Package ‘lefko3’

October 28, 2025
Type Package
Title Historical and Ahistorical Population Projection Matrix Analysis
Version 6.6.0
Date 2025-10-28

Description Complete analytical environment for the construction and analysis
of matrix population models and integral projection models.
Includes the ability to construct historical matrices, which are
2d matrices comprising 3 consecutive times of demographic
information. Estimates both raw and function-based forms of
historical and standard ahistorical matrices. It also estimates
function-based age-by-stage matrices and raw and function-based
Leslie matrices.

Encoding UTF-8
License GPL (>=2)

URL https://github.com/dormancy1/lefko3

Imports Rcpp (>= 1.0.5), glmmTMB, Ime4, MASS, Matrix, methods, MuMIn,
pscl, rlang, stats, VGAM, grDevices

LinkingTo Rcpp, ReppArmadillo, BH
LazyData true

BugReports https://github.com/dormancyl/lefko3/issues
RoxygenNote 7.3.3

Suggests knitr, popbio, rmarkdown, Rcompadre

VignetteBuilder knitr

NeedsCompilation yes

Author Richard P. Shefferson [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5234-3131>),
Johan Ehrlen [aut] (ORCID: <https://orcid.org/0000-0001-8539-8967>)

Maintainer Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac. jp>
Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2025-10-28 06:10:32 UTC

https://github.com/dormancy1/lefko3
https://github.com/dormancy1/lefko3/issues
https://orcid.org/0000-0002-5234-3131
https://orcid.org/0000-0001-8539-8967

2 Contents

Contents
letko3-package 4
actualstage3 L e 5
add_IM . . . e 7
add_stage e 10
aflefko2 L 12
anthyllis e e 22
append_IP L e 23
arlefko2o e 25
beverton3 L e 30
bootstrap3 32
cond_diffo e 34
cond_hmpm L e e e e e e 37
create_IM L e 39
CTEALE_PIM .« . v v v v v v e e et e e e e e e e e e e e e e e e e e 44
cycle_check e 45
cypdata e e e e e 46
CYPVETL . o o o e e e e e 49
delete 1M L e 50
density_input 53
density_Vr e e e 56
diff IM . .o 60
edit_ IM . . . e 63
elasticity3 65
elasticity3.dgCMatrix e 68
elasticity3.lefkoMat 69
elasticity3.lefkoMatList L 73
elasticity3.1ist L. e e e e 77
elasticity3.matrix e e e 80
flefko2 e 82
flefko3 e 93
fleslie 105
f projection3 111
hfv_qc . . . o e 122
historicalize3 L 126
hist_nullo 134
IMAge3 e e e e e 135
image3.dgCMatrix 137
image3.lefkoElas 138
image3.JefkoMat L 140
image3.efkoSens 141
image3.list. e e e e 142
IMage3.matriX o e e e e e e e e e e e 144
lambda3 e 145
lathyrus 148
Imean L e 151

logistic3 e 153

Contents

3
Itre3 . . . e 154
markov_Irun e e 158
MatriX_iNterp o o e e e e e 160
miniMod e 162
modelsearch L e 164
MPIM_CIEALE . . « . o v v v v et e e e e e e e e e e e e e e e e e e 176
OVEIWIILE v v v v e e it e e e e e e e e 186
plotlefkoProj e 188
Projection3 191
pyrolao 197
repvalue3 L L 200
repvalue3.dgCMatriX L e e e e 202
repvalue3.lefkoMat L 204
repvalue3.lefkoMatList 207
repvalue3.list e e 211
repvalue3.matrix L. L 213
ricker3o 215
rlefko2 217
rlefko3 . . . e 222
rleslie 228
SENSILIVILY3 . . . o 233
sensitivity3.dgCMatrix e e e e 234
sensitivity3.lefkoMato oL 236
sensitivity3.lefkoMatList L 238
sensitivity3.list . . . L L L L e e e 241
sensitivity3.matriXo L e e e e 245
sfocreate e, 247
sfodistrib . . . 252
sf_skeleton 255
slambda3 L e 255
stablestage3 L L. 258
stablestage3.dgCMatrix e e e e 260
stablestage3.lefkoMat 262
stablestage3.lefkoMatList 266
stablestage3.list 269
stablestage3.matrix e e e e e e e e 272
stage_weight L 274
SEArt_INput L e e e 276
subset_IM e e 278
summary.letkoCondMat oL o 283
summary.leftkoElas 285
summary.lefkoLTRE 287
summary.lefkoMat oL L 289
summary.lefkoMatList L 290
summary.letkoMod 293
summary.lefkoProj 294
summary_hfvo 297

supplemental 299

4 lefko3-package

usher3 . . . e 304
verticalize3 e 306
VIM_AMPOTt . . . o v vt bt e e e e e e e e e e e e e e e e 314
Index 320
lefko3-package Historical and Ahistorical Population Projection Matrix Analysis
Description

This package creates population matrix projection models (MPMs) for use in population ecological
analyses. It presents a complete working environment for the construction and analysis of ALL
kinds of MPMs and IPMs, including age, stage, and age-by-stage versions. Its specialty is the
estimation of historical MPMs, which are 2d matrices comprising 3 monitoring occasions (2 time
steps or periods) of demographic information. The package constructs both function-based and
raw MPMs for both standard ahistorical (i.e. 2 occasions, 1 time step) and historical analyses, has
functions for complex density-dependent and independent, and stochastic and cyclical, projections,
and also includes the automatic calculation of quality control metrics throughout every step of
analysis. It also includes powerful functions to standardize demographic datasets.

Details

The lefko3 package provides seven categories of functions:
Data transformation and handling functions
Functions determining population characteristics from vertical data

Model building and selection

Population dynamics analysis and projection functions

1.

2.

3.

4. Matrix / integral projection model creation functions

5.

6. Functions describing, summarizing, or visualizing MPMs and derived structures
7.

Extra functions used to illustrate core theory and ideas.

lefko3 also includes example datasets complete with sample code.

Author(s)

Maintainer: Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac. jp> (ORCID)
Authors:

* Johan Ehrlen (ORCID)

Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac.jp>
Johan Ehrlén

References

Shefferson, R.P., J. Ehrlen, and S. Kurokawa. 2021. lefko3: analyzing individual history through
size-classified matrix population models. Methods in Ecology and Evolution 12(2): 378-382.

https://orcid.org/0000-0002-5234-3131
https://orcid.org/0000-0001-8539-8967

actualstage3 5

See Also
Useful links:

* https://github.com/dormancy1/lefko3
» Report bugs at https://github.com/dormancy1/lefko3/issues

actualstage3 Calculate Actual Stage, Age, Stage-Pair, or Age-Stage Distributions

Description

Function actualstage3() shows the frequencies and proportions of each stage, stage pair, age-
stage, or age in each year.

Usage

actualstage3(
data,
check_stage = TRUE,
check_age = FALSE,
historical = FALSE,
year2 = NULL,
indices = NULL,
stagecol = NULL,
agecol = NULL,
remove_stage = NULL,
t1_allow = NULL

)
Arguments

data A demographic dataset in hfv format.

check_stage A logical value indicating whether to assess frequencies and proportions of
stages. Defaults to TRUE.

check_age A logical value indicating whether to assess frequencies and proportions of ages.
Defaults to FALSE.

historical A logical value indicating whether the stage structure should be ahistorical (FALSE)
or historical (TRUE). Defaults to FALSE.

year?2 A string value indicating the name of the variable coding for monitoring occa-
sion at time . Defaults to "year2".

indices A vector of three strings, indicating the stage indices for times #+1, 7, and
t-1, respectively, in data. Defaults to c("stage3index”, "stage2index”,
"stagelindex").

stagecol A vector of three strings, indicating the stage name columns for times #+1, f,

and 7-1, respectively, in data. Defaults to stagecol = c("stage3"”, "stage2",
"stagel").

https://github.com/dormancy1/lefko3
https://github.com/dormancy1/lefko3/issues

6 actualstage3

agecol A single string indicating the age of individuals in time 7. Defaults to "obsage"”.

remove_stage A string vector indicating the names of stages to remove from consideration.
Defaults to "NotAlive".

t1_allow A string vector indicating which stages to be removed should be allowed in the
stage at time 7-1 portion of historical stage pairs, if historical = TRUE. Defaults
to "NotAlive”. Can also be set to "none”.

Value

A data frame with the following variables:

rowid A string identifier term, equal to the monitoring occasion in time ¢ and the stage
index.
stageindex The stageframe index of the stage. Only output if check_stage = TRUE.
stage The name of each stage, or NA. Only output if check_stage = TRUE.
stage2 The name of the stage in time 7. Only output if check_stage = TRUE.
stagel The name of the stage in time #-1, or NA. Only output if check_stage = TRUE.
age The age at time ¢. Only output if check_age = TRUE.
year?2 Monitoring occasion in time 7.
frequency The number of individuals in the respective stage and time.
actual_prop The proportion of individuals alive in time ¢ in the respective stage.
Notes

This function produces frequencies and proportions of stages in hfv formatted data using stage index
variables rather than stage name variables, and so requires the former. The latter is only required if
the user wants to know the associated stage names.

Frequencies and proportions will be calculated for all times, including the last time, which is gen-
erally found in the stage3 columns of the last year?2 entry in object data. The default is to treat
the year?2 entry for that time as max(year2) + 1.

If check_stage = TRUE and check_age = FALSE, then this function will assess frequencies and pro-
portions of stages or historical stage-pairs. If both check_stage = TRUE and check_age = TRUE,
then this function will assess frequencies and proportions of age-stages. If check_stage = FALSE
and check_age = TRUE, then the frequencies and proportions of ages only will be assessed.

Note that no stageframe is required for this function to operate. Stage names and their order are
inferred directly from the object data.

Examples

sizevector <- c(o, 0, 0, 0, 0, o, 1, 3, 6, 11, 19.5)
StageVeCtOr’ <_ C(NSDII’ IIP‘]H’ HPZH’ HP3H’ HSLII’ ”DII, IIXsmII, Hsmll, IIMdII’ IILgII,
"XLg")

repvector <- c(0, @0, 9, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(@, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

add_IM

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)

indataset <- c(0, @, @, @, @, 1, 1, 1, 1, 1, 1)

binvec <- c(0, @, 9, 0, 0, 0.5, 0.5, 1.5, 1.5, 3.5, 5)

comments <- c("Dormant seed”, "1st yr protocorm”, "2nd yr protocorm”,
"3rd yr protocorm”, "Seedling”, "Dormant adult”,
"Extra small adult (1 shoot)”, "Small adult (2-4 shoots)”,
"Medium adult (5-7 shoots)"”, "Large adult (8-14 shoots)”,
"Extra large adult (>14 shoots)")

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec, comments = comments)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE, age_offset = 4)

all_stage_props_ah <- actualstage3(cypraw_v1)
all_stage_props_h <- actualstage3(cypraw_v1, historical = TRUE)
all_stage_props_h_NANotAllow <- actualstage3(cypraw_v1, historical = TRUE,
t1_allow = "none")
all_stage_props_as <- actualstage3(cypraw_v1, check_age = TRUE)
all_age_props <- actualstage3(cypraw_v1, check_stage = FALSE,
check_age = TRUE)

add_IM Add Matrices to a lefkoMat or lefkoMatList Object

Description

Function add_IM() adds matrices to lefkoMat and lefkoMatList objects.

Usage
add_1M(
1M,
Amats = NA,
Umats = NA,
Fmats = NA,

UFdecomp = FALSE,
entrystage = 1,

pop = NA,
patch = NA,
year = NA

Arguments

M

Amats

Umats

Fmats

UFdecomp

entrystage

pop

patch

year

Value

add_IM

The lefkoMat or lefkoMatList object to add matrices to.

Either a single A matrix, or a list of A matrices. Not necessary if Umats and
Fmats are both provided.

Either a single U matrix, or a list of U matrices. Not necessary if Amats and
Fmats are both provided, or if UFdecomp = TRUE and entrystage is provided.

Either a single F matrix, or a list of U matrices. Not necessary if Amats and
Umats are both provided, or if UFdecomp = TRUE and entrystage is provided.

A logical value indicating whether U and F matrices should be inferred from A
matrices and the given entrystage. Defaults to TRUE.

The stage or stages produced by reproductive individuals. Used to determine
which transitions are reproductive for U-F decomposition. Defaults to 1, which
corresponds to the first stage in the stageframe.

The population designation for each matrix. If object 1M includes only a single
population, then defaults to that designation. Otherwise requires a designation
as input.

The patch designation for each matrix. If object 1M includes only a single patch,
then defaults to that designation. Otherwise requires a designation as input.

The designation for occasion at time ¢ corresponding to each matrix. Cannot be
left empty.

A lefkoMat or lefkoMatList object incorporating the new matrices within the object input in 1M.
Note that if a lefkoMatList object is used as input, then ALL composite lefkoMat objects will
have the same matrices added in exactly the same way.

Notes

This function will not allow matrices of different dimension from those input in object 1M to be
added to that object.

Two of Amats, Umats, and Fmats must be provided for this function to proceed. Also, if Amats,
Umats, and Fmats are all provided, then this function will default to replacing Amats with the sum
of the respective Umats and Fmats.

See Also

create_1M()
delete_IM()

subset_1IM(Q)

add_IM

Examples

These matrices are of 9 populations of the plant species Anthyllis
vulneraria, and were originally published in Davison et al. (201@) Journal
of Ecology 98:255-267 (doi: 10.1111/3j.1365-2745.2009.01611.%).

sizevector <- c(1, 1, 2, 3) # These sizes are not from the original paper
stagevector <- c("Sdl"”, "Veg", "SmFlo"”, "LFlo")

repvector <- c(0, o, 1, 1)
obsvector <- c(1, 1, 1, 1)
matvector <- c(0, 1, 1, 1)
immvector <- c(1, @, 0, 0)
propvector <- c(@, 0, 0, 0)
indataset <- c(1, 1, 1, 1)
binvec <- ¢(0.5, 0.5, 0.5, 0.5)

anthframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

POPN C 2003-2004

XC3 <- matrix(c(0, 0, 1.74, 1.74,

0.208333333, 0, 0, 0.057142857,

0.041666667, 0.076923077, 0, 0,

0.083333333, 0.076923077, 0.066666667, 0.028571429), 4, 4, byrow = TRUE)

2004-2005

XC4 <- matrix(c(o, 0, 0.3, 0.6,

0.32183908, 0.142857143, 0, 0,

0.16091954, 0.285714286, 0, 0,

0.252873563, ©.285714286, 0.5, 0.6), 4, 4, byrow = TRUE)

2005-2006
XC5 <- matrix(c(0, 0, 0.50625, 0.675,
0, 0, 0, 0.035714286,
0.1, 0.068965517, 0.0625, 0.107142857,

0.3, 0.137931034, 0, 0.071428571), 4, 4, byrow = TRUE)

POPN E 2003-2004

XE3 <- matrix(c(0, 0, 2.44, 6.569230769,

0.196428571, @, 0, 0,

0.125, 0.5, 0, 0,

0.160714286, 0.5, 0.133333333, 0.076923077), 4, 4, byrow = TRUE)

XE4 <- matrix(c(@, 0, ©.45, 0.646153846,

0.06557377, ©.090909091, 0.125, 0,

0.032786885, 0, 0.125, 0.076923077,

0.049180328, 0, 0.125, 0.230769231), 4, 4, byrow = TRUE)

XE5 <- matrix(c(@, 0, 2.85, 3.99,
0.083333333, 0, 0, 0,
0’ 0’ 0’ 0’

10 add_stage

0.416666667, 0.1, 0, 0.1), 4, 4, byrow = TRUE)

mats_list <- 1list(XC3, XC4, XC5, XE3, XE4, XE5)
yr_ord <- c(1, 2, 3, 1, 2, 3)
pch_ord <- c(1, 1, 1, 2, 2, 2)

anth_lefkoMat <- create_lM(mats_list, anthframe, hstages = NA,
historical = FALSE, poporder = 1, patchorder = pch_ord, yearorder = yr_ord)

XH3 <- matrix(c(@, @, ©.1125, 1.05,
0.2, 0, 0, 0,

0, 0.5, 0, 0,

0.2, 0.5, 0, @), 4, 4, byrow = TRUE)

XH3u <- matrix(c(o, @, 0, 0,

0.2, 0, 0, 0,

9, 0.5, 0, 0,

0.2, 0.5, 0, @), 4, 4, byrow = TRUE)

XH4 <- matrix(c(e, o, 0, 0,

0, 0, 0.5, 0,

0.8, 0.5, 0.25, 0.25,

0.2, 0, @, 0.75), 4, 4, byrow = TRUE)

XH4u <- matrix(c(o, @, 0, 0,

0, 0, 0.5, 0,

0.8, 0.5, 0.25, 0.25,

0.2, 0, 0, 0.75), 4, 4, byrow = TRUE)

XH5 <- matrix(c(o, 0, 0.2, 1.05,

0, 9, 0, 0,

0.001, 0.001, 0.333333333, 0,

0.001, 0, 0, @), 4, 4, byrow = TRUE)

XH5u <- matrix(c(o, @, 0, 0,

0, 9, 0, 0,

0.001, 0.001, 0.333333333, 0,

0.001, 0, 0, @), 4, 4, byrow = TRUE)

anth_lefkoMat <- add_lM(anth_lefkoMat, Amats = list(XH3, XH4, XH5),
Umats = list(XH3u, XH4u, XH5u), patch = c(3, 3, 3), year = c(1, 2, 3))

add_stage Add a New Stage to an Existing lefkoMat or lefkoMatList Object

Description

Function add_stage() adds a new stage to an existing lefkoMat or lefkoMatList object. In
addition to altering the ahstages object within the MPM, it alters the hstages and agestages

add_stage 11

objects and adds the appropriate number of new rows and columns depending on the kind of MPM
input. Note that, if entering a lefkoMatList object, then a stage will be added to all 1lefkoMat
objects contained therein.

Usage

add_stage(mpm, add_before = OL, add_after = OL, stage_name = NULL)

Arguments
mpm The lefkoMat or lefkoMatList object to add a stage to.
add_before The index of the stage to insert a new stage before. This index should be derived
from the ahstages of the input mpm. Cannot be set if add_after is to be used.
add_after The index of the stage to insert a new stage after. This index should be derived
from the ahstages of the input mpm. Cannot be set if add_before is to be used.
stage_name The name of the new stage to add. Defaults to new_stage.
Value

A new copy of the original MPM edited to include new rows and columns in the associated matrices,
and with ahstages, agestages, and hstages objects edited to include the new stage.

