Package ‘cols4all’

October 27, 2025

License GPL-3
Title Colors for all
Type Package
LazyLoad yes

Description Color palettes for all people, including those with color vision deficiency. Popu-
lar color palette series have been organized by type and have been scored on several proper-
ties such as color-blind-friendliness and fairness (i.e. do col-
ors stand out equally?). Own palettes can also be loaded and analysed. Besides the com-
mon palette types (categorical, sequential, and diverging) it also includes cyclic and bivari-
ate color palettes. Furthermore, a color for missing values is assigned to each palette.

Version 0.10
Encoding UTF-8
Depends R (>=4.1.0),

Imports methods, grDevices, stats, abind, png, stringdist, colorspace
(>=2.1), spacesXYZ

Suggests colorblindcheck, kableExtra, knitr, shiny, shinyjs, ggplot2,
scales, rmarkdown, bookdown, bibtex, plotly

URL https://cols4all.github.io/cols4all-R/,
https://github.com/cols4all/cols4all-R

BugReports https://github.com/cols4all/cols4all-R/issues
RoxygenNote 7.3.3
NeedsCompilation no

Author Martijn Tennekes [aut, cre],
Marco Puts [ctb],
Achim Zeileis [ctb],
Jakub Nowosad [ctb],
Robin Lovelace [ctb],
Helgasoft [ctb],
Matthew Petroff [ctb],
Olivier Roy [ctb]

https://cols4all.github.io/cols4all-R/
https://github.com/cols4all/cols4all-R
https://github.com/cols4all/cols4all-R/issues

2 cols4all-package

Maintainer Martijn Tennekes <mtennekes@gmail.com>

Repository CRAN

Date/Publication 2025-10-27 06:10:57 UTC

Contents
colsdall-package 2
CAa . . . e e e 4
cda_Citation e 6
cda_data e 7
CAa_gUi 11
cda_info L e 13
cda_modify 14
CAa_OptioNS e e e 15
cda_palettes e e e e e 17
cda_ploto e e 19
CAA_SCOTES . o v v v e e e e e e e e e 20
cda_sysdata_import L e e e e e 21
scale_color_discrete_c4a_cat 22

Index 27

cols4all-package cols4all overview
Description

cols4all stands for: color palettes for all people, including those with color vision deficiency. Popu-
lar color palette series, such as ColorBrewer, have been organized by type and have been scored on
several properties such as color-blind-friendliness and fairness (i.e. do colors stand out equally?).
Own palettes can also be loaded and analysed. Besides the common palette types (categorical,
sequential, and diverging) it also includes bivariate color palettes. ggplot2 scales are included.

Details

This page provides a brief overview of all package functions.

Main functions

c4a_gui Dashboard for analyzing the palettes

c4da

Get the colors from a palette (c4a_na for the associated color for missing values)

c4a_plot Plot a color palette

cols4all-package 3

Palette names and properties

cda_palettes Get available palette names

c4a_series Get available series names

c4a_overview Get an overview of palettes per series X type

c4a_citation Show how to cites palettes (with bibtex code)

c4a_info Get information from a palette, such as type and maximum number of colors)

.P Environment via which palette names can be browsed with auto-completion (using $)

Importing and exporting palettes

c4a_data Build color palette data
c4a_load Load color palette data
cd4a_sysdata_import Import system data
c4a_sysdata_export Export system data

Author(s)

Maintainer: Martijn Tennekes <mtennekes@gmail . com>

Other contributors:

¢ Marco Puts <mputs@acm.org> [contributor]

¢ Achim Zeileis <Achim.Zeileis@R-project.org> [contributor]
¢ Jakub Nowosad <nowosad. jakub@gmail . com> [contributor]

* Robin Lovelace <rob@@x@gmail.com> [contributor]

* Helgasoft <contact@helgasoft.com> [contributor]

¢ Matthew Petroff <matthew@mpetroff.net> [contributor]

* Olivier Roy [contributor]

See Also
Useful links:
e https://cols4all.github.io/cols4all-R/

* https://github.com/cols4all/cols4all-R
* Report bugs at https://github.com/cols4all/cols4all-R/issues

https://cols4all.github.io/cols4all-R/
https://github.com/cols4all/cols4all-R
https://github.com/cols4all/cols4all-R/issues

4 c4a

c4a Get a cols4all color palette

Description

Get a cols4all color palette: c4a returns the colors of the specified palette, c4a_na returns the color
for missing value that is associated with the specified palette, and c4a_ramp returns a color ramp
function. Run c4a_gui to see all available palettes, which are also listed with c4a_palettes.

