Package ‘RavenR’

January 20, 2025
Type Package
Title Raven Hydrological Modelling Framework R Support and Analysis
Version 2.2.2
Date 2024-05-06
Maintainer Robert Chlumsky <rchlumsk@uwaterloo.ca>

Description Utilities for processing input and output files associated with the Raven Hydrologi-
cal Modelling Framework. Includes various plotting functions, model diagnostics, reading out-
put files into extensible time series format, and support for writing Raven input files.
The 'RavenR' package is also archived at Chlumsky et al. (2020) <doi:10.5281/zenod0.4248183>.
The Raven Hydrologic Modelling Framework method can be refer-
enced with Craig et al. (2020) <doi:10.1016/j.envsoft.2020.104728>.

Note Package is in active development; please report errors and
suggestions to rchlumsk @uwaterloo.ca.

BugReports https://github.com/rchlumsk/RavenR/issues

Depends R (>= 3.6.0)

Imports colorspace, cowplot, crayon, DiagrammeR, dplyr, dygraphs,
gdata, ggplot2, igraph, lubridate, magrittr, purrr, Rcpp,
RCurl, scales, stats, stringr, tidyr, utils, visNetwork, xts,
700

Suggests devtools, knitr, rmarkdown

URL https://github.com/rchlumsk/RavenR
License GPL-3

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.3.1

VignetteBuilder knitr

LinkingTo Rcpp

NeedsCompilation yes

https://doi.org/10.5281/zenodo.4248183
https://doi.org/10.1016/j.envsoft.2020.104728
https://github.com/rchlumsk/RavenR/issues
https://github.com/rchlumsk/RavenR

Author Robert Chlumsky [cre, aut] (<https://orcid.org/0000-0002-1303-5064>),
James Craig [ctb, aut] (<https://orcid.org/0000-0003-2715-7166>),
Leland Scantlebury [ctb, aut],
Simon Lin [ctb, aut],
Sarah Grass [ctb, aut],
Genevieve Brown [ctb, aut],
Rezgar Arabzadeh [ctb, aut]

Repository CRAN
Date/Publication 2024-05-07 03:30:02 UTC

Contents

hhmmss2dec e
rvn_annual_peak L.
rvn_annual_peak_error o
rvn_annual_peak_evento
rvn_annual_peak_event_erroro
rvn_annual_peak_timing_error
rvn_annual_quantiles Lo
rvn_annual_quantiles_plot o oL
rvn_annual_volume e
rvn_apply_wyearly
rvn_apply_wyearly_which_max_xts
rvn_budyko_plot
rvn_calc_runoff coeff.
rvi_csv_read e e
rvin_cum_plot_flow L
rvo_custom_data e
rvn_custom_output_ploto
rvi_custom_read e e e e e e e e
rvn_df to_Raven table
rvn_dist_lonlat
rvi_download e
rvn_exhaustive mb read
rvi_fde_plot. e e e
rvn_flow_residuals
rvn_flow_scatterplot L
rvn_flow_spaghetti
rvn_forcings_plot
rvn_forcings_read L e e
rvn_forcing_data L.
rvn_fortify_Xts
rvn_gen_obsweights oL oo
rvi_get_prd ..o L. e e e
rvn_hydrograph_data
rvn_hyd_dygraph o

Contents

https://orcid.org/0000-0002-1303-5064
https://orcid.org/0000-0003-2715-7166

Contents

3
rvi_hyd_extract L e e e e e e 45
rvn_hyd_ploto 46
rvn_hyd_read L 48
rvi_met_interpolateo 49
rvi_met_recordplot L. 51
rvi_monthly_vbias L 53
rvi_month_names e 54
TVI_NUM_dayS o o e e e e e e e e e e e e e e e e 55
rvi_num_days_montho 56
rvn_res_dygraph 57
IVILTES_EXIIACT . . . o v v v o o e e e e e e e e e e 58
TVI_Tes_Plot L e e e 59
rvi_res read L e e e e e 61
TVILTUN . . v v v v e e e e e e e e e e e e s 62
rvn_rvc_from_custom_output oL e 64
TVIL_IVC_TES . & o v v v v e e e e e e e e e e e e e e e e e e 65
IVILIVC_WIITE o o o o o o e e e e e e s 66
rvi_rvh_blankHRUdf e 67
rvn_rvh_blankSBdf 68
rvn_rvh_cleanhrus 69
IVI_IVh_OVETWIILE o o e e e e e e e e e e e 71
TVILIVH_QUETY o ot e e e e e e e e e e e e e 73
rvi_rvh read L L e e 74
rvn_rvh_subbasin_network_ploto oo 76
rvn_rvh_subbasin_visnetwork_plot. L L L. 77
rvn_rvh_Summarize e e e e e e e e e 78
rvn_rvh_write_subbasingroup 80
rvo_rvi_commandupdate oL 81
ITVI_IVI_CONNECHONS v i i e e s e e e e e e e e e e e e e e 82
TVIL_IVI_GELParams o v v it e e e e e e e e e 83
rvn_rvi_process_diagrammero 85
TVI_IVI_Process_geplot o i e e e e e e 87
rvo_rvi_read L L e e e e e e 89
rvo_rvi_write_templateo 90
rvo_rvp_calib_template oL 91
rvi_rvp_fill_template 93
rvo_rvt_mappings_data oL e e 95
rvi_rve_read . .. oL . L e e e e 96
rvi_rvt_tidyhydat oL 97
TVILIVE_WIITE o o o o o o e e e e e e e e 99
IVI_IVE WIItE _MEL o o o e e e 101
rvi_stringpad L e e e e e e e 103
rvn_substrLeft 104
rvn_substrMLeft 104
rvn_substrMRight 105
rvn_substrRight 106
rvin_theme_RavenR 106

rvn_tidyhydat_sample oL 107

4 cmax
rvi_ts_Infillo e 108
rvn_watershedmeb_read 109
rvn_watershed_data e 110
rvn_watershed _read 111
rvn_weathercan_metadata_sampleo 112
rvn_weathercan_sample e 113
rvn_which_max_Xts. e 114
rvn_write_Raven_header 115
rvn_write_Raven_label 116
rvn_write_Raven_newfile 117
rvn_write_Raven_table 118
rvi_wyear_indiCes e e e e e e 119
TVILXES_PIOt . . . L o o e e e e 120
TonotinTo e e e e e e e 121

Index 123

cmax cmax

Description

Applies the base::max function across columns.

Usage

cmax(x, na.rm = FALSE)

Arguments

X object to apply the max function to

na.rm whether to remove na values from the calculation
Details

It applies the base::max function over columns, which is advantageous for calculating the max
within a column rather than the max of the whole data frame. The default base::max will not work
properly for data frames and other structures in applying over columns or different periods.

This

function was included for usage with the apply.<period> and rvn_apply_wyearly function,

as the base::max function does not work properly across columns.

Value

x with the max value in each column determined

See Also

rvn_

apply_wyearly where this function can be applied for the water year, and the xts functions

such as apply.yearly and apply.monthly

hhmmss2dec 5

Examples

data(rvn_hydrograph_data)
cmax (rvn_hydrograph_datahydSub43_obs, na.rm=TRUE)

rvn_apply_wyearly(rvn_hydrograph_data$hyd, cmax, na.rm=TRUE)

hhmmss2dec Convert hours, minutes, seconds to decimal hours

Description

Converts string format HH:MM:SS to decimal hours

Usage

hhmmss2dec(x)

Arguments

X input as character, format HH:MM:SS

Value

time in decimal hours

Examples

return hour:minutes:seconds to decimal hours
hhmmss2dec("02:35:58")

rvn_annual_peak Annual Peak Comparison

Description

rvn_annual_peak creates a plot of the annual observed and simulated peaks, based on the water
year.

6 rvn_annual_peak

Usage
rvn_annual_peak(
sim,
obs,
mm = 9,
dd = 30,

add_line = TRUE,
add_r2 = FALSE,
add_egn = FALSE

)
Arguments
sim time series object of simulated flows
obs time series object of observed flows
mm month of water year ending (default 9)
dd day of water year ending (default 30)
add_line optionally adds a 1:1 line to the plot for reference (default TRUE)
add_r2 optionally computes the R2 and adds to plot (default FALSE)
add_egn optionally adds the equation for a linear regression line through the origin (de-
fault FALSE)
Details

Creates a scatterplot of the annual observed and simulated peaks, calculated for each available water
year of data within the two series provided. The default start of the water year is October 1st, but
may be adjusted through function parameters. Note that the calculation uses the peak magnitude of
simulated and observed series in each water year, without considering the timing of the events in
each series.

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s.

The R2 diagnostic is calculated for a fit with no intercept, consistent with the provided 1:1 line (in
a perfect fit the points are identical, and intercept is automatically zero).

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

returns a list with peak data in a data frame, and a ggplot object

df_peak data frame of the calculated peaks
p1 ggplot object with plotted annual peaks
See Also

rvn_annual_volume to create a scatterplot of annual flow volumes rvn_annual_peak_event to
consider the timing of peak events.

rvn_annual_peak_error 7

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

create a plot of annual peaks with default options
peakl <- rvn_annual_peak(sim, obs)

peak1$df_peak

peak1$p1

plot with r2 and regression equation
peak_df <- rvn_annual_peak(sim, obs, add_r2=TRUE, add_egn=TRUE)
peak_df$p1

rvn_annual_peak_error Annual Peak Errors

Description

rvn_annual_peak_error creates a plot of the annual observed and simulated peak percent errors,
based on the water year.

Usage

rvn_annual_peak_error(
sim,
obs,
mm = 9,
dd = 30,
add_line = TRUE,
add_labels = TRUE

)
Arguments
sim time series object of simulated flows
obs time series object of observed flows
mm month of water year (default 9)
dd day of water year (default 30)
add_line optionally adds a 1:1 line to the plot for reference (default TRUE)
add_labels optionally adds labels for overpredict/underpredict on right side axis (default

TRUE)

8 rvn_annual_peak_error

Details

Creates a plot of the percent errors in simulated peaks for each water year. The peaks are calculated
as the magnitude of the largest event in each water year. Note that the rvn_annual_peak_error
function is first used to obtain the peaks in each year, then the percent errors are calculated.

The percent errors are calculated as (QPsim-QPobs)/QPobs*100, where QP is the peak flow event.

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s.

The add_labels will add the labels of *overprediction’ and "underprediction’ to the right hand side
axis if set to TRUE. This is useful in interpreting the plots.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

returns a list with peak errors in a data frame, and a ggplot object

df_peak_error data frame of the calculated peak errors

p1 ggplot object with plotted annual peak errors

See Also

rvn_annual_peak_event to consider the timing of peak events rvn_annual_peak_event_error
to calculate errors in peak events.

Examples

system.file("extdata"”, "runl_Hydrographs.csv"”, package="RavenR") %>%
rvn_hyd_read(.) %>%

rvn_hyd_extract(subs="Sub36",.) ->

hyd_data

sim <- hyd_data$sim
obs <- hyd_data$obs

create a plot of annual peak errors with default options
peakl <- rvn_annual_peak_error(sim, obs)
peak1$df_peak_error

peak1$p1

plot directly and without labels
rvn_annual_peak_error(sim, obs, add_line=TRUE, add_labels=FALSE)

rvn_annual_peak_event 9

rvn_annual_peak_event Annual Peak Event Comparison

Description

rvn_annual_peak_event creates a plot of the annual observed and simulated peaks, based on the

water year.
Usage
rvn_annual_peak_event(
sim,
obs,
mm = 9,
dd = 30,

add_line = TRUE,
add_r2 = FALSE,
add_eqgn = FALSE

)
Arguments
sim time series object of simulated flows
obs time series object of observed flows
mm month of water year (default 9)
dd day of water year (default 30)
add_line optionally adds a 1:1 line to the plot for reference (default TRUE)
add_r2 optionally computes the R2 and adds to plot (default FALSE)
add_eqgn optionally adds the equation for a linear regression line through the origin (de-
fault FALSE)
Details

Creates a scatterplot of the annual observed and simulated peaks, calculated for each available water
year of data within the two series provided; note that the difference between this and the annual.peak
function is that here the peak event simulated for the same day as the peak event in observed data is
used, instead of the largest recorded simulated event. In some sense this captures the timing of the
event, i.e. the peak event must be simulated on the same day as the observed peak to be captured
well.

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s.

The R2 diagnostic is calculated for a fit with no intercept (in a perfect fit the points are identical,
and intercept is automatically zero).

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

10 rvn_annual_peak_event_error

Value
returns a list with peak data in a data frame, and a ggplot object

df_peak_event data frame of the calculated peak events

pl ggplot object with plotted annual peaks

See Also

rvn_annual_peak to create a scatterplot of annual peaks (consider the magnitude of peaks only)

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

create a plot of annual peak events with default options
peakl <- rvn_annual_peak_event(sim, obs)
peak1$df_peak_event

peak1$p1

rvn_annual_peak_event_error
Annual Peak Event Errors

Description

rvn_annual_peak_event_error creates a plot of the annual observed and simulated peak event errors.

Usage
rvn_annual_peak_event_error(
sim,
obs,
mm = 9,
dd = 30,

add_line = TRUE,
add_labels = TRUE

)

Arguments
sim time series object of simulated flows
obs time series object of observed flows

mm month of water year (default 9)

rvn_annual_peak_event_error 11

dd day of water year (default 30)
add_line optionally adds a 1:1 line to the plot for reference (default TRUE)
add_labels optionally adds labels for overpredict/underpredict on right side axis (default
TRUE)
Details

Creates a plot of the percent errors in simulated peak events for each water year. The peaks are
calculated as using flows from the same day as the peak event in the observed series, i.e. the timing
of the peak is considered here. Note that the rvn_annual_peak_event function is first used to obtain
the peaks in each year, then the percent errors are calculated.

The percent errors are calculated as (QP_sim-QP_obs)/QP_obs*100, where QP is the peak flow
event.

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s.

The add_labels will add the labels of *overprediction’ and "underprediction’ to the right hand side
axis if set to TRUE. This is useful in interpreting the plots.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value
returns a list with peak event error data in a data frame, and a ggplot object

df_peak_event_error
data frame of the calculated peak event errors

pl ggplot object with plotted annual peak event errors

See Also

rvn_annual_peak to consider just the magnitude of each year’s peak rvn_annual_peak_error to
calculate errors in peaks

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

create a plot of peak annual errors with default options
peakl <- rvn_annual_peak_event_error(sim, obs)
peak1$df_peak_event_error

peak1$p1

12 rvn_annual_peak_timing_error

rvn_annual_peak_timing_error
Annual Peak Timing Errors

Description

rvn_annual_peak_timing_error creates a plot of the annual observed and simulated peak timing
errors, based on the water year.

Usage
rvn_annual_peak_timing_error(
sim,
obs,
mm = 9,
dd = 30,

add_line = TRUE,
add_labels = TRUE

)
Arguments

sim time series object of simulated flows

obs time series object of observed flows

mm month of water year (default 9)

dd day of water year (default 30)

add_line optionally adds a 1:1 line to the plot for reference (default TRUE)

add_labels optionally adds labels for early peak/late peaks on right side axis (default TRUE)
Details

Creates a plot of the peak timing errors in simulated peaks for each water year. The difference
in days between the simulated peak and observed peak are plotted (and/or returned in the data
frame) for the water year. This diagnostic is useful in determining how accurate the timing of peak
predictions is. Note that a large error in the number of days between simulated and observed peaks
indicates that the model predicted a larger event at a different time of year, i.e. overestimated a
different event or underestimated the actual peak event, relative to the observed flow series.

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s. Note that a plot title
is purposely omitted in order to allow the automatic generation of plot titles.

The add_labels will add the labels of ’early peak’ and ’late peak’ to the right hand side axis if set
to TRUE. This is useful in interpreting the plots. Note that values in this metric of less than zero
indicate an early prediction of the peak, and positive values mean a late prediction of the peak (since
the values are calculated as day index of simulated peak - day index of observed peak).

rvn_annual_quantiles 13

Value
returns a list with peak timing errors in a data frame, and a ggplot object
df_peak_timing_error
data frame of the calculated peak timing errors

pl ggplot object with plotted annual peak errors

See Also

rvn_annual_peak_event to consider the timing of peak events rvn_annual_peak_event_error
to calculate errors in peak events

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

create a plot of peak timing errors with defaults

peakl <- rvn_annual_peak_timing_error(sim, obs, add_line=TRUE)
peakl1$df_peak_timing_error

peak1$p1

plot directly and without labels
rvn_annual_peak_timing_error(sim, obs, add_line=TRUE, add_labels=FALSE)

rvn_annual_quantiles Calculates Yearly Median, Upper and Lower Quantiles of Flow

Description

Calculate the quantiles for each day of the year based on the supplied time series.

Usage
rvn_annual_quantiles(

hgdata,
prd = NULL,
Qlower = 0.1,
Qupper = 0.9,
water_year = TRUE,
mm = 9

14

Arguments
hgdata
prd
Qlower
Qupper
water_year

mm

Value

gdat

Author(s)

rvn_annual_quantiles_plot

Time series object of observed or simulated flows

time period for subset in character format "YYYY-MM-DD/YYYY-MM-DD"
Decimal percentage of lower quantile value (default 0.1)

Decimal percentage of upper quantile value (default 0.9)

boolean on whether to sort quantiles by water year start date (default TRUE)

month of water year ending (default 9)

Time series object of monthly median and quantile values

Leland Scantlebury, <leland@scantle.com>

Examples

system.file("extdata"”, "runl_Hydrographs.csv"”, package="RavenR") %>%
rvn_hyd_read(.) %>%
rvn_hyd_extract(subs="Sub36",.) ->

hyd_data

Calculate quantiles for the simulated hydrograph
gdat <- rvn_annual_quantiles(hyd_data$sim)

head(qdat)

rvn_annual_quantiles_plot

Plot of Annual Median, Upper and Lower Quantiles of Flow

Description

Creates a plot of the annual flow quantiles provided by the rvn_annual_quantiles function.

Usage

rvn_annual_quantiles_plot(

qdat,

mediancolor
ribboncolor
ribbonalpha

explot = NULL

"black",
"grey60"”,
0.5,

rvn_annual volume 15

Arguments

gdat Time series object generated by rvn_annual_quantiles

mediancolor Color for the median line

ribboncolor Color for the lower/upper quantile ribbon

ribbonalpha Transparency of lower/upper quantile ribbon

explot Existing ggplot object to which median line and quantile ribbon should be added
Value

pl ggplot object of quantiles plot

Author(s)

Leland Scantlebury, <leland@scantle.com>

Examples

non

system.file("extdata”,"run1_Hydrographs.csv”, package="RavenR") %>%
rvn_hyd_read(.) %>%

rvn_hyd_extract(subs="Sub36",.) ->

hyd_data

Calculate quantiles for the simulated hydrograph
gdat <- rvn_annual_quantiles(hyd_data$sim)
head(qdat)

Plot
p <- rvn_annual_quantiles_plot(qgdat)
p # view plot

Add a second hydrograph to compare
gdat_sim <- rvn_annual_quantiles(hyd_data$sim)

p1 <= rvn_annual_quantiles_plot(qdat_sim, mediancolor = 'blue', ribboncolor = 'red', explot = p)
pl # view plot

rvn_annual_volume Annual Volume Comparison

Description

Creates a plot of the annual observed and simulated volumes.

16 rvn_annual volume

Usage
rvn_annual_volume(
sim,
obs,
mm = 9,
dd = 30,

add_line = TRUE,
add_r2 = FALSE,
add_eqgn = FALSE,
add_labels = FALSE

)
Arguments
sim time series object of simulated flows
obs time series object of observed flows
mm month of water year ending (default 9)
dd day of water year ending (default 30)
add_line optionally adds a 1:1 line to the plot for reference (default TRUE)
add_r2 optionally computes the R2 and adds to plot (default FALSE)
add_eqgn optionally adds the equation for a linear regression line through the origin (de-
fault FALSE)
add_labels optionally adds year-ending labels to each point on plot using geom_text (default
FALSE)
Details

Creates a scatterplot of the annual observed and simulated volumes, calculated for each available
water year of data within the two series provided. The sim and obs should be of time series (xts)
format and are assumed to be of the same length and time period. Note that missing values in the
observed series will impact the volume estimation, and it is recommended that the NA values are
filled in prior to use of this function.

The R2 diagnostic is calculated for a fit with no intercept (in a perfect fit the points are identical,
and intercept is automatically zero).

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

returns a list with annual volume data in a data frame, and a ggplot object

df_volume data frame of the calculated annual volumes
pl ggplot object with plotted annual volumes
See Also

rvn_flow_scatterplot to create a scatterplot of flow values

rvn_apply_wyearly 17

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

create a plot of the annual volumes with defaults
rvn_annual_volume(sim,obs)

create a plot of the annual volumes with r2
rvn_annual_volume(sim,obs,add_r2=TRUE, add_eqn=TRUE)

create a plot of the annual volumes with year-ending labels
rvn_annual_volume(sim,obs, add_labels=TRUE)

calculate annual volumes for different water years (e.g. ending Oct 31)
vv <- rvn_annual_volume(sim, obs, mm=10, dd=31)

vv$df.volume

vv$p1l

rvn_apply_wyearly Apply function for water year

Description

rvn_apply_wyearly calculates a function FUN for the periods defined by the water year, similar to
other functions of the form apply.<time period>, for example apply.daily, apply.monthly, etc.

Usage

rvn_apply_wyearly(x, FUN, ..., mm = 9, dd = 30)
Arguments

X xts vector to calculate FUN for

FUN the function to be applied

optional arguments to FUN

mm month of water year ending (default 9)

dd day of water year ending (default 30)
Details

The default water year start is October 1st, but may be adjusted with the mm and dd arguments. The
values for mm and dd indicate the end of the water year period (i.e. mm=9 and dd=30 indicates a
new water year on Oct 1).

