeric (real) matrix

q the Value-at-Risk level: a number between 0 and 0.5

wmin numeric: a lower bound on weights. May also be a vector that holds specific
bounds for each asset.

wmax numeric: an upper bound on weights. May also be a vector that holds specific
bounds for each asset.

m vector of expected returns. Only used if min. return is specified.

min.return minimal required return. If m is not specified, the column means of R are used.

method character. Currently, only "Rglpk” is supported.

groups a list of group definitions

groups.wmin a numeric vector

groups.wmax a numeric vector

Rglpk.control alist: settings passed to Rglpk_solve_LP

Details

Compute the minimum CVaR portfolio for a given scenario set. The default method uses the for-
mulation as a Linear Programme, as described in Rockafellar/Uryasev (2000).

The function uses Rglpk_solve_LP from package Rglpk.

Value

a numeric vector (the portfolio weights); attached is an attribute whose name matches the method
name

50 minMAD

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of
Risk. 2 (3), 21-41.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Schumann, E. (2020) Minimising Conditional Value-at-Risk (CVaR). https://enricoschumann.
net/notes/minimising-conditional-var.html
See Also

minvar

Examples

if (requireNamespace("Rglpk”)) {

ns <- 5000 ## number of scenarios
na <- 20 ## nunber of assets
R <- randomReturns(na, ns, sd = 0.01, rho = 0.5)

res <- minCVaR(R, 0.25)
c(res) #i# portfolio weights

minMAD Compute Minimum Mean—Absolute-Deviation Portfolios

Description

Compute minimum mean—absolute-deviation portfolios.

Usage

minMAD(R, wmin = @, wmax = 1,
min.return = NULL, m = NULL, demean = TRUE,
method = "1p”,
groups = NULL, groups.wmin = NULL, groups.wmax = NULL,
Rglpk.control = list())

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/notes/minimising-conditional-var.html
https://enricoschumann.net/notes/minimising-conditional-var.html

minMAD

Arguments

R a matrix of return scenarios: each column represents one asset; each row repre-
sents one scenario

wmin minimum weight

wmax maximum weight

min.return a minimum required return; ignored if NULL

m a vector of expected returns. If NULL, but min. return is not NULL, then column
means are used as expected returns.

demean logical. If TRUE, the columns of R are demeaned, corresponding to an objective
function Xxxx

method string. Supported are 1p and 1s.

groups group definitions

groups.wmin list of vectors

groups . wmax list of vectors

Rglpk.control alist

Details

Compute the minimum mean—absolute-deviation portfolio for a given scenario set.

The function uses Rglpk_solve_LP from package Rglpk.

Value

a vector of portfolio weights

Author(s)

Enrico Schumann

References

Konno, H. and Yamazaki, H. (1991) Mean-Absolute Deviation Portfolio Optimization Model and

Its Applications to Tokyo Stock Market. Management Science. 37 (5), 519-531.

See Also

minvar, minCVaR

Examples
na <- 10
ns <- 1000

R <- randomReturns(na = na, ns = ns,
sd = 0.01, rho = 0.8, mean = 0.0005)

minMAD(R = R)
minvar(var(R))

52 minvar

minvar Minimum-Variance Portfolios

Description

Compute minimum-variance portfolios, subject to lower and upper bounds on weights.

Usage
minvar(var, wmin = @, wmax = 1, method = "qgp”,
groups = NULL, groups.wmin = NULL, groups.wmax = NULL)
Arguments
var the covariance matrix: a numeric (real), symmetric matrix
wmin numeric: a lower bound on weights. May also be a vector that holds specific
bounds for each asset.
wmax numeric: an upper bound on weights. May also be a vector that holds specific
bounds for each asset.
method character. Currently, only "gp” is supported.
groups a list of group definitions
groups.wmin a numeric vector
groups.wmax a numeric vector
Details

For method "qgp”, the function uses solve.QP from package quadprog. Because of the algorithm
that solve.QP uses, var has to be positive definite (i.e. must be of full rank).
Value

a numeric vector (the portfolio weights) with an attribute variance (the portfolio’s variance)

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Schumann, E. (2012) Computing the global minimum-variance portfolio. https://enricoschumann.
net/R/minvar.htm

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/R/minvar.htm
https://enricoschumann.net/R/minvar.htm

minvar

See Also

TAopt

Examples

variance-covariance matrix from daily returns, 1 Jan 2014 -- 31 Dec 2013, of
cleaned data set at https://enricoschumann.net/data/gilli_accuracy.html

if (requireNamespace("quadprog”)) {

53

var <- structure(c(@.000988087100677907, -0.0000179669410403153, 0.000368923882626859,
0.000208303611101873, 0.000262742052359594, -0.0000179669410403153,
0.00171852167358765, 0.0000857467457561209, 0.0000215059246610556,
0.0000283532159921211, 0.000368923882626859, 0.0000857467457561209,
0.00075871953281751, 0.000194002299424151, 0.000188824454515841,
0.000208303611101873, 0.0000215059246610556, 0.000194002299424151,
0.000265780633005374, ©.000132611196599808, 0.000262742052359594,
0.0000283532159921211, 0.000188824454515841, 0.000132611196599808,
0.00025948420130626) ,
.Dim = ¢(5L, 5L),
.Dimnames = list(c("CBK.DE", "VOW.DE", "CON.DE", "LIN.DE", "MUV2.DE"),
c("CBK.DE", "VOW.DE", "CON.DE", "LIN.DE", "MUV2.DE")))

Hi#

CBK.DE
VOW.DE
CON.DE
LIN.DE
MUV2.DE
Hi#

minvar(var,
minvar(var,
wmin

wmax

minvar(var,

minvar(var,

minvar(var,

CBK.DE
0.000988
-0.000018
0.000369
0.000208
0.000263

wmin = @,

0.5)

VOW.DE

-0.0000180

0.0017185
0.0000857
0.0000215
0.0000284

CON.DE
0.0003689
0.0000857
0.0007587
0.0001940
0.0001888

wmax = 0.5)

wmin = -Inf, wmax =
[1] -0.0467 ©0.0900 0.0117 0.4534 0.4916

wmin = -Inf, wmax = 0.45) ##

wmin =

0.1, wmax =

= ¢c(0.1,0,0,0,0), ## enforce at

Inf) ##

Inf) ##

[1] 0.100 0.100 0.100 0.363 0.337

group constraints:

group 1 consists of asset 1 only,

=> unconstrained

minvar(var,

wmin = @, wmax = 0.40)

LIN.DE
.0002083
.0000215
.0001940
.0002658
.0001326

[SENSENS RN

no bounds

MUV2.DE
0.0002627
0.0000284
0.0001888
0.0001326
0.0002595

least 10% weight in CBK.DE

no lower bounds
[1] -0.0284 ©.0977 ©0.0307 0.4500 0.4500

no upper bounds

and must have weight [0.25,0.30]
group 2 consists of assets 4 and 5, and must have weight [0.10,0.20]

54

[1] 0.0097 0.1149 0.0754 0.4000 0.4000

=> with group constraints

minvar(var, wmin = @, wmax = 0.40,
groups = list(1, 4:5),
groups.wmin = c(0.25, 0.1),
groups.wmax = c(0.30, 0.2))

[1] 0.250 0.217 0.333 0.149 0.051

mvFrontier

mvFrontier Computing Mean—Variance Efficient Portfolios

Description

Compute mean—variance efficient portfolios and efficient frontiers.

Usage

mvFrontier(m, var, wmin = @, wmax = 1, n = 50, rf = NA,

groups = NULL, groups.wmin = NULL, groups.wmax = NULL)

mvPortfolio(m, var, min.return, wmin = @, wmax = 1, lambda
groups = NULL, groups.wmin = NULL, groups.wmax

Arguments
m vector of expected returns
var expected variance—covariance matrix
wmin numeric: minimum weights
wmax numeric: maximum weights
n number of points on the efficient frontier
min.return minimal required return
rf risk-free rate
lambda risk—-reward trade-off
groups a list of group definitions
groups.wmin a numeric vector
groups . wmax a numeric vector
Details

NULL,
NULL)

mvPortfolio computes a single mean—variance efficient portfolio, using package quadprog. It
does so by minimising portfolio variance, subject to constraints on minimum return and budget

(weights need to sum to one), and min/max constraints on the weights.

mvFrontier 55

If)\ is specified, the function ignores the min. return constraint and instead solves the model
min =dn'w + (1 = Nw'varw
in which w are the weights. If A is a vector of length 2, then the model becomes
n}in —Aim’w 4+ dgw'var w

which may be more convenient (e.g. for setting A; to 1).

mvFrontier computes returns, volatilities and compositions for portfolios along an efficient fron-
tier. If rf is not NA, cash is included as an asset.
Value

For mvPortfolio, a numeric vector of weights.

For mvFrontier, a list of three components:

return returns of portfolios

volatility volatilities of portfolios

weights A matrix of portfolio weights. Each column holds the weights for one portfolio
on the frontier. If rf is specified, an additional row is added, providing the cash
weight.

The i-th portfolio on the frontier corresponds to the i-th elements of return and volatility, and
the i-th column of portfolio.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

minvar for computing the minimum-variance portfolio

Examples

na <- 4
vols <- ¢(0.10, 0.15, 0.20,0.22)
m <- c(0.06, 0.12, 0.09, 0.07)
const_cor <- function(rho, na) {
C <- array(rho, dim = c(na, na))
diag(C) <- 1

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

56 NS

C
3
var <- diag(vols) %*% const_cor(@.5, na) %*% diag(vols)
wmax <- 1 # maximum holding size
wmin <- 0.0 # minimum holding size
rf <- 0.02

if (requireNamespace("quadprog”)) {
pl <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50)
p2 <- mvFrontier(m, var, wmin = wmin, wmax = wmax, n = 50, rf = rf)
plot(p1$volatility, pl$return, pch = 19, cex = 0.5, type = "0",
xlab = "Expected volatility”,
ylab = "Expected return”)
lines(p2$volatility, p2$%$return, col = grey(0.5))
abline(v = @, h = rf)
} else
message("Package 'quadprog' is required”)

NS Zero Rates for Nelson—Siegel-Svensson Model

Description

Compute zero yields for Nelson—Siegel (NS)/Nelson—Siegel-Svensson (NSS) model.

Usage

NS(param, tm)
NSS(param, tm)

Arguments
param a vector. For NS: 31, B2, 83, A. For NSS: a vector: 31, B2, 83, 84, A1, Aa.
tm a vector of maturities

Details

See Chapter 14 in Gilli/Maringer/Schumann (2011).

Maturities (tm) need to be given in time (not dates).

Value

The function returns a vector of length length(tm).

Author(s)

Enrico Schumann

NSt 57

References

Gilli, M. and Grosse, S. and Schumann, E. (2010) Calibrating the Nelson-Siegel-Svensson model,
COMISEF Working Paper Series No. 031. https://enricoschumann.net/COMISEF/wps@31.pdf

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Gilli, M. and Schumann, E. (2010) A Note on ‘Good’ Starting Values in Numerical Optimisation,
COMISEF Working Paper Series No. 044. https://enricoschumann.net/COMISEF/wps@44.pdf

Nelson, C.R. and Siegel, A.F. (1987) Parsimonious Modeling of Yield Curves. Journal of Business,
60(4), pp. 473-489.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Svensson, L.E. (1994) Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994.
IMF Working Paper 94/114.