Usage
c4a(
palette = NULL,
n = NA,
m = NA,

type = C(”Cat”’ ”Seq”, Hdivll, "CyC", Hbivs", Hbivcll, ”bivdll’ ”bivgl’)7
reverse = FALSE,
diag_flip = FALSE,

order = NULL,

range = NA,

colorsort = "orig”,

format = c("hex", "rgb”, "hcl”, "RGB", "XYZ", "HSV", "HLS", "LAB", "polarLAB", "LUV",

"polarLUV"),

nm_invalid = c("error”, "repeat”, "interpolate"),

verbose = TRUE
)
cd4a_ramp(..., space = c("rgb", "Lab"), interpolate = c("linear"”, "spline"))
c4a_na(

palette = NULL,
type = C(”Cat”’ ”Seq”, Hdivll, "CyC", Hbivs", Hbivcll, ”bivdll’ ”bivg")’
verbose = TRUE

Arguments

palette name of the palette. See c4a_palettes for available palettes. If omitted, the
default palette is provided by c4a_default_palette. The palette name can
be prefixed with a "-" symbol, which will reverse the palette (this can also be
done with the reverse argument). For bivariate palettes, a "-" means reversed
horizontally (columns), a " | "means reversed vertically (row), and a "+" means
reversed in both directions. In addition, a "//" or "\\" will flip the palette
diagonally. This can be used in combination with "-", " |", or "+". E.g. "-//"
will reverse the columns and flip the palette diagonally.

c4a

type

reverse

diag_flip
order

range

colorsort

format

nm_invalid

verbose

space

interpolate

Value

number of colors. If omitted then: for type "cat” the maximum number of
colors is returned, for types "seq”, "div"”, and "cyc"”, 7,9, and 9 colors respec-
tively. For bivariate palettes n is the number of columns.

number of rows in case type is bivariate, so one of "bivs"”, "bivc”, "bivd" or
"bivg" (see c4a_types for descriptions)

type of color palette, in case palette is not specified: one of "cat"”, "seq”,
"div"”, "cyc”, "bivs”, "bivc", "bivd", "bivg"”. Run c4a_types for descrip-
tions.

should the palette be reversed? In case of a bivariate palette, a vector of two:
the first indicates the horizontal direction (columns) and the second the vertical
(rows).

should a bivariate palette be flipped diagonally?
order of colors. Only applicable for "cat” palettes

a vector of two numbers between 0 and 1 that determine the range that is used
for sequential and diverging palettes. The first number determines where the
palette begins, and the second number where it ends. For sequential "seq”
palettes, 0 means the leftmost (normally lightest) color, and 1 the rightmost
(often darkest) color. For diverging "seq"” palettes, 0 means the middle color,
and 1 both extremes. If only one number is provided, this number is interpreted
as the endpoint (with O taken as the start).

Sort the colors. Options: "orig"” (original order), "Hx" (hue, where X is a start-
ing number from O to 360), "C" (chroma), "L" (luminance). All these options
are available for "cat"” palettes, only the last one for "seq”, and none for the
other palette types.

format of the colors. One of: "hex" character vector of hex color values, "rgb”
3 column matrix of RGB values, "hcl” 3-column matrix of HCL values, or one
of the color classes from colorspace

what should be done in case n or m is larger than the maximum number of col-
ors or smaller than the minimum number? Options are "error” (an error is
returned), "repeat”, the palette is repeated, "interpolate” colors are interpo-
lated. For categorical "cat” palettes only.

should messages be printed?
passed on to c4a.
a character string; interpolation in RGB or CIE Lab color spaces

use spline or linear interpolation

A vector of colors (c4a) and a color (c4a_na)

Examples

get the colors from brewer.set3 and plot them
set3 <- c4a("brewer.set3")
c4a_plot_hex(set3, nrows = 1)

6 c4a_citation

c4a(’hel.set2”, n = 36) |> c4a_plot_hex()
c4a("-hcl.set2”, n = 12) |> c4a_plot_hex()

how to know which palettes are avaiable?
1) Via the interactive tool:

Not run:

cda_gui()

End(Not run)

2) Via the overview function:
c4a_palettes(type = "cat")

c4a_palettes(series = "brewer")
c4a_palettes(type = "cat"”, series = "brewer")

Run cd4a_overview() to see which are available

3) Via .P
.P$brewer$cat$set3

each palette contains a color for missing values

c4a("carto.safe”, 7)
c4a_na("carto.safe")

c4a_plot_hex("carto.safe”, n = 7, include.na = TRUE)

c4a_plot_hex("carto.safe”, n = 7, include.na = TRUE)
same (but shorter) as
cda_plot_hex(c(c4a("carto.safe”, 7), cd4a_na("carto.safe”)), include.na = TRUE)

color ramp
c4a("viridis"”, 100) |> c4a_plot()
cda_ramp("viridis”)(100) |> cd4a_plot()

cda_citation Show how to cite palettes

Description

Show how to cite palettes

Usage

c4a_citation(name, verbose = TRUE)

c4a_data 7

Arguments

name name of a palette or series

verbose should text be printed (if FALSE only a utils: :bibentry object is returned)
Value

utils::bibentry object

Examples

c4a_citation("hcl")

c4a_citation("poly.glasbey”)

c4a_data Build and load palette data

Description

Build palette data. Both c4a_data and c4a_data_as_is build data palette. The difference is that
the former may restructure the palette colors (see details) whereas the latter takes the palette colors
as they are. Data can subsequently be loaded into cols4all via c4a_load. The c4a_data function
can also be used to read c4a_info objects, which contain data for a single palette.