Note that if using FUN=mean, please use FUN=colMeans instead.

18 rvn_apply_wyearly_which_max_xts

See Also

rvn_wyear_indices for obtaining endpoints in the water year

Examples

use sample forcing data (or use forcings_read to read in ForcingFunctions.csv)
data(rvn_forcing_data)

apply mean (with colMeans) as FUN to daily average temperature
rvn_apply_wyearly(rvn_forcing_data$forcings$temp_daily_ave,colMeans,na.rm=TRUE)

apply mean as FUN to all forcings
rvn_apply_wyearly(rvn_forcing_data$forcings, colMeans,na.rm=TRUE)

apply maximum via RavenR::cmax as FUN to all forcings (takes the max in each column)
note that the base::max will not work properly here
rvn_apply_wyearly(rvn_forcing_data$forcings, cmax,na.rm=TRUE)

apply to Australian water year (July 1)
rvn_apply_wyearly(rvn_forcing_data$forcings,cmax,na.rm=TRUE, mm=6, dd=30)

rvn_apply_wyearly_which_max_xts
which.max over water year periods

Description
Applies the which.max function within each water year period, and returns the corresponding max
values and dates in an xts format.

Usage

rvn_apply_wyearly_which_max_xts(x, mm = 9, dd = 30)

Arguments
X Xts object
mm month of water year ending (default 9)
dd day of water year (default 30)

Value

xts object with max values and corresponding dates

rvn_budyko_plot 19
Examples
data(rvn_hydrograph_data)

obtain peak observed flows in each water year period
rvn_apply_wyearly_which_max_xts(rvn_hydrograph_datahydSub43_obs)

will return a warning with no result if multiple columns supplied
rvn_apply_wyearly_which_max_xts(rvn_hydrograph_data$hyd)

rvn_budyko_plot Budkyo Plot

Description

rvn_budyko_plot creates a Budyko plot, adding supplied data points if provided.

Usage

rvn_budyko_plot(
x = NULL,
x_indices = NULL,
limiting_labels = FALSE,
budyko_curve = FALSE,

mm = 9,
dd = 30
)
Arguments
X extensible time series object of PET, AET, and PRECIP (optional)
x_indices extensible time series object of annual ARIDITY and EVAPORATION indices

(optional)

limiting_labels
boolean whether to vertical line at x=1 and labels for *Energy Limited’ and
"Water Limited’ to plot

budyko_curve boolean whether to add curve to plot

mm month of water year ending (default 9)
dd day of water year ending (default 30)
Details

Creates a blank Budyko curve plot if no data is provided. Labels may optionally be added to the plot
with 1imiting_labels=TRUE to indicate where in the curve the energy-limited and water-limited
limits are. The original Budyko curve may also be added with budyko_curve=TRUE.

Data may be provided and plotted in the graph as well. If data is provided, it can be provided as:

- x: an xts object with PRECIP, AET, and PET columns - x_indices: an xts object with indices
calculated for each year, columns named ARIDITY and EVAPORATIVE

20 rvn_calc_runoff coeff

Value

pl returns Budyko plot as ggplot object

References

Budyko, M.I. (1974), Climate and Life, Academic Press, New York.

See Also

rvn_watershedmeb_read for reading in the WatershedMassEnergyBalance.csv file, and rvn_apply_wyearly
to apply functions over the water year.

Examples

return blank Budyko plot
rvn_budyko_plot()

return blank plot with labels and curve added
rvn_budyko_plot(limiting_labels=TRUE, budyko_curve=TRUE)

plot sample data on Budyko plot (two years of data)

wstor <- system.file("extdata"”,"runl_WatershedStorage.csv"”, package="RavenR") %>%
rvn_watershed_read()

ff <- system.file("extdata”,"runl_ForcingFunctions.csv", package="RavenR") %>%
rvn_forcings_read()

library(xts)

precip <- ff$forcings$rain+ff$forcings$snow

pet <- ff$forcings$PET

aet <- diff.xts(x=wstor$watershed_storage$Cum..Losses.to.Atmosphere..mm.,
k=1, na.pad=TRUE)

aet[1] <- 0

x <- merge.xts(precip,pet,aet)
names(x) <- c("precip”,"pet”,"aet")
rvn_budyko_plot(x=x, budyko_curve=TRUE)

rvn_calc_runoff_coeff Generate runoff coefficients upstream of gauges

Description

Uses the rvh, custom precipitation, and hydrograph information to determine runoff coefficients.

rvn_calc_runoff coeff 21

Usage

rvn_calc_runoff_coeff(
rvhfile,
custfile = "PRECIP_Daily_Average_BySubbasin.csv”,
hydfile = "Hydrographs.csv"”,
correct = FALSE

)
Arguments
rvhfile file path to Raven rvh file
custfile file path to Raven-generated custom output precip-by-subbasin file
hydfile file path to Raven-generated hydrographs file
correct (optional) if TRUE, tries to correct runoff coefficient for missing data (assumes
missing~0 flow)
Details

Reads model.rvh file and daily avg subbasin precip file (usually PRECIP_Daily_Average BySubbasin.csv)
and generates data frame describing runoff coefficients of gauged basins and observation data cov-

erage. Uses precipitation from entire model run history. Only determines runoff coefficient from
available data - prone to overestimation with poor observation coverage.

Value

data frame with runoff coefficients of gauged basins

Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvh_read for reading and processing Raven rvh file

Examples

myrvh <- system.file("extdata”,"Nith.rvh", package="RavenR")
mycust <- system.file("extdata”, "run1_PRECIP_Daily_Average_BySubbasin.csv", package="RavenR")
myhyd <- system.file("extdata”, "runl_Hydrographs.csv"”, package="RavenR")

rcs <- rvn_calc_runoff_coeff(myrvh, mycust, myhyd, correct=TRUE)
rcs

create a bar plot
runcoefs <- subset(rcs,select=c(runoff_coeff_sim,runoff_coeff_obs))

bp <- barplot(t(as.matrix(runcoefs)),
main="Runoff Coefficient Comparison (w/ rough data coverage correction)”,

22 rvn_csv_read

ylab = "Runoff coeff”, ylim=c(@,1),beside=TRUE,
col=c("blue"”, "deepskyblue”),legend. text=c("sim","obs"),las=2)

rvn_csv_read Read in generic Raven output csv files

Description

Reads in output csv files produced by Raven.

Usage

rvn_csv_read(ff = NA, tzone = "UTC", xtsformat = TRUE)

Arguments

ff full file path to the csv file

tzone string indicating the timezone of the data in ff

xtsformat boolean whether to return in xts format (if date and/or hour found)
Details

Expects a full file path to the Raven output file.
The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by

the user to the local time zone as needed, based on the model run.
Value

data frame (as xts if set with xtsformat) read from the file

See Also

rvn_hyd_read for reading Hydrographs output files

Examples

create full file path
ff <- system.file(”extdata”,"ReservoirStages.csv”, package="RavenR")

read in the Reservoir file with the generic call
myres <- rvn_csv_read(ff)

view contents
head(myres)

rvn_cum_plot_flow 23

rvn_cum_plot_flow Cumulative Plot of model flows

Description

rvn_cum_plot_flow creates a cumulative flow plot of the simulated flows; optionally includes an
observed and/or inflow series as well. Useful in diagnotic analysis of model outputs.

Usage

rvn_cum_plot_flow(sim = NULL, obs = NULL, inflow = NULL, mm = 9, dd = 30)

Arguments
sim time series object of simulated flows
obs optionally supply an inflow series to plot as well
inflow optionally supply an inflow series to plot as well
mm month of water year ending (default 9)
dd day of water year ending (default 30)

Details

Plots the simulated series in all cases, and will include the observed and inflow plots if they are
supplied.

The sim and obs should be of time series (xts) format. The flow series are assumed to be daily flows
with units of m3/s.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Note that the cumsum function does not have an na.rm=T argument, thus if there are any NA values
in the water year of data for any provided series, the values beyond an NA value will be calculated
as NA. It is up to the user to handle NA values appropriately fill in or replace NA values based on
the type of data supplied. For flow series, linear interpolation for small periods of missing values
may be appropriate.

Value

TRUE return TRUE if the function is executed properly

See Also

rvn_flow_scatterplot for creating flow scatterplots

rvn_cum_plot_flow for creating generic cumulative function plotting

24 rvn_custom_data

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

plot cumulative flow for sim and obs
rvn_cum_plot_flow(sim,obs)

plot cumulative flows for specific period
prd <- "2003-10-01/2004-10-01"
rvn_cum_plot_flow(sim[prd],obs[prdl)

rvn_custom_data Custom Output Data from Raven

Description

A dataset formatted to the xts package, read in by the rvn_custom_read function. The dataset
contains average SNOW for each HRU in the Nith river model, available for download in the Raven
Tutorials (linked below).

Note that this data set cannot be used with rvn_custom_output_plot as the file name information
is not available in this data format. Please refer to the example in the plotting function to use the
sample data file directly, which includes the filename information.

The Nith River model can be downloaded from the Raven Tutorials (tutorial #2) https://raven.
uwaterloo.ca/Downloads.html
Usage

rvn_custom_data

Format

A data frame with 730 rows, containg data for 32 HRUs from 2002-10-01 to 2004-09-29

See Also

rvn_custom_read for reading in custom output files

rvn_custom_output_plot for plotting custom output

Examples

Preview data
head(rvn_custom_data)

https://raven.uwaterloo.ca/Downloads.html
https://raven.uwaterloo.ca/Downloads.html

rvn_custom_output_plot 25

rvn_custom_output_plot
Plot Raven Custom Output

Description

rvn_custom_output_plot is used to plot the custom output from Raven

Usage

rvn_custom_output_plot(cust, IDs = NULL, prd = NULL)

Arguments
cust custom output object from custom.read
IDs (optional) array of HRU IDs, subbasin IDs, HRU Group names/IDs to include
in plots
prd (optional) period to use in plotting
Details

The custom output should be first read in using the rvn_custom_read function. Note that in this
case the plot title is included, generated from the information in the filename. This plot title may be
changed with ggplot2 commands.

Value

TRUE return TRUE if the function is executed properly

See Also

rvn_custom_output_plot for plotting custom output

Examples

read in custom output from sample data
ff <- system.file("extdata/run1_SNOW_Daily_Average_ByHRU.csv", package="RavenR")
mycustomdata <- rvn_custom_read(ff)

plot custom data (first 10 HRUs)
rvn_custom_output_plot(mycustomdata, IDs=seq(1,10), prd="2002-10-01/2003-06-01")

26 rvn_custom_read

rvn_custom_read Read Raven Custom Output files

Description

rvn_custom_read is used to read any Raven custom output file

Usage
rvn_custom_read(ff = NA, no_runname = FALSE, tzone = "UTC")
Arguments
ff full file path to the custom output file
no_runname boolean for whether a runName is supplied, important for parsing the filename
tzone string indicating the timezone of the data in ff
Details

rvn_custom_read parses the filename and predicts the file format accordingly, so it is important to
use the unmodified file names for this function. The use (or not) of a runname is accounted for.

The returned object is a time series object (xts format), which can be used to easily plot the time
series data. The options of the custom output are included in the rav.obj attributes.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.
Value

custom_out data frame with the custom output data stored as xts object

See Also

rvn_custom_output_plot for plotting custom output

Examples

find sample rvh file for Nith subwatershed
ff <- system.file("extdata”,"run1_SNOW_Daily_Average_ByHRU.csv", package="RavenR")

extract and plot custom data

mycustomdata <- rvn_custom_read(ff)

summary (mycustomdatal,1:5])
plot(mycustomdatal,5],main="'Daily Average SNOW - HRU 5')

rvn_df_to_Raven_table

27

rvn_df_to_Raven_table Sets up tables for writing to Raven input files

Description

Sets up tables for writing to Raven input files

Usage

rvn_df_to_Raven_table(attributes, units, df, id_col = TRUE, parameters = FALSE)

Arguments

attributes
units
df

id_col

parameters

Value

outdf

Author(s)

array of strings containing attribute/parameter names
array of strings with the corresponding units
data frame of values corresponding to attributes/parameters

True/False of whether an numeric id column is the first column in the table and,
in common Raven fashion, does not have a corresponding attribute (default:
True)

bool, when adding attribues/parameter tag, should *:Parameters’ be used instead
of ":Attributes’?

data.frame object

Leland Scantlebury, <leland@scantle.com>

Examples

soil_classes <- data.frame('Attributes' = c('DEFAULT', "ALTERNATIVE'"),

"SAND' = c(0.4316, 0.3000),
"CLAY" = c(0.1684, 0.4000),
'SILT = c(0.4000, 0.3000),
"ORGANIC' = c(0.0000, 0.0000))

attributes <- c('%SAND', '%CLAY', '%SILT','%ORGANIC')

units <- rep('none',4)

soil_classes <- rvn_df_to_Raven_table(attributes, units, soil_classes)
print(soil_classes)

28 rvn_dist_lonlat

rvn_dist_lonlat Calculate distance from long/lat

Description

Calculates distance between points based on a set of long/lat coordinates.

Usage

rvn_dist_lonlat(p1, p2, method = "haversine”, r = 6378137)

Arguments
pl longitude/latitude of point(s); can be a vector of two numbers, or a matrix of 2
columns (long/lat).
p2 second point in same format as p1
method calculation method as either haversine (default) or vincentysphere
r radius of the Earth in metres (default 6378137)
Details

Calculates distance in metres based on the longitude and latitude of two or more sets of points.

The function uses either the Haversine or Vincenty Sphere methods to calculate the distances.

Value

a vector of calculated distances (length of vector based on input)

Note

Function is based on modifications from the geosphere package scripts for distHaversine and
distVincentySphere.

Examples

calculate distance from Engineering 2 (p1) to Graduate House (p2) at the University of Waterloo
p1 <- c(-80.5402891965711,43.47088594350457)

p2 <- c(-80.54096577853629,43.46976096704924)

rvn_dist_lonlat(pl, p2)

distance from University of Waterloo to Windsor
p2 <- c(-83.02099905916948,42.283371378771555)
rvn_dist_lonlat(pl, p2)

https://cran.r-project.org/package=geosphere

rvn_download 29

rvn_download Downloads Raven

Description

Downloads Raven executable from the Raven webpage.

Usage

rvn_download(version = NA, NetCDF = FALSE, check = FALSE, copy_path = NULL)

Arguments
version (optional) Character: The version of Raven to be downloaded. If not provided,
the latest version will be downloaded.
NetCDF (logical) whether to download the NetCDF-enabled version of Raven (default
FALSE)
check (logical) if TRUE, function will only check whether ’Raven.exe’ has been down-
loaded to the RavenR folder
copy_path (character) path to an existing 'Raven.exe’ file. If provided, this file will be
copied to the appropriate folder and the download will be skipped.
Details

Files are downloaded from the Raven webpage (https://raven.uwaterloo.ca/Downloads.html)
and placed in a temporary directory while the executable is extracted. This helps prevent any un-
wanted files being saved on your system outside of temporary directories if the function is inter-
rupted. The executable is placed in the RavenR/extdata directory, wherever RavenR is installed on
your system.

Note that if you are not on a Windows operating system, you may need to compile Raven for your
system rather than

Any existing Raven.exe file in your RavenR/extdata folder will be overwritten with a newly down-
loaded executable w with this function.

The ‘copy_path‘ argument may be useful for non-Windows users that are not able to use the pre-
compiled Raven downloads. If the path to an existing Raven.exe file (i.e. one compiled locally) is
provided, this will copy the specified file to the appropriate location and skip the download, which
will allow the user to use the locally compiled Raven.exe with the ‘rvn_run‘ function.

Reinstalling the RavenR package removes the previous files in the RavenR/ folder on your system,
so this command will need to be re-run if RavenR is re-installed.

Once downloaded, the Raven.exe file can be found with system.file("extdata”, "Raven.exe",
package="RavenR")

Value

Returns TRUE if executed successfully

https://raven.uwaterloo.ca/Downloads.html
https://raven.uwaterloo.ca/Downloads.html

30 rvn_exhaustive_mb_read

See Also

rvon_run

Examples

check if Raven.exe has previously been downloaded
rvn_download(check=TRUE)

Not run:
NOT RUN (downloads executable)

download latest without netcdf support
rvn_download()

download specific version with netcdf support
rvn_download(version="3.0.4" NetCDF=TRUE)

find file path to Raven.exe
system.file("extdata”, "Raven.exe”, package="RavenR")

End(Not run)

rvn_exhaustive_mb_read
Read in Raven Exhaustive Mass Balance file

Description

rvn_exhaustive_mb_read is used to read in the ExhaustiveMassBalance.csv file produced by the
modelling Framework Raven.

Usage

rvn_exhaustive_mb_read(ff = NA, join_categories = TRUE, tzone = NULL)

Arguments

ff full file path to the ExhaustiveMassBalance.csv file

join_categories
boolean whether add to the category tag as a column name prefix in exhaus-
tivemb output (default TRUE)

tzone string indicating the timezone of the data in ff

rvn_fdc_plot 31

Details

Expects a full file path to the ExhaustiveMassBalance.csv file, then reads in the file using read.csv.
The main advantage of this function is renaming the columns to nicer names and extracting the units
into something that is much easier to read.

ff is the full file path of the ExhaustiveMassBalance.csv file. If the file is located in the current
working directory, then simply the name of the file is sufficient.

tzone is a string indicating the timezone of the supplied file. The timezone provided is coded into
the resulting data frame using the as.POSIXct function. If no timezone is provided, this is left as an
empty string, and is determined by the function as the current time zone.

Value

exhaustivemb data frame from the file with standardized names

units vector corresponding to units of each column
categories vector corresponding to the storage category of each column
See Also

rvn_hyd_read for reading in the Hydrographs.csv file, and rvn_exhaustive_mb_read for reading
in the WatershedMassEnergyBalance.csv file

Examples

Read in exhaustive MB file, create plot
ff <- system.file("extdata”,"run1_ExhaustiveMassBalance.csv"”, package="RavenR")
embd <- rvn_exhaustive_mb_read(ff)

Preview data
head(embd$exhaustive_mb)

Plot data
plot(embd$exhaustive_mb$SURFACE_WATER.Infiltration,
main="Cumulative Surface Water Infiltration"”)

rvn_fdc_plot Plots summary of watershed forcing functions

Description

rvn_fdc_plot generation a flow duration curve plot.

Usage

rvn_fdc_plot(sim = NULL, obs = NULL, prd = NULL, seasonal = FALSE)

32 rvn_flow_residuals

Arguments
sim simulated hydrograph xts time series
obs (optional) observed hydrograph xts time series
prd (optional) time period over which the plot is generated
seasonal (optional) boolean whether to add the winter and summer FDC
Details

Creates a flow duration curve using the rvn_hyd_extract obejct for a given basin. The hydrograph
object passed should be the output from the rvn_hyd_extract function, which has attributes for sim
and obs; if the obs is NULL, only the sim FDC will be plotted.

If the seasonal argument is included, the winter and summer FDC lines will be included on the plot
as well.

See Also

rvn_hyd_read for reading in the Hydrographs.csv file, and rvn_hyd_extract for extracting basin
flow information from a rvn_hyd_read object

Examples

load sample hydrograph data, two years worth of sim/obs

ff <- system.file("extdata/run1_Hydrographs.csv"”, package="RavenR")
runl <- rvn_hyd_read(ff)

sim <- run1hydSub36

obs <- run1hydSub36_obs

create FDC plot, sim only
rvn_fdc_plot(sim)

create seasonal FDC plot with sim and obs data
rvn_fdc_plot(sim,obs, seasonal=TRUE)

rvn_flow_residuals Residuals of model flows

Description

rvn_flow_residuals creates a residuals time series for flow values. Useful in diagnotic analysis of
model outputs.

rvn_flow_residuals 33

Usage
rvn_flow_residuals(
sim = NULL,
obs = NULL,

ma_smooth = 3,

add_line = FALSE,
winter_shading = FALSE,
wsdates = c(12, 1, 3, 31)

)

Arguments
sim time series object of simulated flows
obs time series object of observed flows
ma_smooth optional length of rolling average to smooth residuals with (default 3)
add_line optionally adds a horizontal line to the plot for reference (default FALSE)
winter_shading optionally adds a light blue shading to winter months (default FALSE)
wsdates integer vector of winter shading period dates (see details)

Details

Creates a residuals time series plot for flow values, with the option to smooth out the values using
the rollmean function in zoo. The winter months are optionally shaded in the time series; winter
period is defined as December 1st to March 31st.

The residuals are calculated as sim - obs.

The sim and obs should be of time series (xts) format. The flow series are assumed to be daily flows
with units of m3/s.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

The winter_shading argument will add a transparent grey shading for the specified period by ws-
dates in each year that is plotted.

wsdates is formatted as c(winter start month, winter start day, winter end month, winter end day).

Value

resids residual time series

See Also

rvn_flow_scatterplot to create a scatterplot of flow values

Examples

load sample hydrograph data, two years worth of sim/obs

ff <- system.file("extdata/runl_Hydrographs.csv", package="RavenR")
runl <- rvn_hyd_read(ff)

sim <- run1hydSub36

34

rvn_flow_scatterplot

obs <- run1hydSub36_obs

default with moving average smoothing shading of winter months
rvn_flow_residuals(sim,obs)$plot

plot with more smoothing than the default 3
rvn_flow_residuals(sim, obs, ma_smooth=10)$plot

with zero line and winter shading
rvn_flow_residuals(sim,obs, add_line=TRUE, winter_shading = TRUE)$plot

change winter shading to Nov 1 - April 30
rvn_flow_residuals(sim,obs, add_line=TRUE,
winter_shading = TRUE, wsdates=c(11,1,4,30))%plot

rvn_flow_scatterplot Scatterplot of model flows

Description

rvn_flow_scatterplot creates a scatterplot of the simulated and observed flows. Useful in diagnotic
analysis of model outputs.