See Also
NSf, NSSf

Examples

tm <- c(c(1, 3, 6, 9) / 12, 1:10) ## in years
param <- c(6, 3, 8, 1)
yM <- NS(param, tm)
plot(tm, yM, xlab = "maturity in years”,
ylab = "yield in percent”)

param <- c(6, 3, 5, -5, 1, 3)

yM <- NSS(param, tm)

plot(tm, yM, xlab = "maturity in years”,
ylab = "yield in percent")

NSt Factor Loadings for Nelson—Siegel and Nelson—Siegel-Svensson

Description

Computes the factor loadings for Nelson—Siegel (NS) and Nelson—Siegel-Svensson (NSS) model
for given lambda values.

Usage

NSf(lambda, tm)
NSSf (lambdal, lambda2, tm)

https://enricoschumann.net/COMISEF/wps031.pdf
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/COMISEF/wps044.pdf
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

58 NSt

Arguments
lambda the \ parameter of the NS model (a scalar)
lambdat the \; parameter of the NSS model (a scalar)
lambda2 the \o parameter of the NSS model (a scalar)
tm a numeric vector with times-to-payment/maturity
Details

The function computes the factor loadings for given A parameters. Checking the correlation between
these factor loadings can help to set reasonable A values for the NS/NSS models.

Value

For Ns, a matrix with length(tm) rows and three columns. For NSS, a matrix with length(tm)
rows and four columns.

Author(s)

Enrico Schumann

References
Gilli, M. and Grosse, S. and Schumann, E. (2010) Calibrating the Nelson-Siegel-Svensson model,
COMISEF Working Paper Series No. 031. https://enricoschumann.net/COMISEF/wps@31.pdf

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Gilli, M. and Schumann, E. (2010) A Note on ‘Good’ Starting Values in Numerical Optimisation,
COMISEF Working Paper Series No. 044. https://enricoschumann.net/COMISEF/wps@44.pdf

Nelson, C.R. and Siegel, A.F. (1987) Parsimonious Modeling of Yield Curves. Journal of Business,
60(4), pp. 473-489.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Svensson, L.E. (1994) Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994.
IMF Working Paper 94/114.

See Also
NS, NSS

Examples

Nelson-Siegel
cor(NSf(lambda = 6, tm = 1:10)[-1L, -1L])

Nelson-Siegel-Svensson
cor (NSSf(lambdal = 1, lambda2
cor(NSSf(lambdal = 4, lambda2

1:10)[-1L, -1L1)
1:10)[-1L, -1L1)

i n
[(e)
+
3
i n

https://enricoschumann.net/COMISEF/wps031.pdf
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/COMISEF/wps044.pdf
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

optionData 59

optionData Option Data

Description

Closing prices of DAX index options as of 2012-02-10.

Usage

optionData

Format
optionData is a list with six components:
pricesCall a matrix of size 124 times 10. The rows are the strikes; each column belongs to one
expiry date.
pricesPut a matrix of size 124 times 10
index The DAX index (spot).
future The available future settlement prices.
Euribor Euribor rates.

NSSpar Paramaters for German government bond yields, as estimated by the Bundesbank.

Details

Settlement prices for EUREX options are computed at 17:30, Frankfurt Time, even though trading
continues until 22:00.

Source

The data was obtained from several websites: close prices of EUREX products were collected
from https://www.eurex.com/ex-en/ ; Euribor rates and the parameters of the Nelson-Siegel-
Svensson can be found at https://www.bundesbank.de/en/ .

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

str(optionData)
NSS(optionData$NSSpar, 1:10)

https://www.eurex.com/ex-en/
https://www.bundesbank.de/en/
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

60 PBO

PBO Probability of Backtest Overfitting

Description

Estimate probability of backtest overfitting, as described in Bailey et al. 2017

Usage

PBO(M, s = 12, fun = colMeans,

threshold = @, ..., loop.fun = TRUE)

Arguments

M a numeric matrix

s number of submatrices

fun a function

threshold a scalar

additional arguments passed to fun

loop. fun logical: if TRUE, fun is called separately for every column of M; if FALSE, fun
will be passed the whole matrix M

Details

fun is called with M as its first argument.

Value
A list:
pbo probability
lambda vector of logits
in.sample numeric

out.of.sample numeric

Author(s)

Enrico Schumann

References

Bailey, D. H. et al. (2017). The probability of backtest overfitting. Journal of Computational
Finance 20 (4), 39-69. doi:10.21314/JCE.2016.322

https://doi.org/10.21314/JCF.2016.322

pm 61

Examples

might run a few seconds

N <- 5000

T <- 480

M <- array(rnorm(N*T, sd = 0.01), dim = c(T, N))

p <- PBO(M, s = 12, fun = colMeans, loop.fun = FALSE)
str(p)

pm Partial Moments

Description

Compute partial moments.

Usage

pm(x, xp = 2, threshold = @, lower = TRUE,
normalise = FALSE, na.rm = FALSE)

Arguments
X a numeric vector or a matrix
Xp exponent
threshold a numeric vector of length one
lower logical
normalise logical
na.rm logical

Details

For a vector x of length n, partial moments are computed as follows:

1
upper partial moment = — Z (x —t)°
>t

1
1 . _ = _ e
ower partial moment - E (t —)
<t
The threshold is denoted ¢, the exponent xp is labelled e.

If normalise is TRUE, the result is raised to 1/xp. If x is a matrix, the function will compute the
partial moments column-wise.

See Gilli, Maringer and Schumann (2019), chapter 14.

62 PSopt

Value

numeric

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

pm(x <- rnorm(100), 2)
var(x)/2

pm(x, 2, normalise = TRUE)
sgrt(var(x)/2)

PSopt Particle Swarm Optimisation

Description

The function implements Particle Swarm Optimisation.

Usage
PSopt(OF, algo = list(), ...)
Arguments
OF the objective function to be minimised. See Details.
algo a list with the settings for algorithm. See Details and Examples.
pieces of data required to evaluate the objective function. See Details.
Details

The function implements Particle Swarm Optimisation (PS); see the references for details on the
implementation. PS is a population-based optimisation heuristic. It develops several solutions (a
‘population’) over a number of iterations. PS is directly applicable to continuous problems since the
population is stored in real-valued vectors. In each iteration, a solution is updated by adding another
vector called velocity. Think of a solution as a position in the search space, and of velocity as the
direction into which this solution moves. Velocity changes over the course of the optimization: it is

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

PSopt 63

biased towards the best solution found by the particular solution and the best overall solution. The
algorithm stops after a fixed number of iterations.

To allow for constraints, the evaluation works as follows: after a new solution is created, it is (i)
repaired, (ii) evaluated through the objective function, (iii) penalised. Step (ii) is done by a call
to OF; steps (i) and (iii) by calls to algo$repair and algo$pen. Step (i) and (iii) are optional, so
the respective functions default to NULL. A penalty can also be directly written in the OF, since it
amounts to a positive number added to the ‘clean’ objective function value. It can be advantageous
to write a separate penalty function if either only the objective function or only the penalty function
can be vectorised. (Constraints can also be added without these mechanisms. Solutions that violate
constraints can, for instance, be mapped to feasible solutions, but without actually changing them.
See Maringer and Oyewumi, 2007, for an example with Differential Evolution.)

Conceptually, PS consists of two loops: one loop across the iterations and, in any given genera-
tion, one loop across the solutions. This is the default, controlled by the variables algo$loopOF,
algo$loopRepair, algo$loopPen and loopChangeV which all default to TRUE. But it does not
matter in what order the solutions are evaluated (or repaired or penalised), so the second loop can
be vectorised. Examples are given in the vignettes and in the book. The respective algo$loopFun
must then be set to FALSE.

The objective function, the repair function and and the penalty function will be called as fun(solution,
).

The list algo contains the following items:

nP population size. Defaults to 100. Using default settings may not be a good idea.
nG number of iterations. Defaults to 500. Using default settings may not be a good idea.

c1 the weight towards the individual’s best solution. Typically between 0 and 2; defaults to 1.
Using default settings may not be a good idea. In some cases, even negative values work well:
the solution is then driven off its past best position. For ‘simple’ problems, setting c1 to zero
may work well: the population moves then towards the best overall solution.

c2 the weight towards the populations’s best solution. Typically between O and 2; defaults to 1.
Using default settings may not be a good idea. In some cases, even negative values work well:
the solution is then driven off the population’s past best position.

iner the inertia weight (a scalar), which reduces velocity. Typically between 0 and 1. Default is
0.9.

initV the standard deviation of the initial velocities. Defaults to 1.

maxV the maximum (absolute) velocity. Setting limits to velocity is sometimes called velocity
clamping. Velocity is the change in a given solution in a given iteration. A maximum velocity
can be set so to prevent unreasonable velocities (‘overshooting’): for instance, if a decision
variable may lie between O and 1, then an absolute velocity much greater than 1 makes rarely
sense.

min, max vectors of minimum and maximum parameter values. The vectors min and max are
used to determine the dimension of the problem and to randomly initialise the population.
Per default, they are no constraints: a solution may well be outside these limits. Only if
algo$minmaxConstr is TRUE will the algorithm repair solutions outside the min and max range.

minmaxConstr if TRUE, algo$min and algo$max are considered constraints. Default is FALSE.
pen a penalty function. Default is NULL (no penalty).

repair arepair function. Default is NULL (no repairing).

64

PSopt

changeV a function to change velocity. Default is NULL (no change). This function is called before
the velocity is added to the current solutions; it can be used to impose restrictions like changing
only a number of decision variables.

initP optional: the initial population. A matrix of size length(algo$min) times algo$nP, or a
function that creates such a matrix. If a function, it should take no arguments.

loopOF logical. Should the OF be evaluated through a loop? Defaults to TRUE.

loopPen logical. Should the penalty function (if specified) be evaluated through a loop? Defaults
to TRUE.

loopRepair logical. Should the repair function (if specified) be evaluated through a loop? Defaults
to TRUE.

loopChangeV logical. Should the changeV function (if specified) be evaluated through a loop?
Defaults to TRUE.

printDetail If TRUE (the default), information is printed. If an integer i greater then one, infor-
mation is printed at very ith iteration.

printBar If TRUE (the default), a txtProgressBar (from package utils) is printed).

storeF If TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions default is FALSE. If TRUE, the solutions (ie, decision variables) in every genera-
tion are stored as lists P and Pbest, both stored in the list x1ist which the function returns.
To check, for instance, the solutions at the end of the ith iteration, retrieve x1list[[c(1L,
i)17; the best solutions at the end of this iteration are in x1ist[[c(2L, i)J1]. P[[i]] and
Pbest[[i]] will be matrices of size length(algo$min) times algo$nP.

classify Logical; default is FALSE. If TRUE, the result will have a class attribute TAopt attached.
This feature is experimental: the supported methods may change without warning.

drop Default is TRUE. If FALSE, the dimension is not dropped from a single solution when it is
passed to a function. (That is, the function will receive a single-column matrix.)

Value

Returns a list:

xbest the solution
OFvalue objective function value of best solution
popF a vector: the objective function values in the final population

Fmat if algo$storeF is TRUE, a matrix of size algo$nG times algo$nP. Each column
contains the best objective function value found by the particular solution.

xlist if algo$storeSolutions is TRUE, a list that contains two lists P and Pbest of
matrices, and a matrix initP (the initial solution); else NA.

initial.state the value of .Random.seed when PSopt was called.

Author(s)

Enrico Schumann

PSopt 65

References

Eberhart, R.C. and Kennedy, J. (1995) A New Optimizer using Particle Swarm theory. Proceedings
of the Sixth International Symposium on Micromachine and Human Science, pp. 39—43.

