
Clifford algebra in R

Robin K. S. Hankin

University of Stirling

Abstract

Here I present the clifford package for working with Clifford algebras. The algebra is
described and package idiom is given. To cite in publications, use Hankin (2025).

Keywords: Clifford algebra.

1. Introduction

This document gives an introduction to the clifford package from an R perspective. A more
theoretical and cursive description is given by Hankin (2025).

Clifford algebras are interesting and instructive mathematical objects. The class has a rich
structure with varied applications to physics. Notation follows Snygg (2010).

1.1. Existing work

Computational support for working with the Clifford algebras is part of a number of algebra
systems including Sage (The Sage Developers 2019) and sympy (Meurer et al. 2017). Here I
introduce the clifford package, which provides R-centric functionality for Clifford algebras.

Considering a vector space of dimension 3, and given a basis e1, e2, e3, we can consider linear
combinations such as

x = x1e1 + x2e2 + x3e3

y = y1e1 + y2e2 + y3e3. (1)

A Clifford algebra includes a formal product on such sums, defined using the relations

(e1)2 = (e2)2 = (e3)2 = 1 (2)

e2e3 + e3e2 = e1e3 + e3e1 = e2e1 + e1e2 = 0 (3)

2 The clifford package

This gives:

xy =
(

x1e1 + x2e2 + x3e3

) (

y1e1 + y2e2 + y3e3

)

=
(

x1y1 + x2y2 + x3y3
)

+
(

x2y3 − x3y2
)

e2e3 +
(

x3y1 − x1y3
)

e1e3 +
(

x1y2 − x2y1
)

e1e2 (4)

Multiplication is associative by design. Snygg goes on to consider the algebra spanned by
products of e1, e2, e3 and shows that this is an eight dimensional space spanned by

{1, e1, e2, e3, e12, e31, e12, e123} (5)

where e12 = e1e2 and so on. Thus a general element of this space would be

a0 + a1e1 + a2e2 + a3e3 + a12e12 + a31e31 + a23e23 + a123e123 (6)

(here the a’s are real). That the space is closed under multiplication follows from equations 2
and 3; thus, for example,

e1e3e1e2 = −e1e1e3e2 = −e3e2 = e2e3 = e23. (7)

(observe how associativity is assumed).

1.2. Generalization to arbitrary dimensions

Generalization to higher dimensional vector spaces is easy. Suppose we consider a n-dimensional
vector space spanned by e1, . . . , en. Then an arbitrary vector in this space will be a1e1 +
· · · + anen. The associated Clifford algebra will be of dimension 2n, spanned by elements like
e1e3e5 = e135 and e1e2e3e5 = e1235. The defining relations would be

eiej + ejei = 2nij (8)

where

nij =

{

1, i = j

0 i ̸= j
(9)

1.3. Clifford algebra in a pseudo-Euclidean space

Equations 8 and 9 defined a positive-definite inner product on the vector space spanned
by e1, e2, e3. This is readily generalized to allow a more general inner product. Conventionally
we define

eiej + ejei = 2nij (10)

Robin K. S. Hankin 3

where

nij =















1, i = j = 1, . . . , p

−1, i = j = p + 1, . . . , n

0, i ̸= j

(11)

for 1 ⩽ p ⩽ n; usually we also specify p+q = n and write Rp,q for the p+q-dimensional vector
space with inner product given by equation 10. The Clifford algebra Cp,q (other notations
include Cl(p, q)) is then the algebra formed by Rp,q together with formal products of basis
vectors.

Note carefully that the diagonal matrix of the inner product specified above conventionally
has the the positive elements first, followed by the negative elements. But in relativity, the
metric tensor η is usually written with the negative elements first followed by the positive
elements;

η =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(12)

1.4. Wedge product of the exterior algebra is a special case of the geometric

product

If we specify that the quadratic form is identically zero then equation 10 becomes

eiej + ejei = 0, 1 ⩽ i, j ⩽ p (13)

which implies that eiei = 0. Geometric products become wedge products (although linearity
means that we may add terms of different grades, unlike conventional Grassmann algebra).

