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as.data.frame.SDEFSR_Dataset

S3 function to convert into a data.frame the SDEFSR dataset This
function converts a SDEFSR_Dataset object into a data.frame

Description

S3 function to convert into a data.frame the SDEFSR dataset

This function converts a SDEFSR_Dataset object into a data.frame

Usage

## S3 method for class 'SDEFSR_Dataset'
as.data.frame(x, ...)



carTra 3

Arguments
X The SDEFSR_Dataset object to view
Additional arguments passed to the as.data.frame function
Details

Internally, a SDEFSR_Dataset object has a list of of examples and this examples are coded numeri-
cally. This function decode these examples and convert the list into a data.frame

Value

a data.frame with the dataset uncoded. Numeric attributes are "numeric" class, while categorical
attributes are "factor"

@examples

as.data.frame(habermanTra)

carTra Car evaluation dataset

Description

Training data for the car dataset

Format

A SDEFSR_Dataset class with 1382 instances, 6 variables (without the target variable) and 4 values
for the target Variable. Three labels for each variable are defined.

Details

Car Evaluation Database was derived from a simple hierarchical decision model. The model evalu-
ates cars according to six input attributes: buying, maint, doors, persons, lug_boot, safety.

Source

M. Bohanec and V. Rajkovic: Knowledge acquisition and explanation for multi-attribute decision
making. In 8th Intl Workshop on Expert Systems and their Applications, Avignon, France. pages
59-78, 1988.

B. Zupan, M. Bohanec, I. Bratko, J. Demsar: Machine learning by function decomposition. ICML-
97, Nashville, TN. 1997 (to appear).

Examples

carTra$data
carTra$attributeNames
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carTst Car evaluation dataset

Description

Test data for the car dataset

Format

A SDEFSR_Dataset class with 346 instances, 6 variables (without the target variable) and 4 values
for the target Variable. Three labels for each variable are defined.

Details

Car Evaluation Database was derived from a simple hierarchical decision model. The model evalu-
ates cars according to six input attributes: buying, maint, doors, persons, lug_boot, safety.

Source

M. Bohanec and V. Rajkovic: Knowledge acquisition and explanation for multi-attribute decision
making. In 8th Intl Workshop on Expert Systems and their Applications, Avignon, France. pages
59-78, 1988.

B. Zupan, M. Bohanec, I. Bratko, J. Demsar: Machine learning by function decomposition. ICML-
97, Nashville, TN. 1997 (to appear).

Examples

carTst$data
carTst$attributeNames

FUGEPSD Fuzzy Genetic Programming-based learning for Subgroup Discovery
(FuGePSD) Algorithm.

Description

Make a subgroup discovery task using the FuGePSD algorithm.
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Usage

FUGEPSD (
paramFile = NULL,
training = NULL,

test = NULL,

output = c("optionsFile.txt"”, "rulesFile.txt"”, "testQM.txt"),
seed = 0,

nLabels = 3,

t_norm = "product_t-norm”,

ruleWeight = "Certainty_Factor”,

frm = "Normalized_Sum”,

numGenerations = 300,
numberOfInitialRules = 100,
crossProb = 0.5,

mutProb = 0.2,

insProb = 0.15,

dropProb = 0.15,
tournamentSize = 2,
globalFitnessWeights = c(0.7, 0.1, 0.05, 0.2),
minCnf = 0.6,

ALL_CLASS = TRUE,
targetVariable = NA

)
Arguments

paramFile The path of the parameters file. NULL If you want to use training and test
SDEFSR_Dataset variables

training A SDEFSR_Dataset class variable with training data.

test A SDEFSR_Dataset class variable with test data.

output Character vector with the paths where store information file, rules file and test
quality measures file, respectively. For rules and quality measures files, the
algorithm generate 4 files, each one with the results of a given filter of fuzzy
confidence.

seed An integer to set the seed used for generate random numbers.

nLabels Number of linguistic labels for numerical variables. By default 3. We recom-
mend an odd number between 3 and 9.

t_norm A string with the t-norm to use when computing the compatibilty degree of the
rules. Use "Minimum/Maximum’ to specify the minimum t-norm, if not, we use
product t-norm that is the default method.

ruleWeight String with the method to calculate the rule weight. Possible values are:

e Certainty_Factor: It uses the Classic Certainty Factor Weight method.

* Average_Penalized_Certainty_Factor: Ituses Penalized Certainty Fac-
tor weight II by Ishibuchi.

* No_Weights: There are no weight calculation.
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e Default: If none of this are specificied, the default method is Penalized
Certainty Factor Weight IV by Ishibuchi.

frm A string specifying the Fuzzy Reasoning Method to use. Possible Values are:
* Normalized_Sum: It uses the Normalized Sum or Additive Combination
Fuzzy Reasoning Method.
e Arithmetic_Mean: It uses the Arithmetic Mean Fuzzy Reasoning Method.
* Default: By default, Winning Rule Fuzzy Reasoning Method are selected.
numGenerations An integer to set the number of generations to perfom before stop the evolution-
ary process.
numberOfInitialRules
An integer to set the number individuals or rules in the initial population.

crossProb Sets the crossover probability. We recommend a number in [0,1].
mutProb Sets the mutation probability. We recommend a number in [0,1].
insProb Sets the insertion probability. We recommend a number in [0,1].
dropProb Sets the dropping probability. We recommend a number in [0,1].

tournamentSize Sets the number of individuals that will be chosen in the tournament selection
procedure. This number must be greater than or equal to 2.

globalFitnessWeights

A numeric vector of length 4 specifying the weights used in the computation of
the Global Fitness Parameter.

minCnf A value in [0,1] to filter rules with a minimum confidence

ALL_CLASS if TRUE, the algorithm returns, at least, the best rule for each target class, even
if it does not pass the filters. If FALSE, it only returns, at least, the best rule if
there are not rules that passes the filters.

targetVariable The name or index position of the target variable (or class). It must be a cate-
gorical one.