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

DEopt

Examples

Least Median of Squares (LMS) estimation
genData <- function(nP, n0O, ol, dy) {
create dataset as in Salibian-Barrera & Yohai 2006
nP = regressors, nO0 = number of obs
ol = number of outliers, dy = outlier size
mRN <- function(m, n) array(rnorm(m * n), dim = c(m, n))
y <= mRN(nO, 1)
X <- cbind(as.matrix(numeric(n0) + 1), mRN(nO, nP - 1L))
zz <- sample(n0)
z <- cbind(1, 100, array(@, dim = c(1L, nP - 2L)))
for (i in seq_len(ol)) {
X[zz[i], 1 <~ z
yl[zz[i]] <- dy

3
list(X = X, y = y)
3
OF <- function(param, data) {
X <- data$X
y <- data$y

aux <- as.vector(y) - X %x% param
as.vector(y) for recycling (param is a matrix)
aux <- aux * aux
aux <- apply(aux, 2, sort, partial = data$h)
auxl[h,]

3

nP <- 2L; nO <- 100L; ol <- 10L; dy <- 150
aux <- genData(nP,n0,0l,dy); X <- aux$X; y <- aux$y

h <= (N0 + nP + 1L) %/% 2
data <- list(y =y, X=X, h =h)

algo <- list(min = rep(-10, nP), max = rep(10, nP),
cl =1.0, c2 = 2.0,
iner = 0.7, initV = 1, maxV = 3,
nP = 100L, nG = 300L, loopOF = FALSE)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

66 putCallParity

system.time(sol <- PSopt(OF = OF, algo = algo, data = data))
if (require("MASS", quietly = TRUE)) {
for nsamp = "best”, in this case, complete enumeration
will be tried. See ?1gs
system.time(testl <- lgs(data$y ~ data$xXx[, -1L1],
adjust = TRUE,

nsamp = "best”,
method = "lqgs”,
quantile = datash))
3
check

x1 <= sort((y - X %x% as.matrix(sol$xbest))*2)[h]
cat("Particle Swarm\n”, x1,"\n\n")

if (require("MASS", quietly = TRUE)) {
x2 <- sort((y - X %*% as.matrix(coef(test1)))*2)[h]
cat("lgs\n", x2, "\n\n")

putCallParity Put-Call Parity

Description

Put—call parity

Usage

putCallParity(what, call, put, S, X, tau, r, q =0, tauD = @, D = @)

Arguments
what character: what to compute. Currently only call or put are supported.
call call price
put put price
S underlier
X strike
tau time to expiry
r interest rate
q dividend rate
tauD numeric vector: time to dividend

D numeric vector: dividends

putCallParity 67

Details

Put—call parity only works for European options. The function is vectorised (like vanillaOptionEuropean),
except for dividends.

Value

Numeric vector.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

S <- 100; X <- 100; tau <- 1; r <- 0.02; g <- 0.0;
vol <- 0.3; D <- 20; tauD <- 0.5
call <- vanillaOptionEuropean(S, X, tau, r, g, vol*2,
tauD = tauD, D = D, type = "call")$value
put <- vanillaOptionEuropean(S, X, tau, r, q, vol*2,
tauD = tauD, D = D, type = "put”)$value

recover the call from the put (et vice versa)

all.equal(call, putCallParity("”call”, put = put, S=S, X=X, tau=tau,
r=r, g=q, tauD=tauD, D=D))

all.equal(put, putCallParity("put”, call = call, S=S, X=X, tau=tau,
r=r, qg=q, tauD=tauD, D=D))

Black--Scholes--Merton with with 'callCF'
S <- 100; X <- 90; tau <- 1; r <- 0.02; g <- 0.08
v <- 0.2"2 ## variance, not volatility

(ccf <- callCF(cf = cfBSM, S =S, X =X, tau =tau, r=r, q =g,
v = v, implVol = TRUE))
all.equal(ccf$value,
vanillaOptionEuropean(S, X, tau, r, q, v, type = "call”)$value)
all.equal(
putCallParity("put”, call=ccf$value, S=S, X=X, tau=tau, r=r, g=q),
vanillaOptionEuropean(S, X, tau, r, g, v, type = "put”)$value)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

68 qTable

gTable Prepare LaTeX Table with Quartile Plots

Description

The function returns the skeleton of a LaTeX tabular that contains the median, minimum and maxi-
mum of the columns of a matrix X. For each column, a quartile plot is added.

Usage

gTable(X, xmin = NULL, xmax = NULL, labels = NULL, at = NULL,
unitlength = "5cm”, linethickness = NULL,
cnames = colnames(X), circlesize = 9.01,
xoffset = @, yoffset = @, dec = 2, filename = NULL,
funs = list(median = median, min = min, max = max),
tabular.format, skip = TRUE)

Arguments
X a numeric matrix (or an object that can be coerced to a numeric matrix with
as.matrix)
xmin optional: the minimum for the x-axis. See Details.
Xmax optional: the maximum for the x-axis. See Details.
labels optional: labels for the x-axis.
at optional: where to put labels.
unitlength the unitlength for LaTeX’s picture environment. See Details.

linethickness the linethickness for LaTeX’s picture environment. See Details.

cnames the column names of X

circlesize the size of the circle in LaTeX’s picture environment
xoffset defaults to 0. See Details.

yoffset defaults to 0. See Details.

dec the number of decimals

filename if provided, output is cat into a file

funs A list of functions; the functions should be named. Default is

list(median =median, min =min, max = max)
tabular.format optional: character string like "rrrrr” that defines the format of the tabular.

skip Adds a newline at the end of the tabular. Default is TRUE. (The behaviour prior
to package version 0.27-0 corresponded to FALSE.)

qTable 69

Details

The function creates a one-column character matrix that can be put into a LaTeX file (the matrix
holds a tabular). It relies on LaTeX’s picture environment and should work for LaTeX and pdfLa-
TeX. Note that the tabular needs generally be refined, depending on the settings and the data.

The tabular has one row for every column of X (and header and footer rows). A given row contains
(per default) the median, the minimum and the maximum of the column; it also includes a picture
environment the shows a quartile plot of the distribution of the elements in that column. Other
functions can be specified via argument funs.

A number of parameters can be passed to LaTeX’s picture environment: unitlength, xoffset,
yoffset, linethickness. Sizes and lengths are functions of unitlength (1inethickness is an
exception; and while circlesize is a multiple of unitlength, it will not translate into an actual
diameter of more than 14mm).

The whole tabular environment is put into curly brackets so that the settings do not change settings
elsewhere in the LaTeX document.

If xmin, xmax, labels and at are not specified, they are computed through a call to pretty from
the base package. If limits are specified, then both xmin and xmax must be set; if labels are used,
then both labels and at must be specified.

To use the function in a vignette, use cat(tTable(X)) (and results=tex in the code chunk op-
tions). The vignette qTableEx shows some examples.

Value
A matrix of mode character. If filename is specified then qTable will have the side effect of
writing a textfile with a LaTeX tabular.

Note

qTable returns a raw draft of a table for LaTeX. Please, spend some time on making it pretty.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Tufte, E. (2001) The Visual Display of Quantitative Information. 2nd edition, Graphics Press.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples
X <= rnorm(100, mean = @, sd = 2)
y <= rnorm(100, mean = 1, sd = 2)
z <- rnorm(100, mean = 1, sd = 0.5)

X <= cbind(x, y, z)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

70 randomReturns
res <- qTable(X)
print(res)
cat(res)
Not run:
show vignette with examples
gt <- vignette("qTableEx", package = "NMOF")
print(qt)
edit(qt)
create a simple LaTeX file 'test.tex':
-
\documentclass{article}
\begin{document?}
#t \input{res.tex}
\end{document}
#H -
res <- qTable(X, filename = "res.tex", yoffset = -0.025, unitlength = "5cm",
circlesize = 0.0125, xmin = -10, xmax = 10, dec = 2)
End(Not run)
randomReturns Create a Random Returns
Description
Create a matrix of random returns.
Usage
randomReturns(na, ns, sd, mean = @, rho = @, exact = FALSE)
Arguments
na number of assets
ns number of return scenarios
sd the standard deviation: either a single number or a vector of length na
mean the mean return: either a single number or a vector of length na
rho correlation: either a scalar (i.e. a constant pairwise correlation) or a correlation
matrix
exact logical: if TRUE, return a random matrix whose column means, standard de-

viations and correlations match the specified values exactly (up to numerical
precision)

randomReturns 71

Details
The function corresponds to the function random_returns, described in the second edition of NMOF
(the book).

Value

anumeric matrix of size na times ns

Note
The function corresponds to the function random_returns, described in the second edition of NMOF
(the book).

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual
See Also

mc

Examples

if (requireNamespace("quadprog”)) {
a small experiment: when computing minimum-variance portfolios
for correlated assets, how many large positions are in the portfolio?

na <- 100 ## number of assets
inc <= 5 ## minimum of assets to include

n <- numeric(10)
for (i in seqg_along(n)) {

R <- randomReturns(na = na,
ns = 500,
sd = seq(.2/.16, .5/.16, length.out = 100),
rho = 0.5)
n[i] <- sum(minvar(cov(R), wmax = 1/inc)> 0.01)
3
summary (n)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

72 repairMatrix

repairMatrix Repair an Indefinite Correlation Matrix

Description

The function ‘repairs’ an indefinite correlation matrix by replacing its negative eigenvalues by zero.

Usage

repairMatrix(C, eps = 0)

Arguments
C a correlation matrix
eps a small number
Details

The function ‘repairs’ a correlation matrix: it replaces negative eigenvalues with eps and rescales
the matrix such that all elements on the main diagonal become unity again.

Value

Returns a numeric matrix.

Note

This function may help to cure a numerical problem, but it will rarely help to cure an empirical
problem. (Garbage in, garbage out.)

See also the function nearPD in the Matrix package.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Rebonato, R. and Jaeckel, P. (1999) The most general methodology to create a valid correlation
matrix for risk management and option pricing purposes.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

resampleC 73

Examples

example: build a portfolio of three assets
C <-c(1,.9,.9,.9,1,.2,.9,.2,1)

dim(C) <- c(3L, 3L)

eigen(C, only.values = TRUE)

vols <- ¢(.3, .3, .3) ## volatilities

S <- C * outer(vols,vols) ## covariance matrix

w<-c(-1, 1, 1) ## a portfolio

W %*% S %*%% w ## variance of portfolio is negative!

sqrt(as.complex(w %*% S %*% w))

S <- repairMatrix(C) * outer(vols,vols)
W %*% S %*% W ## more reasonable
sqrt(w %*% S %*% w)

resampleC Resample with Specified Rank Correlation

Description

Resample with replacement from a number of vectors; the sample will have a specified rank corre-

lation.
Usage
resampleC(..., size, cormat)
Arguments
numeric vectors; they need not have the same length.
size an integer: the number of samples to draw
cormat the rank correlation matrix
Details

See Gilli, Maringer and Schumann (2011), Section 7.1.2. The function samples with replacement
from the vectors passed through The resulting samples will have an (approximate) rank corre-
lation as specified in cormat.

The function uses the eigenvalue decomposition to generate the correlation; it will not break down
in case of a semidefinite matrix. If an eigenvalue of cormat is smaller than zero, a warning is issued
(but the function proceeds).

Value

a numeric matrix with size rows. The columns contain the samples; hence, there will be as many
columns as vectors passed through

74 restartOpt

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

repairMatrix

Examples

a sample

vl <= rnorm(20)

v2 <- runif(50)

v3 <- rbinom(100, size = 50, prob = 0.4)

a correlation matrix
cormat <- array(@.5, dim = c(3, 3))

diag(cormat) <- 1

cor(resampleC(a = v1, b = v2, v3, size = 100, cormat = cormat),

method = "spearman”)
restartOpt Restart an Optimisation Algorithm
Description

The function provides a simple wrapper for the optimisation algorithms in the package.