2. The package in use

Suppose we want to work with arbitrary Clifford object 1 + 2e1 + 3e2 + 4e2e3. In R idiom
this would be

> (x <- clifford(list(numeric(0),1,2,2:3),1:4))

Element of a Clifford algebra, equal to

+ 1 + 2e_1 + 3e_2 + 4e_23

Function clifford() takes a list of terms and a vector of coefficients. Addition and subtrac-
tion work as expected:

> y <- clifford(list(1),2)

> x-y

4 The clifford package

Element of a Clifford algebra, equal to

+ 1 + 3e_2 + 4e_23

In the above, see how the e1 term has vanished. We can multiply Clifford elements using
natural R idiom:

> x*x

Element of a Clifford algebra, equal to

- 2 + 4e_1 + 6e_2 + 8e_23 + 16e_123

(Multiplication that Snygg denotes by juxtaposition is here indicated with a *). We can
consider arbitrarily high dimensional data:

> (z <- as.1vector(1:7))

Element of a Clifford algebra, equal to

+ 1e_1 + 2e_2 + 3e_3 + 4e_4 + 5e_5 + 6e_6 + 7e_7

> z*x

Element of a Clifford algebra, equal to

+ 8 + 1e_1 - 10e_2 - 1e_12 + 11e_3 - 6e_13 - 9e_23 + 4e_123 + 4e_4 - 8e_14 - 12e_24 + 16e_234

- 15e_25 + 20e_235 + 6e_6 - 12e_16 - 18e_26 + 24e_236 + 7e_7 - 14e_17 - 21e_27 + 28e_237

In the above, we coerce a vector to a Clifford 1-vector. The package includes many functions
to generate Clifford objects:

> rcliff()

Element of a Clifford algebra, equal to

+ 5 + 6e_1 - 9e_12 - 3e_14 + 3e_26 - 6e_126 + 1e_236 - 1e_56 + 4e_156

The defaults for rcliff() specify that the object is a sum of grade-4 terms but this can be
altered:

> (x <- rcliff(d=7,g=5,include.fewer=TRUE))

Element of a Clifford algebra, equal to

+ 8 + 7e_3 - 4e_4 - 5e_25 - 9e_346 + 4e_7 + 8e_37 + 9e_67 - 8e_2467

> grades(x)

A disord object with hash 351ffcdb25e5f0af49114ed2bb7daf5defcf82ce and elements

[1] 0 1 1 2 3 1 2 2 4

(in some order)

Robin K. S. Hankin 5

3. Pseudo-Euclidean spaces

The signature of the metric may be altered. Starting with the Euclidean case we have:

> e1 <- e(1)

> e2 <- e(2)

> e1*e1

Element of a Clifford algebra, equal to

scalar (1)

> e2*e2

Element of a Clifford algebra, equal to

scalar (1)

(function e(i) returns ei). However, if we wish to consider n =

[

1 0
0 −1

]

, the package idiom

is to use the signature() function:

> signature(1,1) # signature +-

> e1*e1 # as before, returns +1

Element of a Clifford algebra, equal to

scalar (1)

> e2*e2 # should return -1

Element of a Clifford algebra, equal to

scalar (-1)

Suppose we wish to use a signature +++−, corresponding to the Minkowski metric in special
relativity; this would be indicated in package idiom by signature(3,1). Note that the clifford
objects themselves do not store the signature; it is used only by the product operation *.

> x <- rcliff(d=4,g=3,include.fewer=TRUE)

> y <- rcliff(d=4,g=3,include.fewer=TRUE)

Then we may multiply these two clifford objects using either the default positive-definite inner
product, or the Minkowski metric:

> x*y

Element of a Clifford algebra, equal to

+ 39 - 87e_1 + 75e_2 + 33e_12 - 155e_3 - 30e_13 - 22e_23 - 93e_123 - 51e_4 - 38e_14 - 9e_24

- 12e_134 + 23e_234 + 70e_1234

6 The clifford package

> signature(3,1) # switch to signature +++-

> x*y

Element of a Clifford algebra, equal to

- 11 - 39e_1 + 139e_2 + 41e_12 + 60e_3 + 55e_13 + 18e_23 - 78e_123 - 51e_4 - 22e_14 + 65e_24

92e_34 - 4e_134 + 23e_234 + 70e_1234

In the above, see how the products are different using the two inner products.