See Also
edit_IM()

Examples

data(cypdata)

cyp_lesl_data <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stagesize = "sizeadded”, NAas@ = TRUE, age_offset = 2)

cyp_survival <- glm(alive3 ~ obsage + as.factor(year2), data = cyp_lesl_data,
family = "binomial")

cyp_fecundity <- glm(feca2 ~ 1 + obsage + as.factor(year2),
data = cyp_lesl_data, family = "poisson”)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[22] <- "obsage"”

germination <- 0.08
protocorm_to_seedling <- 0.10
seeding_to_adult <- 0.20
seeds_per_fruit <- 8000

cyp_lesl_supp <- supplemental(historical = FALSE, stagebased = FALSE,
agebased = TRUE, age2 = c(1, 2), type = c(1, 1),

12 aflefko2

givenrate = c(protocorm_to_seedling, seeding_to_adult))

cyp_lesl_fb_mpm <- fleslie(data = cyp_lesl_data, surv_model = cyp_survival,
fec_model = cyp_fecundity, paramnames = mod_params, last_age = 7,
fecage_min = 3, fecmod = (germination * seeds_per_fruit),
supplement = cyp_lesl_supp)

alteredl <- add_stage(cyp_lesl_fb_mpm, add_before = 1, stage_name = "DS")

aflefko2 Create Function-based Ahistorical Age x Stage Matrix Projection
Model

Description

Function aflefko2() returns ahistorical age x stage MPMs corresponding to the patches and occa-
sions given, including the associated component transition and fecundity matrices, data frames de-
tailing the characteristics of ahistorical stages and the exact age-stage combinations corresponding
to rows and columns in estimated matrices, and a data frame characterizing the patch and occasion
combinations corresponding to these matrices.

Usage

aflefko2(
year = "all”,
patch = "all",
stageframe,
supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
data = NULL,
modelsuite = NULL,
surv_model = NULL,
obs_model = NULL,
size_model = NULL,
sizeb_model = NULL,
sizec_model = NULL,
repst_model = NULL,
fec_model = NULL,
jsurv_model = NULL,
jobs_model = NULL,
jsize_model = NULL,
jsizeb_model = NULL,
jsizec_model = NULL,
jrepst_model = NULL,
jmatst_model = NULL,
paramnames = NULL,

aflefko2 13

inda = NULL,
indb = NULL,
indc = NULL,
annua = NULL,
annub = NULL,
annuc = NULL,
surv_dev = 0,
obs_dev = 0,
size_dev = 0,
sizeb_dev = 0,
sizec_dev = 0,
repst_dev = 0
fec_dev =
jsurv_dev
jobs_dev = 0,
jsize_dev = 0,
jsizeb_dev =
jsizec_dev =
jrepst_dev =
jmatst_dev =
density = NA,
fecmod = 1,
random.inda = FALSE,
random.indb = FALSE,
random.indc = FALSE,
final_age = NA,
continue = TRUE,
prebreeding = TRUE,
negfec = FALSE,
ipm_method = "CDF",
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
exp_tol = 700,
theta_tol = 1e+08,
sparse_output = FALSE

’

’

N o 1
(S}

’

[SEESERRINS)

’

)
Arguments

year A variable corresponding to the observation occasion, or a set of such values,
given in values associated with the year term used in linear model development.
Defaults to "all”, in which case matrices will be estimated for all occasions.

patch A variable designating which patches or subpopulations will have matrices esti-
mated. Defaults to "all”, but can also be set to specific patch names or a vector
thereof.

stageframe An object of class stageframe. These objects are generated by function sf_create(),

and include information on the size, observation status, propagule status, repro-

14

supplement

repmatrix

overwrite

data

modelsuite

surv_model

obs_model

size_model

aflefko2

duction status, immaturity status, maturity status, stage group, size bin widths,
and other key characteristics of each ahistorical stage.

An optional data frame of class 1lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental() function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

An optional reproduction matrix. This matrix is composed mostly of @s, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
aflefko2() will assume that all stages marked as reproductive produce off-
spring at 1x that of estimated fecundity, and that offspring production will yield
the first stage noted as propagule or immature. Must be the dimensions of an
ahistorical stage-based matrix.

An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

The historical vertical demographic data frame used to estimate vital rates (class
hfvdata), which is required to initialize times and patches properly. Variable
names should correspond to the naming conventions in verticalize3() and
historicalize3(). Not required if option modelsuite is set to a vrm_input
object.

One of three kinds of lists. The first is a lefkoMod object holding the vi-
tal rate models and associated metadata. The second is a lefkoModList ob-
ject, which is a list of lefkoMod objects generally created to conduct a boot-
strapped MPM analysis. Alternatively, an object of class vrm_input may be
provided. If given, then surv_model, obs_model, size_model, sizeb_model,

sizec_model, repst_model, fec_model, jsurv_model, jobs_model, jsize_model,

jsizeb_model, jsizec_model, jrepst_model, jmatst_model, and paramnames
are not required. One or more of these models should include size or reproduc-
tive status in occasion #-1. Although this is optional input, it is recommended,
and without it all vital rate model inputs (named XX_model) are required.

A linear model predicting survival probability. This can be a model of class glm
or glmer, and requires a predicted binomial variable under a logit link. Ignored
if modelsuite is provided. This model must have been developed in a modeling
exercise testing only the impacts of occasion t.

A linear model predicting sprouting or observation probability. This can be a
model of class glm or glmer, and requires a predicted binomial variable under
a logit link. Ignored if modelsuite is provided. This model must have been
developed in a modeling exercise testing only the impacts of occasion ¢.

A linear model predicting primary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.

aflefko2

sizeb_model

sizec_model

repst_model

fec_model

jsurv_model

jobs_model

jsize_model

jsizeb_model

jsizec_model

jrepst_model

jmatst_model

15

This model must have been developed in a modeling exercise testing only the
impacts of occasion .

A linear model predicting secondary size. This can be a model of class glm,
glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing only
the impacts of occasion .

A linear model predicting tertiary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion .

A linear model predicting reproduction probability. This can be a model of class
glm or glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing only the impacts of occasion ¢.

A linear model predicting fecundity. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion f.

A linear model predicting juvenile survival probability. This can be a model of
class glmor glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing only the impacts of occasion .

A linear model predicting juvenile sprouting or observation probability. This
can be a model of class glm or glmer, and requires a predicted binomial variable
under a logit link. Ignored if modelsuite is provided. This model must have
been developed in a modeling exercise testing only the impacts of occasion ¢.

A linear model predicting juvenile primary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion f.

A linear model predicting juvenile secondary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion .

A linear model predicting juvenile tertiary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or 1mer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion .

A linear model predicting reproduction probability of a mature individual that
was immature in time ¢. This can be a model of class glm or glmer, and requires
a predicted binomial variable under a logit link. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing only
the impacts of occasion .

A linear model predicting maturity probability of an individual that was imma-
ture in time ¢. This can be a model of class glm or glmer, and requires a predicted

16

paramnames

inda

indb

indc

annua

annub

annuc

surv_dev

obs_dev

size_dev

sizeb_dev

sizec_dev

repst_dev

fec_dev

jsurv_dev

aflefko2

binomial variable under a logit link. Ignored if modelsuite is provided. This
model must have been developed in a modeling exercise testing only the impacts
of occasion ¢.

A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required if modelsuite is not supplied.

Can be a single value to use for individual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate ¢ in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate b in all matrices, a pair of
values to use for times ¢ and -1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

A numeric value to be added to the y-intercept in the linear model for survival
probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for observa-
tion probability. Defaults to .

A numeric value to be added to the y-intercept in the linear model for primary
size. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for secondary
size. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for tertiary
size. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for probability
of reproduction. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for fecundity.
Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
survival probability. Defaults to .

aflefko2

jobs_dev

jsize_dev

jsizeb_dev

jsizec_dev

jrepst_dev

jmatst_dev

density

fecmod

random. inda

random. indb

random.indc

final_age

continue

prebreeding

negfec

ipm_method

reduce

simple

17

A numeric value to be added to the y-intercept in the linear model for juvenile
observation probability. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
primary size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
secondary size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
tertiary size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
reproduction probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for juvenile
maturity probability. Defaults to 0.

A numeric value indicating density value to use to propagate matrices. Only
needed if density is an explanatory term used in one or more vital rate models.
Defaults to NA.

A scalar multiplier of fecundity. Defaults to 1. 0.

A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

The final age to model in the matrix, where the first age will be age 0. Defaults
to the maximum age in the dataset.

A logical value designating whether to allow continued survival of individuals
past the final age noted in the stageframe, using the demographic characteristics
of the final age. Defaults to TRUE.

A logical value indicating whether the life history model is a pre-breeding model.
Defaults to TRUE.

A logical value denoting whether fecundity values estimated to be negative
should be reset to @. Defaults to FALSE.

A string indicating what method to use to estimate size transition probabilities,
if size is treated as continuous. Options include: "midpoint”, which utilizes the
midpoint method; and "CDF", which uses the cumulative distribution function.
Defaults to "CDF".

A logical value denoting whether to remove age-stages associated solely with
0 transitions. These are only removed in cases where the associated row and
column sums in ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

18 aflefko2

err_check A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

exp_tol A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

theta_tol A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

sparse_output A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

Value

If the user inputs a standard lefkoMod or vrm_input object in argument modelsuite, or individual
vital rate models are input separately,then this function will return an object of class lefkoMat. If
the user inputs an object of class lefkoModList in argument modelsuite, then the output will be
an object of class lefkoMatList, in which each element is an object of class lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A A list of full projection matrices in order of sorted patches and occasions. All
matrices output in R’s matrix class, or in the dgCMatrix class from the Matrix
package if sparse.

U A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

F A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Set to NA for age-by-stage MPMs.

agestages A data frame showing the stage number and stage name corresponding to ahstages,
as well as the associated age, of each row in each age-by-stage matrix.

ahstages A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

labels A data frame giving the patch and year of each matrix in order. In aflefko2(),
only one population may be analyzed at once.

dataqc A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

matrixqc A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

modelqc This is the gc portion of the modelsuite input.

prob_out An optional element only added if err_check = TRUE. This is a list of vital rate

probability matrices, with 7 columns in the order of survival, observation prob-
ability, reproduction probability, primary size transition probability, secondary
size transition probability, tertiary size transition probability, and probability of
juvenile transition to maturity.

aflefko2 19

allstages An optional element only added if err_check = TRUE. This is a data frame giv-
ing the values used to determine each matrix element capable of being estimated.

Notes

Unlike rlefko2(), rlefko3(), arlefko2(), and rleslie(), this function does not currently dis-
tinguish populations. Users wishing to use the same vital rate models across populations should
label them as patches (though we do not advise this approach, as populations should typically be
treated as statistically independent).

This function will yield incorrect estimates if the models utilized incorporate state in occasion #-1.
Only use models developed testing for ahistorical effects.

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Stageframes used in this function should include ages for minimum and maximum age for each
stage. NAs are treated as @s in minimum age, and as final_age for maximum age.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or
subpopulations, but without discriminating between those patches or subpopulations. Should the
aim of analysis be a general MPM that does not distinguish these patches or subpopulations, the
modelsearch() run should not include patch terms.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and r. Rearranging the order will lead to erroneous calculations, and may lead to fatal errors.

Care should be taken to match the random status of year and patch to the states of those variables
within the modelsuite. If they do not match, then they will be treated as zeroes in vital rate
estimation.

The ipm_method function gives the option of using two different means of estimating the probability
of size transition. The midpoint method ("midpoint") refers to the method in which the probability
is estimated by first estimating the probability associated with transition from the exact size at the
midpoint of the size class using the corresponding probability density function, and then multiplying
that value by the bin width of the size class. Doak et al. 2021 (Ecological Monographs) noted that
this method can produce biased results, with total size transitions associated with a specific size not
totaling to 1.0 and even specific size transition probabilities capable of being estimated at values
greater than 1.0. The alternative and default method, "CDF", uses the corresponding cumulative
density function to estimate the probability of size transition as the cumulative probability of size
transition at the greater limit of the size class minus the cumulative probability of size transition
at the lower limit of the size class. The latter method avoids this bias. Note, however, that both
methods are exact and unbiased for the Poisson and negative binomial distributions.

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero
values when the true probability is extremely close to 0. This will result in the summary . lefkoMat
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

Using the err_check option will produce a matrix of 7 columns, each characterizing a different
vital rate. The product of each row yields an element in the associated U matrix. The number and

20

aflefko2

order of elements in each column of this matrix matches the associated matrix in column vector
format. Use of this option is generally for the purposes of debugging code.

Individual covariates are treated as categorical only if they are set as random terms. Fixed categor-
ical individual covariates are currently not allowed. However, such terms may be supplied if the
modelsuite option is set to a vrm_input object. In that case, the user should also set the logical
random switch for the individual covariate to be used to TRUE (e.g., random. inda = TRUE).

See Also

mpm_create()
flefko3()
flefko2()
fleslie()
arlefko2()
rlefko3()
rlefko2()
rleslie()

Examples

data(lathyrus)

sizevector <- c(o0, 4.6, 0, 1, 2, 3, 4, 5,6, 7, 8, 9,1, 2, 3, 4, 5,6, 7,8,
9

stagevector <- c("Sd", "Sdl1", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, 0, 0, 0, 0, 9, 0, 0, 0, 0, @, @, 1, 1, 1,1, 1,1, 1,1, 1)

obsvector <- ¢c(@0, 1, 0, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1)

matvector <- ¢(@, @, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)

immvector <- c(1, 1, o0, 0, @0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0, Q)

propvector <- c(1, o0, 0, o0, 0, o, 0, 0, @, 0, 0, 0, @0, 0, 0, 0, 0, @, 0, 0,
0)

indataset <- c(o, 1, 1, 1, 1,1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1)

minima <- ¢(1, 1, 2, 2, 2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

binvec <- c(@, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector, minage = minima)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,

fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln,
stagesize = "sizea", censorcol = "Missing1988", censorkeep = NA,

aflefko2

NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ obsage + sizea2 + as.factor(patchid) +
as.factor(year2), data = lathvertln_adults, family = "binomial”)

obs_data <- subset(lathvertln_adults, alive3 == 1)
obs_model <- glm(obsstatus3 ~ obsage + as.factor(patchid) +
as.factor(year2), data = obs_data, family = "binomial")

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- Im(sizea3 ~ sizea2 + repstatus2 + obsage + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + as.factor(patchid) + as.factor(year2),
data = size_data, family = "binomial")

fec_data <- subset(lathvertln_adults, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizea2 + obsage + as.factor(patchid) +
as.factor(year2), data = fec_data, family = "poisson”)

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data = lathvertln_juvs,
family = "binomial")

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1lm(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- 0
jmatst_model <- 1

lathsupp2 <- supplemental(stage3 = c("”Sd"”, "Sdl", "mat", "Sd", "Sdl1"),
stage2 = c("Sd"”, "Sd", "Sdl", "rep", "rep"),
eststage3 = c(NA, NA, "mat”, NA, NA),
eststage2 = c(NA, NA, "Dorm”, NA, NA),
givenrate = c(0.345, 0.054, NA, NA, NA),
multiplier = c(NA, NA, 0.8, 0.345, 0.054), type = c(1, 1, 1, 3, 3),
stageframe = lathframeln, historical = FALSE, agebased = TRUE)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2"
mod_params$modelparams[12] <- "sizea2"

21

22 anthyllis

mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[22] <- "obsage"”

lathmat2age2 <- aflefko2(year = "all”, patch = "all”, data = lathvertln,
stageframe = lathframeln, supplement = lathsupp2, final_age = 3,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model,
paramnames = mod_params, continue = TRUE, reduce = FALSE)

anthyllis Matrix Set of Anthyllis vulneraria Populations in Belgium

Description

A lefkoMat object containing projection matrices developed from demographic data gathered on
nine Anthyllis vulneraria populations from 2003 to 2006 in southwestern Belgium.

Usage

data(anthyllis)

Format

A lefkoMat object holding 27 matrices. The structure of the object is as below:

A The 27 A matrices.

U The 27 survival-transition matrices used to develop the A matrices.
F The 27 fecundity matrices used to develop the A matrices.

hstages Not used, so set to NA.

agestages Not used, so set to NA.

ahstages The edited stageframe describing the life history of the study organism as interpreted in
the original demographic study.

labels The order of the matrices, where each population is treated as a separate patch and each
matrix corresponds to a different combination of population and year in time .

matrixqc A vector of integers used in the quality control section of lefkoMat summary statements.

dataqc Currently a vector with two NA values.

Source

Davison, R. et al. 2010. Demographic effects of extreme weather events on a short-lived calcareous
grassland species: stochastic life table response experiments. Journal of Ecology 98(2):255-267.

append_IP

Examples

data(anthyllis)

23

lambda3(anthyllis)

append_1P

Append Projections To Create New lefkoProj Object

Description

Function append_1P() combines two population projections. It takes two lefkoProj objects and
appends them into a new lefkoProj object.

Usage

append_1P(proj1 = NULL, proj2 = NULL)

Arguments

projl
proj2

Value

A lefkoProj object.

A second lefkoProj object, based on the same stageframe as proji.

A list of class lefkoProj, which always includes the first three elements of the following, and also
includes the remaining elements below when a lefkoMat object is used as input:

projection

stage_dist

rep_value

pop_size

labels
ahstages
hstages
agestages
labels

A list of lists of matrices showing the total number of individuals per stage
per occasion. The first list corresponds to each pop-patch followed by each
population (this top-level list is a single element in f_projection3()). The
inner list corresponds to replicates within each pop-patch or population.

A list of lists of the actual stage distribution in each occasion in each replicate
in each pop-patch or population.

A list of lists of the actual reproductive value in each occasion in each replicate
in each pop-patch or population.

A list of matrices showing the total population size in each occasion per replicate
(row within data frame) per pop-patch or population (list element). NA values
will result if projections with different numbers of time steps are appended.

A data frame showing the order of populations and patches in item projection.
The original stageframe used in the study.

A data frame showing the order of historical stage pairs.

A data frame showing the order of age-stage pairs.

A short data frame indicating the population (always 1), and patch (either the
numeric index of the single chosen patch, or 1 in all other cases). Any pop-
patches having the same designation across the two input projections will be
appended together.