Usage
cda_data(

X,

xNA = NA,
types = "cat",
series = "x",
nmin = NA,
nmax = NA,
ndef = NA,
mmin = NA,
mmax = NA,
mdef = NA,

format.palette.name = TRUE,
remove.blacks = NA,
remove.whites = NA,
take.gray.for.NA = FALSE,
remove.other.grays = FALSE,
light.to.dark = FALSE,
remove.names = TRUE,

biv.method = "byrow",

space = "rgb",
range_matrix_args = list(NULL),

bib = NA,
description

)
c4a_load(data,

c4a_data_as_is
format.palet
remove.black
remove.white
take.gray.fo
remove.other
light.to.dar
remove.names

Arguments

X

XNA
types
series

nmin, nmax, ndef

mmin, mmax, mdef
format.palette

remove.blacks,

light.to.dark

remove.names

c4a_data

= NA

overwrite = FALSE)

(

te.name = FALSE,
s = FALSE,

s = FALSE,

r.NA = FALSE,
.grays = FALSE,
k = FALSE,

= FALSE

either a named list of color palettes or a c4a_info object. For the first case: see
details for indexing. The second case will bypass the other arguments.

colors for missing values. Vector of the same length as x (or length 1). For NA
values, the color for missing values is automatically determined (preferable a
light grayscale color, but if it is indistinguishable by color blind people, a light
color with a low chroma value is selected)

character vector of the same length as x (or length 1), which determines the type
of palette: "cat”, "seq”, "div", "cyc”, "bivs”, "bivc", "bivd", or "bivg".
See details.

a character vector of the same length as x (or length 1), which determines the
series.

minimum / maximum / default number of colors for the palette. By default:
nmin =1, for "cat"” nmax and ndef the number of supplied colors. For the other
types, nmax is Inf. ndef is 7 for "seq”, 9. For diverging palettes, these numbers
refer to the number of columns. (See mmin, mmax, mdef for the rows)

minimum / maximum / default number of rows for bivariate palettes.
.name
should palette names be formatted to lowercase/underscore format?
remove.whites, take.gray.for.NA, remove.other.grays
These arguments determine the processing of grayscale colors for categorical
"cat"” palettes: if remove.blacks and there are (near) blacks, these are removed
first. Next, if take.gray.for.NA, xNA is NA, and a palette contains at least
one grayscale color (which can also be white), this is used as color for missing
values. In case there are more than one grayscale color, the lightest is taken.
remove.other.grays determines what happens with the other grays.

should sequential "seq" palettes be automatically ordered from light to dark?

should individual color names be removed?

c4a_data 9

biv.method method to a create bivariate palette. Options are "byrow” means that the colors
are wrapped row-wise to a color matrix where the number of rows and columns
is automatically determined, "byrowX" the same but with X (integer between
2 and 9) columns, "bycol” and "bycolX similar but wrapped column-wise.
"div2seqseq” and "div2catseq means that colors are extracted from a di-
vering palette. The former translates colors into a matrix with the neutral color
in the diagonal, while the latter places the neutral color in the middle column.
"seg2uncseq”

space color space in which interpolated colors are determined. Options: "rgb"” (RGB)
and "Lab" (CIE Lab).

range_matrix_args
list of lists, one for each palette. Each such list specifies the range of sequential
and diverging palettes, in case they are not indexed. See details.

bib bibtex reference in the form of a utils: :bibentry object.

description description of the series. If series contains multiple series (rather than one
value), please specify a vector of the same length as series. See c4a_series
for the descriptions of the currently loaded series.

data cols4all data created with c4a_data
overwrite in case the palettes already exist (i.e. the full names), should the old names be
overwritten?

passed on to c4a_data

Details

In cols4all, palettes are organized by series and by type. The series or *family’ specifies where
the palettes belong to. For instance "brewer” stands for the color palettes from ColorBrewer. Run
cd4a_series to get an overview of loaded series. The type specifies what kind of palette it is; see
c4a_types for a description of the implemented ones.

This function structures the palette data, such that it is consistent with the other palette data. This
includes:

¢ Palette names are made consistent. We use the convention "my_series.my_palette”, so all
lower case, a period to separate the series name from the palette name, and underscores to
separate words.

* (Only for c4a_data, bypassed for c4a_data_as_is) Categorical palettes: black is removed
from categorical palettes, and a grayscale color is assigned to be used for missing values (other
grayscale colors are removed). Sequential palettes are sorted from light to dark.

Indexing: for a categorical "cat"” palette, an optional "index" attribute determines which colors to
use for which lengths: if the palette consists of k colors, index should be a list of k, where the i-th
element is an integer vector of length i with values 1,2,....k. See c4a_info("rainbow"”) and for an
example.

Range: sequential and diverging palettes are usually defined for 9+ colors. The optional "range_matrix”
attribute determines that range is used for less colors. It is a n x 2 matrix where row i defines the
applied range of a palette of length i. For sequential palettes a range c(@, 1) means that the palette
is generated (via a color ramp) between the two outermost colors. For diverging palettes, a range

10 c4a_data

c(x, y) means that both sides of the palette are generated (via a color ramp) from x, which is the
distance to the center color, to y which represents both outermost colors.