Details

This function sets as target variable the last one that appear in SDEFSR_Dataset object. If you want
to change the target variable, you can set the targetVariable to change this target variable. The
target variable MUST be categorical, if it is not, throws an error. Also, the default behaviour is
to find rules for all possible values of the target varaible. targetClass sets a value of the target
variable where the algorithm only finds rules about this value.

If you specify in paramFile something distinct to NULL the rest of the parameters are ignored and
the algorithm tries to read the file specified. See "Parameters file structure” below if you want to
use a parameters file.

@return The algorithm shows in console the following results:

1. Information about the parameters used in the algorithm.
2. Results for each filter:

(a) Rules generated that passes the filter.
(b) The test quality measures for each rule in that filter.
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Also, this results are saved in a file with rules and other with the quality measures, one file per filter.

@section How does this algorithm work?: This algorithm performs a EFS based on a genetic pro-
gramming algorithm. This algorithm starts with an initial population generated in a random manner
where individuals are represented through the "chromosome = individual" approach includind both
antecedent and consequent of the rule. The representation of the consequent has the advantage of
getting rules for all target class with only one execution of the algorithm.

The algorithm employs a cooperative-competition approach were rules of the population cooperate
and compete between them in order to obtain the optimal solution. So this algorithm performs to
evaluation, one for individual rules to competition and other for the total population for cooperation.

The algorithm evolves generating an offspring population of the same size than initial generated by
the application of the genetic operators over the main population. Once applied, both populations
are joined a token competition is performed in order to maintain the diversity of the rules generated.
Also, this token competition reduce the population sice deleting those rules that are not competitive.

After the evolutionary process a screening function is applied over the best population. This screen-
ing function filter the rules that have a minimum level of confidence and sensitivity. Those levels
are 0.6 for sensitivy and four filters of 0.6, 0.7, 0.8 and 0.9 for fuzzy confidence are performed.

Also, the user can force the algorithm return at least one rule for all target class values, even if not
pass the screening function. This behaviour is specified by the ALL._CLASS parameter.

@section Parameters file structure: The paramFile argument points to a file which has the necce-
sary parameters to execute FuGePSD. This file must be, at least, this parameters (separated by a
carriage return):

* algorithm Specify the algorithm to execute. In this case. "MESDIF"

* inputData Specify two paths of KEEL files for training and test. In case of specify only the
name of the file, the path will be the working directory.

* seed Sets the seed for the random number generator

* nLabels Sets the number of fuzzy labels to create when reading the files

* nEval Set the maximum number of evaluations of rules for stop the genetic process
* popLength Sets number of individuals of the main population

* elitelLength Sets number of individuals of the elite population. Must be less than popLength
* crossProb Crossover probability of the genetic algorithm. Value in [0,1]

* mutProb Mutation probability of the genetic algorithm. Value in [0,1]

* 0bj1 Sets the objetive number 1.

* 0bj2 Sets the objetive number 2.

* 0Obj3 Sets the objetive number 3.

* 0Obj4 Sets the objetive number 4.

* RulesRep Representation of each chromosome of the population. "can" for canonical repre-
sentation. "dnf" for DNF representation.

* targetClass Value of the target variable to search for subgroups. The target variable is
always the last variable. Use null to search for every value of the target variable

An example of parameter file could be:



8 FUGEPSD

algorithm = FUGEPSD

inputData = "banana-5-1tra.dat” "banana-5-1tst.dat”

outputData = "Parameters_INFO.txt"” "Rules.txt” "TestMeasures.txt"
seed = 23783

Number of Labels = 3

T-norm/T-conorm for the Computation of the Compatibility Degree = Normalized_Sum
Rule Weight = Certainty_Factor

Fuzzy Reasoning Method = Normalized_Sum

Number of Generations = 300

Initial Number of Fuzzy Rules = 100

Crossover probability = 0.5

Mutation probability = 0.2

Insertion probability = 0.15

Dropping Condition probability = 0.15

Tournament Selection Size = 2
Global Fitness Weight 1 = 0.7
Global Fitness Weight 2 = 0.1
Global Fitness Weight 3 = 0.05
Global Fitness Weight 4 = 0.2

All Class = true

Author(s)

Written on R by Angel M. Garcia <amgv0009 @red.ujaen.es>

References

A fuzzy genetic programming-based algorithm for subgroup discovery and the application to one
problem of pathogenesis of acute sore throat conditions in humans, Carmona, C.J., Ruiz-Rodado
V., del Jesus M.J., Weber A., Grootveld M., Gonzalez P., and Elizondo D. , Information Sciences,
Volume 298, p.180-197, (2015)

Examples

FUGEPSD(training = habermanTra,
test = habermanTst,
output = c(NA, NA, NA),
seed = 23783,
nLabels = 3,
t_norm = "Minimum/Maximum",
ruleWeight = "Certainty_Factor”,
frm = "Normalized_Sum”,
numGenerations = 20,
numberOfInitialRules = 15,
crossProb = 0.5,
mutProb = 0.2,
insProb = 0.15,
dropProb = 0.15,
tournamentSize = 2,
globalFitnessWeights = ¢c(0.7, 0.1, 0.3, 0.2),
ALL_CLASS = TRUE)
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## Not run:
# Execution with a parameters file called 'ParamFile.txt' in the working directory:

FUGEPSD("ParamFile. txt")

## End(Not run)

germanTra German Credit data set

Description

Training data for the german dataset

Format
A SDEFSR_Dataset class with 800 instances, 20 variables (without the target variable) and 2 values
for the target class.
Details
A numerical version of the Statlog German Credit Data data set. Here, the task is to classify cus-
tomers as good (1) or bad (2), depending on 20 features about them and their bancary accounts.
Source

https://sci2s.ugr.es/keel/dataset.php?cod=88

Examples

germanTra$data

germanTst German Credit data set

Description

Test data for the german dataset

Format

A SDEFSR_Dataset class with 200 instances, 20 variables (without the target variable) and 2 values
for the target class.


https://sci2s.ugr.es/keel/dataset.php?cod=88
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Details

A numerical version of the Statlog German Credit Data data set. Here, the task is to classify cus-
tomers as good (1) or bad (2), depending on 20 features about them and their bancary accounts.