24 append_IP
control A data frame showing the number of replicates and time steps corresponding to
each set of projections, where each set corresponds to a pop-patch within the
labels object of each input projection.
density The data frame input under the density option. Only provided if input by the
user for at least one of the two projections. Output as a nested list corresponding
to each pop-patch - replicate.
density_vr The data frame input under the density_vr option. Only provided if input by the
user for at least one of the two projections. Output as a nested list corresponding
to each pop-patch - replicate.
Notes
lefkoProj objects resulting from previous appends can also be appended.
See Also
projection3()
Examples
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)

stagevector <- c(”SD", "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",

"XLg")
repvector <- c(0, 0, 0, 90, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 9, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, o, 0, 0, @, 0, Q)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, o0, @, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"XSm”, "Sm”, "SD", "P1"),

stage2 = c(”SD", "SD", "P1", "P2", "P3", "SL" "SL" "SL", "rep”, "rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D”, "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm”, "XSm", "XSm”, NA, NA),
givenrate = c(0.1, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA),

arletko2 25

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type = c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3), stageframe = cypframe_raw,
historical = FALSE)

cypmatrix2r_AB <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = c("A", "B"), stages = c("stage3"”, "stage2"),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2"”, patchcol = "patchid”, indivcol = "individ")

cypmatrix2r_AC <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all", patch = c("A", "C"), stages = c("stage3", "stage2"),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypproj1l <- projection3(cypmatrix2r_AB, nreps
stochastic = TRUE)

cypproj2 <- projection3(cypmatrix2r_AC, nreps = 10, times = 20,
stochastic = TRUE)

cypproj3 <- append_lP(cypproj1, cypproj2)

5, times = 15,

arlefko2 Create Raw Ahistorical Age x Stage Matrix Projection Model

Description

Function arlefko2() returns raw ahistorical age x stage MPMs corresponding to the patches and
occasion times given, including the associated component transition and fecundity matrices, data
frames detailing the characteristics of ahistorical stages and the exact age-stage combinations cor-
responding to rows and columns in estimated matrices, and a data frame characterizing the patch
and occasion time combinations corresponding to these matrices.

Usage

arlefko2(
data,
stageframe,
year = "all”,
pop = NULL,
patch = NULL,
censor = FALSE,
stages = NULL,

alive = c("alive3", "alive2"),

obsst = NULL,

size = c("sizea3"”, "sizea2"),

sizeb = NULL,

sizec = NULL,

repst = c("repstatus3”, "repstatus2"),

matst = c("matstatus3”, "matstatus2"),

26 arlefko?2
fec = c("feca3"”, "feca2"),
supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
agecol = "obsage"”,
yearcol = NULL,
popcol = NULL,
patchcol = NULL,
indivcol = NULL,
censorcol = NULL,
censorkeep = 0,
final_age = NA,
continue = TRUE,
prebreeding = TRUE,
NRasRep = FALSE,
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
sparse_output = FALSE
)
Arguments
data A vertical demographic data frame, with variables corresponding to the naming
conventions in functions verticalize3() and historicalize3(). Alterna-
tively, a list of bootstrapped data of class hfv_list.
stageframe A stageframe object that includes information on the size, observation status,
propagule status, reproduction status, immaturity status, and maturity status of
each ahistorical stage. Should also incorporate bin widths if size is continuous.
year A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in linear model development. De-
faults to "all”, in which case matrices will be estimated for all occasions.
pop A variable designating which populations will have matrices estimated. Should
be set to specific population names, or to "all” if all populations should have
matrices estimated.
patch A variable designating which patches or subpopulations will have matrices esti-
mated. Should be set to specific patch names, or to "all” if matrices should be
estimated for all patches. Defaults to NA, in which case patch designations are
ignored.
censor If TRUE, then data will be removed according to the variable set in censorcol,
such that only data with censor values equal to censorkeep will remain. De-
faults to FALSE.
stages An optional vector denoting the names of the variables within the main verti-

cal dataset coding for the stages of each individual in occasions #+1 and 7. The
names of stages in these variables should match those used in the stageframe
exactly. If left blank, then arlefko2() will attempt to infer stages by matching
values of alive, size, repst, and matst to characteristics noted in the associ-
ated stageframe.

arletko2

alive

obsst

size

sizeb

sizec

repst

matst

fec

supplement

repmatrix

overwrite

agecol
yearcol

popcol

27

A vector of names of binomial variables corresponding to status as alive (1) or
dead (@) in occasions #+1 ans ¢, respectively.

A vector of names of binomial variables corresponding to observation status in
occasions t+1, ¢, and t-1, respectively. Defaults to NULL, in which case observa-
tion status is not used.

A vector of names of variables coding the primary size variable in occasions 7+1
and ¢, respectively. Defaults to c("sizea3", "sizea2").

A vector of names of variables coding the secondary size variable in occasions
t+1 and ¢, respectively. Defaults to NULL, in which case this variable is not used.

A vector of names of variables coding the tertiary size variable in occasions #+1
and ¢, respectively. Defaults to NULL, in which case this variable is not used.

A vector of names of variables coding reproductive status in occasions 7+1 and ¢,
respectively. Defaults to c("repstatus3”, "repstatus2”). Must be supplied
if stages is not provided.

A vector of names of variables coding maturity status in occasions 7+1 and ¢,
respectively. Defaults to c("matstatus3”, "matstatus2”). Must be supplied
if stages is not provided.

A vector of names of variables coding fecundity in occasions #+1 and ¢, respec-
tively. Defaults to c("feca3"”, "feca2").

An optional data frame of class 1lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental () function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

An optional reproduction matrix. This matrix is composed mostly of Os, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
aflefko2() will assume that all stages marked as reproductive produce oft-
spring at 1x that of estimated fecundity, and that offspring production will yield
the first stage noted as propagule or immature. To prevent this behavior, input
just @, which will result in fecundity being estimated only for transitions noted
in supplement above. Must be the dimensions of an ahistorical stage-based
matrix.

An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

The variable name or column number coding for age in time .
The variable name or column number corresponding to occasion 7 in the dataset.

The variable name or column number corresponding to the identity of the popu-
lation.

28

patchcol
indivcol

censorcol

censorkeep
final_age

continue

prebreeding

NRasRep

reduce

simple

err_check

sparse_output

Value

arlefko2

The variable name or column number corresponding to patch in the dataset.
The variable name or column number coding individual identity.

The variable name or column number denoting the censor status. Only needed
if censor = TRUE.

The value of the censor variable denoting data elements to keep. Defaults to .
The final age to model in the matrix. Defaults to the maximum age in the dataset.

A logical value designating whether to allow continued survival of individuals
past the final age noted in the stageframe, using the demographic characteristics
of the final age. Defaults to TRUE.

A logical value indicating whether the life history model is a pre-breeding model.
Defaults to TRUE.

If data does not include stage assignments, then this option determines whether
non-reproductive and reproductive individuals should be lumped into the same
stages. Defaults to FALSE.

A logical value denoting whether to remove age-stages associated with only zero
transitions. These are removed only if the respective row and column sums in
ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard hfv_data object in argument data, then this function will return an
object of class lefkoMat. If the user inputs an object of class hfv_list in argument data, then
the output will be an object of class lefkoMatList, in which each element is an object of class

lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

hstages

agestages

A list of full projection matrices in order of sorted patches and occasions. All
matrices output in R’s matrix class, or in the dgCMatrix class from the Matrix
package if sparse.

A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Set to NA for age-by-stage MPMs.

A data frame showing the stage number and stage name corresponding to ahstages,

as well as the associated age, of each row in each age-by-stage matrix.

arletko2 29

ahstages A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

labels A data frame giving the patch and year of each matrix in order. In aflefko2(),

only one population may be analyzed at once, and so pop = NA

datagc A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

matrixqc A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

modelqc This is the gc portion of the modelsuite input in function-based MPMs. Empty
in this function.

Notes

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or sub-
populations. Should the aim of analysis be a general MPM that does not distinguish these patches
or subpopulations, the patchcol variable should be left to NA, which is the default. Otherwise the
variable identifying patch needs to be named.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and ¢. Rearranging the order WILL lead to erroneous calculations, and may lead to fatal errors.

Although this function is capable of assigning stages given an input stageframe, it lacks the power
of verticalize3() and historicalize3() in this regard. Users are strongly encouraged to use
the latter two functions for stage assignment.

See Also

mpm_create()
flefko3()
flefko2()
aflefko2()
fleslie()
rlefko3()
rlefko2()
rleslie()

Examples

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)

30 beverton3

Stagevector <- C("SD", "P]", "PZ”, ”P3”, ”SL”, IIDII’ “XSm”, ”Sm”, ”Md”, ”Lg”,
"XLg">

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(@, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, 0, 0, 0, 0 , 1, 1,

binvec <- c(0, o0, @, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)
minagevec <- c(1, 1, 2, 3, 4

maxagevec <- c(rep(1

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec, minage = minagevec, maxage = maxagevec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE, age_offset = 4)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
Stagez = C(“SD“, IISDII, IIP1 VI, IIPZII, NP3H, IISLII’ IISLII’ IISLII’ Ilrepll,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE, agebased = TRUE)
cyp_mats <- arlefko2(data = cypraw_v1, stageframe = cypframe_raw, year = "all",
patch = NA, censor = FALSE, stages = c("stage3", "stage2"”, "stagel"),
size = c("size3added"”, "size2added"), fec = c("feca3", "feca2"),
supplement = cypsupp2r, agecol = "obsage"”, yearcol = "year2",

patchcol = "patchid”, indivcol = "individ"”, prebreeding = TRUE, final_age = NA,
continue = TRUE, reduce = FALSE)

beverton3 Two-Parameter Beverton-Holt Function

Description

Function beverton3() creates a vector of values produced by the two- parameter Beverton-Holt
function as applied with a user-specified time lag. The two-parameter Beverton-Holt function is
given as ;41 = ¢ra/(1 + Bny). Here, if no separate_N vector is provided, then n; = ¢;.

beverton3

Usage

beverton3(

start_value,

alpha,
beta,

time_steps

31

100L,

time_lag = 1L,

pred_subs

pre@_value
substoch =

FALSE,
0,

separate_N = NULL

Arguments

start_value

alpha

beta

time_steps

time_lag

pre@_subs

pred_value

substoch

separate_N

Value

A positive number to start the return vector in time 0.

The alpha parameter in the two-parameter Beverton-Holt function. Must be
non-negative.

The beta parameter in the two-parameter Beverton-Holt function. Must be non-
negative.

The number of time steps to run the projection. Must be a positive integer.

A positive integer denoting the number of time steps back for the value of phi in
the two-parameter Beverton-Holt function.

A logical value indicating whether to use a number other than that given in
start_value for values of phi lagged from times prior to time 0.

A positive number to use for phi lagged from times prior to time 0. Only used if
pred_subs = TRUE.

An integer value indicating the kind of substochasticity to use. Values include:
0, no substochasticity enforced (the default); 1, all numbers must be non-negative;
and 2, all numbers should be forced to the interval [0, 1].

An optional numeric vector with values of N in each time, if phi is to be treated
as different from N in the two-parameter model.

A numeric vector of values showing values projected under the two- parameter Beverton-Holt func-

tion.

Examples

trial_runl <- beverton3(1, alpha = 0.5, beta
plot(trial_run1)

trial_run2 <- beverton3(1, alpha = 0.5, beta
plot(trial_run2)

trial_run3 <- beverton3(1, alpha =

0.009)

0.9)

1, beta = 0.009)

32 bootstrap3

plot(trial_run3)

trial_run4 <- beverton3(1, alpha = 1, beta = 0.9)
plot(trial_run4)

trial_run5 <- beverton3(1, alpha = 5, beta
plot(trial_run5)

0.009)

trial_run6é <- beverton3(1, alpha = 5, beta = 0.9)
plot(trial_run6é)

used_Ns <- c(10, 15, 12, 14, 14, 150, 15, 1, 5, 7, 9, 14, 13, 16, 17, 19,
25, 26)

trial_run7 <- beverton3(1, alpha = 1, beta = 0.009, separate_N = used_Ns)

plot(trial_run7)

bootstrap3 Bootstrap Standardized hfv_data Datasets

Description

Function bootstrap3() takes already standardized hfvdata datasets and bootstraps them by indi-
vidual identity, or by row.

Usage

bootstrap3(
data,
by_pop = NULL,
by_patch = NULL,
by_indiv = NULL,
prop_size = NULL,
max_limit = NULL,
reps = NULL,
popcol = NULL,
patchcol = NULL,
indivcol = NULL

)
Arguments
data A data frame of class hfvdata.
by_pop A logical value indicating whether to sample the data frame by population. If

TRUE, then the number of individuals sampled for each population will be set to
the respective population’s actual number of individuals; otherwise, population
identity is ignored. Defaults to TRUE.

bootstrap3 33

by_patch A logical value indicating whether to sample the data frame by patch. If TRUE,
then the number of individuals sampled for each patch will be set to the respec-
tive patch’s actual number of individuals; otherwise, patch identity is ignored.
Defaults to TRUE.

by_indiv A logical value indicating whether to sample the data frame by individual iden-
tity, or by row. If TRUE, then samples by individual identity. Defaults to TRUE.

prop_size A logical value indicating whether to keep the proportions of individuals (if
by_indiv = TRUE) or of rows (if by_indiv = FALSE) in each bootstrapped dataset
to the same proportions across populations (if by_pop = TRUE, and patches (if
by_patch = TRUE, as in the original dataset. If FALSE, then allows the specific
proportions to be set by argument max_limit. Defaults to TRUE.

max_limit Sets the sample size to pull from the original data frame, if prop_size = FALSE.
Defaults to the size of the original dataset if prop_size = TRUE, and to 100 if if
prop_size = FALSE. Can also be input as an integer vector giving the number of
samples to take by population (if by_pop = TRUE), patch (if by_patch = TRUE),
or population-patch (if by_pop = TRUE and by_patch = TRUE).

reps The number of bootstrap replicates to produce. Defaults to 100.

popcol A string denoting the variable name coding for population identity in the data
frame. Defaults to "popid”.

patchcol A string denoting the variable name coding for patch identity in the data frame.
Defaults to "patchid”.

indivcol A string denoting the variable name coding for individual identity in the data
frame. Defaults to "individ".

Value

A list of class hfvlist, which is composed of data frames of class hfvdata.
Examples
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 9, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,

34 cond_diff

patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,

juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathboot <- bootstrap3(lathvert, reps = 3)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep"),
stagel = c("sd", "rep”, "Sd", "rep”, "all", "all"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 3, 3), type_t12 =c(1, 2, 1, 2, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3_boot <- rlefko3(data = lathboot, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3", "stage2", "stagel"”),

supplement = lathsupp3, yearcol = "year2", indivcol = "individ")
cond_diff Extract Conditional Ahistorical Difference Matrices
Description

Function cond_diff () takes a set of historical difference matrices resulting from function diff_1IM()
and decomposes them into ahistorical difference matrices conditional upon stage in time #-1.

Usage

cond_diff(1Diff, ref = 1L, matchoice = NULL, err_check = NULL)

Arguments
1Diff An object of class lefkoDiff.
ref Choice of mpm to use as reference. Defaults to 1, which means that the ahstages,
hstages, and l1abels elements for mpm1 will be used for all calculations. Only
1 amd 2 are possible inputs.
matchoice A character denoting whether to use A, U, or F matrices. Defaults to A matrices.
err_check A logical value denoting whether to include a data frame of element equivalence

from the conditional matrices to the original matrices. Used only for debugging
purposes. Defaults to FALSE.

cond_diff 35

Value

A lefkoCondDiff object, with the following elements:

Mcond A multi-level list holding the conditional matrices derived from the input lefkoDiff
object. The top level of the list corresponds to each historical difference matrix
in turn, and the lower level corresponds to each stage in time -1, with individual
conditional matrices named for the latter.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs.

ahstages A data frame detailing the characteristics of associated ahistorical stages.

labels A data frame showing the patch and year of each input full A matrix in order.

err_check An optional data frame showing the order of used element indices to create

conditional matrices.

Examples

sizevector <- c(@, o0, 0, 0, 0, o, 1, 3, 6, 11, 19.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3”, "SL”, "D", "Xsm", "Sm", "Md", "Lg",
IIXLgN)

repvector <- c(0, @, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, 0)

indataset <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

binvec <- c(0, o, @, 0, 9, 0.5, 0.5, 1.5, 1.5, 3.5, 5)

comments <- c("”Dormant seed”, "1st yr protocorm”, "2nd yr protocorm”,
"3rd yr protocorm”, "Seedling"”, "Dormant adult”,
"Extra small adult (1 shoot)”, "Small adult (2-4 shoots)",
"Medium adult (5-7 shoots)"”, "Large adult (8-14 shoots)”,
"Extra large adult (>14 shoots)")

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec, comments = comments)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

seeds_per_pod <- 5000

cypsupp2_raw <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "SL", "D",
"XSm", "SD", "P1"),
stage2 = c("sb", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep", "rep"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "D", "XSm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA, "XSm", "XSm", NA, NA),

cond_diff

givenrate = c(0.03, .15, 0.1, 0.1, 0.1, 0.05, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, (0.5 * seeds_per_pod),
(0.5 * seeds_per_pod)),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypsupp3_raw <- supplemental(stage3 = c("SD", "sD", "P1", "P1", "P2", "P3", "SL",

"D", "XSm", "Sm", "D", "XSm"”, "Sm", "mat", "mat”, "mat”, "SD", "P1"),

stage2 = c("sD”, "sDp", "spb", "sb”, "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"sL", "SL", "D", "XSm", "Sm", "rep", "rep"),

stagel = c("SD", "rep”, "SD", "rep”, "SD", "P1", "P2", "P3", "P3", "P3",
"SL”) MSL™, "SL™, "SL", "SL", "SL", "mat”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm", "Sm",
"mat”, "mat"”, "mat", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm", "D", "XSm", "Sm", NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", "XSm", "XSm",
"XSm”, "XSm”, "XSm", "XSm”, NA, NA),

givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),

type = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1, 1, 1, 3, 3),

type_t12 = c(1, 2, 1, 2, 1, 1, 1, 1, 1, 1,

stageframe = cypframe_raw, historical = TRUE)

cypmatrix2rp <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3"”, "stage2"),
size = c("size3added"”, "size2added"), supplement = cypsupp2_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2"),
size = c("size3added”, "size2added"), supplement = cypsupp2_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix3rp <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added”, "sizeladded"”), supplement = cypsupp3_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all", stages = c("stage3"”, "stage2", "stagel"),
size = c("size3added"”, "size2added", "sizeladded"), supplement = cypsupp3_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix2r_3 <- hist_null(cypmatrix2r)
cypmatrix2r_3 <- delete_lM(cypmatrix2r_3, year = 2004)
diff_r <- diff_1IM(cypmatrix3r, cypmatrix2r_3)

cypmatrix2rp_3 <- hist_null(cypmatrix2rp)
cypmatrix2rp_3 <- delete_lM(cypmatrix2rp_3, year = 2004)
diff_rp <- diff_1M(cypmatrix3rp, cypmatrix2rp_3)

cond_hmpm 37

condr1 <- cond_diff(diff_r, ref
condr2 <- cond_diff(diff_r, ref

D
2)

condrpl <- cond_diff(diff_rp, matchoice = "U", ref = 1)
condrp2 <- cond_diff(diff_rp, matchoice = "F", ref = 2)

cond_hmpm Extract Conditional Ahistorical Matrices from Historical MPM

Description

Function cond_hmpm() takes historical MPMs and decomposes them into ahistorical matrices con-
ditional upon stage in time 7-1. In effect, the function takes each historical matrix within a lefkoMat
object, and forms one ahistorical matrix for each stage in time #-1.