J

The range is automatically set for sequential and diverging palettes that have no "index" or "range_matrix’
attribute via the parameter range_matrix_args, which is a list per palette. The arguments for a
sequential palette are: nmin the minimum number of colors for which the range is reduced, nmax,

the number of colors for which the range is set to c(@,1), slope_min and slope_max determine

the slopes of range reduction from a palette of length nmax to nmin, and space sets the color space

for which the color ramp is applied ("rgb” or "Lab"). The arguments for a diverging palette are the

same, but only one slope is used (namely for the outermost colors).

It may take some time to process, especially large categorical palettes, because of calculations of
the color blind checks.

Value

c4a_data object, which is a list of four items: data, s, citation, and description

Examples

palettes extracted Pink Floyd albums
pf = list(piper = c("#391C1C", "#C6C6AA", "#713939", "#C6391C",

"#C6E3C6", "#AA7155", "#AABE71", "#C68E71"),

saucerful = c("#000000", "#1C1C1C", "#393939", "#FFFFFF",
"#555555", "#8E8E71", "#E3C6AA", "#715539"),

atom = c("#C6E3FF", "#397139", "#557139", "#E3E3C6",
"#1C1C1C", "#1C551C", "#AAAASE", "#8EC6E3"),

meddle = c("#715539", "#553939", "#8E7155", "#71AAAA",
"#8E8E71", "#1CAAE3", "#55C6E3", "#AA7155"),

obscured = c("#000000", "#1C1C1C", "#393939", "#717155",
"#BE8E71", "#715539", "#C6AA8E", "#E3C6AA"),

moon = c("#000000", "#FFQ00Q", "#FF9224", "#FFFF0OQ",
"#71C600", "#QOC6FF", "#8E398E", "#FFFFFF"),

wish = c("#FFFFFF", "#AAC6E3", "#8ESESE", "#717155",
"#555539", "#8E8E71", "#555555", "#8E7155"),

animals = c("#391C39", "#393955", "#E3C671", "#718E8E",
"H#AAAABE", "#C67139", "#AA5539", "#E3AA39"),

wall = c("#FFFFFF", "#E3E3E3", "#C6C6C6", "#AAAAC6",
"#1C1C1C", "#000000", "#BESESE", "#E3C6E3"),

cut = c("#000000", "#E30000", "#AAQ0OQ", "#391C55",
"#FFE3E3", "#1C1C00", "#FFAA55", "#8EBE55"),

lapse = c("#000000", "#8E8EC6", "#8EBE71", "#7171AA",
"#39391C", "#717171", "#AAAAAA", "#E3E3E3"),

division = c("#000000", "#FFFFC6", "#00398E", "#AABE55",
"#39558E", "#C6AA71", "#39391C", "#555571"),

more = c("#0055AA", "#FFAA1C", "#1C71AA", "#003971",
"#E38E55", "#E3AAAA", "#718EAA", "#71718E"),

umma = c("#AA8E71", "#555539", "#39391C", "#1C1C1C",
"#E3E3C6"”, "#715539", "#391C1C", "#8E7155"),

relics = c("#3955AA", "#1C3971", "#5571C6", "#715555",
"#8E7155", "#E3AA71", "#8ESEAA", "#E3FFFF"),

river = c("#393939", "#555555", "#39558E", "#C6C6C6",
"#718EAA", "#1C1C1C", "#717171", "#E3C68E"))

cda_gui 11

if (requireNamespace("colorblindcheck”, quietly = TRUE)) {
pfdata = c4a_data_as_is(pf, series = "pinkfloyd”,

description = "Palettes extracted from Pink Floyd album covers")
c4a_load(pfdata)

c4a_series()
c4a_overview()

if (requireNamespace("shiny") &&
requireNamespace("shinyjs") &&
requireNamespace("kableExtra") &&
requireNamespace("colorblindcheck”) &&
requireNamespace("plotly"”) &&
interactive()) {

cd4a_gui(series = "pinkfloyd”, n = 8)

3

3

cda_gui Graphical user interface to analyse palettes

Description

Graphical user interface to analyse palettes. c4a_table shows a table that can be opened in the
browser. c4a_gui is a graphical user interface (shiny app) around this table.

Usage

cd4a_gui(type = "cat”, n = NA, series = "all")

c4a_table(
type = c("cat”, "seq", "div", "cyc", "bivs", "bivc", "bivd", "bivg"),
n = NULL,
m = NULL,
continuous = FALSE,
filters = character(0),

cvd.sim = c("none", "bw", "deutan”, "protan”, "tritan"),
sort = "name”,

text.format = "hex”,

text.col = "same”,

series = "all",

range = NA,

colorsort = "orig",

include.na = FALSE,
show.scores = FALSE,
columns = NA,
verbose = TRUE

Arguments

type

n, m

series

continuous

filters

cvd.sim

sort

text.format

text.col

range

colorsort

include.na

show. scores

columns

verbose

cda_gui

type of palette. Run c4a_types to see the implemented types and their descrip-
tion. For c4a_gui it only determines which type is shown initially.

n is the number of displayed colors. For bivariate palettes "biv"”, n and m are the
number of columns and rows respectively. If omitted: for "cat” the full palette
is displayed, for "seq"”, "div" and "cyc”, 7, 9, and 9 colors respectively, and
for "bivs"/"bivc"/"bivd"/"bivg" 4 columns and rows. For c4a_gui it only
determines which number of colors initially.