Source

https://sci2s.ugr.es/keel/dataset.php?cod=88

Examples

germanTra$data

habermanRules Haberman survival rule set

Description

Rules generated by the SDIGA algorithm with the default parameters for the haberman dataset.

Details

The rule set contains only two rules. One for each target variable

Source

Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th
International Biometrics Conference, Boston, pp. 104-122.

Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing
Logistic Regression Models (with discussion), Journal of the American Statistical Association 79:
61-83.

Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of
Wisconsin, Madison, WI.

Examples

habermanRules


https://sci2s.ugr.es/keel/dataset.php?cod=88
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habermanTra Haberman survival data set

Description

Training data for the Haberman dataset.

Format

A SDEFSR_Dataset class with 306 instances, 3 variables (without the target variable) and 2 values
for the target variable. Three fuzzy labels for each numerical variable are defined.

Details

This data set contains cases from a study that was conducted between 1958 and 1970 at the Univer-
sity of Chicago’s Billings Hospital on the survival of patients who had undergone surgery for breast
cancer. The task is to determine if the patient survived 5 years or longer (positive) or if the patient
died within 5 year (negative)

Source
Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th
International Biometrics Conference, Boston, pp. 104-122.

Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing
Logistic Regression Models (with discussion), Journal of the American Statistical Association 79:
61-83.

Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of
Wisconsin, Madison, WI.

Examples

habermanTra$data
habermanTra$fuzzySets

habermanTst Haberman survival data set

Description

Test data for the Haberman dataset.

Format

A SDEFSR_Dataset class with 62 instances, 3 variables (without the target variable) and 2 values
for the target variable. Three fuzzy labels for each numerical variable are defined.
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Details

MESDIF

This data set contains cases from a study that was conducted between 1958 and 1970 at the Univer-
sity of Chicago’s Billings Hospital on the survival of patients who had undergone surgery for breast
cancer. The task is to determine if the patient survived 5 years or longer (positive) or if the patient
died within 5 year (negative)

Source

Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th
International Biometrics Conference, Boston, pp. 104-122.

Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing
Logistic Regression Models (with discussion), Journal of the American Statistical Association 79:
61-83.

Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of

‘Wisconsin, Madison, WI.

Examples

habermanTra$data

habermanTra$fuzzySets

MESDIF

Multiobjective Evolutionary Subgroup DIscovery Fuzzy rules (MES-
DIF) Algorithm

Description

Performs a subgroup discovery task executing the MESDIF algorithm.

Usage

MESDIF (

paramFile = NULL,

training = NULL,

output = c("optionsFile.txt”, "rulesFile.txt", "testQM.txt"),

test = NULL,
seed = 0,
nLabels = 3,

nEval = 10000,

popLength = 100,
elitelLength = 3,
crossProb = 0.6,
mutProb = 0.01,

RulesRep = "can”,

obj1 = "CSUP",
0bj2 = "CCNF",
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Obj3 = "null"”,
Obj4 = "null”,
targetVariable = NA,
targetClass = "null”

Arguments

paramFile

training
test

output

seed
nLabels

nEval

popLength
elitelLength
crossProb
mutProb
RulesRep
0bj1

Obj2

0bj3

Obj4

targetVariable

targetClass

Details

The path of the parameters file. NULL If you want to use training and test
SDEFSR_Dataset variables

A SDEFSR_Dataset class variable with training data.

A SDEFSR_Dataset class variable with test data. NULL if you only want to use
training data.

character vector with the paths where store information file, rules file and quality
measures file, respectively.

An integer to set the seed used for generate random numbers.
Number of linguistic labels that represents numerical variables.

An integer for set the maximum number of evaluations in the evolutive process.
Large values of this parameter increments the computing time.

An integer to set the number of individuals in the population.

An integer to set the number of individuals in the elite population.

Sets the crossover probability. A number in [0,1].

Sets the mutation probability. A number in [0,1].

Representation used in the rules. "can" for canonical rules, "dnf" for DNF rules.

Sets the Objective number 1. See Objective values for more information
about the possible values.

Sets the Objective number 2. See Objective values for more information
about the possible values.

Sets the Objective number 3. See Objective values for more information
about the possible values.

Sets the Objective number 4. See Objective values for more information
about the possible values.

The name or index position of the target variable (or class). It must be a cate-
gorical one.

A string specifing the value of the target variable. null for search for all possible
values.

This function sets as target variable the last one that appear in SDEFSR_Dataset object. If you want
to change the target variable, you can set the targetVariable to change this target variable. The
target variable MUST be categorical, if it is not, throws an error. Also, the default behaviour is
to find rules for all possible values of the target varaible. targetClass sets a value of the target
variable where the algorithm only finds rules about this value.
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If you specify in paramFile something distinct to NULL the rest of the parameters are ignored and
the algorithm tries to read the file specified. See "Parameters file structure" below if you want to
use a parameters file.

Value
The algorithm shows in the console the following results:

1. The parameters used in the algorithm
2. The rules generated.
3. The quality measures for test of every rule and the global results. This globals results shows
the number of rules generated and means results for each quality measure.
Also, the algorithms save those results in the files specified in the output parameter of the algorithm
or in the outputData parameter in the parameters file.

Additionally a SDEFSR_Rules object is returned with this information.

How does this algorithm work?
This algorithm performs a multi-objective genetic algorithm based on elitism (following the SPEA2
approach). The elite population has a fixed size and it is filled by non-dominated individuals.

An individual is non-dominated when (! al1(0bjI1 <= 0bjI2) & any(ObjI1 <0bjI2)) where Objll
is the objective value for our individual and Objl2 is the objetive value for another individual. The
number of dominated individuals by each one determine, in addition with a niches technique that
considers the proximity among values of the objectives a fitness value for the selection.