Usage

cond_hmpm(hmpm, matchoice = NULL, err_check = NULL)

Arguments
hmpm A historical matrix projection model of class lefkoMat.
matchoice A character denoting whether to use A, U, or F matrices. Defaults to A matrices.
err_check A logical value denoting whether to include a data frame of element equivalence
from the conditional matrices to the original matrices. Used only for debugging
purposes. Defaults to FALSE.
Value

A lefkoCondMat object, with the following elements:

Mcond A multi-level list holding the conditional A matrices derived from the input
lefkoMat object. The top level of the list corresponds to each historical matrix
in turn, and the lower level corresponds to each stage in time #-1, with individual
conditional matrices named for the latter.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs.

ahstages A data frame detailing the characteristics of associated ahistorical stages.

labels A data frame showing the patch and year of each input full A matrix in order.

err_check An optional data frame showing the order of used element indices to create

conditional matrices.

38 cond_hmpm

Examples

data(cypdata)

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3”, "SL”, "D", "Xsm", "sm", "Md",
IILgII’ IIXLgN)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, @, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp3r <- supplemental(stage3 = c("SD", "sb", "P1", "P1", "P2", "P3", "SL",
"D", "XSm", "Sm", "D", "XSm", "Sm", "mat"”, "mat”, "mat”, "SD", "P1"),
stage2 = c("sSD", "sb", "sb", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"sLM, "sSL", "D", "XSm", "Sm", "rep"”, "rep"),
stagel = c("SD", "rep"”, "SD", "rep", "SD", "P1", "P2", "P3", "P3", "P3",
"sL™, "sL", "sL", "sL", "SL", "SL", "mat"”, "mat"),
eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D"”, "XSm", "Sm", "D", "XSm", "Sm",
"mat”, "mat”, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm”, "XSm”, "XSm”, "XSm", "XSm",
"Xsm”, "D", "XSm", "Sm", NA, NA),
eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm”, "XSm", "XSm", "XSm”, NA, NA),
givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 9.5),
type = c(1, 1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 3, 3),
type_t12 = ¢(1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
stageframe = cypframe_raw, historical = TRUE)

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2", patchcol = "patchid”,
indivcol = "individ")

create_IM

39

cypcondmats <- cond_hmpm(cypmatrix3r)
summary (cypcondmats)

create_IM

Create lefkoMat Object from Given Input Matrices or an MPM
Database

Description

Function create_1M() creates lefkoMat objects from supplied matrices and extra information, or
from a supplied MPM database such as COMPADRE or COMADRE.

Usage

create_1M(
mats,
stageframe
hstages =
agestages

NULL,

NA,
NA,

historical = FALSE,

agebystage

FALSE,

UFdecomp = TRUE,

entrystage
poporder =
patchorder
yearorder

1

1,

1,

NA,

matrix_id = NULL,
add_FC = TRUE,
sparse_output = FALSE

Arguments

mats

stageframe

hstages

agestages

historical

agebystage

A list of A matrices, or, if importing from a matrix database such as COM-
PADRE or COMADRE, then the object holding the database.

A stageframe describing all stages utilized.

A data frame outlining the order of historical stages, if matrices provided in
mats are historical. Defaults to NA.

A data frame outlining the order of ahistorical age-stages, if age-by-stage matri-
ces are provided.

A logical value indicating whether input matrices are historical or not. Defaults
to FALSE.

A logical value indicating whether input matrices are ahistorical age-by-stage
matrices. If TRUE, then object agestages is required. Defaults to FALSE.

40

create_IM

UFdecomp A logical value indicating whether U and F matrices should be inferred. Defaults
to TRUE.

entrystage The stage or stages produced by reproductive individuals. Used to determine

which transitions are reproductive for U-F decomposition. Defaults to 1, which
corresponds to the first stage in the stageframe.

poporder The order of populations in the list supplied in object mats. Defaults to 1.
patchorder The order of patches in the list supplied in object mats. Defaults to 1.
yearorder The order of monitoring occasions in the list supplied in object mats. Defaults

to NA, which leads to each matrix within each population-patch combination
being a different monitoring occasion.

matrix_id The values of MatrixID from the used database corresponding to the matrices
to import, if importing from a database. Not used if importing a list of matrices.

add_FC A logical value indicating whether to sum the matF and matC matrices to produce
the F matrix. If FALSE, then only uses the matF matrix. Only used if importing
from the COMPADRE or COMADRE database. Defaults to TRUE.

sparse_output A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format. Does
not apply to matrices imported from COMPADRE or COMADRE, which are
always in standard format.

Value

A lefkoMat object incorporating the matrices input in object mats as object A, their U and F de-
compositions in objects U and F (if requested), the provided stageframe as object ahstages, the
order of historical stages as object hstages (if historical = TRUE), the order of matrices as object
labels, and a short quality control section used by the summary.lefkoMat () function.

Notes for importing lists of matrices

Lists may be composed of a mix of matrices in standard R format (i.e. created via the matrix()
function), and in dgCMatrix sparse format (i.e. created via the Matrix: :Matrix() function with
sparse = TRUE.) All matrices will be forced to one or the other, depending on the value given for
the sparse_output argument.

U and F decomposition assumes that elements holding fecundity values are to be interpreted solely
as fecundity rates. Users wishing to split these elements between fecundity and survival should do
so manually after running this function.

Age-by-stage MPMs require an agestages data frame outlining the order of age-stages. This data
frame has 3 variables: stage_id, which is the number of the stage as labelled by the equivalently
named variable in the stageframe; stage, which is the official name of the stage as given in the
equivalently named variable in the stageframe; and age, which of course gives the age associated
with the stage at that time. The number of rows must be equal to the number of rows and columns
of each entered matrix.

Users may edit the dataqc object, setting the first NA to the number of individuals sampled, and
the second NA to the number of rows in a vertical version of the demographic dataset. This is not
required, however.

create_IM 41

Notes for importing from COMPADRE or COMADRE

For this function to operate, users must have either the COMPADRE database or the COMADRE
database loaded into the global environment. Note that the sample databases supplied within pack-
age Rcompadre will not work with this function.

This function does not and cannot replace the wonderful tools offered to explore the COMPADRE
and COMADRE packages. Please see package Rcompadre to use those tools. Note that function
import_Com() has no relationship to the Rcompadre development team.

Function import_Com() requires that the dimensions of all matrices imported into a single 1efkoMat
object be equal.

The reproductive and maturity status of each stage is determined by patterns assessed within the F
matrices. Users should check that these values make sense.

Stage names may be edited manually afterward.

Users may edit the dataqgc object, setting the first NA to the number of individuals sampled, and
the second NA to the number of rows in a vertical version of the demographic dataset. This is not
required, however.

See Also

add_1IM(Q)
delete_IM()
subset_1IM()

Examples

These matrices are of 9 populations of the plant species Anthyllis
vulneraria, and were originally published in Davison et al. (201@) Journal
of Ecology 98:255-267 (doi: 10.1111/j.1365-2745.2009.01611.x).

sizevector <- c(1, 1, 2, 3) # These sizes are not from the original paper
stagevector <- c("Sdl"”, "Veg", "SmFlo", "LFlo")

repvector <- c(0, o, 1, 1)
obsvector <- c(1, 1, 1, 1)
matvector <- c(0, 1, 1, 1)
immvector <- c(1, @, 0, 0)
propvector <- c(@, 0, 0, 0)
indataset <- c(1, 1, 1, 1)
binvec <- c(0.5, 0.5, 9.5, 0.5)

anthframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

POPN C 2003-2004

XC3 <- matrix(c(0, 0, 1.74, 1.74,

0.208333333, 0, 0, 0.057142857,

0.041666667, 0.076923077, 0, 0,

0.083333333, 0.076923077, 0.066666667, 0.028571429), 4, 4, byrow = TRUE)

42

2004-2005

XC4 <- matrix(c(o, 0, 0.3, 0.6,

0.32183908, 0.142857143, 0, 0,

0.16091954, ©.285714286, 0, 0,

0.252873563, ©.285714286, 0.5, 0.6), 4, 4, byrow = TRUE)

2005-2006
XC5 <- matrix(c(0, 0, 0.50625, 0.675,
0, 0, 0, 0.035714286,
0.1, 0.068965517, 0.0625, 0.107142857,

0.3, 0.137931034, 0, 0.071428571), 4, 4, byrow = TRUE)

POPN E 2003-2004

XE3 <- matrix(c(0, 0, 2.44, 6.569230769,

0.196428571, @, 0, O,

0.125, 0.5, 0, 0,

0.160714286, 0.5, 0.133333333, 0.076923077), 4, 4, byrow = TRUE)

XE4 <- matrix(c(@, 0, 0.45, 0.646153846,

0.06557377, ©.090909091, 0.125, 0,

0.032786885, @, 0.125, 0.076923077,

0.049180328, 0, 0.125, 0.230769231), 4, 4, byrow = TRUE)

XE5 <- matrix(c(@, 0, 2.85, 3.99,

0.083333333, 0, 0, O,

0, 0, 0, 0,

0.416666667, 0.1, @, 0.1), 4, 4, byrow = TRUE)

mats_list <- 1list(XC3, XC4, XC5, XE3, XE4, XE5)
yr_ord <- c(1, 2, 3, 1, 2, 3)
pch_ord <- c(1, 1, 1, 2, 2, 2)

anth_lefkoMat <- create_lM(mats_list, anthframe, hstages = NA,
historical = FALSE, poporder = 1, patchorder = pch_ord, yearorder = yr_ord)

A theoretical example showcasing historical matrices

sizevector <- c(1, 2, 3) # These sizes are not from the original paper
stagevector <- c("Sdl”, "Veg", "Flo")

repvector <- c(@, 0, 1)

obsvector <- c(1, 1, 1)

matvector <- c(0, 1, 1)

immvector <- c(1, 0, @)

propvector <- c(1, 0, 0)

indataset <- c(1, 1, 1)

binvec <- c(0.5, 0.5, 0.5)

exframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

Al <- matrix(c(@.10, @, 0, 0.12, @, 0, 0.15, 0, 0,

create_IM

43

0.15, 0, 0, 0.17, @, 0, 0.20, 0, 0,
0.20, 0, 0, 0.22, 0, 0, 0.25, 0, O,
0, 0.20, 0, 0, 0.22, 0, 0, 0.25, 0,
9, 0.25, 0, 0, 0.27, 0, 0, 0.30, 0,
9, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,
0, 0, 2.00, 0, 0, 3.00, 0, 0, 4.00,
0, 0, 0.35, 0, @, 0.37, 0, 0, 0.40,

create_IM

TRUE)

0, 0, 0.40, 0, 0, 0.42, @, 0, 0.45), 9, 9, byrow

A2 <- matrix(c(@.10, o, 0, 0.12, 0, @, 0.15, @, 0,

0.15, @, 0, 0.17, 0, 0, ©.20, 0, 0,

0.20, 0, 0, 0.22, 0, 0, 0.25, 0, 0,

0, 0.20, 0, 0, 0.22, 0, 0, 0.25, 0,
9, 0.25, 0, 0, 0.27, 0, 0, 0.30, O,
0, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,
0, 0, 5.00, 0, @, 6.00, 0, 0, 7.00,

TRUE)

0, 0, 0, 0.42, 0, 0, 0.45), 9, 9, byrow

.35, 0, 0, 0.37, 0, 0, 0.40,

3
.4

0, 0, 0
0, 0, 0

A3 <- matrix(c(0.10, 0, 0, 0.12, @, 0, .15, 0, O,

0.15, 0, 0, 0.17, @, 0, 0.20, 0, 0,

0.20, 0, 0, 0.22, 0, 0, 0.25, 0, O,

9, 0.20, 0, 0, 0.22, 0, 0, 0.25, O,
0, 0.25, 0, 0, 0.27, 0, 0, 0.30, 0,
0, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,

0, 0, 8.00, 0, 0, 9.00, 0, 0, 10.00,

, 0, 0.37, 0, 0, 0.40,
, 0, 0.42, 0, 0, 0.45), 9, 9, byrow = TRUE)

0
0

’
’

5

S
™M <+

0
0

’
’

0
0

’

e?
0

B1 <- matrix(c(0.10, 0, @, 0.12, @, 0, 0.15, 0, 0,

9.15, 0, 0, .17, 0, 0, 0.20, 0, O,

0.20, 0, 0, 0.22, 0, 0, 0.25, 0, 0,

0, 0.20, 0, 0, 0.22, 0, 0, 0.25, 0,
9, 0.25, 0, 0, 0.27, 0, 0, 0.30, 0,
0, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,

0, 0, 11.00, @, 0, 12.00, 0, 0, 13.00,

TRUE)

, 0, 0.42, 0, 0, 0.45), 9, 9, byrow

, 0, 0.37, 0, 0, 0.40,

0
0

’
’

5

S
™M <+

0
0

’
’

0
0

’
’

0
0

B2 <- matrix(c(e.10, o, o, ©.12, @, @, 0.15, @, O,

0.15, 0, 0, 0.17, @, 0, 0.20, 0, 0,

0.20, 0, 0, 0.22, 0, 0, 0.25, 0, 0,

0, 0.20, 0, 0, 0.22, 0, 0, 0.25, O,
9, 0.25, 0, 0, 0.27, 0, 0, 0.30, 0,
0, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,

0, 0, 14.00, 0, 0,

16.00,

15.00, 0, 0,

, 0, 0.37, 0, 0, 0.40,
, 0, 0.42, 0, 0, 0.45), 9, 9, byrow = TRUE)

0
(%

’
’

5

S
o~ <+

B3 <- matrix(c(0.10, 0, @, 0.12, @, 0, 0.15, 0, 0,

0.15, 0, 0, 0.17, 0, 0, 0.20, 0, 0,

0.20, 0, 0, 0.22, 0, 0, 0.25, 0, O,

0, 0.20, 0, 0, 0.22, 0, 0, 0.25, 0,

44 create_pm

9, 0.25, 0, 0, 0.27, 0, 0, 0.30, 0,

0, 0.30, 0, 0, 0.32, 0, 0, 0.35, 0,

0, 0, 17.00, 0, 0, 18.00, 0, 0, 19.00,

9, 0, .35, 0, 0, 0.37, 0, 0, 0.40,

0, 0, 0.40, 0, 0, 0.42, 0, 0, ©.45), 9, 9, byrow = TRUE)

histmats <- list(A1, A2, A3, B1, B2, B3)
stageframe <- exframe

pch_ord <- c(”A”, "A", "A", "B", "B", "B")
yr_ord <- c(1, 2, 3, 1, 2, 3)

hist_trial <- create_lM(histmats, exframe, historical = TRUE,
UFdecomp = TRUE, entrystage = 1, patchorder = pch_ord, yearorder = yr_ord)

create_pm Creates a Skeleton Paramnames Object for Use in Function-based
Modeling

Description
Creates a simple skeleton paramnames object that can be entered as input in functions flefko2(),
flefko3(), and aflefko2().

Usage

create_pm(name_terms = FALSE)

Arguments
name_terms A logical value indicating whether to start each variable name as none if FALSE,
or as the default modelparams name if TRUE. Defaults to FALSE.
Value

A three column data frame, of which the first describes the parameters in reasonably plain English,
the second gives the name of the parameter within the MPM generating functions, and the third is
to be edited with the names of the variables as they appear in the models.

Notes

The third column in the resulting object should be edited with the names only of those variables
actually used in vital rate modeling. This paramnames object should apply to all models used in a
single MPM building exercise. So, for example, if the models used include random terms, then they
should all have the same random terms. Fixed terms can vary, however.

cycle_check 45

Examples

our_pm <- create_pm()
our_pm

cycle_check Check Continuity of Life Cycle through Matrices in lefkoMat Objects

Description

Function cycle_check() tests whether stages, stage-pairs, or age-stages connect in matrices within
lefkoMat objects.

Usage

cycle_check(mpm, quiet = NULL)

Arguments
mpm An object of class lefkoMat, a matrix, or a list of matrices.
quiet A logical variable indicating whether to suppress diagnostic messages. Defaults
to FALSE.
Value

Returns a list with two elements, both of which are also lists. The first list, no_in, contains as many
elements as matrices, with each element containing an integer vector showing the identification
numbers of stages, stage-pairs, or age-stages, in each matrix that do not show any transitions leading
to them. The second list, no_out, is structured similarly to the first, but shows stages, stage-pairs,
or age-stages from which there are no transitions leading out.

Notes

This function tests whether stages, stage-pairs, and age-stages are connected to others in matrices
used for projection. Whether stages, stage-pairs, or age-stages are shown depends on whether
the MPM is ahistorical / age-based, historical stage-based, or age-by-stage, respectively. Checks
are performed by testing whether each column in a matrix includes non-zero transitions to other
columns, and by testing whether any columns have no transitions to them from other columns. If
any such columns are found, then function cycle_check will export an integer vector giving the
column numbers with problems. These column numbers may then be checked against the stage_id
column of the associated stageframe in the case of a ahistorical or age-based MPM, against the row
number of the associated hstages data frame in the case of a historical MPM, or against the row
number of the associated agestages data frame in the case of an age-by-stage MPM.

46 cypdata

Examples

data(cypdata)

sizevector <- c(0, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, 0, 0, 90, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, 0, @0, @, @, 0, @)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(@, @, 9, @, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"Xsm”, "sm”, "SD", "P1"),

stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),

givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cycle_check(cypmatrix2r)

cypdata Demographic Dataset of Cypripedium candidum Population, in Hor-
izontal Format

cypdata 47

Description

A dataset containing the states and fates of Cypripedium candidum (white lady’s slipper orchids),
family Orchidaceae, from a population in Illinois, USA, resulting from monitoring that occurred
annually between 2004 and 2009.

Usage

data(cypdata)

Format

A data frame with 77 individuals and 29 variables. Each row corresponds to an unique individual,
and each variable from size. @4 on refers to the state of the individual in a particular year.

plantid A numeric variable giving a unique number to each individual.
patch A variable refering to patch within the population.
X An X coordinate for the plant within the population.
Y A'Y coordinate for the plant within the population.
censor A variable coding for whether the data point is valid. An entry of 1 means that it is so.
Inf2.04 Number of double inflorescences in 2004.
Inf.04 Number of inflorescences in 2004.

Veg.04 Number of stems without inflorescences in 2004.
Pod.04 Number of fruits in 2004.

Inf2.05 Number of double inflorescences in 2005.
Inf.05 Number of inflorescences in 2005.

Veg.05 Number of stems without inflorescences in 2005.
Pod.05 Number of fruits in 2005.

Inf2.06 Number of double inflorescences in 2006.
Inf.06 Number of inflorescences in 2006.

Veg.06 Number of stems without inflorescences in 2006.
Pod.06 Number of fruits in 2006.