Usage

restartOpt(fun, n, OF, algo, ...,
method = c("loop”, "multicore”, "snow"),
mc.control = 1list(), cl = NULL,
best.only = FALSE)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

restartOpt 75

Arguments
fun the optimisation function: DEopt, GAopt, LSopt, TAopt or PSopt
n the number of restarts
OF the objective function
algo the list algo that is passed to the particular optimisation function
additional data that is passed to the particular optimisation function
method can be loop (the default), multicore or snow. See Details.
mc.control a list containing settings that will be passed tomclapply if method ismulticore.
Must be a list of named elements. See the documentation of mclapply.
cl default is NULL. If method snow is used, this must be a cluster object or an integer
(the number of cores).
best.only if TRUE, only the best run is reported. Default is FALSE.
Details

The function returns a list of lists. If a specific starting solution is passed, all runs will start from this
solution. If this is not desired, initial solutions can be created randomly. This is done per default in
DEopt, GAopt and PSopt, but LSopt and TAopt require to specify a starting solution.

In case of LSopt and TAopt, the passed initial solution algo$x@ is checked with is.function: if
TRUE, the function is evaluated in each single run. For DEopt, GAopt and PSopt, the initial solution
(which also can be a function) is specified with algo$initP.

The argument method determines how fun is evaluated. Default is loop. If method is "multi-
core", function mclapply from package parallel is used. Further settings for mclapply can be
passed through the list mc.control. If multicore is chosen but the functionality is not avail-
able, then method will be set to loop and a warning is issued. If method == "snow", function
clusterApply from package parallel is used. In this case, the argument c1 must either be a clus-
ter object (see the documentation of clusterApply) or an integer. If an integer, a cluster will be
set up viamakeCluster(c(rep(”localhost”, cl)), type = "SOCK"), and stopCluster is called
when the function is exited. If snow is chosen but parallel is not available or c1 is not specified, then
method will be set to loop and a warning is issued. In case that c1 is an cluster object, stopCluster
will not be called automatically.

Value

If best.only is FALSE (the default), the function returns a list of n lists. Each of the n lists stores
the output of one of the runs.

If best.only is TRUE, only the best restart is reported. The returned list has the structure specific to
the used method.

Author(s)

Enrico Schumann

76

References

restartOpt

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.

2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.

net/NMOF . htm#NMOFmanual

See Also

DEopt, GAopt, LSopt, PSopt, TAopt

Examples

see example(DEopt)
algo <- list(nP = 50L,
F=20.5,
CR =10.9,
min = c(-10, -10),
max = c(10, 10),
printDetail = FALSE,
printBar = FALSE)

choose a larger
algo$nG <- 100L
res100 <- restartOpt(DEopt, n = 5L, OF = tfTrefethen, algo
res100F <- sapply(res100, “[[", "OFvalue")

n' when you can afford it

algo$nG <- 200L
res200 <- restartOpt(DEopt, n = 5L, OF = tfTrefethen, algo
res200F <- sapply(res200, “[[~, "OFvalue")

xx <- pretty(c(res100F, res200F, -3.31))

plot(ecdf(res100F), main = "optimum is -3.306",
xlim = c(xx[1L], tail(xx, 1L)))

abline(v = -3.3069, col = "red") ## optimum

lines(ecdf(res200F), col = "blue")

legend(x = "right”, box.lty =0, , 1ty =1,

algo)

algo)

legend = c("optimum”, "100 generations”, "200 generations"),

pch = ¢(NA, 19, 19), col = c("red”, "black”, "blue"))

a 'best-of-N' strategy: given a sample x of objective

function values, compute the probability that, after N draws,

we have at least one realisation not worse than X
X <- ¢c(0.1,.3,.5,.5,.6)
bestofN <- function(x, N) {

nx <- length(x)

function(X)

1 - (sum(x > X)/nx)”*N

3
bestof2 <- bestofN(x, 2)
bestof5 <- bestofN(x, 5)
bestof2(0.15)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

Ritter

bestof5(0.15)

Not run:

with R >= 2.13.0 and the compiler package

algo$nG <- 100L

system.time(res100 <- restartOpt(DEopt, n = 10L, OF = tfTrefethen, algo = algo))

require(”compiler™)
enableJIT(3)

77

system.time(res100 <- restartOpt(DEopt, n = 10L, OF = tfTrefethen, algo = algo))
End(Not run)
Ritter Download Jay Ritter’s IPO Data

Description

Download IPO data provided by Jay Ritter and transform them into a data frame.

Usage

Ritter(dest.dir,
url = "https://site.warrington.ufl.edu/ritter/files/IPO-age.x1lsx",

.)
Arguments
dest.dir character: a path to a directory
url the data URL
named arguments to be passed to download.file
Details

The function downloads 1PO data provided by Jay R. Ritter https://site.warrington.ufl.edu/

ritter/. Since the data are provided in Excel format, package openxlsx is required.

The downloaded Excel gets a date prefix (today in format YYYYMMDD) and is stored in directory
dest.dir. Before any download is attempted, the function checks whether a file with today’s

prefix exist in dest.dir; if yes, this file is used.

Value

adata.frame

Author(s)

Enrico Schumann

https://site.warrington.ufl.edu/ritter/
https://site.warrington.ufl.edu/ritter/

78 SA.info

References

https://site.warrington.ufl.edu/ritter/ipo-data/

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

French, Shiller

Examples
Not run:
archive.dir <- "~/Downloads/Ritter"”

if (!dir.exists(archive.dir))
dir.create(archive.dir)
Ritter(archive.dir)

End(Not run)

SA.info Simulated-Annealing Information

Description

The function can be called from the objective and neighbourhood function during a run of SAopt;
it provides information such as the current iteration, the current solution, etc.

Usage
SA.info(n = QL)

Arguments

n generational offset; see Details.

Details

This function is still experimental.

The function can be called in the neighbourhood function or the objective function during a run of
SAopt. It evaluates to a list with information about the state of the optimisation run, such as the
current iteration or the currently best solution.

SA.info relies on parent. frame to retrieve its information. If the function is called within another
function within the neighbourhood or objective function, the argument n needs to be increased.

https://site.warrington.ufl.edu/ritter/ipo-data/
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

SA.info 79

Value
A list
calibration logical: whether the algorithm is calibrating the acceptance probability
iteration current iteration
step current step for the given temperature level
temperature current temperature (the number, not the value)
xbest the best solution found so far
Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

SAopt, TA.info

Examples

MINIMAL EXAMPLE for SAopt

the objective function evaluates to a constant
fun <- function(x)
0

the neighbourhood function does not even change
the solution; it only reports information
nb <- function(x) {
info <- SA.info()
cat("current step ", info$step,
"| current iteration ", info$iteration, "\n")

X
3
run SA
algo <- list(nS =5, nT =2, nD = 10,

initT =1,

x0 = rep(@, 5),

neighbour = nb,

printBar = FALSE)
ignore <- SAopt(fun, algo)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

80 SAopt

SAopt Optimisation with Simulated Annealing

Description

The function implements a Simulated-Annealing algorithm.

Usage
SAopt (OF, algo = list(), ...)
Arguments
OF The objective function, to be minimised. Its first argument needs to be a solution
x; it will be called as OF (x, ...).
algo A list of settings for the algorithm. See Details.
other variables passed to OF and algo$neighbour. See Details.
Details

Simulated Annealing (SA) changes an initial solution iteratively; the algorithm stops after a fixed
number of iterations. Conceptually, SA consists of a loop than runs for a number of iterations. In
each iteration, a current solution xc is changed through a function algo$neighbour. If this new (or
neighbour) solution xn is not worse than xc, ie, if OF (xn,...) <= 0F(xc, ...), then xn replaces
xc. If xn is worse, it still replaces xc, but only with a certain probability. This probability is a
function of the degree of the deterioration (the greater, the less likely the new solution is accepted)
and the current iteration (the longer the algorithm has already run, the less likely the new solution
is accepted).

The list algo contains the following items.

nS The number of steps per temperature. The default is 1000; but this setting depends very much
on the problem.

nT The number of temperatures. Default is 10.

nI Total number of iterations, with default NULL. If specified, it will override nS with ceiling(nI/nT).
Using this option makes it easier to compare and switch between functions LSopt, TAopt and
SAopt.

nD The number of random steps to calibrate the temperature. Defaults to 2000.

initT Initial temperature. Defaults to NULL, in which case it is automatically chosen so that
initProb is achieved.

finalT Final temperature. Defaults to O.
alpha The cooling constant. The current temperature is multiplied by this value. Default is 0.9.

mStep Step multiplier. The default is 1, which implies constant number of steps per temperature.
If greater than 1, the step number nS is increased to mxnS (and rounded).

SAopt 81

x@ The initial solution. If this is a function, it will be called once without arguments to compute an
initial solution, ie, x@ <- algo$x@(). This can be useful when the routine is called in a loop
of restarts, and each restart is to have its own starting value.

neighbour The neighbourhood function, called as neighbour(x, ...). Its first argument must be
a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i greater then one, infor-
mation is printed at very ith iteration.

printBar If TRUE (default is FALSE), a txtProgressBar (from package utils) is printed. The
progress bar is not shown if printDetail is an integer greater than 1.

storeF if TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions Default is FALSE. If TRUE, the solutions (ie, decision variables) in every genera-
tion are stored and returned in list x1ist (see Value section below). To check, for instance,
the current solution at the end of the ith generation, retrieve x1ist[[c(2L, i)1].

classify Logical; default is FALSE. If TRUE, the result will have a class attribute SAopt attached.

OF . target Numeric; when specified, the algorithm will stop when an objective-function value as
low as OF . target (or lower) is achieved. This is useful when an optimal objective-function
value is known: the algorithm will then stop and not waste time searching for a better solution.

At the minimum, algo needs to contain an initial solution x@ and a neighbour function.

The total number of iterations equals algo$nT times algo$n$S (plus possibly algo$nD).

Value

SAopt returns a list with five components:

xbest the solution
OFvalue objective function value of the solution, ie, OF (xbest, ...)
Fmat if algo$storeF is TRUE, a matrix with one row for each iteration (excluding the

initial algo$nD steps) and two columns. The first column contains the objective
function values of the neighbour solution at a given iteration; the second column
contains the value of the current solution. Since SA can walk away from locally-
optimal solutions, the best solution can be monitored through cummin(Fmat[
,2L1).

xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neighbour solu-
tions at a given iteration (xn) and the current solutions (xc). Example: Fmat[i,
2L] is the objective function value associated with x1ist[[c(2L, i)]1].

initial.state the value of .Random. seed when the function was called.
If algo$classify was set to TRUE, the resulting list will have a class attribute TAopt.

Note

If the . .. argument is used, then all the objects passed with . .. need to go into the objective func-
tion and the neighbourhood function. It is recommended to collect all information in a list myList

82 SAopt

and then write OF and neighbour so that they are called as OF (x, myList) and neighbour(x,
myList). Note that x need not be a vector but can be any data structure (eg, amatrix or a list).