The number of non-dominated individuals might be greater or less than elite population size and
in those cases MESDIF implements a truncation operator and a fill operator respectively. Then,
genetic operators are applied.

At the final of the evolutive process it returns the rules stored in elite population. Therefore, the
number of rules is fixed with the elitelLength parameter.

Parameters file structure

The paramFile argument points to a file which has the necesary parameters for MESDIF works.
This file must have, at least, those parameters (separated by a carriage return):
* algorithm Specify the algorithm to execute. In this case. "MESDIF"

* inputData Specify two paths of KEEL files for training and test. In case of specify only the
name of the file, the path will be the working directory.

* seed Sets the seed for the random number generator

* nlLabels Sets the number of fuzzy labels to create when reading the files

* nEval Set the maximun number of evaluations of rules for stop the genetic process

* popLength Sets number of individuals of the main population

* elitelength Sets number of individuals of the elite population. Must be less than popLength
* crossProb Crossover probability of the genetic algorithm. Value in [0,1]

* mutProb Mutation probability of the genetic algorithm. Value in [0,1]
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* 0bj1 Sets the objective number 1.

* 0Obj2 Sets the objective number 2.

* 0Obj3 Sets the objective number 3.

* Obj4 Sets the objective number 4.

* RulesRep Representation of each chromosome of the population. "can" for canonical repre-
sentation. "dnf" for DNF representation.

* targetVariable The name or index position of the target variable (or class). It must be a
categorical one.

* targetClass Value of the target variable to search for subgroups. The target variable is
always the last variable. Use null to search for every value of the target variable

An example of parameter file could be:

algorithm = MESDIF
inputData = "irisd-10-1tra.dat” "irisd-10-1tst.dat”
outputData = "irisD-10-1-INFO. txt"” "irisD-10-1-Rules.txt" "irisD-10-1-TestMeasures.txt"

seed = 0
nLabels = 3
nEval = 500

popLength = 100
eliteLength = 3
crossProb = 0.6
mutProb = 0.01
RulesRep = can

Obj1 = comp
0bj2 = unus
0bj3 = null
0bj4 = null

targetClass = Iris-setosa

@section Objective values: You can use the following quality measures in the ObjX value of the
parameter file using this values:

* Unusualness -> unus

* Crisp Support -> csup

* Crisp Confidence -> ccnf

* Fuzzy Support -> fsup

* Fuzzy Confidence -> fcnf

» Coverage -> cove

* Significance -> sign

If you dont want to use a objective value you must specify null

References

* Berlanga, F., Del Jesus, M., Gonzalez, P., Herrera, F., & Mesonero, M. (2006). Multiobjective
Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing.

e Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm.
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Examples

MESDIF( paramFile = NULL,
training = habermanTra,
test = habermanTst,
output = c(NA, NA, NA),

seed = 0,
nLabels = 3,
nEval = 300,

popLength = 100,
eliteLength = 3,
crossProb = 0.6,
mutProb = 0.01,

RulesRep = "can”,
Obj1 = "CSUP",
Obj2 = "CCNF",
0bj3 = "null"”,
Obj4 = "null”,
targetClass = "positive”
)
## Not run:

Execution for all classes, see 'targetClass' parameter
MESDIF( paramFile = NULL,
training = habermanTra,
test = habermanTst,
output = c("optionsFile.txt", "rulesFile.txt", "testQM.txt"),

seed = 0,
nLabels = 3,
nEval = 300,

popLength = 100,
eliteLength = 3,
crossProb = 0.6,
mutProb = 0.01,

RulesRep = "can”,
Obj1 = "CSUP",

Obj2 = "CCNF",

Obj3 = "null”,

Obj4 = "null”,
targetClass = "null”
)

## End(Not run)

NMEEF_SD Non-dominated Multi-objective Evolutionary algorithm for Extracting
Fuzzy rules in Subgroup Discovery (NMEEF-SD)

Description

Perfoms a subgroup discovery task executing the algorithm NMEEF-SD
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Usage
NMEEF _SD(
paramFile = NULL,
training = NULL,
test = NULL,
output = c("optionsFile.txt”, "rulesFile.txt", "testQM.txt"),
seed = 0,
nLabels = 3,
nEval = 10000,
popLength = 100,
mutProb = 0.1,
crossProb = 0.6,
Obj1 = "CSUP",
Obj2 = "CCNF",
Obj3 = "null”,
minCnf = 0.6,
relnitCoverage = "yes",
porcCob = 0.5,
StrictDominance = "yes",
targetVariable = NA,
targetClass = "null”
)
Arguments
paramFile The path of the parameters file. NULL If you want to use training and test
SDEFSR_Dataset variables
training A SDEFSR_Dataset class variable with training data.
test A SDEFSR_Dataset class variable with training data.
output character vector with the paths of where store information file, rules file and test
quality measures file, respectively.
seed An integer to set the seed used for generate random numbers.
nLabels Number of linguistic labels for numerical variables.
nEval An integer for set the maximum number of evaluations in the evolutionary pro-
cess.
popLength An integer to set the number of individuals in the population.
mutProb Sets the mutation probability. A number in [0,1].
crossProb Sets the crossover probability. A number in [0,1].
0Obj1 Sets the Objective number 1. See Objective values for more information
about the possible values.
0Obj2 Sets the Objective number 2. See Objective values for more information
about the possible values.
0Obj3 Sets the Objective number 3. See Objective values for more information
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minCnf Sets the minimum confidence that must have a rule in the Pareto front for being
returned. A number in [0,1].

reInitCoverage Sets if the algorithm must perform the reinitialitation based on coverage when it
is needed. A string with "yes" or "no".

porcCob Sets the maximum percentage of variables that participate in the rules generated
in the reinitialitation based on coverage. A number in [0,1]

StrictDominance
Sets if the comparison between individuals must be done by strict dominance or
not. A string with "yes" or "no".

targetVariable The name or index position of the target variable (or class). It must be a cate-
gorical one.

targetClass A string specifing the value the target variable. null for search for all possible
values.