Inf2.07 Number of double inflorescences in 2007.
Inf.07 Number of inflorescences in 2007.

Veg.07 Number of stems without inflorescences in 2007.
Pod.07 Number of fruits in 2007.

Inf2.08 Number of double inflorescences in 2008.
Inf.08 Number of inflorescences in 2008.

Veg.08 Number of stems without inflorescences in 2008.
Pod.08 Number of fruits in 2008.

Inf2.09 Number of double inflorescences in 2009.
Inf.09 Number of inflorescences in 2009.

Veg.09 Number of stems without inflorescences in 2009.
Pod.09 Number of fruits in 2009.

48

Source

cypdata

Shefferson, R.P., R. Mizuta, and M.J. Hutchings. 2017. Predicting evolution in response to climate
change: the example of sprouting probability in three dormancy-prone orchid species. Royal Society

Open Science 4(1):160647.

Examples

data(cypdata)

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgN)

repvector <- c(0, 0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, @, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"XSm", "Sm", "SD", "P1"),

stage2 = c("SD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, ”"XSm”, "XSm”, "XSm”, NA, NA),

givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

lambda3(cypmatrix2r)

cypvert 49

cypvert Demographic Dataset of Cypripedium candidum Population, in Ver-
tical Format

Description

A dataset containing the states and fates of Cypripedium candidum (white lady’s slipper orchids),
family Orchidaceae, from a population in Illinois, USA, resulting from monitoring that occurred
annually between 2004 and 2009. Same dataset as cypdata, but arranged in an ahistorical vertical
format.

Usage

data(cypvert)

Format

A data frame with 77 individuals, 322 rows, and 14 variables. Each row corresponds to a specific
two-year transition for a specific individual. Variable codes are similar to those for cypdata, but
use . 2 to identify occasion ¢ and . 3 to identify occasion #+1.

plantid A numeric variable giving a unique number to each individual.
patch A variable refering to patch within the population.

X An X coordinate for the plant within the population.

Y A 'Y coordinate for the plant within the population.

censor A variable coding for whether the data point is valid. An entry of 1 means that it is so.
year2 Year in occasion f.

Inf2.2 Number of double inflorescences in occasion .

Inf.2 Number of inflorescences in occasion .

Veg.2 Number of stems without inflorescences in occasion ¢.

Pod.2 Number of fruits in occasion .

Inf2.3 Number of double inflorescences in occasion 7+1.

Inf.3 Number of inflorescences in occasion #+1.

Veg.3 Number of stems without inflorescences in occasion #+1.

Pod.3 Number of fruits in occasion #+1.

Source

Shefferson, R.P., R. Mizuta, and M.J. Hutchings. 2017. Predicting evolution in response to climate
change: the example of sprouting probability in three dormancy-prone orchid species. Royal Society
Open Science 4(1):160647.

Examples

data(cypvert)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, @, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 9, @, 1, 1, 1, 1, 1)
matvector <- c(90, @, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, o, 0, 0, @, 0, Q)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v2 <- historicalize3(data = cypvert, patchidcol = "patch”,
individcol = "plantid”, year2col = "year2", sizea2col = "Inf2.2",
sizea3col = "Inf2.3", sizeb2col = "Inf.2", sizeb3col = "Inf.3",
sizec2col = "Veg.2", sizec3col = "Veg.3", repstra2col = "Inf2.2",
repstra3col = "Inf2.3", repstrb2col = "Inf.2", repstrb3col = "Inf.3",
feca2col = "Pod.2", feca3col = "Pod.3", repstrrel = 2,
stageassign = cypframe_raw, stagesize = "sizeadded", censorcol = "censor",
censor = FALSE, NAas@ = TRUE, NRasRep = TRUE, reduce = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"XSm", "Sm", "SD", "P1"),

stage2 = c("SD", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),

givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v2, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3"”, "stage2"),

size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
lambda3(cypmatrix2r)

delete IM

delete_1M Delete Matrices from lefkoMat or lefkoMatList Object

delete IM 51

Description

Function delete_1M() deletes matrices from lefkoMat and lefkoMatList objects.

Usage

delete_IM(IM, mat_num = NA, pop = NA, patch = NA, year = NA)

Arguments
M The lefkoMat or lefkoMatList object to delete matrices from.
mat_num Either a single integer corresponding to the matrix to remove within the 1abels
element of 1M, or a vector of such integers.
pop The population designation for matrices to remove. Only used if mat_num is not
given.
patch The patch designation for matrices to remove. Only used if mat_num is not
given.
year The time ¢ designation for matrices to remove. Only used if mat_num is not
given.
Value

A lefkoMat or lefkoMatList object in which the matrices specified in 1M have been removed.
Note that, if applying to a lefkoMatList object, then matrices will be deleted from ALL composite
lefkoMat objects.

Notes

If mat_num is not provided, then at least one of pop, patch, or year must be provided. If at least
two of pop, patch, and year are provided, then function detele_IM() will identify matrices to
remove as the intersection of provided inputs.

See Also

create_IM()
add_IM(Q)
subset_1M(Q)

Examples

These matrices are of 9 populations of the plant species Anthyllis
vulneraria, and were originally published in Davison et al. (2010) Journal
of Ecology 98:255-267 (doi: 10.1111/j.1365-2745.2009.01611.x).

sizevector <- c(1, 1, 2, 3) # These sizes are not from the original paper
stagevector <- c("Sdl"”, "Veg", "SmFlo", "LFlo")

repvector <- c(0, @, 1, 1)

obsvector <- c(1, 1, 1, 1)

matvector <- c(0, 1, 1, 1)

52

immvector <- c(1, @, 0, 0)
propvector <- c(@, 0, 0, 0)
indataset <- c(1, 1, 1, 1)
binvec <- c(0.5, 0.5, 9.5, 0.5)

anthframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

POPN C 2003-2004

XC3 <- matrix(c(o, 0, 1.74, 1.74,

0.208333333, 0, 0, 0.057142857,

0.041666667, 0.076923077, @, O,

0.083333333, 0.076923077, 0.066666667, 0.028571429), 4, 4, byrow = TRUE)

2004-2005

XC4 <- matrix(c(o, 0, 0.3, 0.6,

0.32183908, 0.142857143, 0, o,

0.16091954, 0.285714286, 0, 0,

0.252873563, ©.285714286, 0.5, 0.6), 4, 4, byrow = TRUE)

2005-2006
XC5 <- matrix(c(@, 0, 0.50625, 0.675,
0, 0, 0, 0.035714286,
0.1, 0.068965517, 0.0625, 0.107142857,

0.3, 0.137931034, 0, 0.071428571), 4, 4, byrow = TRUE)

POPN E 2003-2004

XE3 <- matrix(c(0, 0, 2.44, 6.569230769,

0.196428571, @, 0, 0,

0.125, 0.5, 0, 0,

0.160714286, 0.5, 0.133333333, 0.076923077), 4, 4, byrow = TRUE)

XE4 <- matrix(c(0, 0, ©.45, 0.646153846,

0.06557377, ©.090909091, 0.125, 0,

0.032786885, 0, 0.125, 0.076923077,

0.049180328, 0, 0.125, 0.230769231), 4, 4, byrow = TRUE)

XE5 <- matrix(c(@, 0, 2.85, 3.99,

0.083333333, 0, 0, 0,

0, 0, 0, 0,

0.416666667, 0.1, 0, 0.1), 4, 4, byrow = TRUE)

mats_list <- 1list(XC3, XC4, XC5, XE3, XE4, XE5)
yr_ord <- c(1, 2, 3, 1, 2, 3)
pch_ord <- c(1, 1, 1, 2, 2, 2)

anth_lefkoMat <- create_lM(mats_list, anthframe, hstages = NA,
historical = FALSE, poporder = 1, patchorder = pch_ord, yearorder = yr_ord)

smaller_anth_IM <- delete_lM(anth_lefkoMat, patch = 2)

delete IM

density_input 53

density_input Set Density Dependence Relationships in Matrix Elements

Description

Function density_input() provides all necessary data to incorporate density dependence into a
lefkoMat object, a list of matrices, or a single matrix. Four forms of density dependence are
allowed, including the Ricker function, the Beverton-Holt function, the Usher function, and the
logistic function. In each case, density must have an effect with a delay of at least one time-step
(see Notes). The resulting data frame provides a guide for other 1efko3 functions to modify matrix
elements by density.

Usage

density_input(
mpm,
stage3 = NULL,
stage2 = NULL,
stagel = NULL,

age2 = NULL,
style = NULL,
time_delay = NULL,
alpha = NULL,
beta = NULL,
type = NULL,
type_t12 = NULL
)
Arguments
mpm The lefkoMat object that will be subject to density dependent projection.
stage3 A vector showing the name or number of the stage in occasion #+1 in the tran-
sitions to be affected by density. Abbreviations for groups of stages are also
usable (see Notes).
stage2 A vector showing the name or number of the stage in occasion ¢ in the transition
to be affected by density. Abbreviations for groups of stages are also usable (see
Notes).
stagel A vector showing the name or number of the stage in occasion #-1 in the transi-
tion to be affected by density. Only needed if a historical MPM is used. Abbre-
viations for groups of stages are also usable (see Notes).
age? A vector showing the age of the stage in occasion ¢ in the transition to be affected
by density. Only needed if an age-by-stage MPM is used.
style A vector coding for the style of density dependence on each transition subject

to density dependence. Options include 1, ricker, ric, or r for the Ricker
function; 2, beverton, bev, and b for the Beverton-Holt function; 3, usher,

54

time_delay

alpha

beta

type

type_t12

Value

density_input

ush, and u for the Usher function; and 4, logistic, log, and 1 for the logistic
function. If only a single code is provided, then all noted transitions are assumed
to be subject to this style of density dependence. Defaults to ricker.

An integer vector indicating the number of occasions back on which density
dependence operates. Defaults to 1, and may not equal any integer less than 1.
If a single number is input, then all noted transitions are assumed to be subject
to this time delay. Defaults to 1.

A vector indicating the numeric values to use as the alpha term in the two pa-
rameter Ricker, Beverton-Holt, or Usher function, or the value of the carrying
capacity K to use in the logistic equation (see Notes section for more on this
term). If a single number is provided, then all noted transitions are assumed to
be subject to this value of alpha. Defaults to 1.

A vector indicating the numeric values to use as the beta term in the two param-
eter Ricker, Beverton-Holt, or Usher function. Used to indicate whether to use
K as a hard limit in the logistic equation (see section Notes below). If a single
number is provided, then all noted transitions are assumed to be subject to this
value of beta. Defaults to 1.

A vector denoting the kind of transition between occasions ¢ and #+1 to be re-
placed. This should be entered as 1, S, or s for the replacement of a survival
transition; or 2, F, or f for the replacement of a fecundity transition. If empty or
not provided, then defaults to 1 for survival transition.

An optional vector denoting the kind of transition between occasions -1 and .
Only necessary if a historical MPM in deVries format is desired. This should be
entered as 1, S, or s for a survival transition; or 2, F, or f for a fecundity transi-
tions. Defaults to 1 for survival transition, with impacts only on the construction
of deVries-format hMPMs.

A data frame of class lefkoDens. This object can be used as input in function projection3().

Variables in this object include the following:

stage3
stage2
stagel
age2
style

time_delay
alpha

beta
type

type_t12

Stage at occasion 7+1 in the transition to be replaced.

Stage at occasion 7 in the transition to be replaced.

Stage at occasion #-1 in the transition to be replaced, if applicable.
Age at occasion ¢ in the transition to be replaced, if applicable.

Style of density dependence, coded as 1, 2, 3, or 4 for the Ricker, Beverton-Holt,
Usher, or logistic function, respectively.

The time delay on density dependence, in time steps.

The value of alpha in the Ricker, Beverton-Holt, or Usher function, or the value
of carrying capacity, K, in the logistic function.

The value of beta in the Ricker, Beverton-Holt, or Usher function.

Designates whether the transition from occasion ¢ to occasion 7+1 is a survival
transition probability (1), or a fecundity rate (2).

Designates whether the transition from occasion #-1 to occasion ¢ is a survival
transition probability (1), a fecundity rate (2).

density_input 55

Notes

This function provides inputs when density dependence is operationalized directly on matrix ele-
ments. It can be used in both projection3() and f_projection3(). Users wishing to modify vital
rate functions by density dependence functions for use in function-based projections with function
f_projection3() should use function density_vr() to provide the correct inputs.

The parameters alpha and beta are applied according to the two-parameter Ricker function, the
two-parameter Beverton-Holt function, the two-parameter Usher function, or the one-parameter
logistic function. Although the default is that a 1 time step delay is assumed, greater time delays
can be set through the time_delay option.

Entries in stage3, stage2, and stage1 can include abbreviations for groups of stages. Use rep
if all reproductive stages are to be used, nrep if all mature but non-reproductive stages are to be
used, mat if all mature stages are to be used, immat if all immature stages are to be used, prop if all
propagule stages are to be used, npr if all non-propagule stages are to be used, obs if all observable
stages are to be used, nobs if all unobservable stages are to be used, and leave empty or use all if
all stages in stageframe are to be used.

When using the logistic function, it is possible that the time delay used in density dependent simu-
lations will cause matrix elements to become negative. To prevent this behavior, set the associated
beta term to 1.0. Doing so will set K as the hard limit in the logistic equation, essentially setting a
minimum limit at @ for all matrix elements modified.

See Also

start_input()
projection3()

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, o, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, @, 0, 0, @, 0)
propvector <- c(1, 0, 0, 0, 0, 0, 0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea",

56 density_vr

censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep"”, "Sdl"),
stagel = c("sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
e3d <- density_input(ehrlen3mean, stage3 = c("Sd", "Sdl1"),
stage2 = c("rep”, "rep"), stagel = c("all”, "all"), style =1,

time_delay = 1, alpha = 1, beta = 0, type = c(2, 2), type_t12 = c(1, 1))

lathproj <- projection3(ehrlen3, nreps = 5, stochastic = TRUE, substoch = 2,
density = e3d)

density_vr Set Density Dependence Relationships in Vital Rates

Description

Function density_vr() provides all necessary data to incorporate density dependence into the vital
rate functions used to create matrices in function-based projections using function f_projection3().
Four forms of density dependence are allowed, including the Ricker function, the Beverton-Holt
function, the Usher function, and the logistic function. In each case, density must have an effect
with at least a one time-step delay (see Notes).

Usage

density_vr(
density_yn = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE),
style = c(o, 0, 0, @0, 0, 0, @0, 0, @, 0, 0, @, 0, Q),
time_delay = c(1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1),
alpha = c(o, 0, o, o, 0, 0, @0, 0, @, 0, 0, @, 0, @),
beta = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Q)

density_vr

Arguments

density_yn

style

time_delay

alpha

beta

Value

57

A 14 element logical vector denoting whether each vital rate is subject to den-
sity dependence. The order of vital rates is: survival probability, observation
probability, primary size transition, secondary size transition, tertiary size tran-
sition, reproductive status probability, fecundity rate, juvenile survival proba-
bility, juvenile observation probability, juvenile primary size transition, juvenile
secondary size transition, juvenile tertiary size transition, juvenile reproductive
status probability, and juvenile maturity status probability. Defaults to a vector
of 14 FALSE values.

A 14 element vector coding for the style of density dependence on each vital
rate. Options include @: no density dependence, 1, ricker, ric, or r for the
Ricker function; 2, beverton, bev, and b for the Beverton-Holt function; 3,
usher, ush, and u for the Usher function; and 4, logistic, log, and 1 for the
logistic function. Defaults to 14 values of @.

A 14 element vector indicating the number of occasions back on which den-
sity dependence operates. Defaults to 14 values of 1, and may not include any
number less than 1.

A 14 element vector indicating the numeric values to use as the alpha term in
the two parameter Ricker, Beverton-Holt, or Usher function, or the value of the
carrying capacity K to use in the logistic equation (see Notes for more on this
term). Defaults to 14 values of 0.

A 14 element vector indicating the numeric values to use as the beta term in
the two parameter Ricker, Beverton-Holt, or Usher function. Used to indicate
whether to use K as a hard limit in the logistic equation (see Notes below).
Defaults to 14 values of 0.

A data frame of class lefkoDensVR with 14 rows, one for each vital rate in the order of: survival
probability, observation probability, primary size transition, secondary size transition, tertiary size
transition, reproductive status probability, fecundity rate, juvenile survival probability, juvenile ob-
servation probability, juvenile primary size transition, juvenile secondary size transition, juvenile
tertiary size transition, juvenile reproductive status probability, and juvenile maturity status proba-
bility. This object can be used as input in function f_projection3().

Variables in this object include the following:

vital_rate
density_yn
style

time_delay
alpha

beta

The vital rate to be modified.
Logical value indicating whether vital rate will be subject to density dependence.

Style of density dependence, coded as 1, 2, 3, 4, or @ for the Ricker, Beverton-
Holt, Usher, or logistic function, or no density dependence, respectively.

The time delay on density dependence, in time steps.

The value of alpha in the Ricker, Beverton-Holt, or Usher function, or the value
of carrying capacity, K, in the logistic function.

The value of beta in the Ricker, Beverton-Holt, or Usher function.

58

Notes

density_vr

This function provides inputs when density dependence is operationalized directly on vital rates.
It can be used only in function f_projection3(). Users wishing to modify matrix elements di-
rectly by density dependence functions for use in function-based or raw projections with functions
projection3() and f_projection3() should use function density_input() to provide the cor-

rect inputs.

The parameters alpha and beta are applied according to the two-parameter Ricker function, the
two-parameter Beverton-Holt function, the two-parameter Usher function, or the one-parameter
logistic function. Although the default is that a 1 time step delay is assumed, greater time delays

can be set through the time_delay option.

When using the logistic function, it is possible that the time delay used in density dependent simu-
lations will cause matrix elements to become negative. To prevent this behavior, set the associated
beta term to 1.0. Doing so will set K as the hard limit in the logistic equation, essentially setting a

minimum limit at @ for all matrix elements modified.