Using an initial and final temperature of zero means that SA will be equivalent to a Local Search.
The function LSopt may be preferred then because of smaller overhead.
Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization with Simulated Annealing.
Science. 220 (4598), 671-680.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

LSopt, TAopt, restartOpt

Examples

Aim: given a matrix x with n rows and 2 columns,

#i# divide the rows of x into two subsets such that
#it in one subset the columns are highly correlated,
#it and in the other lowly (negatively) correlated.
#i#t constraint: a single subset should have at least 40 rows

create data with specified correlation

n <- 100L

rho <- 0.7

C <- matrix(rho, 2L, 2L); diag(C) <- 1

x <= matrix(rnorm(n * 2L), n, 2L) %*% chol(C)

collect data
data <- list(x = x, n =n, nmin = 40L)

a random initial solution
x0 <- runif(n) > 0.5

a neighbourhood function
neighbour <- function(xc, data) {
Xxn <- xc
p <- sample.int(data$n, size = 1L)
xn[p] <- abs(xn[p]l - 1L)
reject infeasible solution
cl <- sum(xn) >= data$nmin
c2 <- sum(xn) <= (data$n - data$nmin)
if (c1 && c2) res <- xn else res <- xc

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

SAopt

as.logical(res)

check (should be 1 FALSE and n-1 TRUE)
X0 == neighbour(x0@, data)

objective function
OF <- function(xc, data)
-abs(cor(data$x[xc, 1)[1L, 2L] - cor(data$x[!xc, 1)[1L, 2LI)

check

OF (x@, data)

check

OF (neighbour(x@, data), data)

plot data
par(mfrow = c(1,3), bty = "n")

plot(datas$x,
xlim = ¢(-3,3), ylim = c(-3,3),
main = "all data”, col = "darkgreen")

Local Searchx
algo <- list(nS = 3000L,
neighbour = neighbour,
X0 = X0,
printBar = FALSE)
sol1l <- LSopt(OF, algo = algo, data=data)
sol1$0Fvalue

xSimulated Annealingx

algo$nT <- 10L

algo$nS <- ceiling(algo$nS/algo$nT)

sol <- SAopt(OF, algo = algo, data = data)
sol$0Fvalue

cl <- cor(data$x[sol$xbest, 1)[1L, 2L]
c2 <- cor(data$x[!sol$xbest, 1)[1L, 2L]

lines(data$x[sol$xbest, 1, type = "p"”, col = "blue")

plot(data$x[sol$xbest, 1, col = "blue”,
xlim = c(-3, 3), ylim = c(-3, 3),

main = paste("subset 1, corr.”, format(cl, digits = 3)))
plot(data$x[!sol$xbest, 1, col = "darkgreen",

xlim = ¢(-3,3), ylim = c(-3,3),

main = paste(”subset 2, corr.”, format(c2, digits = 3)))

compare LS/SA

par(mfrow = c(1, 1), bty = "n")

plot(sol1$Fmat[, 2L],type = "1", ylim=c(-1.5, 0.5),
ylab = "OF", xlab = "Iterations")

lines(sol$Fmat[, 2L],type = "1", col = "blue")

83

84 Shiller

legend(x = "topright”, legend = c("LS", "SA"),
1ty = 1, 1wd = 2, col = c("black”, "blue"))

Shiller Download Robert Shiller’s Data

Description

Download the data provided by Robert Shiller and transform them into a data frame.

Usage
Shiller(dest.dir,
url = NULL)
Arguments
dest.dir character: a path to a directory
url the data URL
Details

The function downloads US stock-market data provided by Robert Shiller which he used in his book
‘Irrational Exhuberance’. Since the data are provided in Excel format, package readxl is required.

The downloaded Excel gets a date prefix (today in format YYYYMMDD) and is stored in directory
dest.dir. Before any download is attempted, the function checks whether a file with today’s
prefix exist in dest.dir; if yes, the file is used.

Value

adata.frame:

Date end of month
Price numeric
Dividend numeric
Earnings numeric
CPI numeric
Long Rate numeric
Real Price numeric

Real Dividend numeric
Real Earnings numeric

CAPE numeric

Author(s)

Enrico Schumann

showExample 85

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Shiller, R.J. (2015) Irrational Exhuberance. Princeton University Press. 3rd edition.

See Also

French

Examples

Not run:

archive.dir <- "~/Downloads/Shiller”

if (!dir.exists(archive.dir))
dir.create(archive.dir)

Shiller(archive.dir)

End(Not run)

showExample Display Code Examples

Description

Display the code examples from ‘Numerical Methods and Optimization and Finance’.

Usage

nn

showExample(file = , chapter = NULL, showfile = TRUE,
includepaths = FALSE, edition = 2, search,
., 1lgnore.case = TRUE)
showChapterNames(edition = 2)

Arguments
file a character vector of length one. See Details.
chapter optional: a character vector of length one, giving the chapter name (see Details),
or an integer, indicating a chapter number. Default is NULL: look in all chapters.
showfile Should the file be displayed with file.show? Defaults to TRUE. A file will be

displayed only if one single file only is identified by file and chapter.
includepaths Should the file paths be displayed? Defaults to FALSE.
Arguments passed to grepl; see Details.

edition an integer: 1 and 2 are supported

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

86 showExample

search a regular expression: search in the code files. Not supported yet.

ignore.case passed to grepl; see Examples. Default is TRUE (which is much more helpful
than the default FALSE before package version 2)

Details

showExample matches the specified file argument against the available file names via grepl (file,
all.filenames, ignore.case = ignore.case, ...). If chapter is specified, a second match is
performed, grepl(chapter, all.chapternames, ignore.case = ignore.case, ...). The chapternames
are those in the book (e.g., ‘Modeling dependencies’). The selected files are then those for which

file name and chapter name could be matched.

Value

showExample returns a data. frame of at least two character vectors, Chapter and File. If includepaths
is TRUE, Paths are included. If no file is found, the data. frame has zero rows. If a single file is
identified and showfile is TRUE, the function has the side effect of displaying that file.

showChapterNames returns a character vector: the names of the book’s chapters.

Note

The behaviour of the function changed slightly with version 2.0 to accommodate the code examples
of the second edition of the book. Specifically, the function gained an argument edition, which
defaults to 2. Also, the default for ignore. case was changed to TRUE. To get back the old behaviour
of the function, set edition to 1 and ignore.case to FALSE.

The code files can also be downloaded from https://gitlab.com/NMOF .

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2011) Numerical Methods and Optimization in Finance.
Elsevier. doi:10.1016/C20090305693

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Examples

list all files
showExample() ## 2nd edition is default
showExample(edition = 1)

list specific files
showExample ("Appendix")
showExample("Backtesting”)

https://gitlab.com/NMOF
https://doi.org/10.1016/C2009-0-30569-3
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

TA.info 87

showExample("Heuristics")

showExample(”tutorial”) ## matches against filename
showExample(chapter = 13)
showExample(chapter = "tutorial")

show where a file is installed
showExample(chapter = "portfolio”, includepaths = TRUE)

first edition
showExample("equations.R", edition = 1)
showExample("example"”, chapter = "portfolio”, edition = 1)

showExample("example”, chapter = 13, edition = 1)
showExample("example”, chapter = showChapterNames(1)[13L], edition = 1)

TA.info Threshold-Accepting Information

Description
The function can be called from the objective and neighbourhood function during a run of TAopt;
it provides information such as the current iteration, the current solution, etc.
Usage
TA.info(n = QL)

Arguments

n generational offset; see Details.

Details

This function is still experimental.

The function can be called in the neighbourhood function or the objective function during a run of
TAopt. It evaluates to a list with the state of the optimisation run, such as the current iteration.

TA.info relies on parent. frame to retrieve its information. If the function is called within another
function in the neighbourhood or objective function, the argument n needs to be increased.
Value

A list

OF .sampling logical: if TRUE, is the algorithm sampling the objective function to compute
thresholds; otherwise (i.e. during the actual optimisation) FALSE

88 TA.info

iteration current iteration

step current step (i.e. for a given threshold)

threshold current threshold (the number, not the value)

xbest the best solution found so far

OF . xbest objective function value of best solution
Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

TAopt

Examples

MINIMAL EXAMPLE for TAopt

objective function evaluates to a constant
fun <- function(x)
0

neighbourhood function does not even change the solution,
but it reports information
nb <- function(x) {

tmp <- TA.info()

cat("current threshold ", tmp$threshold,
"| current step ", tmp$step,
"| current iteration ", tmp$iteration, "\n")
X
3
run TA
algo <- list(nS = 5,
nT = 2,
nD = 3,
X0 = rep(@, 5),

neighbour = nb,

printBar = FALSE,

printDetail = FALSE)
ignore <- TAopt(fun, algo)

printed output:

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

TAopt 89

it current threshold NA | current step 1 | current iteration NA
#it current threshold NA | current step 2 | current iteration NA
current threshold NA | current step 3 | current iteration NA
#it current threshold 1 | current step 1 | current iteration 1
#it current threshold 1 | current step 2 | current iteration 2
current threshold 1 | current step 3 | current iteration 3
#it current threshold 1 | current step 4 | current iteration 4
#it current threshold 1 | current step 5 | current iteration 5
current threshold 2 | current step 1 | current iteration 6
#it current threshold 2 | current step 2 | current iteration 7
#it current threshold 2 | current step 3 | current iteration 8
#t current threshold 2 | current step 4 | current iteration 9
#i current threshold 2 | current step 5 | current iteration 10
TAopt Optimisation with Threshold Accepting
Description
The function implements the Threshold Accepting algorithm.
Usage
TAopt(OF, algo = list(), ...)
Arguments
OF The objective function, to be minimised. Its first argument needs to be a solution
x; it will be called as OF (x, ...).
algo A list of settings for the algorithm. See Details.
other variables passed to OF and algo$neighbour. See Details.
Details

Threshold Accepting (TA) changes an initial solution iteratively; the algorithm stops after a fixed
number of iterations. Conceptually, TA consists of a loop than runs for a number of iterations.
In each iteration, a current solution xc is changed through a function algo$neighbour. If this

new (or neighbour) solution xn is not worse than xc, ie, if OF (xn,...) <= OF(xc, ...), then xn
replaces xc. If xn is worse, it still replaces xc as long as the difference in ‘quality’ between the two
solutions is less than a threshold tau; more precisely, as long as OF (xn, .. .) - tau <= OF (xc, ...).

Thus, we also accept a new solution that is worse than its predecessor; just not too much worse.
The threshold is typically decreased over the course of the optimisation. For zero thresholds TA
becomes a stochastic local search.

The thresholds can be passed through the list algo (see below). Otherwise, they are automatically
computed through the procedure described in Gilli et al. (2006). When the thresholds are created
automatically, the final threshold is always zero.

The list algo contains the following items.

90

TAopt

nS The number of steps per threshold. The default is 1000; but this setting depends very much on
the problem.

nT The number of thresholds. Default is 10; ignored if algo$vT is specified.

nI Total number of iterations, with default NULL. If specified, it will override nS with ceiling(nI/nT).

Using this option makes it easier to compare and switch between functions LSopt, TAopt and
SAopt.

nD The number of random steps to compute the threshold sequence. Defaults to 2000. Only used
if algo$vT is NULL.

g The highest quantile for the threshold sequence. Defaults to 0.5. Only used if algo$vT is NULL.
If q is zero, TAopt will run with algo$nT zero-thresholds (ie, like a Local Search).

x@ The initial solution. If this is a function, it will be called once without arguments to compute an
initial solution, ie, x@ <- algo$x@(). This can be useful when the routine is called in a loop
of restarts, and each restart is to have its own starting value.

vT The thresholds. A numeric vector. If NULL (the default), TAopt will compute algo$nT thresh-
olds. Passing threshold can be useful when similar problems are handled. Then the time to
sample the objective function to compute the thresholds can be saved (ie, we save algo$nD
function evaluations). If the thresholds are computed and algo$printDetail is TRUE, the
time required to evaluate the objective function will be measured and an estimate for the re-
maining computing time is issued. This estimate is often very crude.

neighbour The neighbourhood function, called as neighbour(x, ...). Its first argument must be
a solution x; it must return a changed solution.

printDetail If TRUE (the default), information is printed. If an integer i greater then one, infor-
mation is printed at very ith iteration.

printBar If TRUE (default is FALSE), a txtProgressBar (from package utils) is printed. The
progress bar is not shown if printDetail is an integer greater than 1.

scale The thresholds are multiplied by scale. Default is 1.

drop@ When thresholds are computed, should zero values be dropped from the sample of objective-
function values? Default is FALSE.

stepUp Defaults to 0. If an integer greater than zero, then the thresholds are recycled, ie, vT is
replaced by rep(vT, algo$stepUp + 1) (and the number of thresholds will be increased by
algo$nT times algo$stepUp). This option works for supplied as well as computed thresholds.
Practically, this will have the same effect as restarting from a returned solution. (In Simulated
Annealing, this strategy goes by the name of ‘reheating’.)

thresholds.only Defaults to FALSE. If TRUE, compute only threshold sequence, but do not actu-
ally run TA.

storeF if TRUE (the default), the objective function values for every solution in every generation
are stored and returned as matrix Fmat.

storeSolutions Default is FALSE. If TRUE, the solutions (ie, decision variables) in every genera-
tion are stored and returned in list x1ist (see Value section below). To check, for instance,
the current solution at the end of the ith generation, retrieve x1ist[[c(2L, i)]].

classify Logical; default is FALSE. If TRUE, the result will have a class attribute TAopt attached.
This feature is experimental: the supported methods (plot, summary) may change without
warning.