4. Grassmann algebra

A Grassmann algebra corresponds to a Clifford algebra with identically zero inner product.
Package idiom is to use a zero signature:

> signature(0,0) # specify null inner product

> e(5)^2 == 0 # cannot use is.zero() here because the jordan package masks clifford::is.zero()

[1] TRUE

This is a somewhat clunky way of reproducing the functionality of the stokes package. If we
have

> x <- clifford(list(1:3, c(2,3,7)), coeffs=3:4)

> y <- clifford(list(1:3, c(1,4,5), c(4,5,6)), coeffs=1:3)

> x %^% y

Element of a Clifford algebra, equal to

+ 9e_123456 - 8e_123457 - 12e_234567

then the stokes idiom for this would be:

> (x <- as.kform(rbind(1:3,c(2,3,7)),3:4))

val

2 3 7 = 4

1 2 3 = 3

> (y <- as.kform(rbind(1:3,c(1,4,5),4:6),1:3))

val

1 2 3 = 1

1 4 5 = 2

4 5 6 = 3

> x %^% y

Robin K. S. Hankin 7

val

1 2 3 4 5 6 = 9

2 3 4 5 6 7 = -12

1 2 3 4 5 7 = -8

5. Positive-definite inner product

Function signature() takes an infinite argument to make the inner product positive-definite:

> signature(Inf)

(internally the package sets the signature to .Machine$integer.max, a near-infinite integer).
With this, eiei = +1 for any i:

> e(53)^2

Element of a Clifford algebra, equal to

scalar (1)

6. Left and right contractions

Dorst (2002) defines the left contraction A⌋B and right contraction A⌊B (? calls these left
and right inner products) as follows:

A⌋B =
∑

r,s

⟨⟨A⟩r ⟨B⟩s⟩
s−r

(14)

A⌊B =
∑

r,s

⟨⟨A⟩r ⟨B⟩s⟩
r−s

(15)

Package idiom for these would be A%_|%B and A%|_%B —or lefttick(A,B) and righttick(A,B)—
respectively. Thus:

> (A <- rcliff())

Element of a Clifford algebra, equal to

+ 6 - 1e_2 - 3e_23 + 9e_4 - 2e_134 + 8e_1234 + 2e_25 - 6e_236 - 4e_1236 - 7e_3456

> (B <- rcliff())

Element of a Clifford algebra, equal to

+ 7 - 9e_1 + 1e_3 + 5e_24 - 8e_5 + 4e_35 - 4e_46 - 5e_1346 + 9e_456

> A %_|% B

8 The clifford package

Element of a Clifford algebra, equal to

+ 42 - 54e_1 - 45e_2 + 6e_3 - 5e_4 + 30e_24 - 48e_5 + 24e_35 - 46e_6 - 45e_136 - 24e_46 - 30e_1346

54e_456

> A %|_% B

Element of a Clifford algebra, equal to

+ 42 - 26e_2 + 63e_3 + 40e_13 - 21e_23 + 63e_4 + 2e_14 - 8e_124 + 18e_34 - 14e_134 + 72e_234

14e_25 + 28e_35 + 6e_26 + 4e_126 - 78e_236 - 28e_1236 - 28e_46 - 56e_346 + 7e_456 - 49e_3456

One thing to be wary of is the order of operations. Thus e2⌋e12 = −e1 (in a positive-definite
space) but

> e(2) %_|% e(1)*e(2)

Element of a Clifford algebra, equal to

the zero clifford element (0)

because this is parsed as (e2⌋e1)e2 = 0e2 = 0. To evaluate this as intended we need to include
brackets:

> e(2) %_|% (e(1)*e(2))

Element of a Clifford algebra, equal to

- 1e_1

although in this case it might be preferable to create the terms directly:

> e(2) %_|% e(1:2)

Element of a Clifford algebra, equal to

- 1e_1

6.1. Numerical verification of left and right inner product identities

Chisholm gives a number of identities for these products including

A⌋(B⌊C) = (A⌋B)⌊C (16)

A⌋(B⌋C) = (A ∧ B)⌋C (17)

A⌊(B ∧ C) = (A⌊B)⌊C (18)