See Also

density_input()
f_projection3()

Examples

data(lathyrus)

sizevector <- c(o, 4.6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,1, 2, 3, 4, 5,6, 7, 8,
9

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, o, o, 0, 9, 0, 0, 0, 0, @, @, @, 1, 1, 1,1, 1,1, 1,1, 1)
obsvector <- c(0, 1, 0, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)
matvector <- c(0, @, 1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)
immvector <- c(1, 1, @0, 0, @, 0, 0, 0, 0, @, 0, 0, 0, 0, @, 0, @0, 0, 0, @, Q)
propvector <- c(1, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0,
0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1)
binvec <- c(@, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)
lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln, stagesize = "sizea",

censorcol = "Missing1988"”, censorkeep = NA, NAas@ = TRUE, censor = TRUE)

density_vr 59

lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = lathvertln_adults, family = "binomial")

obs_data <- subset(lathvertln_adults, alive3 == 1)
obs_model <- glm(obsstatus3 ~ as.factor(patchid), data = obs_data,
family = "binomial™)

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- 1lm(sizea3 ~ sizea2 + sizeal + repstatusl + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = size_data, family = "binomial”)

fec_data <- subset(lathvertln_adults, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizea2 + sizeal + repstatusl + as.factor(patchid),
data = fec_data, family = "poisson”)

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data = lathvertln_juvs,
family = "binomial”)

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1lm(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- @
jmatst_model <- 1

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3"
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[13] <- "sizeal”
mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[19] <- "repstatus1”

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "mat"”, "Sd", "Sdl"),
stage2 = c(”sd”, "sd”, "sd”, "sd”, "sdl”, "rep”, "rep"),
Stage1 = C(”Sd“, ”rep"’ IVSdIV’ Ilr.ep"’ Ilsdll’ "mat", "mat”)’
eststage3 = c(NA, NA, NA, NA, "mat”, NA, NA),

60 diff IM

eststage2 = c(NA, NA, NA, NA, "Sdl”, NA, NA),

eststagel = c(NA, NA, NA, NA, "Sdl”, NA, NA),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),

type = c(1, 1, 1, 1, 1, 3, 3), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeln, historical = TRUE)

While we do not use MPMs to initialize f_projections3(), we do use MPMs to

initialize functions start_input() and density_input().

lathmat31ln <- flefko3(year = "all”, patch = "all”, data = lathvertln,
stageframe = lathframeln, supplement = lathsupp3, paramnames = mod_params,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model, reduce = FALSE)

e3m_sv <- start_input(lathmat3ln, stage2 = "Sd", stagel = "Sd"”, value = 1000)

dyn7 <- c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE)

dst7 <- c(1, @, 0, 0, 0, @, 0, @, 0, 0, @, 0, @, 0)

dal7 <- c(0.5, 0, 0, 0, 0, @, 0, @, 0, 0, 0, 0, @, 0)

dbe7 <- c(1, 0, 0, 0, 0, @, 0, @, 0, 0, 0, 0, O, 0)

e3d_vr <- density_vr(density_yn = dyn7, style = dst7, alpha = dal7,
beta = dbe7)

trial7_dvr_1 <- f_projection3(format = 1, data = lathvertln, supplement = lathsupp3,
paramnames = mod_params, stageframe = lathframeln, nreps = 2,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model,
times = 100, stochastic = TRUE, standardize = FALSE, growthonly = TRUE,
integeronly = FALSE, substoch = 0@, sp_density = @, start_frame = e3m_sv,
density_vr = e3d_vr)

diff_1M Calculate Difference Matrices Between lefkoMat Objects of Equal Di-
mensions

Description
Function diff_1M() takes two lefkoMat objects with completely equal dimensions, including both
the size and number of matrices, and gives the matrix differences between each corresponding set.
Usage
diff_1IM(mpm1, mpm2)

diff IM 61

Arguments
mpm1 The first lefkoMat object.
mpm2 The second lefkoMat object.
Value

An object of class lefkoDiff, which is a set of A, U, and F matrices corresponding to the differences
between each set of matrices, followed by the hstages, ahstages, and labels elements from each
input lefkoMat object. Elements labelled with a 1 at the end refer to mpm1, while those labelled 2
at the end refer to mpm2.

Notes

The exact difference is calculated as the respective matrix in mpm1 minus the corresponding matrix
in mpm2.

This function first checks to see if the number of matrices is the same, and then whether the matrix
dimensions are the same. If the two sets differ in at least one of these characteristics, then the
function will yield a fatal error.

If the lengths and dimensions of the input lefkoMat objects are the same, then this will check if the
labels element is essentially the same. If not, then the function will yield a warning, but will still
operate.

Examples

sizevector <- c(o, o0, 0, 0, 0, @, 1, 3, 6, 11, 19.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, 0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, @, 0, @)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)

indataset <- c(0, @, 0, 0, @, 1, 1, 1, 1, 1, 1)

binvec <- c(0, @, 9, 0, 0, 0.5, 0.5, 1.5, 1.5, 3.5, 5)

comments <- c("”Dormant seed”, "1st yr protocorm”, "2nd yr protocorm”,
"3rd yr protocorm”, "Seedling"”, "Dormant adult”,
"Extra small adult (1 shoot)"”, "Small adult (2-4 shoots)",
"Medium adult (5-7 shoots)"”, "Large adult (8-14 shoots)”,
"Extra large adult (>14 shoots)")

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec, comments = comments)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

diff IM

seeds_per_pod <- 5000

cypsupp2_raw <- supplemental(stage3 = c("sD", "P1", "P2", "P3", "SL", "SL", "D",

“Xsm", "SD", "P1"),

stage2 = c("sD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep", "rep"),

eststage3 = c(NA, NA, NA, NA, NA, NA, "D”, "XSm", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, "XSm"”, "XSm”, NA, NA),

givenrate = ¢(0.03, 0.15, 0.1, 0.1, 0.1, 0.05, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, (0.5 * seeds_per_pod),
(0.5 *x seeds_per_pod)),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypsupp3_raw <- supplemental(stage3 = c("SD", "sD", "P1", "P1", "P2", "P3",

"sL™, "sL", "sL", "b", "D", "SD", "P1"),

stage2 = c("sb", "sb", "sp", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"rep”, "rep"),

stagel = c("SD", "rep"”, "SD", "rep"”, "SD", "P1", "P2", "P3", "SL", "P3",
"SL", "mat”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, "XSm", "D", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", NA, NA),

givenrate = c(0.01, .05, 0.10, 0.20, 0.1, 0.1, .05, 0.05, 0.05, NA, NA,
NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
(0.5 *x seeds_per_pod), (0.5 * seeds_per_pod)),

type = c(1, 1, 1,1, 1, 1,1, 1,1, 1,1, 3, 3),

type_t12 = c(1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1),

stageframe = cypframe_raw, historical = TRUE)

cypmatrix2rp <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3"”, "stage2"),
size = c("size3added”, "size2added"), supplement = cypsupp2_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2"),
size = c("size3added”, "size2added"), supplement = cypsupp2_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix3rp <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added", "sizeladded"), supplement = cypsupp3_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added”, "size2added", "sizeladded"), supplement = cypsupp3_raw,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmatrix2r_3 <- hist_null(cypmatrix2r)
cypmatrix2r_3 <- delete_lM(cypmatrix2r_3, year = 2004)
diff_r <- diff_1lM(cypmatrix3r, cypmatrix2r_3)

edit_IM 63

cypmatrix2rp_3 <- hist_null(cypmatrix2rp)
cypmatrix2rp_3 <- delete_lM(cypmatrix2rp_3, year = 2004)
diff_rp <- diff_1M(cypmatrix3rp, cypmatrix2rp_3)

edit_1M Edit lefkoMat or lefkoMatList Object based on Supplemental Data

Description

Function edit_1M() edits existing lefkoMat and lefkoMatList objects with external data supplied
by the user. The effects are similar to function supplemental (), though function edit_1M() allows
individuals matrices within lefkoMat objects to be edited after creation, while supplemental ()
provides external data that modifies all matrices within a 1efkoMat object, or within all the lefkoMat
objects within a 1lefkoMatList object.

Usage
edit_1M(

mpm,

pop = NULL,
patch = NULL,
year2 = NULL,
stage3 = NULL,
stage2 = NULL,
stagel = NULL,
age2 = NULL,

eststage3 = NULL,
eststage2 = NULL,
eststagel = NULL,
estage2 = NULL,
givenrate = NULL,
offset = NULL,
multiplier = NULL,
type = NULL,
type_t12 = NULL,
target_mpm = NULL

)
Arguments
mpm The lefkoMat and lefkoMatList object to be edited
pop A string vector denoting the populations to be edited. Defaults to NULL, in which
case all populations are edited.
patch A string vector denoting the patches to be edited. Defaults to NULL, in which

case all patches are edited.

64

year?2

stage3

stage2

stagel

age2

eststage3

eststage?

eststagel

estage?

givenrate

offset

multiplier

type

type_t12

target_mpm

edit_IM

A string vector denoting the years to be edited. Defaults to NULL, in which case
all years are edited.

The name of the stage in occasion #+1 in the transition to be replaced. Ab-
breviations for groups of stages are also usable (see Notes). Required in all
stage-based and age-by-stage MPMs.

The name of the stage in occasion ¢ in the transition to be replaced. Abbrevi-
ations for groups of stages are also usable (see Notes). Required in all stage-
based and age-by-stage MPMs.

The name of the stage in occasion #-1 in the transition to be replaced. Only
needed if a historical matrix is to be produced. Abbreviations for groups of
stages are also usable (see Notes). Required for historical stage-based MPMs.

An integer vector of the ages in occasion 7 to use in transitions to be changed or
replaced. Required for all age- and age-by-stage MPMs.

The name of the stage to replace stage3 in a proxy transition. Only needed if
a transition will be replaced by another estimated transition, and only in stage-
based and age-by-stage MPMs.

The name of the stage to replace stage?2 in a proxy transition. Only needed if
a transition will be replaced by another estimated transition, and only in stage-
based and age-by-stage MPMs.

The name of the stage to replace stagel in a proxy historical transition. Only
needed if a transition will be replaced by another estimated transition, and the
matrix to be estimated is historical and stage-based. Stage NotAlive is also
possible for raw hMPMs as a means of handling the prior stage for individuals
entering the population in occasion z.

The age at time ¢ to replace age? in a proxy transition. Only needed if a transition
will be replaced by another estimated transition, and only in age-based and age-
by-stage MPMs.

A fixed rate or probability to replace for the transition described by stage3,
stage2, and stagel.

A numeric vector of fixed numeric values to add to the transitions described by
stage3, stage?2, stagel, and/or age?2.

A vector of numeric multipliers for fecundity or for proxy transitions. Defaults
to 1.

A vector denoting the kind of transition between occasions ¢ and #+1 to be re-
placed. This should be entered as 1, S, or s for the replacement of a survival
transition; 2, F, or f for the replacement of a fecundity transition; or 3, R, or
r for a fecundity multiplier. If empty or not provided, then defaults to 1 for
survival transition.

An optional vector denoting the kind of transition between occasions -1 and .
Only necessary if a historical MPM in deVries format is desired. This should be
entered as 1, S, or s for a survival transition; or 2, F, or f for a fecundity transi-
tions. Defaults to 1 for survival transition, with impacts only on the construction
of deVries-format hMPMs.

If modifying a 1efkoMatList object, then this allows the user to specify which
MPMs to modify. To modify, enter a vector with the number of each MPM to
modify, or enter "all” to modify all MPMs. Defaults to "all”.

elasticity3 65

Value

An edited copy of the original MPM is returned, also as a lefkoMat object.

Notes

Entries in stage3, stage2, and stage1 can include abbreviations for groups of stages. Use rep
if all reproductive stages are to be used, nrep if all mature but non-reproductive stages are to be
used, mat if all mature stages are to be used, immat if all immature stages are to be used, prop if all
propagule stages are to be used, npr if all non-propagule stages are to be used, obs if all observable
stages are to be used, nobs if all unobservable stages are to be used, and leave empty or use all
if all stages in stageframe are to be used. Also use groupX to denote all stages in group X (e.g.
groupl will use all stages in the respective stageframe’s group 1).

See Also

supplemental ()

Examples

data(cypdata)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
age_offset = 3, NAas@ = TRUE, NRasRep = TRUE)

cyp_rl <- rleslie(data = cypraw_v1l, start_age = @, last_age = 6, continue = TRUE,
fecage_min = 3, year = "all”, pop = NA, patch = "all”, yearcol = "year2",
patchcol = "patchid”, indivcol = "individ")

ddd1 <- edit_1M(cyp_rl, age2 = c(o, 1, 2, 3, 4, 5, 6),
givenrate = c(0.25, 0.25, 0.4, 0.4, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 2000, 2000, 2000),
type = c(1, 1, 1, 1, 3, 3, 3))

ddd1 <- edit_IM(ddd1, age2 = 6, multiplier = 1.5, type = 3, patch = "B",
year2 = "2005")

elasticity3 Estimate Elasticity of Population Growth Rate to Matrix Elements

Description

elasticity3() is a generic function that returns the elasticity of the population growth rate to
the elements of the matrices in a matrix population model. Currently, this function estimates both
deterministic and stochastic elasticities, where the growth rate is A in the former case and the log
of the stochastic) in the latter case. This function is made to handle very large and sparse matrices
supplied as lefkoMat objects, as lists of matrices, and as individual matrices.

66 elasticity3
Usage
elasticity3(mats, ...)
Arguments
mats A lefkoMat object, a population projection matrix, or a list of population pro-
jection matrices for which the stable stage distribution is desired.
Other parameters.
Value

The value returned depends on the class of the mats argument.

See Also

elasticity3.lefkoMat()
elasticity3.matrix()
elasticity3.dgCMatrix()
elasticity3.1list()
elasticity3.lefkoMatList()
summary . lefkoElas ()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, 90, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, @)

propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9

juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,

censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

elasticity3

lathsupp3 <- supplemental(stage3 = c("Sd"”, "Sd", "Sdl1"”, "Sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
elasticity3(ehrlen3mean)

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 0, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
IlXSmll’ Ilsmll’ IISDIV’ IVP-I IV)y
stage2 = c(”SD”, "SD”, "P1”, "P2", "P3", "SL", "SL", "SL", "rep”,

"rep”),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),

givenrate = c(0.10, ©.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type = C(17 17 17 17 17 17 17 1: 3: 3)7

67

68 elasticity3.dgCMatrix

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

elasticity3(cypmatrix2r)

elasticity3.dgCMatrix Estimate Elasticity of Population Growth Rate of a Single Sparse Ma-
trix

Description

elasticity3.dgCMatrix() returns the elasticities of lambda to elements of a single matrix. Be-
cause this handles only one matrix, the elasticities are inherently deterministic and based on the
dominant eigen value as the best metric of the population growth rate.

Usage
S3 method for class 'dgCMatrix'
elasticity3(mats, sparse = "auto", ...)
Arguments
mats An object of class dgCMatrix.
sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense

matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

Other parameters.

Value

This function returns a single elasticity matrix in dgCMatrix format.

See Also

elasticity3()
elasticity3.lefkoMat()
elasticity3.1list()
elasticity3.matrix()
elasticity3.lefkoMatList()
summary . lefkoElas ()

elasticity3.lefkoMat

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, ©)
stagevector <- c("Sd", "Sdl", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd"”, "Sd", "Sdl1"”, "Ssdl", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2", "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
elasticity3(ehrlen3mean$A[[11]1)

elasticity3.lefkoMat Estimate Elasticity of Population Growth Rate of a lefkoMat Object

70 elasticity3.lefkoMat

Description

elasticity3.lefkoMat() returns the elasticities of population growth rate to elements of all $A
matrices in an object of class lefkoMat. If deterministic, then X is taken as the population growth
rate. If stochastic, then stochastic A, or the stochastic growth rate, is taken as the population growth
rate. This function can handle large and sparse matrices, and so can be used with large historical
matrices, IPMs, age x stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'lefkoMat'
elasticity3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

sparse = "auto",

append_mats = FALSE,

)
Arguments

mats An object of class lefkoMat.

stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) elasticity analysis. Defaults to FALSE.

times The number of occasions to project forward in stochastic simulation. Defaults
to 10,000.

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed in stochastic projection.

sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

append_mats A logical value indicating whether to include the original A, U, and F matrices
in the output lefkoElas object.
Other parameters.

Value

This function returns an object of class lefkoElas, which is a list with 8 elements. The first,
h_elasmats, is a list of historical elasticity matrices (NULL if an ahMPM is used as input). The

elasticity3.lefkoMat 71

second, ah_elasmats, is a list of either ahistorical elasticity matrices if an ahMPM is used as input,
or, if an hMPM is used as input, then the result is a list of elasticity matrices in which historical
elasticities have been summed by the stage in occasions ¢ and #+1 to produce historically-corrected
elasticity matrices, which are equivalent in dimension to ahistorical elasticity matrices but reflect
the effects of stage in occasion 7-1. The third element, hstages, is a data frame showing historical
stage pairs (NULL if ahMPM used as input). The fourth element, agestages, shows age-stage
combinations in the order used in age-by-stage MPMs, if suppled. The fifth element, ahstages,
is a data frame showing the order of ahistorical stages. The last 3 elements are the A, U, and F
portions of the input.

Notes

Deterministic elasticities are estimated as eqn. 9.72 in Caswell (2001, Matrix Population Models).
Stochastic elasticities are estimated as eqn. 14.99 in Caswell (2001). Note that stochastic elasticities
are of the stochastic A\, while stochastic sensitivities are with regard to the log of the stochastic .

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights, steps, and force_sparse arguments are now deprecated. Instead, please use
the tweights, times, and sparse arguments.

See Also
elasticity3()
elasticity3.dgCMatrix()
elasticity3.matrix()
elasticity3.1list()
elasticity3.lefkoMatList()
summary.lefkoElas()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, o0, 0, 0, 1, 9)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,

elasticity3.lefkoMat

immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl"”, "Sd", "Sdl1", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all”,
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

elasticity3(ehrlen3, stochastic = TRUE)

Cypripedium example
data(cypdata)

sizevector <- c(@, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 9, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o0, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

elasticity3.lefkoMatList 73

cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

elasticity3(cypmatrix2r)

elasticity3.lefkoMatList
Estimate Elasticity of Population Growth Rate of a lefkoMatList Ob-
ject

Description

elasticity3.lefkoMatList() returns the elasticities of population growth growth rate to ele-
ments of all A matrices in all bootstrapped lefkoMat objects within an entered object of class
lefkoMatList. If deterministic, then A is taken as the population growth rate. If stochastic, then
stochastic A, or the stochastic growth rate, is taken as the population growth rate. This function can
handle large and sparse matrices, and so can be used with large historical matrices, IPMs, age x
stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'lefkoMatList'
elasticity3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

sparse = "auto",

append_mats = FALSE,

74 elasticity3.lefkoMatList

Arguments

mats An object of class lefkoMatList.

stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) elasticity analysis. Defaults to FALSE.

times The number of occasions to project forward in stochastic simulation. Defaults
to 10,000.

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed in stochastic projection.

sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

append_mats A logical value indicating whether to include the original A, U, and F matrices
in the output lefkoElas object.
Other parameters.

Value

This function returns a list with two elements. The first is an object of class lefkoElas that contains
the mean elasticity matrices of the bootstrapped sensitivity matrices. The second is a list containing
lefkoElas objects giving the elasticity matrices of all bootstrapped matrices.