Series of palettes to show. See c4a_series for options. By default, "all”,
which means all series. For c4a_gui it only determines which series are shown
initially.

should the palettes as continuous instead of discrete. Only applicable for "seq”,
"div", and "cyc".

filters to be applied. A character vector with a subset from:"nmax” (only palettes

where n = nmax, which is only applicable for categorical palettes), "cbf” (colorblind-

friendly), "fair” (fairness),”naming"” (nameability), "crW" (sufficient contrast
ratio with white), and "crB" (sufficient contrast ratio with black). By default an
empty vector, so no filters are applied.

n on

color vision deficiency simulation: one of "none”, "bw”, "deutan”, "protan”,
"tritan”

column name to sort the data. The available column names depend on the argu-
ments type and show. scores. They are listed in the warning message. Use a
"-" prefix to reverse the order.

The format of the text of the colors. One of "hex"”, "RGB” or "HCL".

The text color of the colors. By default "same”, which means that they are the
same as the colors themselves (so invisible, but available for selection). "auto”
means automatic: black for light colors and white for dark colors.

vector of two numbers that determine the range that is used for sequential and
diverging palettes. Both numbers should be between 0 and 1. The first number
determines where the palette begins, and the second number where it ends. For
sequential palettes, 0 means the leftmost (normally lightest) color, and 1 the
rightmost (often darkest) color. For diverging palettes, 0 means the middle color,
and 1 both extremes. If only one number is provided, this number is interpreted
as the endpoint (with O taken as the start). By default, it is set automatically,
based on n.

Sort the colors ("cat” only). Options: "orig" (original order), "Hx" (hue,
where x is a starting number from 0 to 360), "C"” (chroma), "L" (luminance)

should color for missing values be shown? FALSE by default

should scores of the quality indicators be printed? See details for a description
of those indicators.

number of columns. By default equal to n or, if not specified, 12. Cannot be
higher than the palette lengths.

should messages and warnings be printed?

c4a_info 13

Details

See vignette how the properties are calculated. Parameters, such as threshold values which deter-
mined when palettes are classified as "colorblind-friendly", can be specified via c4a_options. Also
the nameability score function (which is in development) can be specified there. See the examples
of c4a_options for both use cases.

Value

An HMTL table (kableExtra object)

See Also

References of the palettes: cols4all-package.

Examples

if (requireNamespace(”shiny"”) &&
requireNamespace("shinyjs") &&
requireNamespace("kableExtra") &&
requireNamespace("colorblindcheck”) &&
interactive()) {

c4a_gui()

categorical palettes with maximum number of colors
c4a_table(type = "cat")

sort sequential palettes by hue
c4a_table(type = "seq”, n = 7, sort = "H")

sort sequential palettes by hue type (how many hues are used)
c4a_table(type = "seq”, n =5, sort = "hues")
3

c4a_info Get information from a cols4all palette

Description

Get information from a cols4all palette

Usage

c4a_info(palette, no.match = c("message”, "error”, "null"”), verbose = TRUE)

14 c4a_modify

Arguments
palette name of the palette
no.match what happens is no match is found? Options: "message”: a message is thrown
with suggestions, "error": an error is thrown, "null”: NULL is returned
verbose should messages be printed?
Value

list with the following items: name, series, fullname, type, palette (colors), na (color), nmax, and
reverse. The latter is TRUE when there is a "-" prefix before the palette name.

c4a_modify Edit cols4all palettes (in development)

Description

Edit cols4all palettes. c4a_duplicate duplicates an existing cols4all palette, and c4a_modify is used
to change the colors. Use c4a_data to craete palettes from scratch.

Usage
c4a_modify(palette, x = NULL, xNA = NULL)

c4a_duplicate(palette, name = NA)

Arguments
palette name of the palette
X vector of the new colors. It should either the same length, or a named vector,
where the names correspond to the index numbers. E.g. c(”3" = "#AABBCC")
will replace the third color with the color "#AABBCC".
xNA the new color for missing values.
name name of new palette
See Also
cd4a_data()
Examples

c4a_duplicate("brewer.set2", "set2_mod")
c4a_modify("set2_mod", c("4" = "#EABAB8"))

c4a_options 15

c4a_options Set cols4all options

Description

Get or set global options for c4a. Works similar as the base function options

Usage

c4a_options(...)

Arguments
Use character values to retrieve options. To set options, either use named argu-
ments (where the names refer to the options), a list that consists of those options.
Details
Option Description
defaults Default palettes per type
CBF_th Parameters that label a palette as color blind friendly
CBVEF_th Parameters that label a palette as very color blind friendly
CBU_th Parameters that label a palette as color blind unfriendly
CrangeFair Maximum chroma range for which a palette is considered harmonic
CrangeUnfair Minimum chroma range for which a palette is considered disharmonic
LrangeFair Maximum luminance range for which a palette is considered harmonic
LrangeUnfair Minimum luminance range for which a palette is considered disharmonic
Cintense Chroma of colors that are considered intense
Cpastel Chroma of colors that are considered ’pastel’