Details

This function sets as target variable the last one that appear in SDEFSR_Dataset object. If you want
to change the target variable, you can set the targetVariable to change this target variable. The
target variable MUST be categorical, if it is not, throws an error. Also, the default behaviour is
to find rules for all possible values of the target varaible. targetClass sets a value of the target
variable where the algorithm only finds rules about this value.

If you specify in paramFile something distinct to NULL the rest of the parameters are ignored and
the algorithm tries to read the file specified. See "Parameters file structure" below if you want to
use a parameters file.

Value
The algorithm shows in the console the following results:

1. The parameters used in the algorithm
2. The rules generated.

3. The quality measures for test of every rule and the global results.

Also, the algorithms save those results in the files specified in the output parameter of the
algorithm or in the outputData parameter in the parameters file.

How does this algorithm work?

NMEEF-SD is a multiobjetctive genetic algorithm based on a NSGA-II approach. The algorithm
first makes a selection based on binary tournament and save the individuals in a offspring popula-
tion. Then, NMEEF-SD apply the genetic operators over individuals in offspring population

For generate the population which participate in the next iteration of the evolutionary process
NMEEF-SD calculate the dominance among all individuals (join main population and offspring)
and then, apply the NSGA-II fast sort algorithm to order the population by fronts of dominance, the
first front is the non-dominated front (or Pareto), the second is where the individuals dominated by
one individual are, the thirt front dominated by two and so on.

To promove diversity NMEEF-SD has a mechanism of reinitialization of the population based on
coverage if the Pareto doesnt evolve during a 5



NMEEF SD 19

At the final of the evolutionary process, the algorithm returns only the individuals in the Pareto front
which has a confidence greater than a minimum confidence level.

Parameters file structure

The paramFile argument points to a file which has the necesary parameters for NMEEF-SD works.
This file must be, at least, those parameters (separated by a carriage return):
* algorithm Specify the algorithm to execute. In this case. "NMEEFSD"

» inputData Specify two paths of KEEL files for training and test. In case of specify only the
name of the file, the path will be the working directory.

* seed Sets the seed for the random number generator

* nlLabels Sets the number of fuzzy labels to create when reading the files

* nEval Set the maximun number of evaluations of rules for stop the genetic process
* popLength Sets number of individuals of the main population

* ReInitCob Sets if NMEEF-SD do the reinitialization based on coverage. Values: "yes" or

" "

no
* crossProb Crossover probability of the genetic algorithm. Value in [0,1]
* mutProb Mutation probability of the genetic algorithm. Value in [0,1]

* RulesRep Representation of each chromosome of the population. "can" for canonical repre-
sentation. "dnf" for DNF representation.

* porcCob Sets the maximum percentage of variables participe in a rule when doing the reini-
tialization based on coverage. Value in [0,1]

* Obj1 Sets the objective number 1.
* 0Obj2 Sets the objective number 2.
* 0bj3 Sets the objective number 3.
* minCnf Minimum confidence for returning a rule of the Pareto. Value in [0,1]

* StrictDominance Sets if the comparison of individuals when calculating dominance must be
using strict dominance or not. Values: "yes" or "no"

» targetClass Value of the target variable to search for subgroups. The target variable is
always the last variable.. Use null to search for every value of the target variable

An example of parameter file could be:

algorithm = NMEEFSD

inputData = "irisd-10-1tra.dat” "irisd-10-1tra.dat” "irisD-10-1tst.dat”

outputData = "irisD-10-1-INFO. txt" "irisD-10-1-Rules.txt"” "irisD-10-1-TestMeasures.txt"
seed = 1

RulesRep = can

nLabels = 3

nEval = 500

popLength = 51

crossProb = 0.6
mutProb = 0.1
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ReInitCob =

porcCob = 0.

Obj1 = comp
0Obj2 = unus
0bj3 = null

minCnf = 0.6

yes
5

StrictDominance = yes

targetClass

Objective values

= Iris-setosa

NMEEF SD

You can use the following quality measures in the ObjX value of the parameter file using this values:

¢ Unusualness -> unus

* Crisp Support -> csup

* Crisp Confidence -> ccnf

* Fuzzy Support -> fsup

* Fuzzy Confidence -> fcnf

* Coverage -> cove

* Significance -> sign

If you dont want to use a objetive value you must specify null

References

Carmona, C., Gonzalez, P., del Jesus, M., & Herrera, F. (2010). NMEEF-SD: Non-dominated
Multi-objective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup Discovery.

Examples

NMEEF_SD(paramFile = NULL,

## Not run:

training = habermanTra,
test = habermanTst,
output = c(NA, NA, NA),
seed = 0,

nLabels = 3,

nEval = 300,

popLength = 100,

mutProb = 0.1,

crossProb = 0.6,

Obj1 = "CSUP",

0bj2 = "CCNF",

0Obj3 = "null”,

minCnf = 0.6,
relnitCoverage = "yes",
porcCob = 0.5,
StrictDominance = "yes",
targetClass = "positive”

)
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NMEEF_SD(paramFile = NULL,
training = habermanTra,
test = habermanTst,
output = c("optionsFile.txt", "rulesFile.txt"”, "testQM.txt"),

seed = 0,
nLabels = 3,
nEval = 300,

popLength = 100,
mutProb = 0.1,
crossProb = 0.6,

0bj1 = "CSUP",

Obj2 = "CCNF",

0bj3 = "null”,

minCnf = 0.6,
relnitCoverage = "yes”,
porcCob = 0.5,
StrictDominance = "yes",
targetClass = "null”

)

## End(Not run)

plot.SDEFSR_Rules Plot a rule set generated by a SDEFSR algorithm

Description

This function plots the rule set by means of a bar graph that shows TPR vs FPR quality measure of

each rule
Usage
## S3 method for class 'SDEFSR_Rules'
plot(x, ...)
Arguments
X an SDEFSR_Rules object generated by a subgroup discovery algorithm of the
SDEFSR package
additional arguments passed to the plot
Details

This function works depending on the package ggplot2 that allow to generate such graph. If the
package ggplot2 is not installed, the this function ask the user to install it. After install, load the
package and show the graph.