TAopt 91

OF . target Numeric; when specified, the algorithm will stop when an objective-function value as
low as OF . target (or lower) is achieved. This is useful when an optimal objective-function
value is known: the algorithm will then stop and not waste time searching for a better solution.

At the minimum, algo needs to contain an initial solution x@ and a neighbour function.

The total number of iterations equals algo$nT times (algo$stepUp + 1) times algo$nS (plus pos-
sibly algo$nD).

Value

TAopt returns a list with four components:

xbest the solution
OFvalue objective function value of the solution, ie, OF (xbest, ...)
Fmat if algo$storeF is TRUE, a matrix with one row for each iteration (excluding the

initial algo$nD steps) and two columns. The first column contains the objective
function values of the neighbour solution at a given iteration; the second column
contains the value of the current solution. Since TA can walk away from locally-
optimal solutions, the best solution can be monitored through cummin(Fmat[
,2LD).

xlist if algo$storeSolutions is TRUE, a list; else NA. Contains the neighbour solu-
tions at a given iteration (xn) and the current solutions (xc). Example: Fmat[1i,
2L1] is the objective function value associated with x1ist[[c(2L, i)]1].

initial.state the value of .Random.seed when the function was called.

If algo$classify was set to TRUE, the resulting list will have a class attribute TAopt.

Note

If the . .. argument is used, then all the objects passed with . . . need to go into the objective func-
tion and the neighbourhood function. It is recommended to collect all information in a list myList
and then write OF and neighbour so that they are called as OF (x, myList) and neighbour(x,
myList). Note that x need not be a vector but can be any data structure (eg, amatrix or a list).

Using thresholds of size 0 makes TA run as a Local Search. The function LSopt may be preferred
then because of smaller overhead.

Author(s)

Enrico Schumann

References
Dueck, G. and Scheuer, T. (1990) Threshold Accepting. A General Purpose Optimization Algo-
rithm Superior to Simulated Annealing. Journal of Computational Physics. 90 (1), 161-175.

Dueck, G. and Winker, P. (1992) New Concepts and Algorithms for Portfolio Choice. Applied
Stochastic Models and Data Analysis. 8 (3), 159-178.

Gilli, M., Kéllezi, E. and Hysi, H. (2006) A Data-Driven Optimization Heuristic for Downside Risk
Minimization. Journal of Risk. 8 (3), 1-18.

92

TAopt

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Moscato, P. and Fontanari, J.F. (1990). Stochastic Versus Deterministic Update in Simulated An-
nealing. Physics Letters A. 146 (4), 204-208.

Schumann, E. (2012) Remarks on ’ A comparison of some heuristic optimization methods’. https:
//enricoschumann.net/R/remarks.htm

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Winker, P. (2001). Optimization Heuristics in Econometrics: Applications of Threshold Accepting.
Wiley.

See Also

LSopt, restartOpt. Simulated Annealing is implemented in function SAopt. Package neighbours
(also on CRAN) offers helpers for creating neighbourhood functions.

Examples
Aim: given a matrix x with n rows and 2 columns,
#it divide the rows of x into two subsets such that
#it in one subset the columns are highly correlated,
#i# and in the other lowly (negatively) correlated.
#it constraint: a single subset should have at least 40 rows
create data with specified correlation
n <- 100L
rho <- 0.7

C <- matrix(rho, 2L, 2L); diag(C) <- 1
x <= matrix(rnorm(n * 2L), n, 2L) %*% chol(C)

#it

collect data

data <- list(x = x, n = n, nmin = 40L)

##
X0

#it

a random initial solution
<- runif(n) > 0.5

a neighbourhood function

neighbour <- function(xc, data) {

}

##
X0

xn <- Xxc

p <- sample.int(data$n, size = 1L)
xn[p] <- abs(xn[p]l - 1L)

reject infeasible solution

cl <- sum(xn) >= data$nmin

c2 <- sum(xn) <= (data$n - data$nmin)
if (c1 && c2) res <- xn else res <- xc
as.logical(res)

check (should be 1 FALSE and n-1 TRUE)
== neighbour(x@, data)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/R/remarks.htm
https://enricoschumann.net/R/remarks.htm
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

TAopt

objective function
OF <- function(xc, data)
-abs(cor(data$x[xc, 1)[1L, 2L] - cor(data$x[!xc, 1)[1L, 2L1)

check

OF (x0, data)

check

OF (neighbour(x@, data), data)

plot data
par(mfrow = c(1,3), bty = "n")

plot(data$x,
xlim = ¢(-3,3), ylim = c(-3,3),
main = "all data”, col = "darkgreen")

Local Search=
algo <- list(nS = 3000L,
neighbour = neighbour,
X0 = x0,
printBar = FALSE)
soll <- LSopt(OF, algo = algo, data=data)
sol1$0Fvalue

xThreshold Accepting*

algo$nT <- 10L

algo$nS <- ceiling(algo$nS/algo$nT)

sol <- TAopt(OF, algo = algo, data = data)
sol$0Fvalue

cl <- cor(data$x[sol$xbest, 1)[1L, 2L]
c2 <- cor(data$x[!sol$xbest, 1)[1L, 2L]

"noan

lines(data$x[sol$xbest, 1, type = "p", col = "blue”)

plot(data$x[sol$xbest, 1, col = "blue”,
xlim = ¢(-3,3), ylim = c(-3,3),

main = paste(”subset 1, corr.”, format(cl, digits = 3)))
plot(data$x[!sol$xbest, 1, col = "darkgreen”,

xlim = ¢(-3,3), ylim = c(-3,3),

main = paste("subset 2, corr.”, format(c2, digits = 3)))

compare LS/TA
par(mfrow = c(1,1), bty = "n")
plot(sol1$Fmat[,2L],type="1", ylim=c(-1.5,0.5),
ylab = "OF", xlab = "iterations”)
lines(sol$Fmat[,2L]1,type = "1", col = "blue")
legend(x = "topright”,legend = c("LS", "TA"),
1ty = 1, lwd = 2,col = c("black”, "blue"))

94 testFunctions

testFunctions Classical Test Functions for Unconstrained Optimisation

Description

A number of functions that have been suggested in the literature as benchmarks for unconstrained
optimisation.

Usage

tfAckley(x)
tfEggholder(x)
tfGriewank(x)
tfRastrigin(x)
tfRosenbrock(x)
tfSchwefel (x)
tfTrefethen(x)

Arguments

X a numeric vector of arguments. See Details.

Details

All functions take as argument only one variable, a numeric vector x whose length determines the
dimensionality of the problem.

The Ackley function is implemented as

n

1 n
fo — exp (n ;COS(QTFZ‘Z‘)> .

=1

exp(1) +20 — 20exp [—0.2

The minimum function value is zero; reached at z = 0.

The Eggholder takes a two-dimensional x, here written as x and y. It is defined as

—(y + 47)sin (my + g + 47|> — zsin (\/m) .

The minimum function value is -959.6407; reached at c(512, 404.2319).

The Griewank function is given by

1 n n x7
1+—fo—Hcos —] .
4000 i=1 i=1 \/%
The function is minimised at x = 0; its minimum value is zero.

The Rastrigin function:

10n + Z (27 — 10cos(2mz;)) .

i=1

testFunctions 95

The minimum function value is zero; reached at x = 0.

The Rosenbrock (or banana) function:
n—1
> (100(2ig1 —27)% + (1 - 2:)%) .
i=1

The minimum function value is zero; reached at x = 1.

The Schwefel function:

S (~avsin (Vi)

i=1
The minimum function value (to about 8 digits) is —418.9829n; reached at x = 420.9687.

Trefethen’s function takes a two-dimensional x (here written as = and y); it is defined as
1
exp(sin(50zx)) + sin(60e?) + sin(70sin(x)) + sin(sin(80y)) — sin(10(x + y)) + 1(3:2 +1?).

The minimum function value is -3.3069; reached at c(-0.0244, 0.2106).

Value

The objective function evaluated at x (a numeric vector of length one).

Warning

These test functions represent artificial problems. It is practically not too helpful to fine-tune a
method on such functions. (That would be like memorising all the answers to a particular multiple-
choice test.) The functions’ main purpose is checking the numerical implementation of algorithms.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

DEopt, PSopt

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

96 trackingPortfolio

Examples

persp for two-dimensional x

Ackley
n <- 100L; surf <- matrix(NA, n, n)
x1 <- seq(from = -2, to = 2, length.out = n)
for (i in 1:n)
for (j in 1:n)
surfl[i, jl <- tfAckley(c(x1[i], x1[j1))

persp(x1, x1, -surf, phi = 30, theta = 30, expand = 0.5,

col = "goldenrod1”, shade = 0.2, ticktype = "detailed”,

xlab = "x1", ylab = "x2", zlab = "-f", main = "Ackley (-f)",

border = NA)

Trefethen
n <- 100L; surf <- matrix(NA, n, n)
x1 <- seq(from = -10, to = 10, length.out = n)
for (i in 1:n)
for (j in 1:n)
surfli, jl <- tfTrefethen(c(x1[il, x1[j1))
persp(x1, x1, -surf, phi = 30, theta = 30, expand = 0.5,
col = "goldenrodl1”, shade = 0.2, ticktype = "detailed”,

xlab = "x1", ylab = "x2", zlab = "-f", main = "Trefethen (-f)",
border = NA)
trackingPortfolio Compute a Tracking Portfolio
Description

Computes a portfolio similar to a benchmark, e.g. for tracking the benchmark’s performance or
identifying factors.

Usage

trackingPortfolio(var, wmin = @, wmax = 1,
method = "gp"”, objective = "variance”, R,
l1s.algo = list())

Arguments
var the covariance matrix: a numeric (real), symmetric matrix. The first asset is the
benchmark.
R a matrix of returns: each colums holds the returns of one asset; each rows holds
the returns for one observation. The first asset is the benchmark.
wmin numeric: a lower bound on weights. May also be a vector that holds specific

bounds for each asset.

trackingPortfolio 97

wmax numeric: an upper bound on weights. May also be a vector that holds specific
bounds for each asset.
method character. Currently, "gp” and "1s" are supported.
objective character. Currently, "variance"” and "sum.of.squares” are supported.
1s.algo a list of named elements, for settings for method ‘1s’; see Details
Details

With method "qp”, the function uses solve. QP from package quadprog. Because of the algorithm
that solve.QP uses, var has to be positive definite (i.e. must be of full rank).

With method "1s”, the function uses LSopt. Settings can be passed via 1s.algo, which corresponds
to LSopt’s argument algo. Default settings are 2000 iterations and printBar, printDetail set to
FALSE.

R is needed only when objective is "sum.of . squares” or method is ‘1s’. (See Examples.)

