Package 'grmsem'

October 13, 2022

Title Genetic-Relationship-Matrix Structural Equation Modelling (GRMSEM)

Version 1.1.0

Maintainer Beate StPourcain <Beate.StPourcain@mpi.nl>

Description Quantitative genetics tool supporting the modelling of multivariate genetic variance structures in quantitative data. It allows fitting different models through multivariate genetic-relationship-matrix (GRM) structural equation modelling (SEM) in unrelated individuals, using a maximum likelihood approach. Specifically, it combines genome-wide genotyping information, as captured by GRMs, with twin-research-based SEM techniques, St Pourcain et al. (2017) <doi:10.1016/j.biopsych.2017.09.020>, Shapland et al. (2020) <doi:10.1101/2020.08.14.251199>.

Depends R (>= 3.5)

Imports msm (>= 1.6), numDeriv, optimParallel, stats, utils

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Suggests bookdown, knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

URL https://CRAN.R-project.org/package=grmsem,

https://gitlab.gwdg.de/beate.stpourcain/grmsem

BugReports https://gitlab.gwdg.de/beate.stpourcain/grmsem/-/issues

Author Beate StPourcain [aut, cre] (<https://orcid.org/0000-0002-4680-3517>), Alexander Klassmann [ctb]

Repository CRAN

Date/Publication 2021-01-29 09:20:08 UTC

R topics documented:

	14
ph.small	12
bh.large	
grmsem.var	11
grmsem.stpar	10
grmsem.fit	6
grmsem.fcoher	5
grmsem.biher	4
grm.input	4
grm.bin.input	3
G.small	3
it.large	2

Index

fit.large

Prefitted model: large data set

Description

A large quad-variate data set was simulated assuming an underlying Cholesky model, with 5000 observations per trait and high polygenicity (20,000 SNPs per genetic factor). Genetic trait variances were set to 0.30, 0.60, 0.60 and 0.70 respectively, and residual variances to 0.70, 0.40, 0.40 and 0.30. The data set is described in full, including genetic and residual covariances, in the vignette. A 4-variate Cholesky model was fitted to the data as described in the vignette and the output has been saved in fit.large.RData.

Usage

fit.large

Format

gsem.fit output (a list object)

model.in input parameters

formula fitted formula

model.fit optimisation output

model.out fitted gsem model

VCOV variance covariance matrix

k Number of phenotypes

n Number of observations across all phenotypes

n.obs Number of observations per phenotype

n.ind Number of individuals with at least one phenotype

model gsem model

G.small

con constraint **ph.nms** phenotype names

G.small

Symmetric GRM data: small data set

Description

A genetic relationship matrix for a small tri-variate data set was simulated assuming an underlying Cholesky model, with 100 observations per trait and low polygenicity (150 SNPs per genetic factor). Genetic trait variances were set to 0.30, 0.60, 0.60 and 0.70 respectively, and residual variances to 0.70, 0.40, 0.40 and 0.30. The data set is described in full, including genetic and residual covariances, in the vignette. The traits are influenced by three independent genetic factors (A1, A2 and A3, based on a 150 SNPs each) and three independent residual factors (E1, E2 and E3).

Usage

G.small

Format

Symmetric GRM data frame with 100 rows and 100 columns (observations)

grm.bin.input grm import function

Description

This function imports genetic relationship matrices (GRMs) in binary format as e.g. stored by the GCTA software command gcta64 --grm test --make-grm-bin --out test

Usage

grm.bin.input(file, size = 4)

Arguments

file	name of the binary grm file. No default.
size	byte size used (typically gcta uses 4). See eponymous parameter of function readBin.

Value

object of type matrix

grmsem.bin.input imports a binary GCTA GRM (.bin) file and transforms it into a symmetric matrix

grm.input

Description

This function imports genetic relationship matrices (GRMs) in gz format as e.g. stored by the GCTA software command gcta64 --grm test --make-grm-gz --out test

Usage

```
grm.input(file)
```

Arguments

file the name of the gz compressed grm file. No default.

Value

grmsem. input imports a zipped GCTA GRM (.gz) file and transforms it into a symmetric matrix

grmsem.biher grmsem bivariate heritability estimation function.

Description

This function estimates the bivariate heritability.

Usage

```
grmsem.biher(ph, grmsem.var.out = NULL)
```

Arguments

ph	Phenotype file as R dataframe (columns: >=2 phenotypes, rows: ni individuals in the same order as G). No default.
grmsem.var.out	A grmsem.var object with unstandardised parameters (factor loadings). Default NULL.