A TPR vs FPR graph show the precision of a rule. Quality rules has big TPR values and small FPR
values. Big values of both quality measures indicates that the rule is too much general and it is too
obvious. Small values of both indicates that the rule is too much specific and it would be an invalid
rule.
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Value

A TPR vs FPR graph generated by ggplot2

Examples

plot(habermanRules)

print.SDEFSR_Dataset 83 function to print in console the contents of the dataset This function
shows the matrix of data uncoded.

Description

S3 function to print in console the contents of the dataset

This function shows the matrix of data uncoded.

Usage
## S3 method for class 'SDEFSR_Dataset'
print(x, ...)
Arguments
X The SDEFSR_Dataset object to view
Additional arguments passed to the print function
Details

This function show the matix of data. Internally, a SDEFSR_Dataset object has a list of of examples
and this examples are coded numerically. This function decode these examples and convert the list
into a matrix.

Value

a matrix with the dataset uncoded.
@examples

print(habermanTra)
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read.dataset Reads a KEEL, ARFF or CSV data format file.

Description

This function reads a KEEL (.dat), ARFF (.arff) or CSV dataset file and store the information in a
SDEFSR_Dataset class.

Usage

read.dataset(file, sep = ",", quote = "\"", dec = ".", na.strings = "?")
Arguments

file The path of the file to read

sep The separator character to use

quote The character used to take quotes

dec The character used to define decimal characters

na.strings The character to detect lost data
Details

A KEEL data file must have the following structure:

* @relation: Name of the data set

* @attribute: Description of an attribute (one for each attribute)

e @inputs: List with the names of the input attributes

* @output: Name of the output attribute (Not used in this algorithms implementation)

* @data: Starting tag of the data
The rest of the file contains all the examples belonging to the data set, expressed in comma seppa-
rated values format. ARFF file format is a well-know dataset format from WEKA data mining tool.

CSV is a format which means comma-separated values. Where each examples is on a line and each
value of the variables of the examples are separated by commas.

Author(s)

Angel M. Garcia <agvico@ujaen.es>

References

J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, F. Herrera. KEEL Data-
Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis
Framework. Journal of Multiple-Valued Logic and Soft Computing 17:2-3 (2011) 255-287.
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See Also
KEEL Dataset Repository (Standard Classification): https://sci2s.ugr.es/keel/category.
php?cat=clas

Examples

## Not run:
Reads a KEEL dataset from a file.
read.dataset(file = "C:\KEELFile.dat")
read.dataset(file = "C:\KEELFile.dat", nLabels = 7)

Reads an ARFF dataset from a file.
read.dataset(file = "C:\ARFFFile.arff")

read.dataset(file = "C:\ARFFFile.arff", nLabels = 7)

## End(Not run)

SDEFSR SDEFSR: A package for Subgroup Discovery with Evolutionary Fuzzy
Systems in R

Description

The SDEFSR package provide a tool for read KEEL datasets and four evolutionary fuzzy rule-based
algorithms for subgroup discovery.

Details

The algorithms provided works with datasets in KEEL, ARFF or CSV format and also with data. frame
objects.

The package also provide a Shiny app for making the same tasks that the package can do and can
display some additional information about data for making an exploratory analysis.

The algorithms provided are Evolutionary Fuzzy Systems (EFS) which take advantages of evolu-
tionary algorithms for maximize more than one quality measure and fuzzy logic, which makes a
representation of numerical variables that are more understandable for humans and more robust to
noise.

The algorithms in the SDEFSR package support target variable with more than two values. How-
ever, this target variables must be categorical. Thus, if you have a numeric target variable, a dis-
cretization must be perfomed before executing the method.


https://sci2s.ugr.es/keel/category.php?cat=clas
https://sci2s.ugr.es/keel/category.php?cat=clas
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SDEFSR functions

MESDIF Multiobjective Evolutionary Subgroup DIscovery Fuzzy rules (MESDIF) Algorithm.

NMEEF_SD Non-dominated Multi-objective Evolutionary algorithm for Extracting Fuzzy rules
in Subgroup Discovery (NMEEF-SD).

read.dataset reads a KEEL, ARFF or CSV format file.
SDIGA Subgroup Discovery Iterative Genetic Algorithm (SDIGA).
SDEFSR_GUI Launch the Shiny app in your browser.

FUGEPSD Fuzzy Genetic Programming-based learning for Subgroup Discovery (FuGePSD)
Algorithm.

plot.SDEFSR_Rules Plot the discovered rules by a SDEFSR algorithm.
sort.SDEFSR_Rules Sort the discovered rules by a given quality measure.

SDEFSR_DatasetFromDataFrame Reads a data.frame and create a SDEFSR_Dataset object to
be execute by an algorithm of this package.

Author(s)

Angel M. Garcia-Vico <agvico@ujaen.es>

SDEFSR_DatasetFromDataFrame

Creates a SDEFSR_Dataset object from a data.frame

Description

Creates a SDEFSR_Dataset object from a data.frame and create fuzzy labels for numerical vari-

ables too.
Usage
SDEFSR_DatasetFromDataFrame(
data,
relation,
names = NA,
types = NA,
classNames = NA
)
Arguments
data A data. frame object with all neccesary information. See details.
relation A string that indicate the name of the relation.
names An optional character vector indicating the name of the attributes.
types An optional character vector indicating ’c’ if variable is categorical, ’r’ if is real

and ’e’ if it is an integer

classNames An optional character vector indicating the values of the target class.
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Details

The information of the data.frame must be stored with instances in rows and variables in columns
If you dont specify any of the optional parameter the function try to obtain them automatically.

For 'names' if it is NA, the function takes the name of the columns by colnames.