Value

a numeric vector (the portfolio weights)

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

Schumann, E. (2020) Return-based tracking portfolios. https://enricoschumann.net/notes/
return-based-tracking-portfolios.html

Sharpe, W. F. (1992) Asset Allocation: Management Style and Performance Measurement. Journal
of Portfolio Management. 18 (2), 7-19. https://web.stanford.edu/~wfsharpe/art/sa/sa.
htm

See Also

minvar

Examples

if (requireNamespace("quadprog”)) {
ns <- 120
R <- randomReturns(na = 1 + 20,
ns = ns,
sd = 0.03,
mean = 0.005,
rho = 0.7)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/notes/return-based-tracking-portfolios.html
https://enricoschumann.net/notes/return-based-tracking-portfolios.html
https://web.stanford.edu/~wfsharpe/art/sa/sa.htm
https://web.stanford.edu/~wfsharpe/art/sa/sa.htm

98 vanillaBond

var <- cov(R)

sol.gp <- trackingPortfolio(var, wmax = 0.4)
sol.ls <- trackingPortfolio(var = var, R = R, wmax = 0.4, method = "1s")
data.frame(QP = round(100*sol.qp, 1),

LS = round(100*sol.1ls, 1))

sol.gp <- trackingPortfolio(var, R = R, wmax = 0.4,

objective = "sum.of.squares")
sol.1ls <- trackingPortfolio(var = var, R = R, wmax = 0.4, method = "1s",
objective = "sum.of.squares")

data.frame(QP = round(100*sol.qp, 1),
LS = round(100*sol.1ls, 1))

same as 'sol.gp' above
sol.gp.R <~ trackingPortfolio(R = R,
wmax = 0.4,
objective = "sum.of.squares")
sol.qgp.var <- trackingPortfolio(var = crossprod(R),
wmax = 0.4,
objective = "variance")
==> should be the same
all.equal(sol.gp.R, sol.gp.var)

vanillaBond Pricing Plain-Vanilla Bonds

Description

Calculate the theoretical price and yield-to-maturity of a list of cashflows.

Usage
vanillaBond(cf, times, df, yields)
ytm(cf, times, y@ = 0.05, tol = 1e-05, maxit = 1000L, offset = @)

duration(cf, times, yield, modified = TRUE, raw = FALSE)
convexity(cf, times, yield, raw = FALSE)

Arguments
cf Cashflows; a numeric vector or a matrix. If a matrix, cashflows should be ar-
ranged in rows; times-to-payment correspond to columns.
times times-to-payment; a numeric vector

df discount factors; a numeric vector

vanillaBond
yields
yield
yo
tol

maxit

offset

modified

raw

Details

99

optional (instead of discount factors); zero yields to compute discount factor; if
of length one, a flat zero curve is assumed

numeric vector of length one (both duration and convexity assume a flat yield
curve)

starting value
tolerance
maximum number of iterations

numeric: a ‘base’ rate over which to compute the yield to maturity. See Details
and Examples.

logical: return modified duration? (default TRUE)

logical: default FALSE. Compute duration/convexity as derivative of cashflows’
present value? Use this if you want to approximate the change in the bond price
by a Taylor series (see Examples).

vanillaBond computes the present value of a vector of cashflows; it may thus be used to evaluate
not just bonds but any instrument that can be reduced to a deterministic set of cashflows.

ytm uses Newton’s method to compute the yield-to-maturity of a bond (a.k.a. internal interest rate).
When used with a bond, the initial outlay (i.e. the bonds dirty price) needs be included in the vector
of cashflows. For a coupon bond, a good starting value y@ is the coupon divided by the dirty price

of the bond.

An of fset can be specified either as a single number or as a vector of zero rates. See Examples.

Value

numeric

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

See Also

NS, NSS

Examples

ytm

cf <- c(5, 5, 5, 5, 5, 105) #i# cashflows

times <- 1:6
y <- 0.0127

maturities
the "true" yield

https://doi.org/10.1016/C2017-0-01621-X

100

b@ <- vanillaBond(cf, times, yields = y)
cf <- c(-b0@, cf); times <- c(@, times)

ytm(cf, times)

... with offset
cf <- ¢(5, 5, 5, 5, 5, 105) ## cashflows
times <- 1:6 ## maturities

y <- 0.02 + 0.01 ## risk-free 2% + risk-premium 1%
b0 <- vanillaBond(cf, times, yields
cf <- c(-b@, cf); times <- c(@, times)
ytm(cf, times, offset = 0.02) ## ...

cf <- c(5, 5, 5, 5, 5, 105) ## cashflows

times <- 1:6 ## maturities

y <- NS(c(6,9,10,5)/100, times) ## risk-premium 1%
b@ <- vanillaBond(cf, times, yields =y + 0.01)

cf <- c(-b@, cf); times <- c(0, times)
ytm(cf, times, offset = c(0Q,y)) ## ...

bonds

cf <- c¢(5, 5, 5, 5, 5, 165) ## cashflows

times <- 1:6 ## maturities

discount factors

all.equal(vanillaBond(cf, times, df),
vanillaBond(cf, times, yields

df <= 1/(1+y)*times

... using Nelson--Siegel

vanillaBond(cf, times, yields = NS(c(0.03,0,0,1), times))

several bonds

cashflows are numeric vectors in a list 'cf',
times-to-payment are are numeric vectors in a

list 'times'

times <- 1list(1:3,
1:4,
0.5 + 0:5)
cf <- list(c(6, 6, 106),
c(4, 4, 4, 104),
c(2, 2, 2, 2, 2, 102))

alltimes <- sort(unique(unlist(times)))
M <- array(@, dim = c(length(cf), length(alltimes)))

for (i in seqg_along(times))

MLi, match(times[[i]], alltimes)] <- cf[[i]]
rownames(M) <- paste("bond.”, 1:3, sep =
colnames(M) <- format(alltimes, nsmall

vanillaBond(cf = M, times = alltimes, yields

duration/convexity

cf <- c(5, 5, 5, 5, 5, 105) ## cashflows
times <- 1:6 ## maturities

only the risk-premium

only the risk-premium

vanillaBond

vanillaOptionEuropean 101

y <- 0.0527 ## yield to maturity

d <- 0.001 ## change in yield (+10 bp)
vanillaBond(cf, times, yields = y + d) - vanillaBond(cf, times, yields = y)

duration(cf, times, yield =y, raw = TRUE) * d

duration(cf, times, yield =y, raw = TRUE) * d +
convexity(cf, times, yield =y, raw = TRUE)/2 * d*2

vanillaOptionEuropean Pricing Plain-Vanilla (European and American) and Barrier Options
(European)

Description

Functions to calculate the theoretical prices and (some) Greeks for plain-vanilla and barrier options.

Usage

vanillaOptionEuropean(S, X, tau, r, q, v, taub = 9@, D = 0,
type = "call”, greeks = TRUE,
model = NULL, ...)
vanillaOptionAmerican(S, X, tau, r, q, v, tauD = @, D = 0,
type = "call”, greeks = TRUE, M

1l
—_
[
ey

~

vanillaOptionImpliedVol(exercise = "european”, price,
S, X, tau, r, g = 0,
tauD = @, D = 0,
type = "call”,
M =101,
uniroot.control = list(),
uniroot.info = FALSE)

barrierOptionEuropean(S, X, H, tau, r, q =0, v, tauDb =0, D = 0,

type = "call”,
barrier.type = "downin"”,
rebate = 0,
greeks = FALSE,
model = NULL, ...)
Arguments
S spot
X strike

H barrier

vanillaOptionEuropean

tau time-to-maturity in years

r risk-free rate

q continuous dividend yield, see Details.

v variance (volatility squared)

tauD vector of times-to-dividends in years. Only dividends with tauD greater than
zero and not greater than tau are kept.

D vector of dividends (in currency units); default is no dividends.

type call or put; default is call.

barrier.type

string: combination of up/down and in/out, such as downin

rebate currently not implemented

greeks compute Greeks? Defaults to TRUE. But see Details for American options.

model what model to use to value the option. Default is NULL which is equivalent to
bsm.
parameters passed to pricing model

M number of time steps in the tree

exercise european (default) or american

price numeric; the observed price to be recovered through choice of volatility.

uniroot.control
A list. If there are elements named interval, tol or maxiter, these are passed
to uniroot. Any other elements of the list are ignored.

uniroot.info logical; default is FALSE. If TRUE, the function will return the information re-

turned by uniroot. See paragraph Value below.

Details

For European options the formula of Messrs Black, Scholes and Merton is used. It can be used
for equities (set g equal to the dividend yield), futures (Black, 1976; set g equal to r), currencies
(Garman and Kohlhagen, 1983; set g equal to the foreign risk-free rate). For future-style options
(e.g. options on the German Bund future), set g and r equal to zero.

The Greeks are provided in their raw (‘textbook’) form with only one exception: Theta is made
negative. For practical use, the other Greeks are also typically adjusted: Theta is often divided
by 365 (or some other yearly day count); Vega and Rho are divided by 100 to give the sensitivity
for one percentage-point move in volatility/the interest rate. Raw Gamma is not much use if not
adjusted for the actual move in the underlier.

For European options the Greeks are computed through the respective analytic expressions. For
American options only Delta, Gamma and Theta are computed because they can be directly ob-
tained from the binomial tree; other Greeks need to be computed through a finite difference (see
Examples).

For the European-type options, the function understands vectors of inputs, except for dividends.
American options are priced via a Cox-Ross-Rubinstein tree; no vectorisation is implemented here.

The implied volatility is computed with uniroot from the stats package (the default search interval
is c(0.00001, 2); it can be changed through uniroot.control).

Dividends (D) are modelled via the escrowed-dividend model.

vanillaOptionEuropean 103

Value

Returns the price (a numeric vector of length one) if greeks is FALSE, else returns a list.

Note

If greeks is TRUE, the function will return a list with named elements (value, delta and so on).
Prior to version 0.26-3, the first element of this list was named price.