Within these lists are objects of class lefkoElas, which are comprised of lists of 8 elements. The
first, h_elasmats, is a list of historical elasticity matrices (NULL if an ahMPM is used as input). The
second, ah_elasmats, is a list of either ahistorical elasticity matrices if an ahMPM is used as input,
or, if an hMPM is used as input, then the result is a list of elasticity matrices in which historical
elasticities have been summed by the stage in occasions ¢ and #+1 to produce historically-corrected
elasticity matrices, which are equivalent in dimension to ahistorical elasticity matrices but reflect
the effects of stage in occasion 7-1. The third element, hstages, is a data frame showing historical
stage pairs (NULL if ahMPM used as input). The fourth element, agestages, shows age-stage
combinations in the order used in age-by-stage MPMs, if suppled. The fifth element, ahstages,
is a data frame showing the order of ahistorical stages. The last 3 elements are the A, U, and F
portions of the input.

Notes

Deterministic elasticities are estimated as eqn. 9.72 in Caswell (2001, Matrix Population Models).
Stochastic elasticities are estimated as eqn. 14.99 in Caswell (2001). Note that stochastic elasticities
are of the stochastic A\, while stochastic sensitivities are with regard to the log of the stochastic \.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and

elasticity3.lefkoMatList 75

300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights, steps, and force_sparse arguments are now deprecated. Instead, please use
the tweights, times, and sparse arguments.

See Also
elasticity3()
elasticity3.lefkoMat()
elasticity3.dgCMatrix()
elasticity3.matrix()
elasticity3.list()
summary . lefkoElas()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathvert_boot <- bootstrap3(lathvert, reps = 3)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep”, "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep", "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

elasticity3.lefkoMatList

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3_boot <- rlefko3(data = lathvert_boot, stageframe = lathframe,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2", indivcol = "individ")

elasticity3(ehrlen3_boot, stochastic = TRUE)

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, @, @, 0, @, 1, 2.5, 4.5, 8, 17.5)
stagevector <= c("SDY, "P17, "P2n. p3n. mSLM. mpn mysmr nsmr nugn mgh
HXLgN)

repvector <- c(0, @, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(@, 0, 0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, 0, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypraw_v1_boot <- bootstrap3(cypraw_v1, reps = 3)
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"XSm", "Sm", "SD", er—Ilr)’
StageZ - C(”SD”, ”SD”, "P1", "P2", ”P3”, ”SL", HSLHy HSLHy "r‘ep",

"rep”,
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),

givenrate = c(0.10, 0.20, 0.20, ©.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =C(1! 1! 1! 1! 1) 1’ 1’ 1’ 3’ 3)!
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r_boot <- rlefko2(data = cypraw_v1_boot, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

elasticity3.list

77

elasticity3(cypmatrix2r_boot)

elasticity3.list

Estimate Elasticity of Population Growth Rate of a List of Matrices

Description

elasticity3.1list() returns the elasticities of lambda to elements of a single matrix. This func-
tion can handle large and sparse matrices, and so can be used with large historical matrices, [PMs,
age x stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'list'

elasticity3(

mats,

stochastic = FALSE,
times = 10000,
tweights = NA,
historical = FALSE,
seed = NA,

sparse = "auto”,
append_mats = FALSE,

Arguments

mats A list of objects of class matrix or dgCMatrix.

stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) elasticity analysis. Defaults to FALSE.

times The number of occasions to project forward in stochastic simulation. Defaults
to 10,000.

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

historical A logical value denoting whether the input matrices are historical. Defaults to
FALSE.

seed A number to use as a random number seed in stochastic projection.

78

elasticity3.list

sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

append_mats A logical value indicating whether to include the original matrices input as ob-
ject mats in the output lefkoElas object.

Other parameters.

Value

This function returns an object of class lefkoElas, which is a list with 8 elements. The first,
h_elasmats, is a list of historical elasticity matrices, though in the standard list case it returns
a NULL value. The second, ah_elasmats, is a list of ahistorical elasticity matrices. The third
element, hstages, the fourth element, agestages, and the fifth element, ahstages, are set to
NULL. The last 3 elements are the original A matrices in element A, followed by NULL values for
the U and F elements.

Notes

Deterministic elasticities are estimated as eqn. 9.72 in Caswell (2001, Matrix Population Models).
Stochastic elasticities are estimated as eqn. 14.99 in Caswell (2001). Note that stochastic elasticities
are of stochastic A\, while stochastic sensitivities are with regard to the log of the stochastic .

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights, steps, and force_sparse arguments are now deprecated. Instead, please use
the tweights, times, and sparse arguments.

See Also

elasticity3()
elasticity3.lefkoMat()
elasticity3.matrix()
elasticity3.dgCMatrix()
elasticity3.lefkoMatList()
summary.lefkoElas ()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)

stagevector <- c("Sd", "Sdl", "vSm", "Sm", "VLa", "Flo"”, "Dorm")
repvector <- c(0, 0, 0, 0, 0, 1, 0)

obsvector <- c(0, 1, 1, 1, 1, 1, 0)

elasticity3.list

matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)
propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

988,

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

elasticity3(ehrlen3$A, stochastic = TRUE)

Cypripedium example
data(cypdata)

sizevector <- c(0, o, o0, 0, 0, o, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr <_ C(IISDIV’ IVP-I IV’ IIPZII’ IIP3II, “SL“, IIDII’ "XSm”, llsmll, lIMdII, lILglI’
"XLg")

repvector <- c(0, 0, 9, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, 0, @, 9)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 9, 9, 9, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

80 elasticity3.matrix

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"XSm", "Sm", "SD", "P1"),

stage2 = c("sD”, "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep”,
"rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),

givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

elasticity3(cypmatrix2r$A)

elasticity3.matrix Estimate Elasticity of Population Growth Rate of a Single Matrix

Description

elasticity3.matrix() returns the elasticities of lambda to elements of a single matrix. Because
this handles only one matrix, the elasticities are inherently deterministic and based on the dominant
eigen value as the best metric of the population growth rate. This function can handle large and
sparse matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as
well as smaller ahistorical matrices.

Usage
S3 method for class 'matrix’
elasticity3(mats, sparse = "auto", ...)
Arguments
mats An object of class matrix.
sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense

matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

elasticity3.matrix 81

Other parameters.

Value

This function returns a single elasticity matrix.

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The force_sparse argument is now deprecated. Please use sparse instead.

See Also

elasticity3()
elasticity3.lefkoMat()
elasticity3.1list()
elasticity3.dgCMatrix()
elasticity3.lefkoMatList()
summary . lefkoElas ()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)

stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")
repvector <- c(@, 0, 0, 9, @0, 1, 0)

obsvector <- c(0, 1, 1, 1, 1, 1, 0)

matvector <- c(0, @, 1, 1, 1, 1, 1)

immvector <- c(1, 1, 0, 0, 0, @, @)
propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)

binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

’ ’ ’
’

’ ’ ’

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

82 flefko2

lathsupp3 <- supplemental(stage3 = c("Sd"”, "Sd", "Sdl1"”, "Sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
elasticity3(ehrlen3mean$AL[1]1])

flefko2 Create Function-based Ahistorical Matrix Projection Model

Description

Function flefko2() returns ahistorical MPMs corresponding to the patches and occasions given,
including the associated component transition and fecundity matrices, a data frame detailing the
characteristics of the ahistorical stages used, and a data frame characterizing the patch and occasion
combinations corresponding to these matrices.

Usage
flefko2(
year = "all”,
patch = "all”,
stageframe,

supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
data = NULL,
modelsuite = NULL,
surv_model = NULL,
obs_model = NULL,
size_model = NULL,
sizeb_model = NULL,
sizec_model = NULL,
repst_model = NULL,
fec_model = NULL,
jsurv_model = NULL,

fletko2

83

jobs_model = NULL,
jsize_model = NULL,

jsizeb_mode
jsizec_mode
jrepst_mode
jmatst_mode
paramnames
inda = NULL
indb = NULL
indc = NULL
annua
annub
annuc

1
1
1
1

’
’

’

NULL,
NULL,
NULL,

surv_dev = 0,

obs_dev = @
size_dev =
sizeb_dev =
sizec_dev =
repst_dev
fec_dev =
jsurv_dev
jobs_dev =

N o 1
(S

0

’

0

0
0
0

’

= NULL,
= NULL,
= NULL,
= NULL,
NULL,

’
’

’

’

jsize_dev = 0,

jsizeb_dev
jsizec_dev
jrepst_dev
jmatst_dev
density = N
fecmod = 1,
random. inda
random. indb
random. indc

A,

[SEE ISR S

FALSE,
FALSE,
FALSE,

negfec = FALSE,
ipm_method = "CDF",
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
exp_tol = 700,
theta_tol = 1e+08,
sparse_output = FALSE

Arguments

year

patch

A variable corresponding to the observation occasion, or a set of such values,
given in values associated with the year term used in linear model development.
Defaults to "all”, in which case matrices will be estimated for all occasions.

A variable designating which patches or subpopulations will have matrices esti-

flefko2

mated. Defaults to "all”, but can also be set to specific patch names or a vector
thereof.

stageframe An object of class stageframe. These objects are generated by function sf_create(),
and include information on the size, observation status, propagule status, repro-
duction status, immaturity status, maturity status, stage group, size bin widths,
and other key characteristics of each ahistorical stage.

supplement An optional data frame of class 1efkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental() function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

repmatrix An optional reproduction matrix. This matrix is composed mostly of @s, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
flefko2() will assume that all stages marked as reproductive produce offspring
at 1x that of estimated fecundity, and that offspring production will yield the first
stage noted as propagule or immature. Must be the dimensions of an ahistorical
matrix.

overwrite An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

data The historical vertical demographic data frame used to estimate vital rates (class
hfvdata), which is required to initialize times and patches properly. Variable
names should correspond to the naming conventions in verticalize3() and
historicalize3(). Not required if option modelsuite is set to a vrm_input
object.

modelsuite One of three kinds of lists. The first is a lefkoMod object holding the vi-
tal rate models and associated metadata. The second is a lefkoModList ob-
ject, which is a list of lefkoMod objects generally created to conduct a boot-
strapped MPM analysis. Alternatively, an object of class vrm_input may be
provided. If given, then surv_model, obs_model, size_model, sizeb_model,
sizec_model, repst_model, fec_model, jsurv_model, jobs_model, jsize_model,
jsizeb_model, jsizec_model, jrepst_model, jmatst_model, and paramnames
are not required. One or more of these models should include size or reproduc-
tive status in occasion #-1. Although this is optional input, it is recommended,
and without it all vital rate model inputs (named XX_model) are required.

surv_model A linear model predicting survival probability. This can be a model of class glm
or glmer, and requires a predicted binomial variable under a logit link. Ignored
if modelsuite is provided. This model must have been developed in a modeling
exercise testing only the impacts of occasion z.

obs_model A linear model predicting sprouting or observation probability. This can be a
model of class glm or glmer, and requires a predicted binomial variable under

fletko2

size_model

sizeb_model

sizec_model

repst_model

fec_model

jsurv_model

jobs_model

jsize_model

jsizeb_model

jsizec_model

jrepst_model

85

a logit link. Ignored if modelsuite is provided. This model must have been
developed in a modeling exercise testing only the impacts of occasion ¢.

A linear model predicting primary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion .

A linear model predicting secondary size. This can be a model of class glm,
glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing only
the impacts of occasion .

A linear model predicting tertiary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion f.

A linear model predicting reproduction probability. This can be a model of class
glm or glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing only the impacts of occasion ¢.

A linear model predicting fecundity. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion .

A linear model predicting juvenile survival probability. This can be a model of
class glmor glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing only the impacts of occasion ¢.

A linear model predicting juvenile sprouting or observation probability. This
can be a model of class glm or glmer, and requires a predicted binomial variable
under a logit link. Ignored if modelsuite is provided. This model must have
been developed in a modeling exercise testing only the impacts of occasion .

A linear model predicting juvenile primary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion .

A linear model predicting juvenile secondary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Ilmer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion t.

A linear model predicting juvenile tertiary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or 1mer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
only the impacts of occasion .

A linear model predicting reproduction probability of a mature individual that
was immature in time ¢. This can be a model of class glm or glmer, and requires

86

jmatst_model

paramnames

inda

indb

indc

annua

annub

annuc

surv_dev

obs_dev

size_dev

sizeb_dev

sizec_dev

repst_dev

flefko2

a predicted binomial variable under a logit link. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing only
the impacts of occasion ¢.

A linear model predicting maturity probability of an individual that was imma-
ture in time ¢. This can be a model of class glm or glmer, and requires a predicted
binomial variable under a logit link. Ignored if modelsuite is provided. This
model must have been developed in a modeling exercise testing only the impacts
of occasion .

A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required if modelsuite is not supplied.

Can be a single value to use for individual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate b in all matrices, a pair of
values to use for times ¢ and 7-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate ¢ in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate b in all matrices, a pair of
values to use for times ¢ and 7-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

A numeric value to be added to the y-intercept in the linear model for survival
probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for observa-
tion probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for primary
size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for secondary
size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for tertiary
size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for probability
of reproduction. Defaults to @.

fletko2

fec_dev

jsurv_dev

jobs_dev

jsize_dev

jsizeb_dev

jsizec_dev

jrepst_dev

jmatst_dev

density

fecmod

random.inda

random. indb

random.indc

negfec

ipm_method

reduce

simple

err_check

exp_tol

87

A numeric value to be added to the y-intercept in the linear model for fecundity.
Defaults to 9.

A numeric value to be added to the y-intercept in the linear model for juvenile
survival probability. Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
observation probability. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
primary size. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for juvenile
secondary size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
tertiary size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
reproduction probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for juvenile
maturity probability. Defaults to @.

A numeric value indicating density value to use to propagate matrices. Only
needed if density is an explanatory term used in one or more vital rate models.
Defaults to NA.

A scalar multiplier of fecundity. Defaults to 1. 0.

A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether fecundity values estimated to be negative
should be reset to @. Defaults to FALSE.

A string indicating what method to use to estimate size transition probabilities,
if size is treated as continuous. Options include: "midpoint”, which utilizes the
midpoint method; and "CDF", which uses the cumulative distribution function.
Defaults to "CDF".

A logical value denoting whether to remove ahistorical stages associated solely
with 0 transitions. These are only removed in cases where the associated row
and column sums in ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

88

theta_tol

sparse_output

Value

flefko2

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard lefkoMod or vrm_input object in argument modelsuite, or individual
vital rate models are input separately,then this function will return an object of class lefkoMat. If
the user inputs an object of class lefkoModList in argument modelsuite, then the output will be
an object of class lefkoMatList, in which each element is an object of class lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

hstages

agestages

ahstages

labels

dataqgc

matrixqc

modelqc

prob_out

allstages

A list of full projection matrices in order of sorted patches and occasion times.
All matrices output in R’s matrix class, or in the dgCMatrix class from the
Matrix package if sparse.

A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Set to NA for ahistorical matrices.

A data frame showing age-stage pairs. In this function, it is set to NA. Only used
in output to function aflefko2().

A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

A data frame giving the population, patch, and year of each matrix in order. In
flefko2(), only one population may be analyzed at once.

A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

This is the gc portion of the modelsuite input.

An optional element only added if err_check = TRUE. This is a list of vital rate
probability matrices, with 7 columns in the order of survival, observation prob-
ability, reproduction probability, primary size transition probability, secondary
size transition probability, tertiary size transition probability, and probability of
juvenile transition to maturity.

An optional element only added if err_check = TRUE. This is a data frame giv-
ing the values used to determine each matrix element capable of being estimated.

fletko2 89

Notes

Unlike rlefko2(), rlefko3(), arlefko2(), and rleslie(), this function does not currently dis-
tinguish populations. Users wishing to use the same vital rate models across populations should
label them as patches (though we do not advise this approach, as populations should typically be
treated as statistically independent).

This function will yield incorrect estimates if the models utilized incorporate state in occasion #-1.
Only use models developed testing for ahistorical effects.

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or
subpopulations, but without discriminating between those patches or subpopulations. Should the
aim of analysis be a general MPM that does not distinguish these patches or subpopulations, the
modelsearch() run should not include patch terms.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and r. Rearranging the order will lead to erroneous calculations, and may lead to fatal errors.

Care should be taken to match the random status of year and patch to the states of those variables
within the modelsuite. If they do not match, then they will be treated as zeroes in vital rate
estimation.

The ipm_method function gives the option of using two different means of estimating the probability
of size transition. The midpoint method ("midpoint") refers to the method in which the probability
is estimated by first estimating the probability associated with transition from the exact size at the
midpoint of the size class using the corresponding probability density function, and then multiplying
that value by the bin width of the size class. Doak et al. 2021 (Ecological Monographs) noted that
this method can produce biased results, with total size transitions associated with a specific size not
totaling to 1.0 and even specific size transition probabilities capable of being estimated at values
greater than 1.0. The alternative and default method, "CDF", uses the corresponding cumulative
density function to estimate the probability of size transition as the cumulative probability of size
transition at the greater limit of the size class minus the cumulative probability of size transition
at the lower limit of the size class. The latter method avoids this bias. Note, however, that both
methods are exact and unbiased for negative binomial and Poisson distributions.

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero
values when the true probability is extremely close to 0. This will result in the summary . lefkoMat
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

Using the err_check option will produce a matrix of 7 columns, each characterizing a different
vital rate. The product of each row yields an element in the associated U matrix. The number and
order of elements in each column of this matrix matches the associated matrix in column vector
format. Use of this option is generally for the purposes of debugging code.

Individual covariates are treated as categorical only if they are set as random terms. Fixed categor-
ical individual covariates are currently not allowed. However, such terms may be supplied if the
modelsuite option is set to a vrm_input object. In that case, the user should also set the logical
random switch for the individual covariate to be used to TRUE (e.g., random. inda = TRUE).