Usage

rvn_flow_scatterplot(

sim,
obs,

add_line = TRUE,
add_r2 = FALSE,

add_egn

Arguments
sim
obs
add_line
add_r2
add_eqn

Details

FALSE

time series object of simulated flows

time series object of observed flows

optionally adds a 1:1 line to the plot for reference (default TRUE)
optionally computes the R2 and adds to plot (default FALSE)

optionally adds the equation for a linear regression line (default FALSE)

Creates a scatterplot of flows.

The sim and obs should be of time series (xts) format. The flow series are assumed to be daily flows

with units of m3/s.

rvn_flow_spaghetti 35

The R2 diagnostic is calculated for a fit with no intercept (in a perfect fit the points are identical,
and intercept is automatically zero). The R2 is calculated with the NA values removed

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

TRUE return TRUE if the function is executed properly

See Also

rvn_forcings_read for reading in the ForcingFunctions file

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_ob

plot the flow scatterplot, produce an R2 metric
rvn_flow_scatterplot(sim,obs,add_r2=TRUE)

plot again with a regression equation
rvn_flow_scatterplot(sim,obs,add_r2=TRUE, add_eqn=TRUE)

rvn_flow_spaghetti Flow Spaghetti Plot

Description

rvn_flow_spaghetti creates a spaghetti plot of the flow series provided.

Usage

rvn_flow_spaghetti(flow)

Arguments

flow time series object of simulated flows

Details

Creates a spaghetti plot of the annual flow series in each year of data provided. The flows are plotted
for each water year of data available, set as October 1st.

Note that the plotting to the day of year is approximate in order to simplify the plotting of leap years
and non-leap years. The years are plotted including day 366 and starting on day 274, regardless of

36 rvn_forcings_plot

whether it is a leap year or not. This is likely without consequence in seeing the trends between
water years, however the user is warned of this deficiency.

The flow series provided should be of time series (xts) format.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

TRUE return TRUE if the function is executed properly

See Also

rvn_flow_scatterplot to create a scatterplot of flow values

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

create spaghetti plot of simulated flows
rvn_flow_spaghetti(rvn_hydrograph_datahydSub36)

create spaghetti plot of observed flows
rvn_flow_spaghetti(rvn_hydrograph_datahydSub36_obs)

rvn_forcings_plot Plots summary of watershed forcing functions

Description
rvn_forcings_plot generates a set of 5 plots (precip,temperature, PET,radiation, and potential melt),
which summarize the watershed-averaged forcings. Returns a list with the individual plots.

Usage

rvn_forcings_plot(forcings, prd = NULL)

Arguments

forcings forcings attribute from forcings.read function

prd (optional) time period over which the plots are generated
Details

Creates multiple plots from a ForcingFunctions.csv file structure generating using RavenR’s forc-
ings.read function

rvn_forcings_read 37

Value

forcing_plots list of ggplot objects of individual forcing plots and the combined plot

See Also

rvn_forcings_read for the function used to read in the forcings function data

Examples

read in sample forcings data
data("rvn_forcing_data")
fdata <- rvn_forcing_data$forcings

plot forcings data

p1 <- rvn_forcings_plot(fdata)
pl1$Precipitation
p1$AllForcings

plot subset of forcing data for 2002-2003 water year
prd <- "2002-10-01/2003-09-30"
rvn_forcings_plot(fdata,prd)$AllForcings

add Legend back to plot (using ggplot2::theme)
library(ggplot2)
rvn_forcings_plot(fdata,prd)$Temperature+
theme(legend.position="top")

rvn_forcings_read Read in Raven ForcingFunctions file

Description
rvn_forcings_read is used to read in the ForcingFunctions.csv file produced by the modelling Frame-
work Raven.

Usage

rvn_forcings_read(ff = NA, tzone = "UTC")

Arguments

ff full file path to the ForcingFunctions.csv file

tzone string indicating the timezone of the data in ff

38 rvn_forcing_data

Details

Expects a full file path to the ForcingFunctions.csv file, then reads in the file using read.csv. The
main advantage of this functon is renaming the columns to nicer names and extracting the units into
something much easier to read.

ff is the full file path of the ForcingFunctions.csv file. If the file is located in the current working
directory, then simply the name of the file is sufficient.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.

Value
forcings data frame from the file with standardized names
units vector corresponding to units of each column
See Also

rvn_hyd_read for reading in the Hydrographs.csv file

Examples

read in sample forcings data
ff <- system.file("extdata”,"run1_ForcingFunctions.csv”, package="RavenR")
myforcings <- rvn_forcings_read(ff)

check data (first 5 columns for brevity)
head(myforcings$forcings[,1:5]1)
summary (myforcings$forcings[,1:5])

rvn_forcing_data Forcings Data from Raven

Description

A dataset formatted to the xts package, read in by the forcings.read function. The dataset contains
the typical columns from the Raven outputted ForcingFunctions.csv file, available for download in
the Raven Tutorials (linked below).

Usage

rvn_forcing_data

rvn_forcing_data

Format

rvn_forcing_data is a data frame with two object

forcings various forcing functions and related output from Raven model

units units associated with each variable in forcings

39

rvn_forcing_data$forcings is an xts (time series) object with 731 rows and 21 variables, containing
data from 2002-10-01 to 2004-09-30. The details of each forcing function can be found in the
Raven Manual

day_angle

rain

SNOW

temp
temp_daily_min
temp_daily_max
temp_daily_ave
temp_monthly_min
temp_monthly_max
air_dens

air_pres

rel_hum
cloud_cover
ET_radiation
SW_radiation
LW_radiation
wind_vel

PET

OW_PET
daily_correction

potential_melt

The Nith River model can be downloaded from the Raven Tutorials (tutorial #2) https://raven.

uwaterloo.ca/Downloads.html

See Also

rvn_forcings_read for reading in forcing functions output files

rvn_forcings_plot for plotting forcing functions in a convenient way

https://raven.uwaterloo.ca/Downloads.html
https://raven.uwaterloo.ca/Downloads.html

40 rvn_gen_obsweights

rvn_fortify_xts Fortify xts object to specific format

Description
Applies the fortify function to an xts object and updates the Index character column to a date column
called 'Date’.

Usage

rvn_fortify_xts(x)

Arguments

X xts formatted object to fortify to tibble

Details
Useful in preparing data to plotting or other tidy-style analysis. This function is used internally in
many RavenR plotting functions.

Value

tibble format of the xts data

Examples

ff <- system.file("extdata”,"run1_Hydrographs.csv"”, package="RavenR")
hyd <- rvn_hyd_read(ff)s$hyd

hyd_fortified <- rvn_fortify_xts(hyd)

head(hyd_fortified)

rvn_gen_obsweights Create weights time series for calibration/diagnostic evaluation

Description

Creates an observation data weights time series based upon dates stored in an xts time series and
criterion given by the user

Usage

rvn_gen_obsweights(
ts,
criterion = "BETWEEN",
startdate = "1785-10-05",
enddate = "2500-01-01"

rvn_gen_obsweights

Arguments

ts

criterion

startdate

enddate

Details

41

Xts time series

criterion used to determine weighted vs. non-weighted dates one of " BEFORE’,
’AFTER’, ’BETWEEN’, ' BETWEEN_CYCLIC’

Date indicating start of time period (for ’'BETWEEN’ or *AFTER’ criterion)
or start of annual cyclic period (for ' BETWEEN_CYCLIC’). In the latter case,
only the julian day of the startdate matters.

Date indicating end of time period (for ’'BETWEEN’ or 'BEFORE’ criterion)
or end of annual cyclic period (for ' BETWEEN_CYCLIC’). In the latter case,
only the julian day of the enddate matters.

for criterion =" BEFORE’, all timestamps prior to the enddate have a weight of 1, 0 otherwise
for criterion =’ AFTER’, all timestamps after the startdate have a weight of 1, O otherwise
for criterion =" BETWEEN’, all timestamps after the startdate and before the enddate have a weight

of 1, 0 otherwise

for criterion =" BETWEEN_CYCLIC’, all julian days after the startdate and before the enddate
have a weight of 1, 0 otherwise; if startdate is more than enddate, then the opposite is true, e.g, for
startdate="2002-11-01" and enddate "2002-01-31", only November, December and January times-
tamps have a weight of 1

Value

returns numeric vector of weights

Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvt_write to write the weights to an rvt file

Examples

locate hydrograph sample csv data from RavenR package
ff <- system.file("extdata”,"run1_Hydrographs.csv", package="RavenR")

read in Raven Hydrographs file, store into mydata
mydata <- rvn_hyd_read(ff, tzone="EST")

generate rvt file using just observations from Subbasin ID 36
flows <- rvn_ts_infill(mydatahydSub36_obs)

weight March-October flows:
wts <- rvn_gen_obsweights(flows,criterion = "BETWEEN_CYCLIC",
startdate="2000-03-01", enddate="2003-11-01")

42 rvn_get_prd

and only after March 2003:

wts2 <- rvn_gen_obsweights(flows,criterion = "AFTER",
startdate="2003-03-01")

wts2 <- wts2xwts # product merges weights

show weights over time
plot(wts2)

rvn_get_prd Check period input

Description

Checks a period argument either as a character or against an xts object.

Usage

rvn_get_prd(x = NULL, prd = NULL)

Arguments

X xts object

prd period argument in format YYYY-MM-DD/YYYY-MM-DD as a character
Details

The function may take some combination of an xts object, a character string or both.

If a character is provided, the consistency of the character string against the YYYY-MM-DD/YYY Y-
MM-DD format is checked. If an xts object is provided, the period for that xts object is returned. If
both are provided to the function, both checks are made and the consistency of the character period
against the xts object is performed. In any case, a period character string is returned.

Value

prd argument with warnings provided if needed

See Also

rvn_theme_RavenR provides a theme for the RavenR package

rvn_hydrograph_data 43

Examples

data(rvn_hydrograph_data)

check if string is a valid prd argument
rvn_get_prd(prd="2000-10-01/2002-09-30")
rvn_get_prd(prd="2000-10-01/2002-24-30") # returns error

get full valid prd argument for xts object
rvn_get_prd(rvn_hydrograph_datahydSub43_obs)

check prd argument against xts object

rvn_get_prd(rvn_hydrograph_datahydSub43_obs, "2020-01-01/2020-02-01")

rvn_get_prd(rvn_hydrograph_datahydSub43_obs, "2002-24-01/2020-02-01") # returns error
rvn_get_prd(rvn_hydrograph_datahydSub43_obs, "20-24-01/2020-02-01") # returns error

rvn_hydrograph_data Hydrograph Data from Raven

Description

A dataset formatted to the xts package, read in by the hyd.read function. The dataset contains
the typical columns from the Raven outputted Hydrographs.csv file, available for download in the
Raven Tutorials (linked below).

Usage

rvn_hydrograph_data

Format
rvn_hydrograph_data is a data frame with two object

hyd simulated and observed flows from Raven model

units units associated with each variable in hyd

obs.flag flag for each column indicating whether it is observed data or not
rvn_hydrograph_data$hyd is an xts (time series) object with 731 rows and 5 variables, with data
from 2002-10-01 to 2004-09-30. More details on the Hydrographs.csv output can be found in the
Raven manual.

precip - precipitation time series

Sub36 - outflows from subbasin 36 in Nith model

Sub36_obs - observed outflows from subbasin 36

Sub43 - outflows from subbasin 43 in Nith model

Sub43_obs - observed outflows from subbasin 43

The Nith River model can be downloaded from the Raven Tutorials (tutorial #2) https://raven.
uwaterloo.ca/Downloads.html

https://raven.uwaterloo.ca/Downloads.html
https://raven.uwaterloo.ca/Downloads.html

44 rvn_hyd_dygraph

See Also

rvn_custom_read for reading in custom output files

rvn_custom_output_plot for plotting custom output

rvn_hyd_dygraph Read in Raven Hydrograph file

Description

rvn_hyd_dygraph plots modeled vs observed hydrographs when supplied with hydrograph data
structure read using rvn_hyd_read

Usage
rvn_hyd_dygraph(
hy,
timezone = "UTC",
basins = "",
main = NULL,
figheight = 400
)
Arguments
hy hydrograph data structure generated by rvn_hyd_read routine
timezone data timezone; defaults to UTC
basins list of subbasin names from hydrograph file. Each subbasin creates separate
dygraph plots
main dygraph title to override the default (applied to all dygraphs)
figheight height of figure, in pixels
Value

a list of plot handles to dygraph plots

Examples

read in RavenR sample hydrographs data
hy <- rvn_hydrograph_data

view contents for subbasin 36 as dyGraph
dyplots <- rvn_hyd_dygraph(hy,basins="Sub36")
dyplots

rvn_hyd_dygraph(hy,basins="Sub36", main="test title")

rvn_hyd_extract 45

view contents for all basins in hydrograph data
rvn_hyd_dygraph(hy)

rvn_hyd_extract Extract function for Raven Hydrograph object

Description

rvn_hyd_extract is used for extracting data from the Raven hydrograph object. Works for objects
passed from rvn_hyd_read function (which reads the Hydrographs.csv file produced by the mod-
elling framework Raven).

Usage
rvn_hyd_extract(subs = NA, hyd = NA, prd = NULL, rename_cols = TRUE)

Arguments
subs column name for plotting/extracting
hyd full hydrograph data frame (including units) produced by rvn_hyd_read
prd time period for plotting, as string. See details
rename_cols boolean for whether to rename columns to generic terms (sim, obs, etc.) or leave
column names as they appear in hyd
Details

Extracts the modelled and observed data from a Raven hydrograph object by name reference. It
is also easy to create plots of modelled and observed data using this function. The simulated and
observed files are outputted regardless of whether a plot is created, for the specified period.

The subs input is the name of the column desired for use; the most common use of this will be for
subbasin outflows, where the names will be of the form "subXX", for example "sub24".

The hyd object is the full hydrograph object (hyd and units in one data frame) created by the
rvn_hyd_read function. Both the hyd and units are required, since the units are placed onto the
plots if one is created. This is useful to at least see the units of the plotted variable, even if the plot
is later modified.

The prd input is used to specify a period for the plot and/or the data output. The period should
be specified as a string start and end date, of the format "YYYY-MM-DD/YYYY-MM-DD", for
example, "2006-10-01/2010-10-01". If no period is supplied, the entire time series will be used.

Value

returns an xts object with sim, obs, inflow, and obs_inflow time series (if available)

sim model simulation for specified column and period
obs observed data for specified column and period
inflow inflow simulation for specified column and period

obs_inflow observed inflow simulation for specified column and period

46 rvn_hyd_plot

See Also

rvn_hyd_read for reading in the Hydrographs.csv file and creating the object required in this func-
tion. rvn_hyd_plot for conveniently plotting the output object contents onto the same figure.

Examples

read in hydrograph sample csv data from RavenR package
ff <- system.file("extdata”,"run1_Hydrographs.csv"”, package="RavenR")

read in Raven Hydrographs file, store into myhyd
myhyd <- rvn_hyd_read(ff)

no plot or observed data, specified period
flow_36 <- rvn_hyd_extract(subs="Sub36",myhyd)

attributes(flow_36)

extract simulated and observed flows
sim <- flow_36%$sim
obs <- flow_36%obs

extract precipitation forcings
myprecip <- rvn_hyd_extract(subs="precip"”,hyd=myhyd)
myprecip <- myprecip$sim

plot all components using rvn_hyd_plot
rvn_hyd_plot(sim,obs,precip=myprecip)

rvn_hyd_plot Create Hydrograph Plot

Description

rvn_hyd_plot creates a hydrograph plot object for the supplied flow series, or equivalently a stage
plot for reservoir stages.

Usage
rvn_hyd_plot(
sim = NULL,
obs = NULL,

inflow = NULL,

precip = NULL,

prd = NULL,
winter_shading = FALSE,
wsdates = c(12, 1, 3, 31)

rvn_hyd_plot 47

Arguments
sim time series object of simulated flows
obs time series object of observed flows
inflow time series object of inflows to subbasin
precip time series object of precipitation
prd period to use in plotting

winter_shading optionally adds shading for winter months (default FALSE)

wsdates integer vector of winter shading period dates (see details)

Details
Creates a hydrograph plot using the supplied time series; any series not supplied will not be plotted.
If the precip time series is supplied, the secondary y axis will be used to plot the precip time series.

The function assumes that the supplied time series have the same length and duration in time. If
this is not true, then the defined period or period calculated from the first available flow series will
be used to determine the plotting limits in time. If the data is used directly from Raven output, this
is not a concern. The supplied time series should be in xts format, which again can be obtained
directly by using the hyd.extract function.

The winter_shading argument will add a transparent grey shading for the specified period by ws-
dates in each year that is plotted.

wsdates is formatted as c(winter start month, winter start day, winter end month, winter end day).

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

pl returns ggplot plot object

See Also

rvn_flow_spaghetti to create a spaghetti plot of annual flow series

rvn_hyd_extract to extract time series from Raven objects

Examples

load sample hydrograph data, two years worth of sim/obs

ff <- system.file("extdata”,"run1_Hydrographs.csv”, package="RavenR")
runl <- rvn_hyd_read(ff)

sim <- run1hydSub36

obs <- runl1hydSub36_obs

precip <- runlhydprecip

create a nice hydrograph
rvn_hyd_plot(sim,obs)

create a hydrograph with precip as well;
rvn_hyd_plot(sim,obs,precip=precip)

48 rvn_hyd_read

create a hydrograph with precip as well for a specific subperiod
prd <- "2003-10-01/2004-10-01"
rvn_hyd_plot(sim,obs,precip=precip,prd=prd)

add the winter shading
rvn_hyd_plot(sim,obs,precip=precip,prd=prd, winter_shading=TRUE)

change winter shading dates (Nov 1st to April 15th)
rvn_hyd_plot(sim,obs,precip=precip,prd=prd, winter_shading=TRUE, wsdates=c(11,1,4,15))

rvn_hyd_read Read in Raven Hydrograph file

Description
rvn_hyd_read is used to read in the Hydrographs.csv file produced by the modelling Framework
Raven.

Usage

rvn_hyd_read(ff = NA, tzone = "UTC")

Arguments

ff full file path to the Hydrographs.csv file

tzone string indicating the timezone of the data in ff (default "UTC")
Details

Expects a full file path to the Hydrographs.csv file, then reads in the file using fread. The main
advantage of this function is renaming the columns to nicer names and extracting the units into
something much easier to read.

This function is also built to support the rvn_hyd_extract function, which uses the object created
here for extracting by reference to the columns named here, for example sub24.

ff is the full file path of the Hydrographs.csv file. If the file is located in the current working
directory, then simply the name of the file is sufficient.

tzone is a string indicating the timezone of the supplied Hydrographs file. The timezone provided
is coded into the resulting hyd data frame using the as.POSIXct function. The timezone is provided
as "UTC" by default, and should be adjusted by the user to the local time zone as needed, based on
the model run.

Value

hyd data frame from the file with standardized names

rvi_m

et_interpolate

See Also

rvn_hyd_extract for extraction tools related to the rvn_hyd_read output file

Examples

read in hydrograph sample csv data from RavenR package
ff <- system.file("extdata”,"run1_Hydrographs.csv”, package="RavenR")

#

read in Raven Hydrographs file, store into myhyd

myhyd <- rvn_hyd_read(ff)

#
he
my

view contents
ad(myhyd$hyd)
hyd$units

49

rvn_met_interpolate Interpolate meteorological data using IDW

Descri

ption

Interpolates/infills missing meteorological data by using an inverse-distance weighting scheme to
infill using data from nearby meteorological stations; issues where maximum temperature is less
than minimum temperature can also be resolved.

Usage

rvn_met_interpolate(

weather_data = NULL,

cc = c("max_temp”, "min_temp”, "total_precip”),
key_stn_ids = NULL,
ppexp = 2,

fix_interp_temp = TRUE,
fix_base_temp = FALSE,
min_dist = 100

)
Arguments
weather_data data frame of input meteorological data from multiple stations
cc columns from weather_data to infill missing values in
key_stn_ids station IDs in which to perform the interpolation
ppexp exponent to use in inverse distance weighting calculation (default 2)
fix_interp_temp
function will swap interpolated min and max temp if appropriate
fix_base_temp function will swap any min and max temp if appropriate
min_dist minimum distance used in IDW to avoid issues with stations of different IDs but

exact same coordinates (default 100m)

50 rvn_met_interpolate

Details

This function takes a meteorological data set with multiple station data in one data frame and inter-
polates the missing values for key stations, for the specified meteorological variables to interpolate.

The format of the weather_data input is consistent with that from the weathercan: :weather_dl
function, which is the recommended tool to gather this input (see the examples).

This function does not guarantee to infill all missing values, since this depends on the availability of
data at other locations when it lacks at a given station, although a warning is issued if missing values
remain following the interpolation. If this is encountered, it may be prudent to consider including
additional stations in the available data for interpolation and/or applying alternative interpolation
schemes in conjunction with rvn_met_interpolate.

This function does not (currently) perform checks for the quality of the supplied or infilled data, such
as checking for maximum temperature less than minimum temperature, unreasonable precipitation
values, etc.