For 'types' if it is NA, the function takes the type of an attribute asking the type of the column
of the data.frame. If it is 'character' it is assumed that it is categorical, and if 'numeric' it is
assumed that it is a real number. PLEASE, PAY ATTENTION TO THIS WAY OF WORK. It can
cause tranformation errors taking a numeric variable as categorical or vice-versa.

For 'classNames' if itis NA, the function returns unique values of the last attribute of the data.frame
that is considered the class attribute.

Value

A SDEFSR_Dataset object with all the information of the dataset.

Author(s)

Angel M Garcia <amgv0009 @red.ujaen.es>

See Also

read.dataset

Examples

library(SDEFSR)

df <- data.frame(matrix(runif(1000), ncol = 10))

#Add class attribute

dff,11] <= c("0", "1", "2", "3")

SDEFSR_DatasetObject <- SDEFSR_DatasetFromDataFrame(df, "random")
invisible()

SDEFSR_GUI Launch a web interface for use the algorithms easily.

Description

Launches a Shiny-based interface for the package in your browser.

Usage

SDEFSR_GUI()
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The package SDEFSR provide simple, shiny-based web interface for performs the taks easily. The
interface only work with new datasets loaded directly in the platform.

The web application is structured as follows:

The first you have to do is load your training and test files. This files must be valids KEEL
format files.

After chose your datasets, you can view information about the dataset or execute the algorithm

You can choose the target variable or the variable to visualize and choose the target value or
execute the algorithm for all the values.

Choosed the target variable, you can choose the algorithm to execute and change his parame-
ters with the controls provided.

After you can execute the algorithm. The results are exposed in three tabs that are at the top
of the page, just at the right of the "Exploratory Analysis" tab.

The tables can be sorted for each value and also you can search and filter values.

Examples

## Not run:
library(SDEFSR)
SDEFSR_GUI ()

## End(Not run)

SDIGA

Subgroup Discovery Iterative Genetic Algorithm (SDIGA)

Description

Perfoms a subgroup discovery task executing the algorithm SDIGA

Usage

SDIGA(
parameters_file = NULL,
training = NULL,
test = NULL,
output = c("optionsFile.txt”, "rulesFile.txt"”, "testQM.txt"),
seed = 0,
nLabels = 3,
nEval = 10000,
popLength = 100,
mutProb = 0.01,

RulesRep =

n n

can”,
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Obj1 = "CSUP",
wl =0.7,
Obj2 = "CCNF”,
w2 = 0.3,
Obj3 = "null"”,
w3 = 0,
minConf = 0.6,
1Search = "yes”,
targetVariable = NA,
targetClass = "null”

)
Arguments

parameters_file

training
test
output

seed
nLabels
nEval
popLength
mutProb
RulesRep
Obj1

w1
Obj2

w2
0Obj3

w3

minConf

1Search

targetvar

targetCla

iable

SS

The path of the parameters file. NULL If you want to use training and test
SDEFSR_Dataset variables

A SDEFSR_Dataset class variable with training data.
A SDEFSR_Dataset class variable with training data.

character vector with the paths of where store information file, rules file and test
quality measures file, respectively.

An integer to set the seed used for generate random numbers.

Number of linguistic labels that represents numerical variables.

An integer for set the maximum number of evaluations in the evolutive process.
An integer to set the number of individuals in the population.

Sets the mutation probability. A number in [0,1].

Representation used in the rules. "can" for canonical rules, "dnf" for DNF rules.

Sets the Objective number 1. See Objective values for more information
about the possible values.

Sets the weight of Obj1.

Sets the Objective number 2. See Objective values for more information
about the possible values.

Sets the weight of Obj2.

Sets the Objective number 3. See Objective values for more information
about the possible values.

Sets the weight of Obj3.

Sets the minimum confidence that must have the rule returned by the genetic
algorithm after the local optimitation phase. A number in [0,1].

Sets if the local optimitation phase must be performed. A string with "yes" or

" "

no .

A string with the name or an integer with the index position of the target variable
(or class). It must be a categorical one.

A string specifing the value the target variable. null for search for all possible
values.
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Details

This function sets as target variable the last one that appear in SDEFSR_Dataset object. If you want
to change the target variable, you can set the targetVariable to change this target variable. The
target variable MUST be categorical, if it is not, throws an error. Also, the default behaviour is
to find rules for all possible values of the target varaible. targetClass sets a value of the target
variable where the algorithm only finds rules about this value.

If you specify in paramFile something distinct to NULL the rest of the parameters are ignored and
the algorithm tries to read the file specified. See "Parameters file structure" below if you want to
use a parameters file.

Value

The algorithm shows in the console the following results:

1. The parameters used in the algorithm
2. The rules generated.
3. The quality measures for test of every rule and the global results.

Also, the algorithms save those results in the files specified in the output parameter of the algorithm
or in the outputData parameter in the parameters file.

How does this algorithm work?

This algorithm has a genetic algorithm in his core. This genetic algorithm returns only the best
rule of the population and it is executed so many times until a stop condition is reached. The stop
condition is that the rule returned must cover at least one new example (not covered by previous
rules) and must have a confidence greater than a minimum.

After returning the rule, a local improvement could be applied for make the rule more general. This
local improve is done by means of a hill-climbing local search.

The genetic algorithm cross only the two best individuals. But the mutation operator is applied over
all the population, individuals from cross too.

Parameters file structure

The parameters_file argument points to a file which has the necesary parameters for SDIGA
works. This file must be, at least, those parameters (separated by a carriage return):
* algorithm Specify the algorithm to execute. In this case. "SDIGA"

* inputData Specify two paths of KEEL files for training and test. In case of specify only the
name of the file, the path will be the working directory.

* seed Sets the seed for the random number generator

* nLabels Sets the number of fuzzy labels to create when reading the files

* nEval Set the maximun number of evaluations of rules for stop the genetic process
* popLength Sets number of individuals of the main population

* mutProb Mutation probability of the genetic algorithm. Value in [0,1]
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* RulesRep Representation of each chromosome of the population. "can" for canonical repre-
sentation. "dnf" for DNF representation.