HwidthDivRainbow A diverging palette is labeled as ‘rainbow hue’ if HwidthL or HwidthR are at least HwidthDivRainbow
HwidthDivSingle A diverging palette is labeled as ’single hue’ if HwidthL and HwidthR are at most HwidthDivSingle
HwidthSeqRainbow A sequential palette is labeled as 'rainbow hue’ if Hwidth is at least HwidthSeqRainbow
HwidthSeqSingle A sequential palette is labeled as ’single hue’ if Hwidth is at most HwidthSeqSingle

naming_fun Function that returns a distance matrix with the naming_colors (see examples)

naming_fun_args List of arguments for naming_fun

naming_colors Vector of prototype colors for the color names (see examples)

naming_softmax List of parameters for the softmax function applied to the distance matrix
Value

A list of options

16 c4a_options

Examples

Example how to lower the color-blind friendly threshold
for categorical palettes (so more smileys in the GUI!)
CBF_th: one smiley

CBVF_th: two smileys

current table
Not run:
c4a_table(n = 9, sort = "cbfriendly”)

opts = c4a_options("CBF_th"”, "CBVF_th")
optsCBF_thcat["min_dist"] = 7
opts$CBVF_th$cat["min_dist"”] = 10

old = c4a_options(opts)

more smileys :-) :-)
c4a_table(n = 9, sort = "cbfriendly")

set the old settings back
c4a_options(old)

End(Not run)
Example how to use own nameability function

#
#
This function should:

- have an argument "pal" (vector of colors)

- optionally have other arguments

- return a distance matrix of n rows (length of pal) and k columns (classes).

It shoud have columns names that correspond to the naming colors (see below).
naming_RGB = function(pal) {

cols = colorspace: :hex2RGB(pal)

coords = cols@coords

cls = apply(coords, MARGIN = 1, which.max)

mx = apply(coords, MARGIN = 1, max)

dominance = ((mx + 0.001) / (rowSums(coords) + 0.001))
cls[dominance < ©.4] = 4L

m = matrix(@, nrow = length(pal), ncol = 4,
dimnames = list(NULL, c("Red”, "Green"”, "Blue"”, "Other")))
for (i in 1:nrow(m)) {
ml[i, cls[il] =1
3

-m

}

testing this function...
naming_RGB(c4a("brewer.set1")) #fair enough

c4a_palettes 17

This vector should contain the 'prototype' colors, and have names that correspond
to the column names of the returned matrices by the function above.

names_RGB =
c("Red" = "#FFQ000Q",
"Green" = "#Q0FF00",
"Blue" = "#0QQ0OFF",
"Other"” = "#AAAAAA")

Set the options (may take a while because if calculated the nameability scores)
Not run:

c4a_options(naming_fun = naming_RGB,

naming_fun_args = list(),

naming_colors = names_RGB)

End(Not run)

cda_palettes Get available palette names and series

Description

c4a_palettes lists all available cols4all color palettes. Palettes are organized by series. The avail-
able series are listed with c4a_series. Palettes are also organized per functional type, where we
currently support: categorical "cat", sequential "seq”, diverging "div"", cyclic "cyc”, and bivari-
ate (seq x seq "bivs"”, seq x cat "bivc", seq x div "bivd", seq x desaturated "bivg") palette types.
The function c4a_types lists all available types. The function c4a_overview gives an overview
table of the number of palette per series and type. In an IDE with auto-completion (such as RStudio)
it is possible to browse through the palette names with .P (using $ like in lists).

Usage

c4a_palettes(
type = C(”all”, ”Cat”’ ”Seq"’ Ildivll’ ”CyC
series = NULL,
full.names = TRUE

n

, ”biVS”, ”biVC”, ”bin”, ”bng”),

c4a_series(type = c("all”, "cat", "seq"”, "div", "cyc"), as.data.frame = TRUE)
c4a_types(series = NULL, as.data.frame = TRUE)
c4a_overview(return.matrix = FALSE, zero.count.as.NA = FALSE)

.P

18 c4a_palettes

Arguments
type type of color palette: one of "all"” (all palettes), "cat”, "seq", "div", "cyc”,
"bivs", "bivc", "bivd", or "bivg". See c4a_types for descriptions.
series series to list the palettes from. Run c4a_series to see the options.
full.names should full names, i.e. with the prefix "series."? By default TRUE.

as.data.frame should c4a_series and c4a_types return the result as a data.frame, with de-
scription included as a column?

return.matrix should only a matrix be returned with numbers per palette and type? If FALSE a
data.frame is returned with addional information

zero.count.as.NA

should zeros counted in the table be returned as O (FALSE, default) or as NA
(TRUE)?

Format

An object of class environment of length 21.

Value

names of the loaded color palettes

See Also

References of the palettes: cols4all-package.

Examples
c4a_series()
c4a_types()
c4a_overview()

c4a_palettes(type = "cat”, series = "tol")

c4a_palettes(type = "seq"”, series = "kovesi")

handy when auto-completion is available:
.P$kovesi$seq$linear_terrain

c4a_plot 19

cda_plot Plot a color palette

Description

Plot a color palette, either a cols4all palette, or a color vector. c4a_plot_cvd is a shortcut to include
color-blind simulated colors, ‘c4a_plot_hex is a shortcut to print hex codes instead of labels.