The key_stn_ids indicates which stations should have their missing values interpolated. It is likely
that the user will require more data to perform a proper interpolation than the user cares to have
gauge records at, i.e. some stations are only provided for the purposes of infilling missing data
at other stations. Since the interpolation of all stations provided can become computationally ex-
pensive, the user can specify which stations they want to interpolate data for with the key_stn_ids
parameter. Station IDs that are not within the key_stn_ids (if not NULL) will still be used, but not
themselves infilled.

fix_interp_temp is a boolean for the function to swap any max_temp and min_temp fields where the
maximum temperature is less than the minimum temperature, a common fix in messy environmental
data. This function will only apply if the columns max_temp and min_temp are present, and will
only apply to the interpolated fields. By default this is enabled, and automatic fixes to interpolated
data will be done; supplied data where the max temp is less than min temp will not be fixed unless
fix_base_temp is enabled.

The distance calculation, estimating the distance between stations, is performed using the rvn_dist_lonlat
function, which is based on the geosphere package. The min_dist is included to provide a mini-

mum distance used in IDW, and avoid issues with stations of different names and IDs but the same
coordinates. This can occur when stations upgrade or are reinstated at a later time in the same
location, which would otherwise result in a div/0 error in the IDW calculation.

Value

new_wd infilled meteorological data set

See Also

rvn_rvt_write_met for writing meteorological data sets to rvt format.

Examples

Not run:
NOT RUN (downloads data + long runtime)

example to create infilled data sets

rvn_met_recordplot 51

library(weathercan)
stn <- weathercan::stations_search(name="Glen allan”, interval = "day")
dl_stn <- stn
all_stns <- weathercan::stations_search(coords=c(stnlat, stnlon), dist=40,
interval="day", starts_latest = 2002,
ends_earliest = 2010)

download data with weathercan::weather_dl1()

weather_data <- weather_dl(station_ids = all_stns$station_id,
start = "2002-10-01",
end = "2005-10-01",
interval="day")

define first three as key stations of interest for infilling
dl_stn <- all_stns[1:3,]

confirm missing data in key columns
key_cols <- c("min_temp"”, "max_temp"”,"total_precip”)

length(which(is.na(weather_data[,key_cols])))

perform interpolation for key stns (3) using all stations downloaded (5)
new_wd <- rvn_met_interpolate(weather_data = weather_data,

key_stn_ids = dl_stn$station_id,

cc = key_cols)

no warning - confirm no missing values in key columns
length(which(is.na(new_wd[,key_cols])))

End(Not run)

rvn_met_recordplot EC Climate Gauge Record Overlap Visualization

Description

This function plots the length of Environment Canada climate station records, accessed via the
weathercan package, to identify periods in which multiple station records overlap.

Usage

rvn_met_recordplot(
metadata = NULL,
stndata = NULL,
variables = NULL,
colorby = NULL

52 rvn_met_recordplot

Arguments
metadata tibble of the station meta-data from weathercan: :stations_search()
stndata tibble of the station data from weathercan: :weather_d1(). Used in conjunc-
tion with variables argument.
variables if using weathercan: :weather_d1(), column names for variables of interest
(currently only accepts 1 per call)
colorby column name by which to color station records. Set to ’elev’ (elevation) by
default. Can be set to "dist" (distance from coordinates of interest) if supplying
weathercan: :stations_search results.
Details

Accepts outputs from either the stations_search() or weather_d1() functions from the weath-
ercan package and extracts the start and end dates of the record from each station for plotting.

Outputs from stations_search() indicate when data collection at a station generally began but
do not contain information for specific climate variables and thus should only be used for a "first
look". Plots created with station metadata do not refer to specific climate variables.

Station records are plotted chronologically on a timeline, and can be colored according to either the
station’s elevation (default, works for both types of inputs) or the station’s distance from a point of
interest (works only when supplying stations_search() results as metadata input).

The timeline plot is accompanied by a bar plot counting the number of stations with available data
year by year.

Large differences in elevation between stations may point towards consideration for the effect of
lapse rates on climate forcings driving a model response.

Value

returns a 2x1 plot object containing 2 ggplot objects

top: A chronological horizontal bar plot depicting each station’s record period
bottom: A vertical bar plot depicting the number of station records available each year
Examples

load metadata from RavenR sample data
data(rvn_weathercan_metadata_sample)

code that would be used to download metadata using weathercan
library(weathercan)

#
#
metadata = stations_search(coords=c(50.109,-120.787),

dist=150, # EC stations 150 km of Merritt, BC

interval='day'

#)

metadata = metadata[metadata$start>=2000,] # subset stations with recent data
metadata = metadata[1:3,] # take only the first 3 stations for brevity

H

plot line colours by station elevation

rvn_monthly_vbias 53

rvn_met_recordplot(metadata=rvn_weathercan_metadata_sample, colorby='elev')

plot line colours by distance to specified co-ordinates
rvn_met_recordplot(metadata=rvn_weathercan_metadata_sample, colorby='distance')

load sample weathercan::weather_dl() with single station
data(rvn_weathercan_sample)

compare records for a specific variable

rvn_met_recordplot(stndata=rvn_weathercan_sample, variables = "total_precip”)
rvn_monthly_vbias Monthly Volume Bias
Description

Creates a plot of the monthly volume biases in the simulated flow series.

Usage

rvn_monthly_vbias(
sim,
obs,
add_line = TRUE,
normalize = TRUE,
add_labels = TRUE,
incomplete_month = FALSE

)

Arguments
sim time series object of simulated flows
obs time series object of observed flows
add_line optionally adds a horizontal line to the plot for reference (default TRUE)
normalize option to normalize the biases and report as percent error (default TRUE)
add_labels optionally adds labels for early peak/late peaks on right side axis (default TRUE)

incomplete_month
whether to include months with missing days in the summation (default FALSE)

Details

Calculates the monthly volume biases and optionally creates a plot of them. The monthly volume
biases are averaged across all years of data. If normalized, the biases are calculated as:
(Vi_sim - Vi_obs)/Vi_obs*100

to be expressed as a percent error.

54 rvn_month_names

The sim and obs should be of time series (xts) format and are assumed to be of the same length and
time period. The flow series are assumed to be daily flows with units of m3/s. Note that a plot title
is purposely omitted in order to allow the automatic generation of plot titles.

The add_labels will add the labels of ’overestimated’ and ’underestimated’ to the right hand side
axis if set to TRUE. This is useful in interpreting the plots. Note that the biases are calculated as
sim_Volume - obs_Volume, which means that negative values mean the volume is underestimated,
and positive values mean the volume is overestimated.

Value

mvbias monthly volume biases

See Also

rvn_annual_volume to create a scatterplot of annual flow volumes

Examples

load sample hydrograph data, two years worth of sim/obs
data(rvn_hydrograph_data)

sim <- rvn_hydrograph_datahydSub36

obs <- rvn_hydrograph_datahydSub36_obs

check the monthly volume bias; normalizes by default
rvn_monthly_vbias(sim, obs)

check unnormalzied monthly volume biases; see the larger volumes in certain periods
rvn_monthly_vbias(sim,obs,normalize = FALSE)

rvn_month_names Months in the Year vector

Description

Return a character vector of months in the year

Usage

rvn_month_names(short = TRUE)

Arguments

short boolean to return shortened form of months

Value

character array of month names

rvo_num_days 55

See Also

rvn_num_days for calculating the number of days in a month

Examples

rvn_month_names()
rvn_month_names (FALSE)

rvn_num_days Number of Days between two dates

Description

Calculate the number of days between two provided dates.

Usage

rvn_num_days(datel, date2)

Arguments
datel first day, date format
date?2 second day, date format
Details

This method handles leap years if they exist between the specified dates.

Value

int number of days between the two days

See Also

rvn_num_days_month for calculating the number of days in a month

Examples

rvn_num_days(as.Date("2017-02-05"),as.Date("2017-02-12"))
#7

56

rvn_num_days_month

rvn_num_days_month Number of Days in Month

Description

Calculates the number of days in the month

Usage

rvn_num_days_month(date)

Arguments

date object in date format

Details

This method includes leap years if they exist in the specified month.

Value

int number of days in the month

See Also

rvn_num_days for calculating the number of days between two dates

See original code on post in Stack Overflow the number of days in a month

Examples

rvn_num_days_month(as.Date("2016-02-05"))
29

rvn_num_days_month(as.Date("2017-01-17"))
31

https://stackoverflow.com/questions/6243088/find-out-the-number-of-days-of-a-month-in-rfind

rvn_res_dygraph 57

rvn_res_dygraph Plot Raven reservoir/lake stage time series using dygraph

Description

rvn_res_dygraph plots modeled vs observed stage plots when supplied with reservoir stage data
structure read using rvn_res_read

Usage
rvn_res_dygraph(resdata, timezone = "UTC", basins = "", figheight = 400)
Arguments
resdata reservoir stage time series data structure generated by rvn_res_read routine
timezone data timezone; defaults to UTC
basins list of subbasin names from reservoir file. Each subbasin creates separate dy-
graph plots
figheight height of figure, in pixels
Value

a list of plot handles to dygraph plots

See Also

rvn_hyd_dygraph to generate dygraphs for hydrograph series

Examples

read in Raven Reservoir Stages file
ff <- system.file("extdata”,"ReservoirStages.csv"”, package="RavenR")
resdata <- rvn_res_read(ff)

view contents for all subbasins as dyGraph
dyplots <- rvn_res_dygraph(resdata)
dyplots[[1]]

dyplots[[2]]

58

rvin_res_extract

rvn_res_extract Extract function for Raven Reservoir object

Description

rvn_res_extract is used for extracting data from the Raven reservoir object. Works for objects from
rvn_res_read function (for reading in the ReservoirStages.csv file).

Usage

rvn_res_extract(subs = NA, res = NA, prd = NULL)

Arguments
subs column name for plotting/extracting
res full reservoir data frame (including units) produced by res.read
prd time period for plotting, as string. See details

Details

Extracts the modelled and observed data from a Raven reservoir object by name reference. It is also
easy to create plots of modelled and observed data using this function. The simulated and observed
files are outputted regardless of whether a plot is created, for the specified period.

The subs input is the name of the column desired for use; the most common use of this will be for
subbasins, where the names will be of the form "subXX", for example "sub24".

The res object is the full reservoir object (res and units in one data frame) created by the res.read
function. Both the res and units are required, since the units are placed onto the plots if one is
created. This is useful to at least see the units of the plotted variable, even if the plot is later
modified.

The prd input is used to specify a period for the plot and/or the data output. The period should
be specified as a string start and end date, of the format "YYYY-MM-DD/YYYY-MM-DD", for
example, "2006-10-01/2010-10-01". If no period is supplied, the entire time series will be used.

Value
sim model simulation for specified column and period
obs observed data for specified column and period
inflow inflow simulation for specified column and period
See Also

rvn_res_read for reading in the Reservoirs.csv file and creating the object required in this function.
rvn_res_plot for plotting the extracted stage time series

rvn_res_plot

Examples

ff <- system.file("extdata”,"ReservoirStages.csv"”, package="RavenR")

Read in Raven Reservoirs file, store into myres
myres <- rvn_res_read(ff)

Extract stage using this function

stage36 <- rvn_res_extract(subs="sub36",res=myres,prd="2002-10-01/2003-10-01")
summary (stage36)

summary (stage36$sim)

Example for precipitation
precip <- rvn_res_extract(subs="precip"”,res=myres)

59

rvn_res_plot Plot Reservoir Stage

Description

Creates a reservoir stage plot for the supplied stage series.

Usage

rvn_res_plot(
sim = NULL,
obs = NULL,
precip = NULL,
prd = NULL,
winter_shading = FALSE,
wsdates = c(12, 1, 3, 31)

)

Arguments
sim time series object of simulated stage
obs time series object of observed stage
precip time series object of precipitation
prd period to use in plotting

winter_shading optionally adds shading for winter months (default FALSE)

wsdates integer vector of winter shading period dates (see details)

60 rvn_res_plot

Details

Creates a reservoir stage plot using the supplied time series; any series not supplied will not be
plotted. If the precip time series is supplied, the secondary y axis will be used to plot the precip
time series.

The function assumes that the supplied time series have the same length and duration in time. If
this is not true, then the defined period or period calculated from the first available stage series will
be used to determine the plotting limits in time. If the data is used directly from Raven output, this
is not a concern. The supplied time series should be in xts format, which again can be obtained
directly by using the rvn_res_extract function.

The winter_shading argument will add a transparent grey shading for the December 1st to March
31st period in each year that is plotted (or other period specified by wsdates).

wsdates is formatted as c(winter start month, winter start day, winter end month, winter end day).

Value

pl returns ggplot plot object

See Also

rvn_hyd_read for reading in the Hydrographs.csv file, and rvn_res_extract to extract time series
from Raven objects

Examples

read in sample reservoir file

ff <- system.file(”extdata”,"ReservoirStages.csv”, package="RavenR")
rvn_res_read(ff) %>%

rvn_res_extract(subs="sub36"”, res=.) -> mystage

sim <- mystage$sim

obs <- mystage$obs

precip <- rvn_res_read(ff)resprecip

create a nice reservoir stage plot
rvn_res_plot(sim,obs)

create a reservoir stage plot with precip as well
rvn_res_plot(sim,obs,precip=precip)

create a reservoir stage plot with precip as well for a specific subperiod
prd <- "2003-10-01/2005-10-01"
rvn_res_plot(sim,obs,precip=precip,prd=prd)

add winter shading
rvn_res_plot(sim,obs,precip=precip, winter_shading=TRUE)

rvn_res_read 61

rvn_res_read Read in Raven ReservoirStages file

Description

Reads in the ReservoirStages.csv file produced by Raven.

Usage

rvn_res_read(ff = NA, tzone = "UTC")

Arguments
ff full file path to the ReservoirStages.csv file
tzone string indicating the timezone of the data in ff
Details

Expects a full file path to the ReservoirStages.csv file, then reads in the file using read.csv. The
main advantage of this function is renaming the columns to nicer names and extracting the units
into something much easier to read.

This function is also built to support the rvn_res_extract function, which uses the object created
here for extracting by reference to the columns named here, for example sub24.

ff is the full file path of the ReservoirStages.csv file. If the file is located in the current working
directory, then simply the name of the file is sufficient.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.
Value

res data frame from the file with standardized names

See Also

rvn_res_extract for extraction tools related to the rvn_res_read output file

Examples

create full file path
ff <- system.file("extdata”,"ReservoirStages.csv"”, package="RavenR")

read in the Reservoir file
myres <- rvn_res_read(ff)

view contents
head(myres$res)
myres$units

62

rvio_run

rvn_run

Run Raven Executable

Description

Invokes shell to execute a Raven model.

Usage

rvn_run(

fileprefix = NULL,
indir = getwd(),
ravenexe = NULL,
outdir = NULL,

rvc = NULL,
rvt = NULL,
rvp = NULL,
rvh = NULL,

showoutput = FALSE,
rvi_options = NULL,
run_chmod = FALSE

Arguments
fileprefix
indir
ravenexe
outdir
rvc
rvt
rvp
rvh

showoutput

rvi_options

run_chmod

Details

file prefix for main Raven input files.

string path for Raven input files

file path to Raven executable

string path for Raven output files (optional)
file path to specific rvc file (optional)

file path to specific rvt file (optional)

file path to specific rvp file (optional)

file path to specific rvh file (optional)

boolean whether to show output in console (passed to show.output.on.console
within system) (default FALSE)

string vector of additional options to add to rvi file temporarily for run

runs a chmod system call to the provided executable ("chmod +x’) (default
FALSE)

Uses the shell command to run the Raven.exe command.

If the fileprefix is not supplied, the function will detect the rvi file automatically and use that in
the run (if exactly one rvi file exists in the directory).

rvn_run 63

The indir path must point to the main Raven input files, if they are not in the working directory.

The ravenexe must point to the Raven.exe file; if not supplied it will look for it in the RavenR/extdata
path that is saved to when using rvn_download.

rvi_options can include a vector of any additional commands to add to the rvi file prior to exe-
cution. Any commands are added temporarily, and the rvi file is restored following the Raven run.
The original rvi file is backed up as a copy in case of an interruption of the function or other error to
prevent loss of data. The rvi commands provided are checked against a list of known rvi commands
and a warning is issued if an unrecognized command is provided, but all commands provided are
nonetheless written to the temporary rvi file as provided. All rvi commands should include the colon
prefix to the command (e.g. ":SilentMode" not "SilentMode"), as this is not added automatically.

Note that this function may not work in all servers, as some more specific setups when invoking
the system command may be required. In addition, errors may occur if the Raven.exe file does not
have permission to execute. This can be rectified with the run_chmod parameter set to TRUE

Value

Returns output code from the system command when running Raven

See Also

rvn_download

Examples

Not run:

NOT RUN (data download + runs Raven.exe)
url<-"https://raven.uwaterloo.ca/files/RavenTutorialFiles.zip”
temploc <- tempdir()
destfile<-paste(temploc,”/RavenTutorialFiles.zip"”,sep="")
download.file(url,destfile)
destdir<-paste(temploc,”/RavenTutorialFiles"”, sep="")
dir.create(destdir)

unzip(zipfile=destfile,exdir=destdir)

file.remove(destfile)

check that Raven.exe is downloaded
if (!rvn_download(check=TRUE)) {rvn_download()}

Irondequoit example
rvn_run(indir=paste(destdir,"”/Irond”,sep=""),
showoutput=TRUE)

run in Silent Mode (rvi option)

rvn_run(indir=paste(destdir,"”/Irond",sep=""),
showoutput=TRUE,
rvi_options=c(”:SilentMode"))

End(Not run)

64 rvn_rvc_from_custom_output

rvn_rvc_from_custom_output
Generate RVC file from Custom Output CSVs

Description

Creates an initial conditions rvc file that specifies the initial state using the information from the
supplied custom output file.

Usage
rvn_rvc_from_custom_output(filename, custfiles, FUN, init_date = NULL, ...)
Arguments
filename filepath of rvc file to be created (with .rvc extension)
custfiles array of filepaths to Raven Custom Output files (must be ByHRU)
FUN the aggregation function to be applied to state variables (e.g. mean, passed to
sapply)
init_date datetime of model start (optional, can be calculated from Custom Output files)
optional arguments passed to rvn_rvc_write (e.g. author, description)
Value
TRUE if executed successfully
Author(s)
Leland Scantlebury
Examples

Create array of custom output file(s)

n on

custout <- c(system.file("extdata”, "run1_SNOW_Daily_Average_ByHRU.csv",package = "RavenR"))

Create rvc file of mean snow for each HRU
rvn_rvc_from_custom_output(filename = file.path(tempdir(), "Blank.rvc"),
custfiles = custout,
FUN = mean)

rvn_rvc_res 65

rvn_rvc_res Create initial conditions file for Reservoirs

Description

Write an initial conditions (rvc) format file for Raven, with the calculated reservoir stages written

in.
Usage

rvn_rvc_res(ff, initial_percent = @, output = "initial_res_conditions.rvc")
Arguments

ff full file path to the reservoir information file

initial_percent

an optional double for percentage of maximum stage to use as initial condition;
default 0.0

output file rvc lines are written to (default: initial_res_conditions.rvc)

Details

Writes an initial conditions format file for Raven with the relevant initial reservoir stages. This file
can be used directly as the model rvc file, or one may copy and paste the information into a separate
rvc file for use (i.e. if there is other information to be included in the model rvc file).

The supplied file in ff should be a csv file consistent with the format from the Raven-generated
ReservoirStages.csv file. External observations of reservoirs may be used given that the csv file
follows the same format.

The initial_percent must be between 0 and 1, so that the initial stage is not less than the dry stage or
greater than the maximum.
Value

TRUE return TRUE if the function is executed properly

See Also

rvn_res_read for reading in the ReservoirStages.csv file

Examples

ff <- system.file("extdata”,"ReservoirStages.csv”, package="RavenR")

set initial conditions at 40% capacity, view file
tf <- file.path(tempdir(), "modelname.rvc")
rvn_rvc_res(ff, initial_percent=0.4, output=tf)
readLines(tf)

66

rvn_rvc_write

rvn_rvc_write

Write Raven Initial Condition (rvc) file

Description

Given initial conditions for state variables at HRUs, generates a rvc file

Usage
rvn_rvc_write(
filename,
initHRU,
init_date,
description = "Generated by RavenR rvn_rvc_write”,
author = NULL
)
Arguments
filename filepath of rvc file to write to (with .rvc extension)
initHRU dataframe of initial conditions for state variables (columns) for each HRU (rows).
columns must be valid SV names and there must be an explicit column of HRU
ids named "HRU’.
init_date datetime of model start
description (optional) Description added after file header
author (optional) Name of author, to be printed in file header.
Value
TRUE return TRUE if the function is executed properly
Author(s)
Leland Scantlebury
See Also

rvn_rvc_res rvn_rvc_from_custom_output

Examples

Create an initial condition HRU table where SOIL[@] is @.5mm for all HRUs
Check.names is set to FALSE to allow for brackets in the column name
initHRU <- data.frame('HRU'=1:10, 'SOIL[@]'=0.5, check.names=FALSE)
model_start = as.Date('2001-10-01")

Generate RVC file

rvn_rvh_blankHRUdf 67

rvn_rvc_write(filename = file.path(tempdir(), "New.rvc"),
initHRU = initHRU,
init_date = model_start,
author = 'Harry Potter')

rvn_rvh_blankHRUdf Generate Blank Raven HRU DataFrame

Description

Used to generate a blank HRU table that can be filled in by the user. Compatible with rvn_rvh_write.