* Obj1 Sets the objective number 1.
* w1 Sets the weigth assigned to the objective number 1. Value in [0,1]
* 0Obj2 Sets the objective number 2.
* w2 Sets the weigth assigned to the objective number 2. Value in [0,1]
* 0bj3 Sets the objective number 3.
* w3 Sets the weigth assigned to the objective number 3. Value in [0,1]

* minConf Sets the minimum confidence of the rule for checking the stopping criteria of the
iterative process

* 1Search Perform the local search algorithm after the execution of the genetic algorithm?
Values: "yes" or "no"

e targetVariable The name or index position of the target variable (or class). It must be a
categorical one.

» targetClass Value of the target variable to search for subgroups. The target variable is
always the last variable.. Use null to search for every value of the target variable

An example of parameter file could be:

algorithm = SDIGA
inputData = "irisD-10-1tra.dat” "irisD-10-1tst.dat”
outputData = "irisD-10-1-INFO. txt" "irisD-10-1-Rules.txt” "irisD-10-1-TestMeasures. txt"

seed = 0@
nLabels = 3
nEval = 500
popLength = 100
mutProb = 0.01
minConf = 0.6
RulesRep = can
Obj1 = Comp
Obj2 = Unus
0bj3 = null

wl = 0.7

w2 = 0.3

w3 = 0.0

1Search = yes

Objective values
You can use the following quality measures in the ObjX value of the parameter file using this values:
e Unusualness -> unus
* Crisp Support -> csup
* Crisp Confidence -> ccnf

* Fuzzy Support -> fsup
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* Fuzzy Confidence -> fcnf
* Coverage -> cove

* Significance -> sign

If you dont want to use a objetive value you must specify null

References

M. J. del Jesus, P. Gonzalez, F. Herrera, and M. Mesonero, "Evolutionary Fuzzy Rule Induction
Process for Subgroup Discovery: A case study in marketing," IEEE Transactions on Fuzzy System:s,
vol. 15, no. 4, pp. 578-592, 2007.

Examples

SDIGA(parameters_file = NULL,
training = habermanTra,
test = habermanTst,
output = c(NA, NA, NA),

seed = 0,
nLabels = 3,
nEval = 300,

popLength = 100,
mutProb = 0.01,

RulesRep = "can",

Obj1 = "CSuUP",

wl =0.7,

Obj2 = "CCNF",

w2 = 0.3,

0bj3 = "null”,

w3 = 0,

minConf = 0.6,

1Search = "yes",

targetClass = "positive”)
## Not run:

SDIGA(parameters_file = NULL,
training = habermanTra,
test = habermanTst,
output = c("optionsFile.txt"”, "rulesFile.txt”, "testQM.txt"),

seed = 0,
nLabels = 3,
nEval = 300,

popLength = 100,
mutProb = 0.01,

RulesRep = "can",
Obj1 = "CSUP",

wl = 0.7,

0bj2 = "CCNF",

w2 = 0.3,

0bj3 = "null”,

w3 =0,

minConf = 0.6,

n ”

1Search = "yes”,
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targetClass = "positive”)

## End(Not run)

sort.SDEFSR_Rules @title Return an ordered rule set by a given quality measure @de-
scription This function sorts a rule set in descendant order by a given
quality measure that are available on the object

Description

@title Return an ordered rule set by a given quality measure

@description This function sorts a rule set in descendant order by a given quality measure that are
available on the object

Usage
## S3 method for class 'SDEFSR_Rules'
sort(x, decreasing = TRUE, ...)
Arguments
X The rule set passed as a SDEFSR_Rules object
decreasing A logical indicating if the sort should be increasing or decreasing. By default,
decreasing.

Additional parameters as "by", a String with the name of the quality measure to
order by. Valid values are: nVars, Coverage, Unusualness, Significance,
FuzzySupport, Support, FuzzyConfidence, Confidence, Tpr, Fpr.

Details

"

The additional argument in "..." is the ’by’ argument, which is a s string with the name of the
quality measure to order by. Valid values are: nVars, Coverage, Unusualness, Significance,
FuzzySupport, Support, FuzzyConfidence, Confidence, Tpr, Fpr.

Value

another SDEFSR_Rules object with the rules sorted

Examples

sort(habermanRules)
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summary.SDEFSR_Dataset
S3 function to summary a SDEFSR_Dataset object

Description

Summary relevant data of a SDEFSR_Dataset dataset.

Usage
## S3 method for class 'SDEFSR_Dataset'
summary (object, ...)

Arguments
object A SDEFSR_Dataset class.

Additional arguments to the summary function.

Details

This function show important information about the SDEFSR_Dataset dataset for the user. Note
that it does not show all the information available. The rest is only for the algorithms. The values
that appear are accessible by the $ operator, e.g. dataset$relation or dataset$examplesPerClass.

Examples
summary (carTra)
[.SDEFSR_Rules Filter rules in a SDEFSR_Rules object returning a new SDEFSR_Rules
object
Description

Generates a new SDEFSR_Rules object containing the rules that passed the filter specified

Usage

## S3 method for class 'SDEFSR_Rules'
SDEFSR_RulesObject[condition = T]

Arguments

SDEFSR_RulesObject
The SDEFSR_RulesObject object to filter

condition Expression to filter the SDEFSR_Rules object
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Details

This functions allows to filter the rule set by a given quality measure. The quality measures that
are available are: nVars, Coverage, Unusualness, Significance, FuzzySupport, Support,
FuzzyConfidence, Confidence, TPr and FPr

Examples

library(SDEFSR)
#Apply filter by unusualness
habermanRules[Unusualness > 0.05]

#Also, you can make the filter as complex as you can
#Filter by Unusualness and TPr
habermanRules[Unusualness > 0.05 & TPr > 0.9]
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