Details

The grmsem.biher function estimates the bivariate heritability (DS, Cholesky, IP and IPC models) from the observed phenotype data and a grmsem.var object. All standard errors are derived with the Delta method.

grmsem.fcoher

Value

grmsem. biher returns a list object consisting of the following matrices:

VPO	observed phenotypic variance/covariance matrix
VA	estimated genetic variance
BIHER	estimated bivariate heritability (off-diagonals): VA / VPO
BIHER.se	standard error of estimated bivariate heritability
BIHER.Z	Z (wald) of estimated bivariate heritability
BIHER.p	p (Wald) of estimated bivariate heritability

Examples

#(runtime should be less than one minute)

out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)
var.out <- grmsem.var(out)
grmsem.biher(ph.small, var.out)</pre>

grmsem.fcoher	grmsem factorial co-heritability and co-environmentality estimation
	function.

Description

This function estimates factorial co-heritabilities and factorial co-environmentalities.

Usage

```
grmsem.fcoher(grmsem.out = NULL)
```

Arguments

grmsem.out grmsem.fit or grmsem.stpar object. Default NULL.

Details

The grmsem.fcoher function can be used to estimate factorial co-heritabilities and factorial coenvironmentalities for models estimating latent variables (Cholesky, IP or IPC models), based on grmsem.fit or grmsem.stpar objects. The factorial co-heritability of a genetic factor m for trait t is the ratio of the genetic variance explained by factor m (A_mt) to the total genetic variance (A_t): A_mt / A_t. The factorial co-environmentality of a residual factor n for trait t is the ratio of the residual variance explained by factor n (E_nt) to the total residual variance (E_t): E_nt / E_t. All standard errors are derived with the Delta method.

Value

grmsem.fcoher returns an extended model.out dataframe, fcoher.model.out, with the following columns:

label	parameter label
estimates	estimated parameters
gradient	gradient
se	SE
Z	Z (Wald) of factor loading
р	p (Wald) of factor loading
Vi	squared factor loading, explained phenotypic variation by the factor
Vi.se	SE of squared factor loading
FCOHER	factorial co-heritability
FCOHER.se	SE of factorial co-heritability
FCOHER.Z	Z (wald) of factorial co-heritability
FCOHER.se	p (Wald) of factorial co-heritability
FCOENV	factorial co-environmentality
FCOENV.se	SE of factorial co-environmentality
FC0ENV.Z	Z (wald) of factorial co-environmentality
FCOENV.se	p (Wald) of factorial co-environmentality

Examples

#(runtime should be less than one minute)

```
out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)
grmsem.fcoher(out)</pre>
```

grmsem.fit

grmsem model fitting function

Description

This function fits a grmsem model.

grmsem.fit

Usage

```
grmsem.fit(
 ph,
  G,
  A.v.free = NULL,
  E.v.free = NULL,
  A.v.startval = NULL,
  E.v.startval = NULL,
  LogL = FALSE,
  estSE = FALSE,
  cores = 1,
  model = "Cholesky",
  compl.ph = FALSE,
  printest = FALSE,
  cluster = "PSOCK",
  optim = "optim",
  verbose = FALSE
)
```

Arguments

ph	phenotype file as R dataframe, even for single vectors (columns: k phenotypes, rows: ni individuals in same order as G). No default.
G	GRM matrix as provided by the grm.input or grm.bin.input.R function. Use the same order of individuals as in ph. No default.
A.v.free	vector of free parameters for genetic factor loadings (free:1, not-free:0). Default NULL, all parameters are estimated.
E.v.free	vector of free parameters for residual factor loadings (free:1, not-free:0). Default NULL, all parameters are estimated.
A.v.startval	vector of starting values for genetic factor loadings. Default NULL, all starting values are generated.
E.v.startval	vector of starting values for residual factor loadings. Default NULL, all starting values are generated.
LogL	estimation of the loglikelihood using optim BFGS (TRUE/FALSE). Default FALSE.
estSE	estimation of standard errors by recalculating the Hessian matrix. Default FALSE.
cores	number of cores for multi-threaded calculations (numeric). Default 1.
model	grmsem model selection. Options: "Cholesky", "IP", "IPC", "DS". Default "Cholesky".
compl.ph	listwise complete observations across all phenotypes (all NA are excluded). Default FALSE.
printest	print output of the model.fit function including estimates (printest.txt) that can be used as starting values. Default FALSE.
cluster	cluster type. Options: "PSOCK", "FORK". Default "PSOCK".

optim	optimisation function from stats or optimParallel libraries. Options: "optim", "optimParallel". Default "optim".
verbose	additional model fit information: (i) phenotype vector, (ii) n of GRM and corresponding I matrix when data are missing, (iii) Hessian if estSE TRUE. Default FALSE.