Usage
rvn_rvh_blankHRUdf (nHRUs = 1, subbasinIDs = NULL)

Arguments

nHRUs Number of HRUs, used to determine number of rows in table (default = 1)

subbasinIDs Subbasins that HRUs belong to (default = all equal 1)

Details
Note that if the length of the subbasinIDs vector is greater than the number of HRUs (nHRUs)
specified, this will create a table with HRUs belonging to multiple subbasins, which is not feasible.
A warning will be issued that the table will need to be modified for hydrologic consistency.

Value

data.frame of blank HRU properties to be filled in by user

Author(s)

Leland Scantlebury

See Also

rvn_rvh_blankSBdf to generate blank subbasin data frame

Examples

HRUtable <- rvn_rvh_blankHRUdf (nHRUs = 3, subbasinIDs=c(1,1,2))
HRUtable

fewer nHRUs than subbasinIDs specified
rvn_rvh_blankHRUdf (nHRUs = 1, subbasinIDs=c(1,2))

68 rvn_rvh_blankSBdf

rvn_rvh_blankSBdf Generate Blank Raven SubBasin DataFrame

Description

Generates a blank data frame for Raven subbasin properties. Compatible with rvn_rvh_write.

Usage

rvn_rvh_blankSBdf (nSubBasins = 1)

Arguments
nSubBasins Number of SubBasins in model, used to determine number of rows in table
(default=1)
Details

The subbasin names are provided as ’sub00x’, where x is the basin ID. The padding is determined
from the number of subbasins. The downstream IDs are generated to assume a linear downstream
progression, with an outlet at the terminal subbasin ID, which can be modified after the data frame
is created.

Value

data.frame of blank SubBasin properties to be filled in by user

Author(s)

Leland Scantlebury

See Also

rvn_rvh_blankHRUdf to generate blank HRU data frame

Examples

SBtable <- rvn_rvh_blankSBdf(nSubBasins = 3)
SBtable

rvn_rvh_cleanhrus 69

rvn_rvh_cleanhrus Clean HRU data table.

Description

Takes rvn_rvh_read-generated HRUtable and SBTable and returns cleaned HRUtable with (hope-
fully) fewer HRUs

Usage

rvn_rvh_cleanhrus(
HRUtab,
SBtab,
area_tol = 0.01,
merge = FALSE,
elev_tol = 50,
slope_tol = 4,
aspect_tol = 20,
ProtectedHRUs = c(),
LockedHRUs = c(),
LockedSubbasins = c()

)
Arguments

HRUtab table of HRUs generated (typically) by rvn_rvh_read

SBtab table of Subbasins generated (typically) by rvn_rvh_read

area_tol percentage of watershed area beneath which HRUs should be removed (e.g., de-
fault value of 0.01 would indicate anything smaller than 1 percent of watershed
extent should be removed)

merge TRUE if similar HRUs are to be merged (this can be slow for large models)

elev_tol elevation difference (in metres) considered similar. only used if merge=TRUE

slope_tol slope difference (in degrees) considered similar. only used if merge=TRUE

aspect_tol slope difference (in degrees) considered similar. only used if merge=TRUE

ProtectedHRUs vector of HRU IDs that are sacrosanct (not to be removed, but may still increase
in area)

LockedHRUs vector of HRU IDs that are locked (not to be modified)

LockedSubbasins
vector of subbasin IDs that are locked (not to be modified).

70 rvn_rvh_cleanhrus

Details

rvn_rvh_cleanhrus removes HRUs in two ways:

1. it removes all HRUs smaller than the area_tol percentage of total area. Adjacent HRUs in the
subbasin are expanded by the lost area to keep the same relative coverage.

2. it consolidates similar HRUs within the same subbasin (those with same land cover, vegetation,
soil profile and similar slope, aspect, and elevation)

The ProtectedHRUs allows the specification of HRUs that should not be removed, even if they
would otherwise be merged or removed. These HRUs may still increase in size as other HRUs are
consolidated.

The LockedHRUs allows for the specification of HRUs that will not change (removed or increase in
size), which may be useful for specific land types such as glaciers or water bodies. It is possible that
locking HRUs may prevent the script from resizing remaining HRUs within a subbasin, in which
case a warning is issued to the user that the area has changed. If this is the case, it is suggested to
reduce the area threshold to try and prevent this issue, or consider simply locking some subbasins.

Note that merging can be a computationally expensive process, and for this reason is set as FALSE
by default.

Value

hru_table cleaned HRU table as a dataframe

Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvh_read for the function used to read in the HRU and Subbasin data, and rvn_rvh_write to
write rvh information to file.

Examples

read in example rvh file
nith <- system.file("extdata”,"”Nith.rvh",6package = "RavenR")
rvh <- rvn_rvh_read(nith)

number of HRUs in existing configuration
nrow(rvh$HRUtable)

clean contents (in this case, remove all HRUs covering less than 5% of the total area)
newHRUs <- rvn_rvh_cleanhrus(rvh$HRUtable,rvh$SBtable,area_tol = 0.05, merge=TRUE)

clean contents but locking urban areas (two HRUs locked)
newHRUs <- rvn_rvh_cleanhrus(rvh$HRUtable,rvh$SBtable,area_tol = 0.05, merge=TRUE,
LockedHRUs=rvh$HRUtable[rvh$HRUtable$LandUse=="URBAN", "ID"])

rvn_rvh_overwrite 71

rvn_rvh_overwrite Write/Overwrite Raven rvh file

Description

Given an HRU and SubBasin dataframe, writes to the specified .rvh file. In the case of rvn_rvh_overwrite,
just the :SubBasins-:EndSubBasins and :HRUs-:EndHRUs blocks are re-written, retaining all other
content.

Usage

rvn_rvh_overwrite(filename, SBtable, HRUtable, basefile)

rvn_rvh_write(
filename,
SBtable = NULL,
HRUtable = NULL,

description = "Generated by RavenR rvn_rvh_write",
author = NULL
)
Arguments
filename filepath of rvh file to write to (with .rvh extension)
SBtable Valid subbasin dataframe with required columns "SBID", "Name", "Downstream_ID",
"Profile", "ReachLength", and "Gauged". Can have additional columns.
HRUtable Valid HRU dataframe with required columns ’ID’, ’Area’, ’Elevation’, ’Lati-

tude’, ’Longitude’, SBID’, LandUse’, *Vegetation’, ’SoilProfile’, * Aquifer’,
"Terrain’, *Slope’, and *Aspect’. Can have additional columns.

basefile original rvh file to overwrite (only used with rvn_rvh_overwrite)
description (optional) Description added after file header
author (optional) Name of author, to be printed in file header.

Details

rvn_rvh_write is typically used to create a ’clean’ .rvh file.

rvn_rvh_overwrite is usually used after reading an original .rvh file and processing the HRU and
SubBasin tables, using (e.g., rvn_rvh_cleanhrus). This may also be used to preserve commands
in the rvh file such as reservoir information, comments outside of the subbasin and HRU blocks,
RedirectToFile commands, etc.

Note that if using the rvn_rvh_overwrite function and the filename and basefile arguments are the
same, the original file will be overwritten while preserving lines outside of the subbasin and HRU
blocks.

If using rvn_rvh_write, the SBtable or HRUtable parameters may be omitted and provided as
NULL. In these cases, those sections will not be written in the rvh file. This may be useful in cases
where one wishes to separate the SubBasins and HRUs in different files.

72 rvn_rvh_overwrite

Value

TRUE returns TRUE if function runs properly

Functions

* rvn_rvh_overwrite(): Overwrite contents of original .rvh file

Author(s)

James R. Craig, University of Waterloo

Leland Scantlebury

See Also

rvn_rvh_read for the function used to read in the HRU and SubBasin data rvn_rvh_cleanhrus
for the function used to process HRU dataframe
For generating blank SubBasin and HRU tables, see: rvn_rvh_blankSBdf and rvn_rvh_blankHRUdf

Examples

Example: write a blank rvh file

create some blank tables

sbs_data <- rvn_rvh_blankSBdf(nSubBasins = 1)
hru_data <- rvn_rvh_blankHRUdf (nHRUs = 3)

write to rvh file
rvn_rvh_write(file.path(tempdir(), "Blank.rvh"),
SBtable = sbs_data,
HRUtable = hru_data,
description = "Example output - Blank Watershed Discretization File”,
author = "Raven Development Team")

Example: Read in an rvh, clean its contents and write back to new file
nith <- system.file("extdata”,"Nith.rvh" 6 package = "RavenR")
rvh <- rvn_rvh_read(nith)

remove HRUs covering less than 5% of the total area
rvh$HRUtable <- rvn_rvh_cleanhrus(rvh$HRUtable, rvh$SBtable, area_tol = 0.05)

write the Subbasin and HRU tables to new file using rvn_rvh_write:
rvn_rvh_write(filename=file.path(tempdir(), "Nith_cleaned_write.rvh"),
SBtable = rvh$SBtable,
HRUtable = rvh$HRUtable)

write to new file, while preserving all unedited information using rvn_rvh_overwrite:
rvn_rvh_overwrite(filename=file.path(tempdir(), "Nith_cleaned_overwrite.rvh"),
basefile=nith,
SBtable = rvh$SBtable,
HRUtable = rvh$HRUtable)

rvn_rvh_query 73

rvn_rvh_query Queries RVH object for subbasins and HRUs of interest

Description

Queries the RVH object for subbasins or HRUSs that are upstream of, downstream of, or the opposite
of those conditions, for a given subbasin ID.

Usage

rvn_rvh_query(rvh = NULL, subbasinID = NULL, condition = "upstream_of")

Arguments
rvh rvh object as returned by rvn_rvh_read
subbasinID subbasinID of basin of interest, as character or integer
condition condition applied to the query

Details

Based on the definition of subbasins by their outlets in Raven, it is assumed here that *upstream’
includes the specified subbasin (i.e. everything upstream of subbasin X includes subbasin X as
well), and ’downstream’ of subbasin X does not include subbasin X. This is different from the
default behaviour of igraph, which includes the specified subbasin in either query.

Value

rvh object in same format, but queried to condition and all features (SBtable, HRUtable, SBnetwork)
updated.

Note
Raven has capabilities for creating subbasin and HRU groups that meet certain criteria as well,
consider reviewing the ‘:PopulateSubbasinGroup*, ‘:PopulateHRUGroup*, and other commands in
Section A.3.2 of the Raven User’s Manual.

See Also

rvn_rvh_write to write contents of the generated (and usually modified HRU and SubBasin tables)
rvn_rvh_read to read a Raven RVH file into R

74 rvn_rvh _read

Examples

load example rvh file
nith <- system.file("extdata”,"Nith.rvh", 6 package = "RavenR")
rvh <- rvn_rvh_read(nith)

plot full watershed with igraph library
plot(rvh$SBnetwork)

query all subbasins upstream of basin 39, plot
rvh_upstream_of_39 <- rvn_rvh_query(rvh, subbasinID=39, condition="upstream_of")
plot(rvh_upstream_of_39$SBnetwork)

query of HRUs downstream of basin 39
rvn_rvh_query(rvh, subbasinID=39, condition="downstream_of")$SBtable

rvn_rvh_read Read Raven .rvh (watershed discretization) file

Description

This routine reads in a valid Raven watershed discretization (.rvh) file and returns the information
about HRUs and Subbasins as data tables. It also returns a subbasin igraph network object which
describes stream network connectivity and adds additional HRU-derived subbasin characteristics
such as total upstream area and dominant land/vegetation classes.

Usage
rvn_rvh_read(ff)

Arguments

ff the filepath of the .rvh file (with .rvh extension included).

Details

The supplied file should not be comma-delimited with a trailing comma. The function also does
not like tabs in the rvh file, the file should be untabified first. This function uses the igraph library
to build the networks and compute the total upstream area. The .rvh file can have arbitrary contents
outside of the :HRUs-:EndHRUs and :SubBasins-:EndSubBasins command blocks.

Partial rvh files may be provided to this function (i.e. with only :SubBasin or :HRUs blocks but
not the other), however, some calculations and the calculation of the SBnetwork output will not
be completed. Omitted structures (e.g. SBtable) will be returned as NULL if the section is not
found in the rvh file directly. Note that this function does not look for additional files specified with
:RedirectToFile commands.

The ff argument can be a relative path name or absolute one.

The TotalUpstreamArea is the total drainage area upstream of the given subbasin outlet. With this
calculation, headerwater subbasins will have a total upstream area equal to their own subbasin area.

rvn_rvh read 75

Value

Returns a list including:

SBtable a data table of Subbasin characteristics indexed by Subbasin ID (SBID). In-
cludes the following data columns from the .rvh file : SBID, Name, Down-
stream_ID, Profile, ReachLength, Gauged. The rvn_rvh_read() functions sup-
plements this with additional columns: Area, Elevation, AvgLatit, AvgLongit,
AvgSlope, AvgAspect, DomLU, DomLUArea, DomLUFrac, DomVeg, DomVe-
gArea, DomVegFrac. Elevation, AvgLatit, AvgLongit, AvgSlope, and AvgAspect
are the area-weighted averages from all constituent HRUs. DomLU is the dom-
inant land use name, DomLUArea is the area (in km2) of the dominant land
use and DomLUArea is the percentage of the basin covered with DomLU; same
applies to DomVeg.

HRUtable a data table of HRU characteristics, with land use and vegetation classes as fac-
tors. Contains identical information as found in the :HRUs-:EndHRUs block of
the .rvh file: ID, Area, Elevation, Latitude, Longitude, SBID, LandUse, Vegetation,
SoilProfile, Aquifer, Terrain, Slope, and Aspect.

SBnetwork an igraph network graph network describing subbasin stream network connec-
tivity, with nodes indexed by SBID.

Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvh_write to write contents of the generated (and usually modified HRU and SubBasin tables)
rvn_rvh_subbasin_network_plot to plot the subbasin network

Examples

load example rvh file
nith <- system.file("extdata”,"”Nith.rvh",6package = "RavenR")
rvh <- rvn_rvh_read(nith)

number of HRUs
nrow(rvh$HRUtable)

total watershed area
sum(rvh$HRUtable$Area)

sub-table of headwater basins (upstream area = subbasin area)
rvh$SBtable$SBID[rvh$SBtable$Area == rvh$SBtable$TotalUpstreamAreal

sub-table of Urban HRUs
subset(rvh$HRUtable, LandUse == "URBAN")

get total area upstream of subbasin containing outlet
upstr <- cumsum(rvh$SBtable$Area)
upstrlrvh$SBtable$Downstream_ID == -1]

76 rvn_rvh_subbasin_network_plot

show upstream areas for each subbasin
rvh$SBtablel[,c("SBID","TotalUpstreamArea”)]

plot network diagram using igraph library
igraph::plot.igraph(rvh$SBnetwork)

rvn_rvh_subbasin_network_plot
Basic Raven subbasin network plot

Description

Generates a plot of the subbasin network from rvh file information.

Usage

rvn_rvh_subbasin_network_plot(SBtable, labeled = FALSE)

Arguments
SBtable a valid table of Raven subbasins, obtained from rvn_rvh_read
labeled TRUE if the nodes are labeled with the SubBasin ID, SBID
Details

Takes the information gathered from an .rvh file via the function rvn_rvh_read and generates a
plot object of the subbasin network, where nodes are located at SubBasin lat-long centroids, and
edge widths of the network correspond to contributing upstream area.

The plot is generated using the ggplot2 library, with dependencies on igraph for handling network
information.

Value

pl ggplot object of subbasin network plot

Author(s)

James R. Craig, University of Waterloo

rvn_rvh_subbasin_visnetwork_plot 77

Examples

read in rvh file
rvh <- rvn_rvh_read(system.file("extdata"”,"”Nith.rvh", package="RavenR"))

create network plot of watershed structure from rvh file
rvn_rvh_subbasin_network_plot(rvh$SBtable)

include labels
rvn_rvh_subbasin_network_plot(rvh$SBtable, labeled=TRUE)

rvn_rvh_subbasin_visnetwork_plot
Plot subbasin network using visNetwork

Description

Takes an rvh object generated using rvn_rvh_read and returns the connections information of
subbasins as an interactive visNetwork graph.

Usage

rvn_rvh_subbasin_visnetwork_plot(rvh, groupBy = "Gauged")
Arguments

rvh an rvh object, provided by rvn_rvh_read

groupBy a character referring to one of the sub-basins attributes in the rvh
Value

returns visNetwork plot object

See Also

rvn_rvh_read to import an watershed network table from an rvh file.

See also the Raven page

Examples

additional example from tutorial files (not run)

Not run:
path <- dirname(tempfile())
dir.create(paste(path,"/tmp",sep=""))
url<-"https://raven.uwaterloo.ca/files/RavenOstrichTutorialFiles.zip”
download.file(url,dest=paste(path,”/tmp/example.zip”,sep=""))
unzip(zipfile = paste(path,”/tmp/example.zip"”,sep=""),

exdir = paste(path,”/tmp”,sep=""))

https://raven.uwaterloo.ca/

78 rvn_rvh_summarize

rvh<-rvn_rvh_read(paste(path,"/tmp/Demo_C4/model/LOWRL.rvh", sep=""))
rvn_rvh_subbasin_visnetwork_plot(rvh,groupBy="Gauged")
rvn_rvh_subbasin_visnetwork_plot(rvh, groupBy="DomLU")
rvn_rvh_subbasin_visnetwork_plot(rvh, groupBy="Elevation")

End(Not run)
rvh <- rvn_rvh_read(system.file("extdata”,"”Nith.rvh"”, package="RavenR"))

rvn_rvh_subbasin_visnetwork_plot(rvh, groupBy="Gauged")
rvn_rvh_subbasin_visnetwork_plot(rvh,groupBy="Elevation")

rvn_rvh_summarize Summarize RVH object

Description
Summarizes the RVH object provided in a number of useful ways, and returns a list with the sum-
marized information.

Usage

rvn_rvh_summarize(rvh = NULL, return_list = TRUE)

Arguments
rvh rvh object as returned by rvn_rvh_read or rvn_rvh_query
return_list boolean whether the to return the summary list object, if FALSE only TRUE is
returned (default TRUE)
Details

The total subbasin area is the total area of all subbasins in the RVH object. If there are multiple
outlets in the model, or additional subbasin information that is not part of the model domain, this
will be counted in the total area and other summary diagnostics. Consider using rvn_rvh_query to
isolate portions of the domain in such instances.

Information for dominant Terrain and Aquifer classes is also returned, but only if there are Terrain
or Aquifer classes respectively other than [NONE]’. The number of unique HRUs include Terrain
and Aquifer classes in the consideration of unique HRUs if there are instances of classes other than
’INONE]’ for these classes.

Value

Returns TRUE if the parameter return_list is FALSE, otherwise returns a list with multiple items:

total_subbasin_area
total subbasin area, computed as the sum of all areas in rvh$SBtable$Area

num_subbasins total number of subbasins

rvn_rvh _summarize 79

num_hrus total number of HRUs

num_unique_hrus
total number of unique HRUs, i.e. HRUs with unique combination of LandUse,
Vegetation, Soil Profile, and Terrain/Aquifer if relevant (see details)

hru_summary_landuse
a dataframe summarizing the RVH object by LandUse class

hru_summary_vegetation
a dataframe summarizing the RVH object by Vegetation class

hru_summary_soilprofile
a dataframe summarizing the RVH object by Soil Profile

hru_summary_terrain
a dataframe summarizing the RVH object by Terrain class

hru_summary_aquifer
a dataframe summarizing the RVH object by Aquifer class

hru_summary_general
a dataframe summarizing the RVH object by LandUse, Vegetation, Soil Profile,
and Terrain/Aquifer if relevant (see details)

dom_landuse dominant LandUse class by total area

dom_landuse_ratio
ratio of the total area of dominant LandUse class by total subbasin area

dom_vegetation dominant Vegetation class by total area

dom_vegetation_ratio
ratio of the total area of dominant Vegetation class by total subbasin area

dom_soilprofile
dominant Soil Profile by total area

dom_soilprofile_ratio
ratio of the total area of dominant Soil Profile by total subbasin area

dom_terrain dominant Terrain class by total area (NULL if no Terrain classes defined)

dom_terrain_ratio
ratio of the total area of dominant Terrain class by total subbasin area (NA if no
Terrain classes defined)

dom_aquifer dominant Aquifer class by total area (NULL if no Aquifer classes defined)

dom_aquifer_ratio
ratio of the total area of dominant Aquifer class by total subbasin area (NA if no
Agquifer classes defined)

See Also

rvn_rvh_read to read a Raven RVH file into R rvn_rvh_query to query the RVH file prior to other
operations, such as summarizing)

80 rvn_rvh_write_subbasingroup

Examples

load example rvh file
nith <- system.file("extdata”,”Nith.rvh",6package = "RavenR")
rvh <- rvn_rvh_read(nith)

summarize rvh
rvn_rvh_summarize(rvh, return_list=FALSE)

query of HRUs upstream of basin 39, then summarize

rvh %>%
rvn_rvh_query(subbasinID=39, condition="upstream_of") %>%
rvn_rvh_summarize(return_list=FALSE)

rvn_rvh_write_subbasingroup
Write a subbasin group to Raven RVH format

Description

Writes the subbasins in a given RVH object to Raven RVH format in the specified file.

Usage

rvn_rvh_write_subbasingroup(
rvh = NULL,
sbgroup_name = NULL,
outfile = NULL,
subs_per_line = 30,
overwrite = TRUE

Arguments

rvh rvh object as returned by rvn_rvh_read or rvn_rvh_query
sbgroup_name the name of the subbasin group to write to file
outfile the output file to write the subbasin group to

subs_per_line the number of subabsins to write per line in the file (default 30)

overwrite if TRUE, will overwrite the existing outfile specified if it already exists (default

FALSE)

Details

Writes the subbasin group for all subbasins in the rvh$SBtable data frame to file using the ‘:Sub-
basinGroup‘ command in Raven. This function is intended to be used with rvn_rvh_query to first
subset the RVH object in order to create useful groups, though this can be done manually as well.

rvn_rvi_commandupdate 81

Value

Returns TRUE if the file is written successfully

Note

Raven has capabilities for creating subbasin and HRU groups that meet certain criteria as well,
consider reviewing the ‘:PopulateSubbasinGroup*, ‘:PopulateHRUGroup*, and other commands in
Section A.3.2 of the Raven User’s Manual.