Usage

cda_plot(
palette,

dark = FALSE,
include.na = FALSE,
hex = FALSE,
include.cvd = FALSE,

nrows = NA,
ncols = NA

)
cd4a_plot_cvd(...)

c4a_plot_hex(...)

Arguments
palette Palette name (see c4a) or a color vector
arguments passed on to c4a
dark dark (black) background?
include.na should a color for missing values be included?
hex should hex codes be printed instead of color labels (or numbers)?
include.cvd should color deficiency simulated colors be included?
nrows, ncols Number of rows and columns. Ignored if include.cvd = TRUE (in that case,
rows are used for the simulated colors). By default automatically calculated
based on aspect ratio of the device.
Value

Besides the plot, a gTree is returned silently

20 c4a_scores

Examples

c4a_plot("brewer.set1”, nrows=1)
c4a_plot_hex("brewer.set1”, nrows=1)
c4a_plot_cvd("brewer.set1")
c4a_plot_cvd("greens")
c4a_plot_cvd("tol.pu_gn")

c4a_plot(.P$cols4allsbivs$pu_gn_bivs, n = 5)

c4a_plot(.Pmetbivcsmonet)

c4a_plot(.P$cols4alls$bivd$pu_gn_bivd, n = 5)
c4a_plot(.P$cols4allsbivg$gn_bivg, n = 5)
cd4a_scores Get information from a cols4all palette
Description
Get information from a cols4all palette
Usage
c4a_scores(
palette = NULL,
type = NULL,
series = NULL,
n = NA,
no.match = c("message”, "error"”, "null"),
verbose = TRUE
)
Arguments
palette name of the palette
type type of palettes (in case palette is not specified)
series series name (in case palette is not specified)
n number of colors
no.match what happens is no match is found? Options: "message"”: a message is thrown

with suggestions, "error”: an error is thrown, "null”: NULL is returned

verbose should messages be printed?

c4a_sysdata_import 21

Value

list with the following items: name, series, fullname, type, palette (colors), na (color), nmax, and
reverse. The latter is TRUE when there is a "-" prefix before the palette name.

Examples
c4a_scores("blues3”)

pals = c4a_palettes(type = "cat")
scores_cat7 = t(sapply(pals, cd4a_scores, n = 7))

head(scores_cat7)

cd4a_sysdata_import Import and export system data

Description

Import and export system data. c4a_sysdata_import will import system data and overwrite the
current system data, c4a_sysdata_export will export the current system data, and c4a_sysdata_remove
(partly) removes system data.

Usage

c4a_sysdata_import(data)
c4a_sysdata_export()

c4a_sysdata_remove(fullnames = NULL, series = NULL, are.you.sure = NA)

Arguments
data cols4all data (see c4a_data)
fullnames full palette names (so in the format series.palette_name)
series a character vector of series names that should be removed (use "all” to remove

all).

are.you.sure are you sure you want to remove series?

Value

c4a_sysdata_export returns the system data (a list)

Examples

X = c4a_sysdata_export()
c4a_sysdata_import(x)

y = c4a_sysdata_export()
identical(x, y)

22 scale_color_discrete_c4a_cat

scale_color_discrete_c4a_cat
coldall scales for ggplot2

Description

col4all scales for ggplot2. The scale functions are organized as scale_<aesthetic>_<mapping>_c4a_<type>,
where the <aesthetic> should be either colo(u)r or fill, <mapping> refers to the mapping that
is applied (discrete, continuous or binned), and <type> is the palette type: cat, seq, or div

Usage

scale_color_discrete_c4a_cat(
palette = NULL,
reverse = FALSE,
order = NULL,

)

scale_colour_discrete_c4a_cat(
palette = NULL,
reverse = FALSE,
order = NULL,

)
scale_fill_discrete_c4a_cat(palette = NULL, reverse = FALSE, order = NULL, ...)

scale_color_discrete_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,

)

scale_colour_discrete_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,

)
scale_fill_discrete_c4a_seq(palette = NULL, reverse = FALSE, range = NULL, ...)
scale_color_discrete_c4a_div(

palette = NULL,
reverse = FALSE,

scale_color_discrete_c4a_cat 23

range = NULL,

)

scale_colour_discrete_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,

)

scale_fill_discrete_c4a_div(palette = NULL, reverse = FALSE, range = NULL, ...)

scale_color_continuous_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = @,
n_interp = 11,

)

scale_colour_continuous_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_fill_continuous_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_color_continuous_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

24

scale_colour_continuous_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = @,
n_interp = 11,

)

scale_fill_continuous_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_color_binned_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_colour_binned_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_fill_binned_c4a_seq(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_color_binned_c4a_div(
palette = NULL,

scale_color_discrete_c4a_cat

scale_color_discrete_c4a_cat 25

reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

)

scale_colour_binned_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = @,
n_interp = 11,

)

scale_fill_binned_c4a_div(
palette = NULL,
reverse = FALSE,
range = NULL,
mid = 0,
n_interp = 11,

Arguments

palette, reverse, order, range
See c4a.

parameters passed on to the underlying scale functions: discrete_scale, continuous_scale,
and binned_scale.

mid data value that should be mapped to the mid-point of the diverging color scale.
By default 0, which is useful for many use cases. However, if the data has only
positive (or only negative) values, it may be worthwhile to specify this. Use NA
to set it to the middle of the value range.