Details

grmsem models estimate genetic (A) and residual (E) variance/covariance of quantitative traits (AE model), where E in GRM-based methods can capture both, shared and unique residual influences. The estimation of parameters and their SEs is performed with the function grmsem.fit. Specifically, the loglikelihood is estimated with stats::optim and the BFGS (Broyden-Fletcher-Goldfarb-Shannon) approach and the variance/covariance matrix of estimated parameters with numDeriv::hessian. The statistical significance of estimated parameters is assessed using a Wald test, assuming multivariate normality.

grmsem.fit allows fitting different models describing the underlying multivariate genetic architecture of quantitative traits, as captured by a genetic-relationship-matrix (GRM), using structural equation modelling (SEM) techniques and a maximum likelihood approach. The user can fit multiple predefined model structures to the data. A Cholesky decomposition, Independent Pathway, and hybrid Independent Pathway/Cholesky models can be fitted by setting the model option to Cholesky, IP or IPC, respectively. In addition, the Cholesky model can be re-parametrised as Direct Symmetric model, estimating genetic and residual covariances directly, using the model option DS. Each model can be adapted by the user by setting free parameters (A.v.free and E.v.free options) and starting values (A.v.startval and E.v.startval options).

Input parameters are returned as model.in list object. Output from the maximum likelihood estimation is also given as list model.fit and the fitted grmsem model with estimated parameters and SEs is returned as dataframe model.out. The returned grmsem.fit object can be used to estimate genetic and residual covariance and correlations (grmsem.var function), bivariate heritabilities (grmsem.biher function), and factorial co-heritabilities and co-environmentalities (grmsem.fcoher function). All estimated parameters of the fitted grmsem model can also be standardised using the function grmsem.stpar.

Listwise complete observations can be selected with the option compl.ph=TRUE. Otherwise, grmsem.fit fits, like GREML, all available data to the model with the default option compl.ph FALSE. Using the option LogL=FALSE, the user can check the model input parameters and formula without a maximum likelihood estimation. Using the option estSE=FALSE, the user can carry out a maximum likelihood estimation without the estimation of SEs for estimated parameters that require calculating the Hessian. Note that grmsem.fit should preferably be run in parallel, by setting the cores option to the required number of cores.

When grmsem.fit is called with LogL TRUE, the user will see also the iterations of the stats::optim loglikelihood estimation, which are not included in the exported grmsem.fit list object.

Value

grmsem. fit returns a grmsem.fit list object consisting of:

model.in	list of input parameters
formula	matrix of the model specification

	model.fit	list output of the maximum likelihood estimation, if LogL TRUE
	model.out	dataframe of fitted grmsem model with estimated parameters and SEs, if $estSETRUE$
	VCOV	variance/covariance matrix
	k	number of phenotypes
	n	total number of observations across all phenotypes
	n.obs	number of observations per phenotype
	n.ind	number of individuals with at least one phenotype
	model	type of grmsem model
	ph.nms	vector of phenotype names
	model.in list of in	nput parameters:
	part	a - genetic, e - residual parameters
	label	parameter label
	value	starting values
	freepar	free parameters
	model.fit list ou	tput of the maximum likelihood estimation:
	optimisation	output via optim()
	estimates	estimated parameters: factor loadings for 'Cholesky', 'IP' and 'IPC' models, but variance components for 'DS'
	LL	loglikelihood
	calls	optim() calls
	convergence	optim() convergence
	message	optim() message
model.out data.frame of fitted grmsem model:		rame of fitted grmsem model:
	label	parameter label
	estimates	estimated parameters
	gradient	gradient
	se	SE
	Z	Z (Wald)
	р	p (Wald)
Exa	amples	

#Set up a Cholesky model: Model formula and total number of parameters #ph.small is a trivariate phenotype file for 100 individuals in the same order as G.small #nrow = 100, ncol = 3 #(runtime should be less than one minute) out <- grmsem.fit(ph.small, G.small, LogL = FALSE, estSE = FALSE) #Run a Cholesky model: out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)</pre> grmsem.stpar

Description

This function estimates standardised parameters for a grmsem.fit object.