See Also
rvn_rvh_read to read a Raven RVH file into R rvn_rvh_query to query the RVH file prior to other
operations, such as summarizing or writing out subbasin groups)

Examples

load example rvh file
nith <- system.file("extdata”,"”Nith.rvh",6package = "RavenR")
rvh <- rvn_rvh_read(nith)

query all subbasins upstream of basin 39
rvh_upstream_of_39 <- rvn_rvh_query(rvh, subbasinID=39, condition="upstream_of")

temporary filename
tf <- file.path(tempdir(), 'mysubbasigroup.rvh')

write this subbasin group to file
rvn_rvh_write_subbasingroup(rvh=rvh_upstream_of_39, outfile=tf)

rvn_rvi_commandupdate Update command in Raven input file

Description

Updates the provided rvi file with the command and value provided.

Usage

rvn_rvi_commandupdate(
filename = NULL,
command = NULL,
value = NULL,
outputfile = NA

82 rvn_rvi_connections

Arguments
filename the name of the .rvi file (with .rvi extension included), either relative to the
working directory or absolute.
command the rvi command with preceeding colon to update
value value of the command to update
outputfile if writing to a new file, otherwise filename is overwritten
Value

returns TRUE if run successfully

Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvi_read to read and process rvi files with RavenR

Examples

load example rvi file
ff <- system.file("extdata”,”Nith.rvi", package="RavenR")
tf <- tempfile(fileext=".rvi"

rvn_rvi_commandupdate (filename=ff,
command=":StartDate",
value="2022-10-01 00:00:00",
outputfile=tf)

rvn_rvi_connections Generate Hydrological process connections list

Description

This routine reads in a hydrologic process list from rvn_rvi_read and generates the list of hydro-
logic process connections.

Usage
rvn_rvi_connections(
rvi,
ProcConDataFile = system.file("extdata”, "RavenProcessConnections.dat”, package =
"RavenR")

rvn_rvi_getparams 83

Arguments
rvi data object generated from the rvn_rvi_read routine
ProcConDataFile
(optional) path to RavenProcesConnections.dat file
Details

Relies on a valid and up-to-date RavenProcessConnections.dat file. This file is provided with the
RavenR package, but may be overridden by a more recent file if provided manually.

Value

Returns a list with two items:

connections a a dataframe of all of the process connections Includes the following data
columns: process type, algorithm, 'from’ compartment, ’to’ compartment, and
conditional
AliasTable a table of aliases (unchanged from the supplied rvi$AliasTable)
Author(s)

James R. Craig, University of Waterloo

See Also

rvn_rvi_read to read a .rvi file and generate an rvi object, and rvn_rvi_process_ggplot or
rvn_rvi_process_diagrammer to plot the process network produced in this function.

See also the Raven page

Examples

rvi <- rvn_rvi_read(system.file("extdata”,”Nith.rvi", package="RavenR"))

rvi_conn <- rvn_rvi_connections(rvi)
head(rvi_conn$connections)
head(rvi_conn$AliasTable)

rvn_rvi_getparams Retrieve Parameter Information from RVI file Algorithms

Description

Reads the processed rvi object and returns a data frame of parameter information for parameters
associated with processes in the rvi object.

https://raven.uwaterloo.ca/

84 rvn_rvi_getparams

Usage

rvn_rvi_getparams(
rvi,
RavenAlgParamsFile = system.file("extdata”, "RavenAlgParams.dat”, package = "RavenR"),
RavenParamsFile = system.file("extdata”, "RavenParameters.dat"”, package = "RavenR")

)

Arguments

rvi data object generated from the rvn_rvi_read routine

RavenAlgParamsFile
(optional) path to RavenAlgParams.dat file

RavenParamsFile
(optional) path to RavenParameters.dat file

Details

Uses the Raven database files in the /extdata folder to (1) associate parameters with particular algo-
rithms, and (2) subset the database parameter list based on the information in the rvi file.

These files are stored with the RavenR package and retrieved with this function by default, but a
separate link may be provided to a modified file if desired. Note that the database files held in the
RavenR package are unofficial copies of those in the official Raven SVN, and any discrepancies
should defer to the Raven SVN versions.

Value

Returns a data frame with parameter information containing the parameter name, parameter class,
units, auto (whether the parameter may be autogenerated within Raven), default, min, and max
values. Note that the flags "xxx’, -9999, and 9999 are used as missing values within the parameter
data frame.

Examples

sample workflow of rvn_rvi_read
rvi <- system.file("extdata”,”Nith.rvi"”, package="RavenR") %>%
rvn_rvi_read(.)

get data frame of parameters related to processes in rvi file
rvn_rvi_getparams(rvi)

rvn_rvi_process_diagrammer 85

rvn_rvi_process_diagrammer
Plot Raven hydrologic process network using DiagrammeR

Description

This routine takes a connections data from generated using rvn_rvi_connections() and returns the
connections information as a DiagrammeR object.

Usage

rvn_rvi_process_diagrammer (
rvi_conn,
sv_omit = c("SNOW_DEPTH", "COLD_CONTENT", "PONDED_WATER/SNOW_LIQ", "NEW_SNOW",
"SNOW_DEFICIT"),
repel_force = 0.001,

repel_iter = 2000,
lbl_size = 0.5,
1bl_height = 0.3,
1bl_width = 1,
pdfout = NULL
)
Arguments
rvi_conn a list of connections and AliasTable, provided by rvn_rvi_connections
sv_omit character vector of state variables to omit from the plot
repel_force numeric value indicating the *force’ with which the repel function will move
labels
repel_iter the maximum number of iterations for the repel algorithm
1bl_size estimated height of labels, used in repel algorithm
1bl_height actual height of the labels (in inches)
1bl_width relative width of the labels (multiplier)
pdfout name of pdf file to save the network plot to, if null no PDF is generated
Details

Uses the output from the rvn_rvi_connections function to generate the plot with the DiagrammeR
library.

Note that the output can be plotted using the render_graph function in the DiagrammeR library.
The outputted DiagrammeR object may also have aesthetics modified with various commands from
the same library, if desired, as shown in the examples. The rsvg and DiagrammeRsvg packages may
be required to export to PDF with desired results, but are not explicit dependencies of RavenR.

sv_omit is used to reduce the clutter in the process plot of state variables that one may wish to omit
from the plot.

86

rvn_rvi_process_diagrammer

The function uses the functionality from ggrepel to repel labels from one another. The degree
of separation in the labels can be controlled by the repel_force and 1bl_size parameters (in-
creasing either will increase the separation between labels). The repel_force may range from
approximately 1 to 1e-6. The 1bl_size is a relative estimate of the label height (default 0.5), which
is used in estimating the label size in the repel functionality. Providing a larger number will increase
the perceived size of the label in the repel functionality and tend towards more separation between
labels, and vice-versa. Both of these parameters may need to change depending on the plot size and
number of labels. The 1b1_height and 1bl_width parameters can be changed to affect the height
and relative width of the actual labels.

The basic model structure outline is followed, but unrecognized state variables are plotted on the
left hand side of the plot (determined with internal RavenR function rvn_rvi_process_layout).

Value

d1 returns DiagrammeR object. Also generates a .pdf file in working directory if pdfplot argument
is not NULL.

See Also

rvn_rvi_connections to generate connections table from an rvi object
rvn_rvi_process_ggplot to generate the structure plot using ggplot.

See also the Raven page. Additional details on the DiagrammeR package may be found on the
Github page.

Examples

dl <- rvn_rvi_read(system.file("extdata”,"”Nith.rvi"”, package="RavenR")) %>%
rvn_rvi_connections() %>%
rvn_rvi_process_diagrammer ()

plot diagram using the DiagrammeR package
library(DiagrammeR)

d1 %>%
render_graph()

modify default plot attributes, plot

dl %>%
select_nodes() %>%
set_node_attrs_ws(node_attr = fillcolor, value = "hotpink") %>%
select_edges() %>%
set_edge_attrs_ws(edge_attr = style, value = "dashed") %>%
set_edge_attrs_ws(edge_attr = penwidth, value = 2) %>%
render_graph()

https://raven.uwaterloo.ca/
https://github.com/rich-iannone/DiagrammeR

rvn_rvi_process_ggplot 87

rvn_rvi_process_ggplot
Plot Raven hydrologic process network

Description

This routine takes a connections data from generated using rvn_rvi_connections and returns the
connections information as a network graph ggplot object.

Usage

rvn_rvi_process_ggplot(
rvi_conn,
sv_omit = c("SNOW_DEPTH", "COLD_CONTENT", "PONDED_WATER/SNOW_LIQ", "NEW_SNOW",
"SNOW_DEFICIT"),
repel_force = 0.001,

repel_iter = 2000,
lbl_size = 0.5,
1bl_fill = "lightblue",
arrow_size = 0.25,

arrow_adj = 0.25,
pdfout = NULL

)
Arguments

rvi_conn a list of connections and AliasTable, provided by rvn_rvi_connections

sv_omit character vector of state variables to omit from the plot

repel_force numeric value indicating the *force’ with which the repel function will move

labels

repel_iter the maximum number of iterations for the repel algorithm

1bl_size estimated height of labels, used in repel algorithm

1bl_fill fill colour for labels (default "lightblue’)

arrow_size size of plotted arrows (default 0.25)

arrow_adj adjustment in line length reduction for arrows (default 0.25)

pdfout name of pdf file to save the network plot to, if null no PDF is generated
Details

Uses the output from the rvn_rvi_connections function to generate the plot with the ggplot?2
library..

sv_omit is used to reduce the clutter in the process plot of state variables that one may wish to omit
from the plot.

88 rvn_rvi_process_ggplot

The function uses the functionality from ggrepel to repel labels from one another. The degree
of separation in the labels can be controlled by the repel_force and 1bl_size parameters (in-
creasing either will increase the separation between labels). The repel_force may range from
approximately 1 to 1e-6. The 1bl_size is a relative estimate of the label height (default 0.5), which
is used in estimating the label height in the repel functionality. Providing a larger number will in-
crease the perceived size of the label in the repel functionality and tend towards more separation
between labels, and vice-versa. Both of these parameters may need to change depending on the plot
size and number of labels.

arrow_adj is the amount that each line segment is reduced in length to accommodate the arrow.
Increasing this value will decrease the length of the line segment, and place the arrow further from
the box. This value should generally be similar to the arrow_size parameter.

The basic model structure outline is followed, but unrecognized state variables are plotted on the
left hand side of the plot (determined with internal RavenR function rvn_rvi_process_layout).

Value

returns ggplot object. Also generates a .pdf file in working directory if pdfplot argument is not
NULL.

See Also

rvn_rvi_connections to generate connections table from an rvi object
rvn_rvi_process_diagrammer to generate the structure plot using DiagrammeR.

See also the Raven page

Examples
library(ggplot2)

pl <- rvn_rvi_read(system.file("extdata”,”Nith.rvi", package="RavenR")) %>%
rvn_rvi_connections() %>%
rvn_rvi_process_ggplot()
p1 ## plot to screen

change the colour of the background
p1 + theme(panel.background = element_rect(fill = 'lightgrey', colour = 'purple'))

adjust line/arrow colours (no conditional lines shown in Nith example)
p1 + scale_colour_manual(values=c('FALSE'="purple', 'TRUE'='red"))

adjust line/arrow types (no conditional lines shown in Nith example)
pl + scale_linetype_manual(values=c('FALSE'="'longdash', 'TRUE'='twodash'))

https://raven.uwaterloo.ca/

rvn_rvi_read 89

rvn_rvi_read Read Raven .rvi (watershed discretization) file

Description
This routine reads in a valid Raven main input (.rvi) file and returns the information about hydro-
logical processes as a data table.

Usage

rvn_rvi_read(filename)

Arguments
filename the name of the .rvi file (with .rvi extension included), either relative to the
working directory or absolute.
Details

This function does not like tabs in the .rvi file - it should be untabified first. Comma-delimited tables
with a trailing comma are also problematic. The .rvi file can have arbitrary contents outside of the
:HydrologicProcesses- :EndHydrologicProcesses block and :SubBasins-:EndSubBasins command
blocks.

Value

Returns a list with two items:

HydProcTable a data table of hydrologic processes. Includes the following data columns: pro-
cess type, algorithm, *from’ compartment, "to’ compartment, conditional (logi-
cal), and condition (character)

AliasTable a table of aliases read from the rvi file, NULL if no aliases are included

Author(s)

James R. Craig, University of Waterloo

Examples

sample workflow of rvn_rvi_read
rvi <- system.file("extdata”,"”Nith.rvi", package="RavenR") %>%
rvn_rvi_read(.)

get number of Hydrologic processes
nrow(rvi$HydProcTable)

90 rvn_rvi_write_template

rvn_rvi_write_template
Write Raven rvi file based on model configuration templates

Description

Writes a Raven rvi file based on one of several template model configurations.

Usage

rvn_rvi_write_template(
template_name = "UBCWM",
filename = NULL,
overwrite = TRUE,
writeheader = TRUE,
filetype = "rvi ASCII Raven”,

author = "RavenR",
description = NULL
)
Arguments

template_name name of the model template to be written (default "'UBCWM”)

filename Name of the rvi file, with extension (optional)

overwrite boolean whether to overwrite file if it already exists (default FALSE)

writeheader boolean whether to write a header to the rvi file (default TRUE)

filetype File extension, Encoding, Raven version (e.g. "rvp ASCII Raven v3.8") (op-
tional)

author Name of file author (optional)

description File Description for header (e.g., Basin or project information, R script name)
(optional)

Details

Raven has the capability of emulating a number of existing model configurations, and a number of
additional novel model configurations are provided which may be helpful to the user. These can be
written with this function for ease of getting started with a model using Raven.

The template_name parameter should be one of "UBCWM", "HBV-EC", "HBV-Light", "GR4J",
"CdnShield", "MOHYSE", "HMETS", "HYPR", "HYMOD", "SAC-SMA", "blended", or "blended_v2".

This function uses the same model template files that are provided in the Raven User’s manual,
Appendix D.

The rvn_write_Raven_newfile is used to write a header in the rvi file. Writing of a header can be
disabled with writeheader=FALSE.

rvn_rvp_calib_template 91

Value

TRUE returns TRUE if executed successfully

Examples

write the Canadian Shield configuration to 'mymodel.rvi'
rvn_rvi_write_template(template_name="CdnShield",
filename=file.path(tempdir(), "mymodel.rvi"))

write the HMETS model with some additional details in the description
rvn_rvi_write_template(template_name="HMETS",

filename=file.path(tempdir(), "mynewmodel.rvi"),

author="Robert Chlumsky”,

description="RVI file for the HMETS model (Martel, 2017) created by RavenR")

rvn_rvp_calib_template
Rewrite rvp file with placeholder values

Description

Rewrites a Raven rvp file with placeholder parameter values.

Usage

rvn_rvp_calib_template(
rvp_file = NULL,
rvp_outfile = NULL,
ost_outfile = "ostIn.txt",
params_calibration = NULL,
overwrite = FALSE,
RavenParamsFile = system.file("extdata”, "RavenParameters.dat"”, package = "RavenR")

)

Arguments
rvp_file path to the model *.rvp file
rvp_outfile file path to rewritten rvp file

ost_outfile file path to Ostrich input file
params_calibration
vector of parameters to include in the calibration
overwrite whether to overwrite an existing template file (default FALSE)

RavenParamsFile
path to RavenParameters.dat file (default path points to file included with RavenR
installation)

92 rvn_rvp_calib_template

Details

Here, the rvp file is replaced with generic placeholder values to create a template file, which is
commonly required for model calibration. Although parameters may be found in other Raven input
files, this command focuses on the rvp file. Other parameters (such as gauge corrections in RVT or
subbasin-level corrections in the RVH file) must be done manually.

The Raven rvp file may be generated from the rvn_rvp_fill_template function.

The list of parameters to be calibrated may be provided by the user (via params_calibration
argument), or determined by RavenR. The intent of this function is to provide a functional example
of an RVP template file that may be used in calibration, not a high quality calibration with clever
selection of parameters to use. It is highly recommended to build from the RVP template file created
using expert hydrologic modelling knowledge.

If rvp_outfile is not provided, Raven will attempt to write to the file prefix of the provided tem-
plate file with a .rvp.tpl extension. If there is a conflict with an existing file and overwrite==FALSE,
the function will automatically overwrite a file with the suffix "_ravenr_generated.rvp.tpl".

Similarly with ost_outfile, the parameter default/min/max values and other Ostrich inputs will
be written based on a default template file to the ostIn.txt (or other provided file name). If this is set
to NULL, the file will not be written.

The default parameter values come from the RavenParameters.dat file included with RavenR in the
extdata folder. The user may provide their own file with updated values if preferred. Note that the
database files held in the RavenR package are unofficial copies of those in the official Raven SVN,
and any discrepancies should defer to the Raven SVN versions.

Any parameters not found in this file will be ignored and a warning provided.

If you find parameters not found by this function, please open an ticket on Github (https://
github.com/rchlumsk/RavenR/issues).

Value

TRUE if the function executed successfully

See Also

rvn_rvi_getparams to get parameter ranges from rvi.

Examples

write rvp from template file

rvp_tempfile <- tempfile(fileext=".rvp")

rvn_rvp_fill_template(rvi_file=system.file("extdata”,"Nith.rvi"”, package="RavenR"),
rvh_file=system.file("extdata"”,"Nith.rvh", package="RavenR"),
rvp_template_file =system.file("extdata”,"nithmodel.rvp_temp.rvp”,
package="RavenR"),

rvp_out=rvp_tempfile)

setup calibration rvp template and ostin file
ost_tempfile <- tempfile(fileext=".txt")
rvptpl_tempfile <- tempfile(fileext=".rvp.tpl")
rvn_rvp_calib_template(rvp_file=rvp_tempfile,

https://github.com/rchlumsk/RavenR/issues
https://github.com/rchlumsk/RavenR/issues

rvn_rvp_fill_template 93

rvp_outfile=rvptpl_tempfile,
ost_outfile=ost_tempfile)

rvn_rvp_fill_template Rewrite template rvp file with values

Description

Rewrites a Raven template rvp file with default parameter values.

Usage

rvn_rvp_fill_template(
rvi_file = NULL,
rvh_file = NULL,
rvp_template_file = NULL,
fileprefix = NULL,
rvp_out = NULL,
overwrite = FALSE,
default_param_value = 0.12345,
default_soil_thickness = 0.5,
use_default_flag = FALSE,
avg_annual_runoff = NULL,
extra_commands = NULL,
RavenParamsFile = system.file("extdata”, "RavenParameters.dat"”, package = "RavenR")

)

Arguments
rvi_file path to the model *.rvi file
rvh_file path to the model *.rvh file

rvp_template_file
path to the model rvp template file (*.rvp_temp.rvp)

fileprefix model name prefix for the main model files; if provided, the function will at-
tempt to find all missing file paths in the current working directory

rvp_out file path to rewritten rvp file

overwrite logical for whether to rewrite the *.rvp file if it already exists (default FALSE)

default_param_value
default parameter value to write for any parameters not found in RavenParame-
ters.dat

default_soil_thickness
default soil layer thickness (m) to provide in :SoilProfile block

use_default_flag
writes all soil/land use/vegetation classes with [DEFAULT] flag

94 rvn_rvp_fill _template

avg_annual_runoff
adds a line for :AvgAnnualRunoff if value provided with this parameter and not
already in file

extra_commands additional commands to add to end of rvp file as character vector

RavenParamsFile
path to RavenParameters.dat file (default path points to file included with RavenR
installation)

Details

The Raven rvp template file is generated by Raven when the :CreateRVPTemplate command is in-
cluded in the rvi file (the default when rvn_rvi_write_template is used to produce an rvi file).
This template file displays the layout of the rvp file with required parameters based on the hydro-
logic processes in the rvi file, but is not immediately usable. This function uses the soil model
information in the rvi file and the HRU class information in the rvh file to rewrite the template file
with default parameter values so that it can be used in a model run.

If rvp_out is not provided, Raven will attempt to write to the file prefix of the provided template
file with a .rvp extension. If there is a conflict with an existing file and overwrite==FALSE, the
function will automatically overwrite a file with the suffix "_ravenr_generated.rvp".

The default parameter values come from the RavenParameters.dat file included with RavenR in the
extdata folder. The user may provide their own file with updated values if preferred. Note that the
database files held in the RavenR package are unofficial copies of those in the official Raven SVN,
and any discrepancies should defer to the Raven SVN versions.

Any parameters not found in this file will be written with the value provided by default_param_value.
The default soil thickness for the :SoilProfiles block is provided by the default_soil_thickness
function parameter, which is applied for all soil classes.

As an alternative to specifying the three input files (rvi, rvh, rvp_temp.rvp), the fileprefix of the
model (e.g. *Nith’ for Nith.rvi) may be provided instead. If provided, the function will attempt to
find all required input files based on the provided fileprefix in the current working directory.

Additional commands can be added to the end of the rvp file with extra_commands, which are
not quality controlled but simply appended to the rvp file. This can be useful for non-standard
commands such as :RedirectToFile for channel properties rvp files that are not added automatically
to base templates rvp files.