In package idiom:

> A <- rcliff(); B <- rcliff(); C <- rcliff()

> A %_|% (B %|_% C) == (A %_|% B) %|_% C

Robin K. S. Hankin 9

[1] TRUE

> A %_|% (B %_|% C) == (A %^% B) %_|% C

[1] TRUE

> A %|_% (B %^% C) == (A %|_% B) %|_% C

[1] TRUE

7. Higher dimensional spaces

Abłamowicz and Fauser (2012) consider high-dimensional Clifford algebras and consider
the following two elements of the 1024-dimensional Clifford algebra which we may treat as
C7,3 spanned by e1, . . . , e10 and perform a calculation which I reproduce below (although
Abłamowicz and Fauser exploited Bott periodicity, a feature not considered here).

Firstly we change the default print method slightly:

> options("basissep" = ",")

(this separates the subscripts of the basis vectors with a comma, which is useful for clarity if
n > 9). We then define clifford elements x, y:

> (x <- clifford(list(1:3,c(1,5,7,8,10)),c(4,-10)) + 2)

Element of a Clifford algebra, equal to

+ 2 + 4e_1,2,3 - 10e_1,5,7,8,10

> (y <- clifford(list(c(1,2,3,7),c(1,5,6,8),c(1,4,6,7)),c(4,1,-3)) - 1)

Element of a Clifford algebra, equal to

- 1 + 4e_1,2,3,7 - 3e_1,4,6,7 + 1e_1,5,6,8

Their geometric product is given in the package as

> signature(7)

> x*y

Element of a Clifford algebra, equal to

- 2 - 4e_1,2,3 - 16e_7 + 8e_1,2,3,7 - 6e_1,4,6,7 - 12e_2,3,4,6,7 + 2e_1,5,6,8 + 4e_2,3,5,6,8

- 30e_4,5,6,8,10 + 10e_1,5,7,8,10

10 The clifford package

in agreement with Abłamowicz and Fauser (2012), although the terms appear in a different
order.

8. Conclusions and further work

The clifford package furnishes a consistent and documented suite of reasonably efficient R-
centric functionality. Further work might include closer integration with the stokes pack-
age (Hankin 2022).

References

Abłamowicz R, Fauser B (2012). “Symbolic Computations in Higher Dimensional Clifford
Algebras.” 1206.3683.

Dorst L (2002). Applications of geometric algebra in computer science and engineering, chap-
ter 2, pp. 35–46. Birkhäuser.

Hankin RKS (2022). “Stokes’s theorem in R.” arXiv, https://arxiv.org/abs/2210.17008.
doi:10.48550/ARXIV.2210.17008. URL https://arxiv.org/abs/2210.17008.

Hankin RKS (2025). “Clifford algebra in R: introducing the clifford package.” Advances in
Applied Clifford Algebra. doi:https://doi.org/10.1007/s00006-025-01403-9.

Meurer A, et al. (2017). “SymPy: symbolic computing in Python.” PeerJ Computer Science,
3, e103. ISSN 2376-5992. doi:10.7717/peerj-cs.103. URL https://doi.org/10.7717/

peerj-cs.103.

Snygg J (2010). A new approach to differential geometry using Clifford’s geometric algebra.
Birkhäuser.

The Sage Developers (2019). SageMath, the Sage Mathematics Software System (Version
8.6). URL https://www.sagemath.org.

Affiliation:

Robin K. S. Hankin
University of Stirling
E-mail: hankin.robin@gmail.com

1206.3683
https://arxiv.org/abs/2210.17008
https://doi.org/10.48550/ARXIV.2210.17008
https://arxiv.org/abs/2210.17008
https://doi.org/https://doi.org/10.1007/s00006-025-01403-9
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://www.sagemath.org
mailto:hankin.robin@gmail.com

	Introduction
	Existing work
	Generalization to arbitrary dimensions
	Clifford algebra in a pseudo-Euclidean space
	Wedge product of the exterior algebra is a special case of the geometric product

	The package in use
	Pseudo-Euclidean spaces
	Grassmann algebra
	Positive-definite inner product
	Left and right contractions
	Numerical verification of left and right inner product identities

	Higher dimensional spaces
	Conclusions and further work