n_interp number of discrete colors that should be used to interpolate the continuous color
scale. Recommended to use an odd number to include the midpoint

Value

A ggplot2 component that defines the scale

Examples

if (require("ggplot2")) {

data("diamonds™)

diam_exp = diamonds[diamonds$price >= 15000,]
diam_exp$clarity[1:500] = NA

26

discrete categorical scale
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2) +
scale_color_discrete_c4a_cat("carto
theme_light()

missing values
c4a_plot("tol.muted”, 8)
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2, shape = 21) +

scale_color_discrete_c4a_cat

price, color = color)) +

.safe") +

price, fill = clarity)) +

scale_fill_discrete_c4a_cat("tol.muted") +

theme_light()

discrete sequential scale
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2) +

price, color = cut)) +

scale_color_discrete_c4a_seq("hcl.blues2") +

theme_light()

continuous sequential scale
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2) +
scale_color_continuous_c4a_seq("hcl
theme_light()

continuous diverging scale
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2) +
scale_color_continuous_c4a_div("wes
theme_light()

binned sequential scale
ggplot(diam_exp, aes(x = carat, y =
geom_point(size = 2) +

price, color = depth)) +

.blues2”, range = c(0.4, 1)) +

depth, color = price)) +

.zissoul”, mid = NA) +

price, color = depth)) +

scale_color_binned_c4a_seq("scico.batlow”, range = c(0.4, 1)) +

theme_light()
}

Index

x color
cols4all-package, 2

x datasets
c4a_palettes, 17

x visualization
cols4all-package, 2

.P,3

.P (c4a_palettes), 17

binned_scale, 25

c4a, 2,4, 19,25

c4a_citation, 3,6

c4a_data, 3,7

c4a_data(), 14

c4a_data_as_is (c4a_data), 7

c4a_duplicate (c4a_modify), 14

cd4a_gui, 2,4, 11

c4a_info, 3,8, 13

c4a_load, 3,7

c4a_load (c4a_data), 7

c4a_modify, 14

c4a_na, 2

c4a_na(c4da), 4

c4a_options, 13,15

c4a_overview, 3

c4a_overview (cd4a_palettes), 17

c4a_palettes, 3,4, 17

c4a_plot, 2,19

c4a_plot_cvd (c4a_plot), 19

c4a_plot_hex (c4a_plot), 19

c4a_ramp (c4a), 4

c4a_scores, 20

c4a_series, 3,9, 12

c4a_series (c4a_palettes), 17

c4a_sysdata_export, 3

c4a_sysdata_export
(c4a_sysdata_import), 21

c4a_sysdata_import, 3, 21

27

c4a_sysdata_remove
(c4a_sysdata_import), 21

c4a_table (c4a_gui), 11

c4a_types, 5,9, 12, 18

c4a_types (c4a_palettes), 17

colorspace, 5

cols4all (cols4all-package), 2

cols4all-package, 2

continuous_scale, 25

discrete_scale, 25

gTree, 19

scale_color_binned_c4a_div

(scale_color_discrete_c4a_cat),

22
scale_color_binned_c4a_seq

(scale_color_discrete_c4a_cat),

22
scale_color_continuous_c4a_div

(scale_color_discrete_c4a_cat),

22
scale_color_continuous_c4a_seq

(scale_color_discrete_c4a_cat),

22
scale_color_discrete_c4a_cat, 22
scale_color_discrete_c4a_div

(scale_color_discrete_c4a_cat),

22
scale_color_discrete_c4a_seq

(scale_color_discrete_c4a_cat),

22
scale_colour_binned_c4a_div

(scale_color_discrete_c4a_cat),

22
scale_colour_binned_c4a_seq

(scale_color_discrete_c4a_cat),

22

28 INDEX

scale_colour_continuous_c4a_div
(scale_color_discrete_c4a_cat),
22

scale_colour_continuous_c4a_seq
(scale_color_discrete_c4a_cat),
22

scale_colour_discrete_c4a_cat
(scale_color_discrete_c4a_cat),
22

scale_colour_discrete_c4a_div
(scale_color_discrete_c4a_cat),
22

scale_colour_discrete_c4a_seq
(scale_color_discrete_c4a_cat),
22

scale_fill_binned_c4a_div
(scale_color_discrete_c4a_cat),
22

scale_fill_binned_c4a_seq
(scale_color_discrete_c4a_cat),
22

scale_fill_continuous_c4a_div
(scale_color_discrete_c4a_cat),
22

scale_fill_continuous_c4a_seq
(scale_color_discrete_c4a_cat),
22

scale_fill_discrete_c4a_cat
(scale_color_discrete_c4a_cat),
22

scale_fill_discrete_c4a_div
(scale_color_discrete_c4a_cat),
22

scale_fill_discrete_c4a_seq
(scale_color_discrete_c4a_cat),
22

	cols4all-package
	c4a
	c4a_citation
	c4a_data
	c4a_gui
	c4a_info
	c4a_modify
	c4a_options
	c4a_palettes
	c4a_plot
	c4a_scores
	c4a_sysdata_import
	scale_color_discrete_c4a_cat
	Index