If you find parameters not found by this function, please open an ticket on Github (https://
github.com/rchlumsk/RavenR/issues).

Value

TRUE if the function executed successfully

See Also

rvn_rvi_getparams to get parameter ranges from rvi.

https://github.com/rchlumsk/RavenR/issues
https://github.com/rchlumsk/RavenR/issues

rvn_rvt_mappings_data 95

Examples

this section is not run, but illustrates how an rvp template file would be created

Not run:

create an rvi file and template file with Raven

rvn_rvi_write_template(modelname="HBV-EC",
filename="nithmodel.rvi")

download Raven.exe if not already downloaded
if (!rvn_download(check=TRUE)) {
rvn_download()

3

run Raven to create template file
rvn_run(fileprefix="nithmodel")

End(Not run)

load pre-generated template file and other model files

nithmodel_template_file <- system.file("extdata"”,"nithmodel.rvp_temp.rvp"”, package="RavenR")
nith_rvi_file <- system.file("extdata”,"”Nith.rvi", package="RavenR")

nith_rvh_file <- system.file("extdata","”Nith.rvh", package="RavenR")

rvp_out_file <- file.path(tempdir(), 'nithmodel.rvp')

rewrite template with parameter values

rvn_rvp_fill_template(rvi_file=nith_rvi_file,
rvh_file=nith_rvh_file,
rvp_template_file=nithmodel_template_file,
rvp_out=rvp_out_file)

rvn_rvt_mappings_data Rvt Mappings Data

Description

A list of lists that has information for use in the RavenR rvt-related files.

Additional information on Raven variables can be found in the Raven User’s Manual, available from
https://raven.uwaterloo.ca/Downloads.html

Format
rvn_rvt_mappings_data is a list with four lists.

rvt_mapping list: data formats for all rvt file types
rvt_data_type_mapping list: data types permitted in Raven, and associated units

rvn_met_raven_mapping list: meteorological forcing functions permitted in Raven, and associ-
ated units

rvt_met_mapping_weathercan list: mapping of weathercan variable names to Raven variables

https://raven.uwaterloo.ca/Downloads.html

96 rvn_rvt_read

See Also

rvn_rvt_read for reading in rvt files

rvn_rvt_write and rvn_rvt_write_met for writing data to rvt files.

rvn_rvt_read Read .rvt (Raven time series) file

Description

This routine reads in a valid Raven time series input (.rvt) file and returns the information as an xts
time series and metadata data frame.

Usage

rvn_rvt_read(filename, tzone = "UTC")
Arguments

filename path/name of the .rvt file (with .rvt extension included)

tzone string indicating the timezone of the data provided in filename (default "UTC")
Details

All rvt data types available in Raven are supported (e.g. :MultiData, :Data, :ObservedData, :Basin-

InflowHydrograph). This is handled by the mappings provided in the data("rvn_rvt_mappings_data")

function, and additional support for other rvt types can likely be included by making updates to that
function with modifications to the somewhat generic read function here.

It does NOT support the master .rvt file with :Gauge or :GriddedForcing commands, only the read-
ing of time-series based .rvt files with a single time series block within the file.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.

Value
Returns a list with two objects:

rvt_xts xts formatted time series with data

rvt_metadata data frame with a ’param’ and ’value’ column providing rvt metadata (number
of points, time interval, subbasin ID, etc.)
Examples

read in rvt file
system.file('extdata', 'GlenAllan.rvt', package="RavenR") %>%

rvn_rvt_read(.) -> rvt
plot(rvtrvt_xtsTEMP_DAILY_MIN)

rvn_rvt_tidyhydat 97

rvn_rvt_tidyhydat EC Streamgauge File Conversion from tidyhydat

Description

rvo_rvt_tidyhydat converts Environment Canada historical streamgauge data, accessed via the tidy-
hydat package, into .rvt format files usable in Raven.

Usage
rvn_rvt_tidyhydat(
indata,
rvt_type = "ObservationData”,
data_type = "HYDROGRAPH",
subIDs,
prd = NULL,

stnNames = NULL,
write_redirect = FALSE,
flip_number = FALSE,

rd_file = "flow_stn_redirect_text.rvt",
filename = NULL
)
Arguments
indata tibble of WSC flow data from tidyhydat’s hy_daily_flows() function
rvt_type type of rvt file to write (e.g. ObservationData, BasinInflowHydrograph, etc.)
data_type Raven-syntax data type for flow data (default ' HYDROGRAPH")
subIDs vector of subbasin IDs to correspond to the stations in indata
prd (optional) data period to use in .rvt file
stnNames (optional) character vector of alternative station names to use

write_redirect (optional) write the :RedirectToFile commands in a separate .rvt file

flip_number (optional) put the sublD first in the .rvt filename
rd_file (optional) name of the redirect file created (if write_redirect=TRUE)
filename specified name of file(s) to write to (optional)

Details

Takes a single flow tibble generated from tidyhydat and converts the flow data for each station in
the file into .rvt formatted files for a Raven model. If multiple stations exist in indata, multiple
observation files are created. This function is a wrapper for rvn_rvt_write, with the benefit of
automatically parsing the tidyhydat download for possibly multiple stations in xts formats before
passing to the rvt writing function.

98 rvn_rvt_tidyhydat

rvt_type is the specified rvt file type to write to (see the Raven User’s Manual or the rvn_rvt_mappings
function for more rvt types). This should be a flow-based rvt type, such as ObservationData, Basin-
InflowHydrograph, ReservoirExtraction, etc. Most applications of this will likely write the tidyhy-
dat observations as ObservedData for use in model evaluation to historic records.

data_type is the type of Raven input data type, likely 'HYDROGRAPH’, for the corresponding flow
data. If the flow is used as a reservoir-related flow, the data_type may be RESERVOIR_INFLOW
or RESERVOIR_NETINFLOW.

sublDs is required and should correspond to the subID to be used in the .rvt file for each station in
the ff file, in the order in which it will be read in.

prd is used by the xts formatted-data to restrict the data reported in .rvt files, for each station, to
this period. The prd should be defined in "YYYY-MM-DD/YYYY-MM-DD" string format. If the
period supplied results in an empty time series (i.e. non-overlapping time periods), an error will be
thrown.

stnNames is an optional character vector to replace the EC station codes found in the HYDAT
database. If supplied, the vector must be of the same length as the number of stations supplied and
the subIDs vector. If not supplied, the EC station codes will be used. Note that this does not impact
model function, only filename readability and station recognition.

write_redirect will print out the :RedirectToFile commands in a separate file called, "flow_stn_redirect_text.rvt".
These commands can be copied into the main model’s .rvt file to redirect to the produced time series
files.

flip_number is a useful option to place the subID first in the filename. This is often cleaner for
organizing files in a folder, since the alphabetized order is not dependent on the station name, and
the observed files will be in one set.

The function will write to name generated from the station name(s), otherwise the .rvt filename
may be specified with the filename argument (full path to the filename, including .rvt extension). If
multiple stations are provided, the filename argument may be a vector of filenames.

Note that the function uses sort(unique(indata$STATION_NUMBER)) to determine the order of
stations, thus the filenames and stnNames should correspond to the sorted vector of station numbers
as well.

Note that only daily flow data is supported, as tidyhydat only allows for the download of daily (or
coarser resolution) flow data. Hourly data that is obtained must be first processed into xts format
and then written with rvn_rvt_write.

If the data is found to have an inconsistent timestep, the function will attempt to correct it by
infilling missing time steps with rvn_ts_infill. If successful, a warning is issued to the user and
the function will proceed, else an error will be raised.

Value

TRUE return TRUE if the function is executed properly

Examples

note: example modified to avoid using tidyhydat directly, uses saved
tidyhydat data from RavenR package sample data

library(tidyhydat)

stations <- c("”0@5CB004","05CA002")

rvn_rvt_write

Gather station data/info using tidyhydat functions

hd <- tidyhydat::hy_daily_flows(station_number = stations,
start_date = "1996-01-01", end_date = "1997-01-01")
data(rvn_tidyhydat_sample)

hd <- rvn_tidyhydat_sample

station_info <- hy_stations(stations)

tf1 <- file.path(tempdir(), "stationl.rvt")
tf2 <- file.path(tempdir(), "station2.rvt")

Create RVT files
rvn_rvt_tidyhydat(hd, subIDs=c(3,11),
filename=c(tf1,tf2))

rvn_rvt_write Write Raven rvt file from Time Series

Description

Generates a Raven rvt file of the specified type from an xts time series.

Usage
rvn_rvt_write(
X,
filename = NULL,
rvt_type = "ObservationData”,

data_type = "HYDROGRAPH",
basin_ID = NULL,
NA_value = -1.2345

)
Arguments
X time series in xts format to write to file
filename name of output file (with rvt extension)
rvt_type type of rvt file to write (e.g. ObservationData)
data_type type of data in x (e.g. HYDROGRAPH)
basin_ID subbasin (or HRU) ID corresponding to the time series

NA_value value to use for NA values in rvt file (default -1.2345 for Raven format)

100 rvn_rvt_write

Details

Writes the rvt file for a given time series dataset. The type of rvt file to write is determined by the
rvt_type argument, which must match one of the supported Raven types. Note that this function
does not support the writing of meteorological data, this is handled by the rvn_rvt_write_met
function.

The format of the rvt file, including required fields to write to file, are determined from the supplied
rvt_type parameter and from the mapping provided by data(”rvn_rvt_mappings_data”). The
data_type is also checked against the provided mappings to check for valid state variables and
accompanying units.

If the data is found to have an inconsistent timestep, the function will attempt to correct it by
infilling missing time steps with rvn_ts_infill. If successful, a warning is issued to the user and
the function will proceed, else an error will be raised.

The timezone of the xts object is used as supplied to write to file, no assumption on changing the
time zone is done in this function.

No other quality control of the data is performed here. Some rvt types, such as ObservationWeights,
cannot have missing values in the data; it is the responsibility of the user to supply x with no missing
values if required. Any missing values in x are written to file with the missing value code provided
by NA_value.

x should be an xts time series object with multiple rows of data and a single column.

Value

TRUE if the function executed successfully

See Also

rvn_rvt_read to read in rvt data files, and rvn_rvt_write_met to write meteorological rvt files.

Examples

load sample flow data
system.file('extdata', 'run1_Hydrographs.csv', package = "RavenR") %>%
rvn_hyd_read() -> mydata

temporary filename
tf <- file.path(tempdir(), 'mydata.rvt')

write time series to rvt file using data from subbasin 36 as observed data
rvn_rvt_write(x=mydatahydSub36,

rvt_type = "ObservationData”,
data_type = "HYDROGRAPH",
basin_ID = 36,

filename = tf)

rvn_rvt_write_met 101

rvn_rvt_write_met EC Climate Station File Conversion

Description

Converts meteorological data for a given station into the Raven .rvt format.

Usage

rvn_rvt_write_met(
metdata,
rvt_met_mapping = NULL,
filenames = NULL,

met_file_prefix = "met_",
prd = NULL,
write_stndata = TRUE,
filename_stndata = "met_stndata.rvt”,
NA_value = -1.2345

)

Arguments
metdata EC meteorological data from one or more stations (e.g., from weathercan: :weather_d1())

rvt_met_mapping
list that provides the mapping between metdata names and those used in Raven
filenames (optional) character vector of filenames for the rvt data files, length same as
number of stations in metdata
met_file_prefix
(optional) prefixes the file name (default: "met_")

prd (optional) data period to use in .rvt file

write_stndata (optional) write the gauge data to a separate .rvt file
filename_stndata
(optional) name of the station data file created (if write_stndata=TRUE)

NA_value (optional) value to use for NA values in rvt file (default -1.2345 for Raven for-
mat)

Details

Writes data in either :Data or :MultiData format depending on the number of supported parameter
columns provided. The data should be downloaded and prepared with missing days included, and
preferably is downloaded directly using weathercan.

metdata contains all of the meteorological data to be written to file. metdata should be in a tibble or
data frame format, and is required to have a date/time column (either DATE, TIME, or DATETIME,
all of which have at least a Date component), the STATION_NAME, and all desired forcings to be
written to file. If the columns ELEV, LAT, LON are included, the station meta data may be written

102 rvn_rvt_write_met

to a separate rvt file as well (see below). All supported data columns in metdata are written into rvt
format, so the desired columns for the rvt file should be passed through metdata and filtered first if
needed.

rvt_met_mapping is a list that maps the metdata column names to Raven variables. If weathercan
is used then this may be left NULL, as the mapping is automatically provided. Otherwise, the
user must convert all desired column names to Raven-recognized names, or provide the mapping
information as a list through this parameter. An example format can be seen (the mapping used for
weathercan by default) in data("rvn_rvt_mappings_data"”).

filenames may be used to provide the specific desired filenames (with paths) for each station rvt
data file being generated; this should be a character vector of length equal to the number of unique
station names in the data.

Note that the function uses sort(unique(metdata$STATION_NAME)) to determine the order of
stations, thus the filenames should correspond to the sorted vector of station numbers as well.

prd is used by the xts formatted-data to restrict the data reported in .rvt files, for each station, to
this period. The prd should be defined in "YYYY-MM-DD/YYYY-MM-DD" string format. If the
period supplied results in an empty time series (i.e. non-overlapping time periods), an error will be
thrown.

met_file_prefix can be used to add a prefix to the .rvt data file names, ("met_" by default) which
may be useful in organizing multiple climate data files. This is ignored if filenames are specified.

write_stndata will print out the gauge(s) metadata to file (specified by filename_stndata parameter)
in the .rvt format, which is required to include a meterological station in Raven. The function will
append to the file if it already exists, meaning that this works for iterations of this function. metdata
must include the columns ELEV, LAT, and LON if station data is to be written, else the meta data
file will not be created.

The function has several built-in data quality checks. These include:

* checking that the time interval is consistent for each station; * ensuring that meta data is unique
for each station name; and * check for missing data and issuing a warning that post-processing will
be required

Data quality is not assessed in this package, such as consistency between minimum and maximum
temperatures and missing data. Consider viewing the RavenR.extras package for functions to inter-
polate missing meteorological data and checking for min/max temperature consistency.

This function is designated to use data from the weathercan package, but may be used with any
supplied data frame of meteorological information if in the correct format and other relevant infor-
mation (such as rvt_met_mapping, if needed) is supplied. The weathercan package is external to
RavenR and is not an explicit dependency of RavenR, although a sample weathercan data set can
be viewed as data(rvn_weathercan_sample).

Value

TRUE return TRUE if the function is executed properly

See Also

rvn_rvt_write to write non-forcing time series data to Raven rvt format.

Download Environment Canada Historical weather data from (climate.weather.gc.ca), or use the
‘weathercan‘ package to access this data through R.

rvn_stringpad 103

Examples

note: example modified to avoid using weathercan directly, uses saved
weathercan data from RavenR package sample data
data(rvn_weathercan_sample)

kam <- rvn_weathercan_sample

basic use, override filename to temporary file
rvn_rvt_write_met(metdata = kam,
filenames = file.path(tempdir(), "rvn_rvt_metfile.rvt"),
filename_stndata = file.path(tempdir(), "met_stndata.rvt"))

rvn_stringpad Pads string with spaces, either right or left justified

Description

Pad string with spaces, justified on either the left or right

Usage

rvn_stringpad(string, width, just = "r", padstring =" ")
Arguments

string Text string

width Number of characters total, including desired spaces

just 'r’ for right, ’I” for left

padstring string to use for padding (default space character)
Value

Padded string
Author(s)

Leland Scantlebury, <leland@scantle.com>

Examples

Returns " To the right”
rvn_stringpad('To the right', 15, just='r")

Returns "Padded "
rvn_stringpad('Padded', 10, just='l")

104

rvn_substrMLeft

rvn_substrLeft substring from the Left

Description

Returns n characters from the left side of the supplied string x.

Usage

rvn_substrLeft(x, n)

Arguments

X a string to manipulate

n number of characters to remove from the left side of the string
See Also

rvn_substrRight for using n characters from right side of string

rvn_substrMRight for removing n characters from the right side of a string

Examples

rvn_substrLeft("hello world”,3)
returns "hel”

rvn_substrMLeft substring minus characters from the Left

Description

Returns a string x with n characters removed from the left side of the string.

Usage

rvn_substrMLeft(x, n)

Arguments

X a string to manipulate

n number of characters to remove from the left side of the string

rvn_substrMRight

See Also
rvn_substrRight for using n characters from the right side of string,
rvn_substrLeft for using n characters from the left side of string

rvn_substrMRight for removing n characters from the right side of a string

Examples

rvn_substrMLeft("hello world"”,3)
returns "lo world”

105

rvn_substrMRight substring minus characters from the Right

Description

Returns a string x with n characters removed from the right side of the string.

Usage

rvn_substrMRight(x, n)

Arguments

X a string to manipulate

n number of characters to remove from the right side of the string
See Also

rvn_substrRight for using n characters from the right side of string
rvn_substrLeft for using n characters from the left side of string

rvn_substrMLeft for removing n characters from the left side of a string

Examples

rvn_substrMRight("hello world”,3)
returns "hello wo"

106 rvn_theme_RavenR

rvn_substrRight substring from the Right

Description

Returns n characters from the right side of the supplied string x.

Usage

rvn_substrRight(x, n)

Arguments

X a string to manipulate

n number of characters to use from the right side of the string
See Also

rvn_substrLeft for using n characters from the left side of string
rvn_substrMRight for removing n characters from the right side of a string

rvn_substrMLeft for removing n characters from the left side of a string

Examples

rvn_substrRight("hello world"”,3)
returns "rld”

rvn_theme_RavenR RavenR ggplot theme

Description

Makes the general Raven R Theme for all ggplots

Usage

rvn_theme_RavenR()

Details

Sets up the default theme for all ggplots generated using a built in Raven R function. Made by
adjusting the built in theme_bw.

rvn_tidyhydat_sample 107

Value

returns a theme for use in ggplot2 figures

See Also

rvn_annual_volume to create a scatterplot of annual flow volumes.

Examples

generate a basic ggplot and apply the RavenR theme
library(ggplot2)

ggplot(data=cars, aes(x=speed, y=dist))+
geom_point()+

rvn_theme_RavenR()

rvn_tidyhydat_sample tidyhydat sample data for RavenR package

Description

A dataset downloaded using the tidyhydat package for two stations, between 1996-01-01 and 1997-
01-01. Additional details on the tidyhydat package and data formats can be found at the tidyhydat
github page.

Note that this sample is provided to avoid loading the tidyhydat package and requiring the down-
load_hydat() function in CRAN testing of examples.

Additional information on data provided by the Water Survey of Canada may be found on the WSC
webpage.
Usage

rvn_tidyhydat_sample

Format
rvn_tidyhydat_sample is a tibble with 671 rows, and 5 columns.

STATION_NUMBER station number from WSC stations in HYDAT database

Date date in YYYY-MM-DD format

Parameter Code indicating the parameter provided in the given row as either flow or level data
Value the value of the parameter provided (flow or level)

Symbol additional data flags provided by WSC

Source

Water Survey of Canada (wateroffice.ec.gc.ca) via ‘tidyhydat‘ package

https://github.com/ropensci/tidyhydat
https://github.com/ropensci/tidyhydat

108 rvn_ts_infill

See Also

rvn_rvt_tidyhydat for writing rvt files from tidyhydat data

rvn_ts_infill Infill discontinuous time series with blank values

Description

Infills missing time values from a time series based on a regular interval.

Usage

rvn_ts_infill(ts)

Arguments

ts valid xts time series

Details

Takes xts dataset, finds minimum interval between time stamps and returns a new regular interval
xts with same data content, but NA values in between known data values

Only handles data with minimum time interval of 1 day; 1,2,3,4,6,8, or 12 hrs.

Note that in default reading in of date/time data, the daylight savings timezones may be assigned to
the date/time when reading in a data file with Raven using functions such as rvn_hyd_read. This
function will then detect differences in the intervals and throw an error. To avoid this, the timezone
may be assigned explicitly to all values with the read function and all daylight savings/endings will
be ignored.

Value

ts continuous Xts time series

Author(s)

James R. Craig, University of Waterloo

Examples

non

system.file("extdata”, "runl1_Hydrographs.csv"”, package="RavenR") %>%
rvn_hyd_read(., tzone="EST") -> mydata

mydata <- mydatahydprecip

mydata<-mydatal[-seq(2,nrow(mydata),3),] # remove every 3rd day
head(mydata)

fill back with rvn_ts_infill using NA values
rvn_ts_infill(mydata$precip) %>%
head()

rvn_watershedmeb_read 109

rvn_watershedmeb_read Read in Raven WatershedMassEnergyBalance file

Description
Used to read in the WatershedMassEnergyBalance.csv file produced by the modelling Framework
Raven.

Usage

rvn_watershedmeb_read(ff = NA, tzone = "UTC")

Arguments
ff full file path to the WatershedMassEnergyBalance.csv file
tzone string indicating the timezone of the data in ff

Details

Expects a full file path to the WatershedMassEnergyBalance.csv file, then reads in the file using
read.csv. The main advantage of this function is renaming the columns to nicer names and extracting
the units into something much easier to read. The from and to rows are also properly handled, which
is not as straightforward as some of the other Raven files.

ff is the full file path of the WatershedMassEnergyBalance.csv file. If the file is located in the
current working directory, then simply the name of the file is sufficient.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.