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Haug, E. (2007) The Complete Guide to Option Pricing Formulas. 2nd edition. McGraw-Hill.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

EuropeanCall, callCF

Examples

S <- 100; X <- 100; tau <- 1; r <- 0.02; g <- 0.06; vol <- 0.3
unlist(vanillaOptionEuropean(S, X, tau, r, g, vol*2, type = "put"))

S <- 100; X <- 110; tau <- 1; r <- 0.1; g <- 0.06; vol <- 0.3; type <- "put”
unlist(vanillaOptionAmerican(S, X, tau, r, q, vol*2, type = type,
greeks = TRUE))

compute rho for 1% move

h <- 0.01

(vanillaOptionAmerican(S, X, tau, r + h, g, vol*2,
type = type, greeks = FALSE) -

vanillaOptionAmerican(S, X, tau, r, q, vol*2,
type = type, greeks = FALSE)) / (h*100)

compute vega for 1% move

h <- 0.01

(vanillaOptionAmerican(S, X, tau, r, q,(vol + h)*2,
type = type, greeks = FALSE) -

vanillaOptionAmerican(S, X, tau, r, g, vol*2,
type = type, greeks = FALSE)) / (h*100)

S <- 100; X <- 100

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

104 vanillaOptionEuropean

tau <- 1; r <- 0.05; q <- 0.00

D <- ¢(1,2); tauD <- c(0.3,.6)

type <- "put”

v <- 0.245"2 ## variance, not volatility

p <- vanillaOptionEuropean(S =S, X = X, tau, r, q, v = v,
tauD = tauD, D = D, type = type, greeks = FALSE)

vanillaOptionImpliedVol(exercise = "european”, price = p,
S=S, X=X, tau=tau, r=r, q =q, tauD = tauD, D = D, type = type)

p <- vanillaOptionAmerican(S =S, X = X, tau, r, q, v = v,
tauD = tauD, D = D, type = type, greeks = FALSE)
vanillaOptionImpliedVol(exercise = "american”, price = p,
S=S, X=X, tau=tau, r =r, q =q, tauD = tauD, D = D, type =
type, uniroot.control = list(interval = c(0.01, 0.5)))

compute implied q

S <- 100; X <- 100

tau <- 1; r <- 0.05; q <- 0.072

v <- 0.22”2 ## variance, not volatility

call <- vanillaOptionEuropean(S=S, X = X, tau=tau, r=r, g=q, v=v,
type = "call”, greeks = FALSE)

put <- vanillaOptionEuropean(S=S, X = X, tau=tau, r=r, g=q, v=v,
type = "put”, greeks = FALSE)

... the simple way
-(log(call + X * exp(-tau*r) - put) - log(S)) / tau

... the complicated way :-)
volDiffCreate <- function(exercise, call, put, S, X, tau, r) {
f <- function(q) {
cc <- vanillaOptionImpliedVol(exercise = exercise, price = call,
S=S, X=X, tau=tau, r=r, g =q, type = "call")
pp <- vanillaOptionImpliedVol(exercise = exercise, price = put,
S=S, X=X, tau=tau, r =r, q =q, type = "put”)
abs(cc - pp)

- o

3
f <- volDiffCreate(exercise = "european”,

call = call, put = put, S=S, X =X, tau = tau, r)
optimise(f,interval = c(0, 0.2))$minimum

##

S <- 100; X <- 100

tau <- 1; r <- 0.05; q <- 0.072

v <- 0.22"2 ## variance, not volatility
vol <- 0.22

vanillaOptionEuropean(S=S, X = X, tau=tau, r=r, g=q, v=v, ## with variance
type = "call”, greeks = FALSE)

xtContractValue 105

X, tau=tau, r=r, g=q, vol=vol, ## with vol
"call", greeks = FALSE)

= X, tau=tau, r=r, g=q, vol=vol, ## with vol
"call”, greeks = FALSE, v = 0.2"2)

vanillaOptionEuropean(S=S,
type
vanillaOptionEuropean(S=S,
type

> 1 x

xtContractValue Contract Value of Australian Government Bond Future

Description

Compute the contract value of an Australian government-bond future from its quoted price.

Usage
xtContractValue(quoted.price, coupon, do.round = TRUE)
xtTickValue(quoted.price, coupon, do.round = TRUE)
Arguments

quoted.price The price, as in 99.02.

coupon numeric; should be 6, not 0.06
do.round If TRUE, round as done by ASX clearing house.
Details

Australian government-bond futures, traded at the Australian Securities Exchange (ASX), are quoted
as 100 - yield. The function computes the actual contract value from the quoted price.

xtTickValue computes the tick value via a central difference.

Value

A numeric vector.

Author(s)

Enrico Schumann

References

https://www.rba.gov.au/mkt-operations/resources/tech-notes/pricing-formulae.html

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

https://www.rba.gov.au/mkt-operations/resources/tech-notes/pricing-formulae.html
https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

106 xwGauss

Examples

quoted.price <- 99

coupon <- 6

xtContractValue(quoted.price, coupon)

xtTickValue(quoted.price, coupon)

convexity

quoted.price <- seq(90, 100, by = 0.1)

plot (100 - quoted.price,
xtContractValue(quoted.price, coupon),
xlab = "Yield”, ylab = "Contract value")

xwGauss Integration of Gauss-type

Description

Compute nodes and weights for Gauss integration.

Usage

xwGauss(n, method = "legendre")
changelnterval(nodes, weights, oldmin, oldmax, newmin, newmax)

Arguments
n number of nodes
method character. defaultis "legendre”; also possible are "laguerre” and "hermite”
nodes the nodes (a numeric vector)
weights the weights (a numeric vector)
oldmin the minimum of the interval (typically as tabulated)
oldmax the maximum of the interval (typically as tabulated)
newmin the desired minimum of the interval
newmax the desired maximum of the interval
Details

xwGauss computes nodes and weights for integration for the interval -1 to 1. It uses the method of
Golub and Welsch (1969).

changeInterval is a utility that transforms nodes and weights to an arbitrary interval.

Value
a list with two elements

weights a numeric vector

nodes a numeric vector

xwGauss 107

Author(s)

Enrico Schumann

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier. doi:10.1016/C2017001621X

Golub, G.H. and Welsch, J.H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation, 23(106), pp. 221-230+s1-s10.

Schumann, E. (2023) Financial Optimisation with R (NMOF Manual). https://enricoschumann.
net/NMOF . htm#NMOFmanual

See Also

callHestoncf

Examples

examples from Gilli/Maringer/Schumann (2019), ch. 17

a test function

f1 <- function(x) exp(-x)
m<-5;, a<-0; b<-5

h <= (b -a)m

rectangular rule -- left
w<-h; k<-0:(m1); x<-a+k=*h
sum(w * f1(x))

rectangular rule -- right
w<-h; k<-1mm; x<-a+k=*h
sum(w *x f1(x))

midpoint rule
w<-h; k<-0:(m1); x <-a+ (k +0.5)*h
sum(w * f1(x))

trapezoidal rule

w <- h

k <= 1:(m-1)

x <- c(a, a + kxh, b)

aux <- w * f1(x)

sum(aux) - (aux[1] + aux[length(aux)1)/2

R's integrate (from package stats)
integrate(f1, lower = a,upper = b)

Gauss--Legendre
temp <- xwGauss(m)
temp <- changelnterval(temp$nodes, temp$weights,
oldmin = -1, oldmax = 1, newmin = a, newmax = b)

https://doi.org/10.1016/C2017-0-01621-X
https://enricoschumann.net/NMOF.htm#NMOFmanual
https://enricoschumann.net/NMOF.htm#NMOFmanual

108 xwGauss

X <- temp$nodes; w <- temp$weights
sum(w * f1(x))

Index

+ Differential Evolution
DEopt, 20

* Genetic Algorithm
GAopt, 30

+ Heston model
callHestoncf, 13

* Local Search
LSopt, 39

x Particle Swarm Optimisation
PSopt, 62

* Simluated Annealing
SAopt, 80

« Test functions for global optimisation
testFunctions, 94

* Threshold Accepting
TAopt, 89

* datagen
mc, 46
resampleC, 73

* datasets
bundData, 8
fundData, 29
optionData, 59

x distribution
mc, 46
resampleC, 73

x grid search
gridSearch, 35

* heuristics
DEopt, 20
GAopt, 30
PSopt, 62
SAopt, 80
TAopt, 89

* index tracking
trackingPortfolio, 96

* optimize
bracketing, 6
DEopt, 20

109

GAopt, 30
gridSearch, 35
LSopt, 39
PSopt, 62
SAopt, 80
TAopt, 89
testFunctions, 94
+ package
NMOF-package, 3
* portfolio selection
maxSharpe, 45
minCVaR, 49
minvar, 52
mvFrontier, 54
trackingPortfolio, 96
* style analysis
trackingPortfolio, 96
.Random. seed, 22, 32, 34,41, 64, 81, 91

approxBondReturn, 5

barrierOptionEuropean
(vanillaOptionEuropean), 101

bracketing, 3, 6

bundData, 4, 8

bundFuture, 4, 9

bundFutureImpliedRate (bundFuture), 9

callCF, 4, 11,15, 16, 103
callHestoncf, 12, 13, 27, 107
callMerton, 15

cat, 69

cfBates (callCF), 11

cfBSM (callCF), 11

cfHeston (callCF), 11
cfMerton (callCF), 11

cfVG (callCF), 11
changelnterval (xwGauss), 106
colSubset, 17

convexity (vanillaBond), 98

110

CPPI, 18

data.frame, 28, 77, 84, 86

Date, 9

DEopt, 3, 4, 20, 31, 32, 65, 75, 76, 95
divRatio, 24

download.file, 77

drawdown, 25

drawdowns, 26

duration (vanillaBond), 98

EuropeanCall, 15, 16, 26, 103
EuropeanCallBE (EuropeanCall), 26
exp, 47

expand.grid, 36

FALSE, 60
file.show, 85
French, 3,27, 78, 85
fundData, 4, 29

GAopt, 3, 4, 22, 30, 75, 76
gbb (mc), 46

gbm (mc), 46
greedySearch, 4, 33
grepl, 85
gridSearch, 3, 4, 35

integrate, 14

lapply, 36

list, 68

LS.info, 38

LSopt, 3, 4, 38, 39, 39, 40, 75, 76, 80, 82,
90-92, 97

MA, 43

matrix, 71

maxSharpe, 45

me, 4, 46, 71

minCVaR, 3,49, 51

minMAD, 50
minvar, 46, 50, 51, 52, 55, 97
mvFrontier, 46, 54
mvPortfolio, 46
mvPortfolio (mvFrontier), 54

NA, 5, 28
NMOF (NMOF-package), 3
NMOF-package, 3

INDEX

NS, 56, 58, 99
NSf, 57,57
NSS, 58, 99
NSS (NS), 56
NSSf, 57
NSSf (NST), 57
NULL, 28
numeric, 71

optionData, 4, 59

parent.frame, 38, 78, 87

PBO, 60

pm, 61

pretty, 69

PSopt, 3,22, 31, 32,62, 75, 76, 95
putCallParity, 4, 12, 16, 66

qr, 17
qTable, 68

randomReturns, 70
repairMatrix, 18,72, 74
resampleC, 4, 73
restartOpt, 3, 4,41, 74, 82, 92
Rglpk_solve_LP, 49,51
Ritter, 77

SA.info, 78

SAopt, 3, 4, 40, 78-80, 80, 90, 92
Shiller, 3, 29, 78, 84
showChapterNames (showExample), 85
showExample, 85
solve.QP, 45, 52, 97

TA.info, 39, 79, 87
TAopt, 3, 4, 40, 41, 53, 75, 76, 80, 82, 87, 88,
89, 90
testFunctions, 94
tfAckley (testFunctions), 94
tfEggholder (testFunctions), 94
tfGriewank (testFunctions), 94
tfRastrigin (testFunctions), 94
tfRosenbrock (testFunctions), 94
tfSchwefel (testFunctions), 94
tfTrefethen (testFunctions), 94
trackingPortfolio, 96
txtProgressBar, 21, 81, 90

uniroot, 8, 12, 14, 16, 102

INDEX

vanillaBond, 4, 98
vanillaOptionAmerican, 4
vanillaOptionAmerican
(vanillaOptionEuropean), 101
vanillaOptionEuropean, 4, 47, 67, 101
vanillaOptionImpliedVol
(vanillaOptionEuropean), 101

xtContractValue, 4, 105
xtTickValue (xtContractValue), 105
xwGauss, 106

ytm (vanillaBond), 98

111

	NMOF-package
	approxBondReturn
	bracketing
	bundData
	bundFuture
	callCF
	callHestoncf
	callMerton
	colSubset
	CPPI
	DEopt
	divRatio
	drawdown
	EuropeanCall
	French
	fundData
	GAopt
	greedySearch
	gridSearch
	LS.info
	LSopt
	MA
	maxSharpe
	mc
	minCVaR
	minMAD
	minvar
	mvFrontier
	NS
	NSf
	optionData
	PBO
	pm
	PSopt
	putCallParity
	qTable
	randomReturns
	repairMatrix
	resampleC
	restartOpt
	Ritter
	SA.info
	SAopt
	Shiller
	showExample
	TA.info
	TAopt
	testFunctions
	trackingPortfolio
	vanillaBond
	vanillaOptionEuropean
	xtContractValue
	xwGauss
	Index