Usage

```
grmsem.stpar(grmsem.out = NULL)
```

Arguments

grmsem.out grmsem.fit object as provided by the grmsem.fit function. Default NULL.

Details

grmsem.stpar standardises grmsem.fit estimates so that derived or estimated A and E variance components will add up to phenotypic unit variance. The SEs of standardised parameters are derived using the Jacobian matrix.

Value

grmsem.stpar returns a list object consisting of:

model.in	list of input parameters	
stand.model.out		
	dataframe of fitted grmsem model with standardised parameters and SEs	
stVCOV	standardised variance/covariance matrix	
k	number of phenotypes	
n	total number of observations across all phenotypes	
model	type of grmsem model	
ph.nms	vector of phenotype names	
model.in list of in	aput parameters:	
part	a - genetic, e - residual parameters	
label	parameter label	
value	starting values	
freepar	free parameters	
stand.model.out data.frame of fitted grmsem model with standardised parameters and SEs:		
label	parameter label	
estimates	standardised estimated parameters	
se	SE	
Z	Z (Wald)	
p	p (Wald)	

grmsem.var

Examples

#(runtime should be less than one minute)

```
out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)
stout <- grmsem.stpar(out)
print(stout)</pre>
```

grmsem.var

grmsem variance estimation function

Description

This function estimates genetic and residual variances, and genetic correlations.

Usage

grmsem.var(grmsem.out = NULL)

Arguments

grmsem.out A grmsem.fit or grmsem.stpar object. Default NULL.

Details

The grmsem.var function can be used to estimate genetic and residual covariance and correlations for DS, Cholesky, IP and IPC models, based on grmsem.fit or grmsem.stpar objects. For the latter, the diagonal elements of the VA output matrix detail the heritabilities. Except for directly estimated variance components using the DS model, all standard errors are derived with the Delta method.

Value

grmsem.var returns a list object consisting of the following matrices:

VA	estimated genetic variance
VA.se	standard error of estimated genetic variance
VE	estimated residual variance
VE.se	standard error of estimated residual variance
VP	estimated total phenotypic variance
RG	genetic correlation
RG.se	standard error genetic correlation
RE	residual correlation
RG.se	standard error residual correlation

Examples

#(runtime should be less than one minute)

```
out <- grmsem.fit(ph.small, G.small, LogL = TRUE, estSE = TRUE)
var.out <- grmsem.var(out)
print(var.out)</pre>
```

ph.large

Phenotype data: large data set

Description

A large quad-variate data set was simulated assuming an underlying Cholesky model, with 5000 observations per trait and high polygenicity (5,000 SNPs per genetic factor). The data set is described in full in the vignette. Genetic and residual covariances ar assumed to be influenced by four independent genetic factors (A1, A2, A3 and A4, based on 5000 SNPs each) and four independent residual factors (E1, E2, E3 and E4), respectively.

Usage

ph.large

Format

A data frame with 5000 rows and 4 columns

Y1 trait one

Y2 trait two

Y3 trait three

Y4 trait four

ph.small

Phenotype data: small data set

Description

A small tri-variate data set was simulated assuming an underlying Cholesky model, with 100 observations per trait and low polygenicity (150 SNPs per genetic factor). The data set is described in full in the vignette. Genetic and residual covariances are assumed to be influenced by three independent genetic factors (A1, A2 and A3, based on a 150 SNPs each) and three independent residual factors (E1, E2 and E3), respectively.

Usage

ph.small

12

ph.small

Format

A data frame with 100 rows and 3 columns

- Y1 trait one
- Y2 trait two
- Y3 trait three

Index

* datasets fit.large, 2 G.small, 3ph.large, 12 ph.small, 12 * grmsem grm.input,4 grmsem.biher,4 grmsem.fcoher, 5 grmsem.fit,6 grmsem.stpar, 10 grmsem.var, 11fit.large, 2 G.small, 3 grm.bin.input,3 grm.input,4 grmsem.biher,4 grmsem.fcoher, 5 grmsem.fit,6 grmsem.stpar, 10grmsem.var, 11ph.large, 12 ph.small, 12

 $\texttt{readBin}, \textbf{\textit{3}}$