Value

watershedmeb data frame from the file with standardized names

units vector corresponding to units of each column
from vector of the "from’ compartments in file
to vector of the 'to’ compartments in file

See Also

rvn_watershed_read for reading in the WatershedStorage.csv file

Examples

locate RavenR Watershed Mass Energy Balance storage file
ff <- system.file("extdata”,"run1_WatershedMassEnergyBalance.csv"”, package="RavenR")

read in file
mywshdmeb <- rvn_watershedmeb_read(ff)

110 rvn_watershed_data

view mass energy balance time series
head (mywshdmeb$watershedmeb)

view 'from' dataframe
mywshdmeb$from

rvn_watershed_data Watershed Storage Data from Raven

Description

A dataset formatted to the xts package, read in by the watershed.read function. The dataset contains
the typical columns from the Raven outputted WatershedStorage.csv file, available for download in
the Raven Tutorials (linked below).

Usage

rvn_watershed_data

Format
rvn_watershed_data is a data frame with two object

watershed.storage various storage variable states outputted from the Raven model
units units associated with each variable in watershed.storage
rvn_watershed_data$watershed.storage is an xts (time series) object with 731 rows and 19 variables,
containing data from 2002-10-01 to 2004-09-30. The details of each watershed storage state can be
found in the Raven Manual

* rainfall

* snowfall

* Channel.Storage

* Reservoir.Storage

* Rivulet.Storage

 Surface.Water

¢ Cum..Losses.to.Atmosphere..mm.

* Ponded.Water

* Soil.Water.0

* Soil.Water.1

* Soil.Water.2

e Snow.Melt..Liquid..mm.

¢ Snow

rvn_watershed read 111

* Canopy

* Canopy.Snow

* Total

e Cum..Inputs..mm.
e Cum..Outflow..mm.
* MB.Error

The Nith River model can be downloaded from the Raven Tutorials (tutorial #2) https://raven.
uwaterloo.ca/Downloads.html

See Also

rvn_watershed_read for reading in watershed storage output files

Examples

View data
head(rvn_watershed_data$watershed. storage)
Also has units

rvn_watershed_data$units

rvn_watershed_read Read in Raven WatershedStorage file

Description

Read in the WatershedStorage.csv file produced by Raven.

Usage

rvn_watershed_read(ff = NA, tzone = "UTC")

Arguments
ff full file path to the WatershedStorage.csv file
tzone string indicating the timezone of the data in ff
Details

Expects a full file path to the WatershedStorage.csv file, then reads in the file using read.csv. The
main advantage of this functon is renaming the columns to nicer names and extracting the units into
something much easier to read.

ff is the full file path of the WatershedStorage.csv file. If the file is located in the current working
directory, then simply the name of the file is sufficient.

The timezone is provided by the tzone argument as "UTC" by default, and should be adjusted by
the user to the local time zone as needed, based on the model run.

https://raven.uwaterloo.ca/Downloads.html
https://raven.uwaterloo.ca/Downloads.html

112 rvn_weathercan_metadata_sample

Value

watershed_storage
data frame from the file with standardized names

units vector corresponding to units of each column

See Also

rvn_hyd_read for reading in the Hydrographs.csv file rvn_watershedmeb_read for reading in the
WatershedMassEnergyBalance.csv file

Examples

locate in RavenR Watershed storage file
ff <- system.file("extdata”,"runl_WatershedStorage.csv"”, package="RavenR")

create full file path and read in file
mywshd <- rvn_watershed_read(ff)

check data
head (mywshd$watershed_storage)

rvn_weathercan_metadata_sample
weathercan sample metadata for RavenR package

Description

A dataset downloaded using the weathercan package function stations_search for stations within
150 km of Merritt, BC. Additional details on the weathercan package and data formats can be found
at the weathercan github page.

Note that this sample is provided to avoid loading the weathercan package while compiling and
testing the package.

Additional information on data provided by Environment Canada can be found on the Historical
Data portal.
Usage

rvn_weathercan_metadata_sample

Format

rvn_weathercan_sample is a tibble with 3 rows, and 17 columns.

Source

Historical Climate Data from Environment Canada (climate.weather.gc.ca) via ‘weathercan pack-
age

https://github.com/ropensci/weathercan

rvn_weathercan_sample 113

See Also

rvn_met_recordplot for checking the record of meteorological data. This function example also
has the original code used to create the rvn_weathercan_metadata_sample data set.

rvn_weathercan_sample weathercan sample data for RavenR package

Description
A dataset downloaded using the weathercan package for the '’ KAMLOOPS A’ station (station id

51423), between 2016-10-01 and 2019-09-30. Additional details on the weathercan package and
data formats can be found at the weathercan github page.

Note that this sample is provided to avoid loading the weathercan package while compiling and
testing the package.

Additional information on data provided by Environment Canada can be found on the Historical
Data portal.

Usage

rvn_weathercan_sample

Format

rvn_weathercan_sample is a tibble with 1095 rows, and 37 columns.

Source
Historical Climate Data from Environment Canada (climate.weather.gc.ca) via ‘weathercan‘ pack-
age

See Also

rvn_rvt_write_met for writing rvt files from meteorological data (including weathercan data).

https://github.com/ropensci/weathercan

114 rvn_which_max_xts

rvn_which_max_xts which.max for xts objects

Description
Applies the which.max function and returns an xts object with the maximum value and associated
date.

Usage

rvn_which_max_xts(x)

Arguments

X xts object to apply which.max to

Details

Acts as the which.max function, applicable to xts objects and returning values in an xts format.

Note that when deploying the rvn_apply_wyearly function, the dates are overwritten and the dates of

the water year ending periods are displayed rather than the event dates. In order to obtain the corre-

sponding dates when using the rvn_apply_wyearly function, please use rvn_apply_wyearly_which_max_xts.

Value

xts object with max value and corresponding date

See Also
which.max base which.max function rvn_apply_wyearly_which_max_xts for using apply_wyearly

with the rvn_which_max_xts function

Examples

data(rvn_hydrograph_data)

obtain the peak observed flow and the corresponding date
rvn_which_max_xts(rvn_hydrograph_datahydSub43_obs)

note that the usual rvn_apply_wyearly does not provide the correct dates with this function
rvn_apply_wyearly(rvn_hydrograph_datahydSub43_obs, rvn_which_max_xts)

rvn_write_Raven header

115

rvn_write_Raven_header
Write common Raven file header

Description

Writes the common Raven file header to file. All lines are Appended.

Usage

rvn_write_Raven_header (
filename,
filetype,
author = NULL,
creationDate = TRUE,

textlen = 40
)
Arguments
filename Name of the file, with extension
filetype File extension, Encoding, Raven version (e.g. "rvp ASCII Raven 2.9.1")
author Name of file author (optional)

creationDate Bool of whether creation date should be added to header. (default TRUE)

textlen Length of lines (default: 40, used to right-align text)
Value

TRUE returns TRUE if executed successfully
Author(s)

Leland Scantlebury, <leland@scantle.com>

Examples

tf <- file.path(tempdir(), 'HogwartsBasin.rvp')
rvn_write_Raven_header(filename = tf,
filetype = 'rvp ASCII Raven 2.9.1',
author = 'Harry Potter')

view file
readLines(tf)

116 rvn_write_Raven_label

rvn_write_Raven_label Writes common Raven labeled line to file, with optional value (ap-
pends)

Description

Writes common Raven labeled line to file, with optional value (appends)

Usage

rvn_write_Raven_label(
label,
filename,
value = NULL,
digits = NULL,
indent_level = 0@

)
Arguments
label character, (e.g. "SoilClasses")
filename character, file name/path to write to, with extension
value numeric or character, corresponding value written after label (optional)
digits Number of digits to round value to (optional)

indent_level Adds two spaces before label for every one level (default = 0)

Value

TRUE returns TRUE if executed successfully

Author(s)

Leland Scantlebury, <leland@scantle.com>

Examples

tf <- file.path(tempdir(), "Hogwarts.rvi")

Numeric example
rvn_write_Raven_label('Duration', filename=tf, value=365)

Hydrologic Processes
rvn_write_Raven_label('HydrologicProcesses', tf)

String example, with indent
rvn_write_Raven_label('SnowBalance', filename = tf,
value = paste('SNOBAL_HMETS', 'MULTIPLE', 'MULTIPLE'),

rvn_write_Raven_newfile 117

indent_level = 1)

Preview file
readLines(tf)

rvn_write_Raven_newfile
Opens/Creates a new file, writes common file header.

Description

Opens/Creates a new file, writes common file header.

Usage

rvn_write_Raven_newfile(
filename,
description,
filetype,
author = NULL,
creationDate = TRUE,

linelen = 74,
textlen = 40
)
Arguments
filename Name of the file, with extension
description File Description (e.g., Basin or project information, R script name)
filetype File extension, Encoding, Raven version (e.g. "rvp ASCII Raven 2.9.1")
author Name of file author (optional)

creationDate Bool of whether creation date should be added to header. (default TRUE)

linelen length (width) of header, in text characters (default: 74)
textlen Length of textlines (default: 40, used to right-align text)
Value
TRUE returns TRUE if executed successfully
Author(s)

Leland Scantlebury, <leland@scantle.com>

118 rvn_write_Raven_table

Examples

tf <- file.path(tempdir(), "HogwartsBasin.rvp")

rvn_write_Raven_newfile(filename = tf,
description = "Hogwarts River Basin RVP File Generated by HP_FileGen.R",
filetype = "rvp ASCII Raven 2.9.1",
author = 'Harry Potter')

view file
readLines(tf)

rvn_write_Raven_table Writes a nicely formatted tables of Raven attributes/parameters

Description

Writes a nicely formatted tables of Raven attributes/parameters

Usage
rvn_write_Raven_table(
attributes,
units,
df,
filename,
id_col = TRUE,
justify = "right"”,
sep = n , n ,
)
Arguments
attributes array of strings containing attribute/parameter names
units array of strings with the corresponding units
df Dataframe of values corresponding to attributes/parameters
filename Name of the file, with extension, to append the table to
id_col TRUE/FALSE of whether an numeric id column is the first column in the table
and, in common Raven fashion, does not have a corresponding attribute (default
TRUE)
justify alignment of character columns (default ‘right’). See format
sep character(s) used to seperate columns (default ’,)

Extra arguments for write. fwf

rvn_wyear_indices 119

Value

TRUE returns TRUE if executed successfully

Author(s)

Leland Scantlebury, <leland@scantle.com>

Examples

soil_classes <- data.frame('Attributes' = c('DEFAULT', 'ALTERNATIVE'),

"SAND' = c(0.4316, 0.3000),
"CLAY" = c(0.1684, 0.4000),
'SILT' = c(0.4000, 0.3000),
"ORGANIC' = c(0.0000, 0.0000))

attributes <- c('%SAND','%CLAY', '%SILT', '%ORGANIC')
units <- rep('none',4)

tf <- file.path(tempdir(), "Hogwarts.rvp")
rvn_write_Raven_table(tf, attributes = attributes, units = units, df = soil_classes)

view file
readLines(tf)

rvn_wyear_indices Water Year Indices

Description

Returns the indices of the provided time series for the start/end of the water year. The month/day of
the water year defaults to September 30 for an October 1 water year cycle. However, this may be
supplied as other values, for example as June 30 for a July 1 water year (i.e. the Australian water
year). This function is useful in supplying endpoints for water year evaluations.

Usage

rvn_wyear_indices(x, mm = 9, dd = 30)

Arguments
X xts object or Date/POSITXtc series to obtain indices for
mm month of water year (default 9)
dd day of water year (default 30)

Details

Emulates the endpoints function for a water year period. The first and last points are included in
all supplied endpoints, which may introduce partial periods to the analysis.

120 rvn_xts_plot

Value

ep array of indices corresponding to start/end of water years

See Also

rvn_apply_wyearly to apply functions over the water year endpoints workhorse function for
generating endpoints in xts for other periods

Examples

read in sample forcings data
data(rvn_forcing_data)

get the indices of the water year for October 1 (the default)
rvn_wyear_indices(rvn_forcing_data$forcings)
rvn_wyear_indices(rvn_forcing_data$forcings) %>%
rvn_forcing_data$forcings[., 1:2]

get the indices of the start of the water year for July 1

note that the last period is the last index, and not a complete water year period
rvn_wyear_indices(rvn_forcing_data$forcings, mm=6, dd=30) %>%
rvn_forcing_data$forcings[., 1:2]

rvn_xts_plot Create plot from xts data

Description

Generic function for plotting data from an xts format using the ggplot2 function.

Usage

rvn_xts_plot(
x = NULL,
prd = NULL,
winter_shading = FALSE,
wsdates = ¢c(12, 1, 3, 31)

)

Arguments
X time series object (xts) of data to plot
prd period to use in plotting

winter_shading optionally adds shading for winter months (default FALSE)

wsdates integer vector of winter shading period dates (see details)

Y%notin% 121

Details
Creates a plot using the supplied time series in xts format. The xts object is converted to a tibble
using the rvn_fortify_xts function, and all columns are plotted by their respective names.

The winter_shading argument will add a transparent grey shading for the specified period by ws-
dates in each year that is plotted. Note that by changing the wsdates parameter values, the shading
can be applied to any time of year.

wsdates is formatted as c(winter start month, winter start day, winter end month, winter end day).
By default, wsdates is set to generate shading for December 1st to March 31st.

Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

pl returns ggplot plot object

See Also

rvn_hyd_plot to create a hydrograph plot

rvn_hyd_extract to extract time series from Raven objects

Examples

load sample hydrograph data, two years worth of sim/obs
ff <- system.file("extdata”,"run1_Hydrographs.csv", package="RavenR")
runl <- rvn_hyd_read(ff)

create a hydrograph with the generic xts plotting function
rvn_xts_plot(runi$hyd[,2:5])

add shading for the month of August
rvn_xts_plot(runi$hyd[,2:5], winter_shading=TRUE, wsdates=c(8,1,8,31))

%notin% Yonotin% operator

Description

Syntax for the opposite of %in%

Usage

X %notin% table

Arguments

X values to be matched

table the values to be matched against

122 %notin%

Examples

seq(1,5,1) %notin% seq(3,7,1)

Index

* datasets rvn_df_to_Raven_table, 27
rvn_custom_data, 24 rvn_dist_lonlat, 28, 50
rvn_forcing_data, 38 rvn_download, 29, 63
rvn_hydrograph_data, 43 rvn_exhaustive_mb_read, 30, 3/
rvn_tidyhydat_sample, 107 rvn_fdc_plot, 31
rvn_watershed_data, 110 rvn_flow_residuals, 32
rvn_weathercan_metadata_sample, rvn_flow_scatterplot, 16, 23, 33, 34, 36

112 rvn_flow_spaghetti, 35,47
rvn_weathercan_sample, 113 rvn_forcing_data, 38
%notini, 121 rvn_forcings_plot, 36, 39

rvn_forcings_read, 35, 37, 37, 39
rvn_fortify_xts, 40, 121
rvn_gen_obsweights, 40
rvn_get_prd, 42

apply.monthly, 4
apply.yearly, 4

cmax, 4
rvn_hyd_dygraph, 44, 57
endpoints, 119, 120 rvn_hyd_extract, 32, 45,4749, 121
rvn_hyd_plot, 46, 46, 121
format, /18 rvn_hyd_read, 22, 31, 32, 38, 44, 46, 48, 60,
108, 112

hhmmss2dec, 5 rvn_hydrograph_data, 43

rvn_met_interpolate, 49
rvn_met_recordplot, 51, /13
rvn_month_names, 54
rvn_monthly_vbias, 53
rvn_num_days, 55, 55, 56
rvn_num_days_month, 55, 56

render_graph, 85
rvn_annual_peak, 5, 10, 11
rvn_annual_peak_error, 7, 11
rvn_annual_peak_event, 6, 8,9, 13
rvn_annual_peak_event_error, 8, 10, 13
rvn_annual_peak_timing_error, 12

rvn_annual_quantiles, 13, 14, 15 rvn_res_dygraph, 57
rvn_annual_quantiles_plot, 14 rvn_res_extract, 58, 60, 61
rvn_annual_volume, 6, 15, 54, 107 rvn_res_plot, 58, 59
rvn_apply_wyearly, 4, 17, 20, 114, 120 rvn_res_read, 57, 58, 61, 65
rvn_apply_wyearly_which_max_xts, 18, rvn_run, 30, 62

114 rvn_rvc_from_custom_output, 64, 66
rvn_budyko_plot, 19 rvn_rvc_res, 65, 66
rvn_calc_runoff_coeff, 20 rvn_rvc_write, 64, 66
rvn_csv_read, 22 rvn_rvh_blankHRUdf, 67, 68, 72
rvn_cum_plot_flow, 23,23 rvn_rvh_blankSBdf, 67, 68, 72
rvn_custom_data, 24 rvn_rvh_cleanhrus, 69, 71, 72
rvn_custom_output_plot, 24, 25, 25, 26, 44 rvn_rvh_overwrite, 71,71
rvn_custom_read, 24, 26, 44 rvn_rvh_query, 73, 78-81

123

124 INDEX

rvn_rvh_read, 21, 69, 70, 72, 73, 74, 76-81
rvn_rvh_subbasin_network_plot, 75, 76
rvn_rvh_subbasin_visnetwork_plot, 77
rvn_rvh_summarize, 78
rvn_rvh_write, 67, 68, 70, 73, 75
rvn_rvh_write (rvn_rvh_overwrite), 71
rvn_rvh_write_subbasingroup, 80
rvn_rvi_commandupdate, 81
rvn_rvi_connections, 82, 85-88
rvn_rvi_getparams, 83, 92, 94
rvn_rvi_process_diagrammer, 83, 85, 88
rvn_rvi_process_ggplot, 83, 86, 87
rvn_rvi_read, 82-84, 89
rvn_rvi_write_template, 90, 94
rvn_rvp_calib_template, 91
rvn_rvp_fill_template, 92,93
rvn_rvt_mappings_data, 95
rvn_rvt_read, 96, 96, 100
rvn_rvt_tidyhydat, 97, 108
rvn_rvt_write, 4/, 96, 98, 99, 102
rvn_rvt_write_met, 50, 96, 101, 113
rvn_stringpad, 103
rvn_substrLeft, 104, 105, 106
rvn_substrMLeft, 104, 105, 106
rvn_substrMRight, 104, 105, 105, 106
rvn_substrRight, 104, 105, 106
rvn_theme_RavenR, 42, 106
rvn_tidyhydat_sample, 107
rvn_ts_infill, 98, 100, 108
rvn_watershed_data, 110
rvn_watershed_read, 109, 111,111
rvn_watershedmeb_read, 20, 109, 112
rvn_weathercan_metadata_sample, 112
rvn_weathercan_sample, 113
rvn_which_max_xts, 114
rvn_write_Raven_header, 115
rvn_write_Raven_label, 116
rvn_write_Raven_newfile, 90, 117
rvn_write_Raven_table, 118
rvn_wyear_indices, /8, 119
rvn_xts_plot, 120

shell, 62

which.max, 114
write.fwf, 118

	cmax
	hhmmss2dec
	rvn_annual_peak
	rvn_annual_peak_error
	rvn_annual_peak_event
	rvn_annual_peak_event_error
	rvn_annual_peak_timing_error
	rvn_annual_quantiles
	rvn_annual_quantiles_plot
	rvn_annual_volume
	rvn_apply_wyearly
	rvn_apply_wyearly_which_max_xts
	rvn_budyko_plot
	rvn_calc_runoff_coeff
	rvn_csv_read
	rvn_cum_plot_flow
	rvn_custom_data
	rvn_custom_output_plot
	rvn_custom_read
	rvn_df_to_Raven_table
	rvn_dist_lonlat
	rvn_download
	rvn_exhaustive_mb_read
	rvn_fdc_plot
	rvn_flow_residuals
	rvn_flow_scatterplot
	rvn_flow_spaghetti
	rvn_forcings_plot
	rvn_forcings_read
	rvn_forcing_data
	rvn_fortify_xts
	rvn_gen_obsweights
	rvn_get_prd
	rvn_hydrograph_data
	rvn_hyd_dygraph
	rvn_hyd_extract
	rvn_hyd_plot
	rvn_hyd_read
	rvn_met_interpolate
	rvn_met_recordplot
	rvn_monthly_vbias
	rvn_month_names
	rvn_num_days
	rvn_num_days_month
	rvn_res_dygraph
	rvn_res_extract
	rvn_res_plot
	rvn_res_read
	rvn_run
	rvn_rvc_from_custom_output
	rvn_rvc_res
	rvn_rvc_write
	rvn_rvh_blankHRUdf
	rvn_rvh_blankSBdf
	rvn_rvh_cleanhrus
	rvn_rvh_overwrite
	rvn_rvh_query
	rvn_rvh_read
	rvn_rvh_subbasin_network_plot
	rvn_rvh_subbasin_visnetwork_plot
	rvn_rvh_summarize
	rvn_rvh_write_subbasingroup
	rvn_rvi_commandupdate
	rvn_rvi_connections
	rvn_rvi_getparams
	rvn_rvi_process_diagrammer
	rvn_rvi_process_ggplot
	rvn_rvi_read
	rvn_rvi_write_template
	rvn_rvp_calib_template
	rvn_rvp_fill_template
	rvn_rvt_mappings_data
	rvn_rvt_read
	rvn_rvt_tidyhydat
	rvn_rvt_write
	rvn_rvt_write_met
	rvn_stringpad
	rvn_substrLeft
	rvn_substrMLeft
	rvn_substrMRight
	rvn_substrRight
	rvn_theme_RavenR
	rvn_tidyhydat_sample
	rvn_ts_infill
	rvn_watershedmeb_read
	rvn_watershed_data
	rvn_watershed_read
	rvn_weathercan_metadata_sample
	rvn_weathercan_sample
	rvn_which_max_xts
	rvn_write_Raven_header
	rvn_write_Raven_label
	rvn_write_Raven_newfile
	rvn_write_Raven_table
	rvn_wyear_indices
	rvn_xts_plot
	notin
	Index