90

See Also

mpm_create()
flefko3()
aflefko2()
arlefko2()
fleslie()
rlefko3()
rlefko2()
rleslie()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(o0, 4.6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,1, 2, 3, 4, 5,6, 7, 8,
9

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(o, 0, 0, 0, 0, 0, 0, 9, 0, 0, @, @, 1, 1, 1, 1, 1, 1, 1, 1, 1)
obsvector <- c(@, 1, 0, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1)
matvector <- c(0, @, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1)
immvector <- c(1, 1, @, 0, @, 0, 0, 0, 0, @, 0, 0, 0, 0, @, 0, @0, 0, 0, @, Q)
propvector <- c(1, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0,
2)
indataset <- c(o, 1)
binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)
lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88"”,
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln,
stagesize = "sizea"”, censorcol = "Missing1988", censorkeep = NA,

NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca?2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ sizea2 + as.factor(patchid),

flefko2

fletko2 91

data = lathvertln_adults, family = "binomial”)

obs_data <- subset(lathvertln_adults, alive3 == 1)
obs_model <- glm(obsstatus3 ~ as.factor(patchid), data = obs_data,
family = "binomial”)

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- Im(sizea3 ~ sizea2 + repstatus2 + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + as.factor(patchid) + as.factor(year2),
data = size_data, family = "binomial")

fec_data <- subset(lathvertln_adults, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizea2 + as.factor(patchid) + as.factor(year2),
data = fec_data, family = "poisson")

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data = lathvertln_juvs,
family = "binomial™)

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1m(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- @
jmatst_model <- 1

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2"
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[18] <- "repstatus2”

lathsupp2 <- supplemental(stage3 = c("Sd", "Sdl1", "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "rep", "rep"),
givenrate = c(0.345, 0.054, NA, NA),
multiplier = c(NA, NA, 0.345, 0.054),
type = c(1, 1, 3, 3), stageframe = lathframeln, historical = FALSE)

lathmat2ln <- flefko2(year = "all”, patch = "all”, data = lathvertln,
stageframe = lathframeln, supplement = lathsupp2, paramnames = mod_params,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model, reduce = FALSE)

flefko2

Cypripedium example using three size metrics for classification
data(cypdata)

sizevector_f <- c(o, 0, 0, 0, @, @, seq(1, 12, by = 1), seq(@, 9, by = 1),
seq(@, 8, by = 1), seq(@, 7, by = 1), seq(@, 6, by = 1), seq(@, 5, by = 1),
seq(@, 4, by = 1), seq(@, 3, by = 1), o, 1, 2, 0, 1, 0,

0, 0, 1, 0

sizebvector_f <- c(0, 0, 0, 0, 0, 0, rep(@, 12), rep(1, 10), rep(2, 9),
rep(3, 8), rep(4, 7), rep(5, 6), rep(6, 5), rep(7, 4), rep(8, 3), 9, 9, 10,
o, 1, 1, 2)

sizecvector_f <- c(0, 0, 0, 0, 0, 0, rep(@, 12), rep(@, 10), rep(0, 9),
rep(@, 8), rep(@, 7), rep(@, 6), rep(@, 5), rep(o, 4), 0, 0, 0, 0, 0, O,
1, 1, 1, 1)

stagevector_f <- c("DS", "P1", "P2", "P3", "Sdl”, "Dorm”, "V1 I0@ D@",

"vV2 10 De", "V3 1o De", "Vv4 Ieo D", "V5 Ie Do", "Vé6 Io De", "V7 1o Do",
"v8 Ie De", "V9 Ie De", "Vie Io Do"”, "V11 Ie D", "V12 Ie De", "Ve I1 Do",
"y1 I1 De”, "v2 I1 De", "v3 I1 De”, "V4 I1 De", "V5 I1 De”, "Vé I1 De",
"V7 11 De"”, "v8 I1 De", "Vv9 I1 D", "Ve I2 De", "V1 I2 De", "V2 I2 Do",
"v3 I2 De", "v4 I2 De", "V5 I2 D@", "Vé I2 De", "V7 I2 De", "v8 I2 De",
"vo I3 De”, "V1 I3 De", "v2 I3 De”, "V3 I3 Do", "v4 I3 De", "V5 I3 De",
"Vé6 I3 De", "V7 I3 D@", "Vo I4 Do", "V1 I4 De", "V2 I4 De", "V3 I4 Do",
"V4 14 DQ", "V5 14 D@", "Vé6 I4 De", "Ve I5 De", "V1 I5 De"”, "V2 I5 Do",
"y3 I5 D@"”, "V4 I5 D@", "V5 I5 De”, "Ve I6 Do", "V1 I6 De”, "V2 I6 De",
"vV3 16 De", "V4 16 D@", "ve I7 De", "Vv1 17 De", "vV2 17 De", "V3 17 Do",
"vo I8 De"”, "V1 I8 De", "V2 I8 D", "ve I9 De”, "V1 I9 De", "vo I10 Deo",
"vo I0 D1”, "ve I1 D1", "V1 I1 D1", "ve I2 D1")

repvector_f <- c(0, 0, 0, @, 0, rep(@, 13), rep(1, 59))

obsvector_f <- c(0, @, @, 0, 0, 0, rep(1, 71))

matvector_f <- c(@, 0, 0, @, 0, rep(1, 72))

immvector_f <- c(o, 1, 1, 1, 1, rep(0, 72))

propvector_f <- c(1, rep(@, 76))

indataset_f <- c(@, 0, 0, @, @, rep(1, 72))

binvec_f <- c(0, 0, @, 0, 0, rep(0.5, 72))

binbvec_f <- c(0, @, 0, 0, 0, rep(0.5, 72))

bincvec_f <- c(0, 0, 0, 0, 0, rep(0.5, 72))

vertframe_f <- sf_create(sizes = sizevector_f, sizesb = sizebvector_f,
sizesc = sizecvector_f, stagenames = stagevector_f, repstatus = repvector_f,
obsstatus = obsvector_f, propstatus = propvector_f, immstatus = immvector_f,
matstatus = matvector_f, indataset = indataset_f, binhalfwidth = binvec_f,
binhalfwidthb = binbvec_f, binhalfwidthc = bincvec_f)

vert_data_f <- verticalize3(cypdata, noyears = 6, firstyear = 2004,

individcol = "plantid”, blocksize = 4, sizeacol = "Veg.04",
sizebcol = "Inf.04", sizeccol = "Inf2.04", repstracol = "Inf.04",
repstrbcol = "Inf2.04", fecacol = "Pod.04", censorcol = "censor"”,

censorkeep = 1, censorRepeat = FALSE, stageassign = vertframe_f,
stagesize = "sizeabc"”, NAas@ = TRUE, censor = FALSE)

surv_model <- glm(alive3 ~ sizea2 + sizeb2, data = vert_data_f,
family = "binomial”)

obs_data <- subset(vert_data_f, alive3 == 1)

fletko3

obs_model <- glm(obsstatus3 ~ sizeb2 + as.factor(year2), data = obs_data,
family = "binomial”)

size_data <- subset(obs_data, obsstatus3 == 1)

siz_model <- MASS::glm.nb(sizea3 ~ sizea2 + sizeb2 + as.factor(year2),
data = size_data)

sizb_model <- glm(sizeb3 ~ sizea2 + sizeb2 + repstatus2 + as.factor(year2),
data = size_data, family = "poisson”)

sizc_model <- glm(sizec3 ~ repstatus2, data = size_data, family = "poisson”)

reps_model <- glm(repstatus3 ~ sizea2 + sizeb2 + repstatus2 + as.factor(year2),
data = size_data, family = "binomial")

fec_data <- subset(vert_data_f, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizeb2 + as.factor(year2), data = fec_data,
family = "poisson™)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[18] <- "repstatus2”

vertsupp2f <- supplemental(stage3 = c("DS", "P1", "P2", "P3", "Sdl1", "Sdl",

"Dorm”, "V1 I@ De", "V2 Ie De", "V3 Ie De", "DS", "P1"),

stage2 = c("DS", "DS", "P1", "P2", "P3", "Sdl", "Sdl", "Sdl", "Sdl", "Sdl",
"rep", "rep"),

eststage3 = c(NA, NA, NA, NA, NA, NA, "Dorm”, "V1 I0 DQ@", "V2 10 DQ",
"V3 10 D0", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, "V1 Io Do”, "V1 Io Do”, "V1 I0 Do”,
"V1 10 D@", NA, NA),

givenrate = c(0.10, ©.20, 0.20, 0.20, 0.25, 0.40, NA, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.5 * 5000,
0.5 * 5000),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3), stageframe = vertframe_f,

historical = FALSE)

vert_mats_f2 <- flefko2(stageframe = vertframe_f, supplement = vertsupp2f,
data = vert_data_f, surv_model = surv_model, obs_model = obs_model,
size_model = siz_model, sizeb_model = sizb_model, sizec_model = sizc_model,
repst_model = reps_model, fec_model = fec_model, paramnames = mod_params)

93

flefko3 Create Function-based Historical Matrix Projection Model

94 flefko3

Description

Function flefko3() returns function-based historical MPMs corresponding to the patches and oc-
casions given, including the associated component transition and fecundity matrices, data frames
detailing the characteristics of the ahistorical stages used and historical stage pairs created, and a
data frame characterizing the patch and occasion combinations corresponding to these matrices.

Usage
flefko3(
year = "all”,
patch = "all",
stageframe,

supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
data = NULL,
modelsuite = NULL,
surv_model = NULL,
obs_model = NULL,
size_model = NULL,
sizeb_model = NULL,
sizec_model = NULL,
repst_model = NULL,
fec_model = NULL,
jsurv_model = NULL,
jobs_model = NULL,
jsize_model = NULL,
jsizeb_model = NULL,
jsizec_model = NULL,
jrepst_model = NULL,
jmatst_model = NULL,
paramnames = NULL,
inda = NULL,

indb = NULL,

indc = NULL,

annua NULL,

annub = NULL,

annuc NULL,
surv_dev = 0,
obs_dev = 0,
size_dev = 0
sizeb_dev
sizec_dev
repst_dev
fec_dev =
jsurv_dev
jobs_dev = 0,
jsize_dev = 0,

0,
o,
0

’

’

N o 1
(S}

’

fletko3 95

jsizeb_dev =
jsizec_dev =
jrepst_dev =
jmatst_dev =
density = NA,
fecmod = 1,
random.inda = FALSE,
random.indb = FALSE,
random.indc = FALSE,
negfec = FALSE,
format = "ehrlen”,
ipm_method = "CDF",
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
exp_tol = 700,
theta_tol = 1e+08,
sparse_output = FALSE

[SEESER RIS

Arguments

year A variable corresponding to the observation occasion, or a set of such values,
given in values associated with the year term used in linear model development.
Defaults to "all”, in which case matrices will be estimated for all occasions.

patch A variable designating which patches or subpopulations will have matrices esti-
mated. Defaults to "all"”, but can also be set to specific patch names or a vector
thereof.

stageframe An object of class stageframe. These objects are generated by function sf_create(),
and include information on the size, observation status, propagule status, repro-
duction status, immaturity status, maturity status, stage group, size bin widths,
and other key characteristics of each ahistorical stage.

supplement An optional data frame of class 1efkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental() function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

repmatrix An optional reproduction matrix. This matrix is composed mostly of @s, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
flefko3() will assume that all stages marked as reproductive produce offspring
at 1x that of estimated fecundity, and that offspring production will yield the
first stage noted as propagule or immature. May be the dimensions of either a
historical or an ahistorical matrix. If the latter, then all stages will be used in
occasion 7-1 for each suggested ahistorical transition.

96

overwrite

data

modelsuite

surv_model

obs_model

size_model

sizeb_model

sizec_model

repst_model

fec_model

flefko3

An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

The historical vertical demographic data frame used to estimate vital rates (class
hfvdata), which is required to initialize times and patches properly. Variable
names should correspond to the naming conventions in verticalize3() and
historicalize3(). Not required if option modelsuite is set to a vrm_input
object.

One of three kinds of lists. The first is a lefkoMod object holding the vi-
tal rate models and associated metadata. The second is a lefkoModList ob-
ject, which is a list of lefkoMod objects generally created to conduct a boot-
strapped MPM analysis. Alternatively, an object of class vrm_input may be
provided. If given, then surv_model, obs_model, size_model, sizeb_model,

sizec_model, repst_model, fec_model, jsurv_model, jobs_model, jsize_model,

jsizeb_model, jsizec_model, jrepst_model, jmatst_model, and paramnames
are not required. One or more of these models should include size or reproduc-
tive status in occasion #-1. Although this is optional input, it is recommended,
and without it all vital rate model inputs (named XX_model) are required.

A linear model predicting survival probability. This can be a model of class glm
or glmer, and requires a predicted binomial variable under a logit link. Ignored
if modelsuite is provided. This model must have been developed in a modeling
exercise testing the impacts of occasions ¢ and #-1.

A linear model predicting sprouting or observation probability. This can be a
model of class glm or glmer, and requires a predicted binomial variable under
a logit link. Ignored if modelsuite is provided. This model must have been
developed in a modeling exercise testing the impacts of occasions ¢ and 7-1.

A linear model predicting primary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions ¢ and 7-1.

A linear model predicting secondary size. This can be a model of class glm,
glmer, glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing the
impacts of occasions ¢ and #-1.

A linear model predicting tertiary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions ¢ and 7-1.

A linear model predicting reproduction probability. This can be a model of class
glm or glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing the impacts of occasions ¢ and 7-1.

A linear model predicting fecundity. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions 7 and 7-1.

fletko3

jsurv_model

jobs_model

jsize_model

jsizeb_model

jsizec_model

jrepst_model

jmatst_model

paramnames

inda

indb

indc

97

A linear model predicting juvenile survival probability. This can be a model of
class glmor glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing the impacts of occasions ¢ and #-1.

A linear model predicting juvenile sprouting or observation probability. This
can be a model of class glm or glmer, and requires a predicted binomial variable
under a logit link. Ignored if modelsuite is provided. This model must have
been developed in a modeling exercise testing the impacts of occasions ¢ and #-1.

A linear model predicting juvenile primary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting juvenile secondary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting juvenile tertiary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or 1mer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting reproduction probability of a mature individual that
was immature in time ¢. This can be a model of class glm or glmer, and requires
a predicted binomial variable under a logit link. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing the
impacts of occasions ¢ and #-1.

A linear model predicting maturity probability of an individual that was imma-
ture in time ¢. This can be a model of class g1lmor glmer, and requires a predicted
binomial variable under a logit link. Ignored if modelsuite is provided. This
model must have been developed in a modeling exercise testing the impacts of
occasions ¢ and 7-1.

A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required if modelsuite is not supplied.

Can be a single value to use for individual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

98

annua

annub

annuc

surv_dev

obs_dev

size_dev

sizeb_dev

sizec_dev

repst_dev

fec_dev

jsurv_dev

jobs_dev

jsize_dev

jsizeb_dev

jsizec_dev

jrepst_dev

jmatst_dev

density

fecmod

random.inda

flefko3

Can be a single value to use for annual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

A numeric value to be added to the y-intercept in the linear model for survival
probability. Defaults to .

A numeric value to be added to the y-intercept in the linear model for observa-
tion probability. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for primary
size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for secondary
size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for tertiary
size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for probability
of reproduction. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for fecundity.
Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
survival probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for juvenile
observation probability. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
primary size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
secondary size. Defaults to .

A numeric value to be added to the y-intercept in the linear model for juvenile
tertiary size. Defaults to 0.

A numeric value to be added to the y-intercept in the linear model for juvenile
reproduction probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for juvenile
maturity probability. Defaults to .

A numeric value indicating density value to use to propagate matrices. Only
needed if density is an explanatory term used in one or more vital rate models.
Defaults to NA.

A scalar multiplier of fecundity. Defaults to 1. 0.

A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

fletko3

random. indb

random.indc

negfec

format

ipm_method

reduce

simple

err_check

exp_tol

theta_tol

sparse_output

Value

99

A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether fecundity values estimated to be negative
should be reset to @. Defaults to FALSE.

A string indicating whether to estimate matrices in ehrlen format or deVries
format. The latter adds one extra prior stage to account for the prior state of
newborns. Defaults to ehrlen format.

A string indicating what method to use to estimate size transition probabilities,
if size is treated as continuous. Options include: "midpoint”, which utilizes the
midpoint method; and "CDF", which uses the cumulative distribution function.
Defaults to "CDF".

A logical value denoting whether to remove historical stages associated solely
with @ transitions. These are only removed in cases where the associated row
and column sums in ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard lefkoMod or vrm_input object in argument modelsuite, or individual
vital rate models are input separately,then this function will return an object of class lefkoMat. If
the user inputs an object of class lefkoModList in argument modelsuite, then the output will be
an object of class lefkoMatList, in which each element is an object of class lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

A list of full projection matrices in order of sorted patches and occasion times.
All matrices output in R’s matrix class, or in the dgCMatrix class from the
Matrix package if sparse.

A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

100 flefko3

F A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs.

agestages A data frame showing age-stage pairs. In this function, it is set to NA. Only used
in output to function aflefko2().

ahstages A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

labels A data frame giving the population, patch, and year of each matrix in order. In
flefko3(), only one population may be analyzed at once.

dataqc A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

matrixqc A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

modelqc This is the gc portion of the modelsuite input.

prob_out An optional element only added if err_check = TRUE. This is a list of vital rate

probability matrices, with 7 columns in the order of survival, observation prob-
ability, reproduction probability, primary size transition probability, secondary
size transition probability, tertiary size transition probability, and probability of
juvenile transition to maturity.

allstages An optional element only added if err_check = TRUE. This is a data frame giv-
ing the values used to determine each matrix element capable of being estimated.

Notes

Unlike rlefko2(), rlefko3(), arlefko2(), and rleslie(), this function does not currently dis-
tinguish populations. Users wishing to use the same vital rate models across populations should
label them as patches (though we do not advise this approach, as populations should typically be
treated as statistically independent).

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or
subpopulations, but without discriminating between those patches or subpopulations. Should the
aim of analysis be a general MPM that does not distinguish these patches or subpopulations, the
modelsearch() run should not include patch terms.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1, t, and #-1. Rearranging the order will lead to erroneous calculations, and will may lead to fatal
errors.

The ipm_method function gives the option of using two different means of estimating the probability
of size transition. The midpoint method ("midpoint”) refers to the method in which the probability
is estimated by first estimating the probability associated with transition from the exact size at the
midpoint of the size class using the corresponding probability density function, and then multiplying

fletko3 101

that value by the bin width of the size class. Doak et al. 2021 (Ecological Monographs) noted that
this method can produce biased results, with total size transitions associated with a specific size not
totaling to 1.0 and even specific size transition probabilities capable of being estimated at values
greater than 1.0. The alternative and default method, "CDF", uses the corresponding cumulative
density function to estimate the probability of size transition as the cumulative probability of size
transition at the greater limit of the size class minus the cumulative probability of size transition
at the lower limit of the size class. This latter method avoids this bias. Note, however, that both
methods are exact and unbiased for negative binomial and Poisson distributions.

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero
values when the true probability is extremely close to 0. This will result in the summary . lefkoMat
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

Using the err_check option will produce a matrix of 7 columns, each characterizing a different vital
rate. The product of each row yields an element in the associated U matrix. The number and order
of elements in each column of this matrix matches the associated matrix in column vector format.
Use of this option is generally for the purposes of debugging code. ° Individual covariates are
treated as categorical only if they are set as random terms. Fixed categorical individual covariates
are currently not allowed. However, such terms may be supplied if the modelsuite option is set to a
vrm_input object. In that case, the user should also set the logical random switch for the individual
covariate to be used to TRUE (e.g., random. inda = TRUE).

See Also

mpm_create()
flefko2()
aflefko2()
arlefko2()
fleslie()
rlefko3()
rlefko2()
rleslie()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(o, 4.6, 0, 1, 2, 3, 4, 5, 6, 7,8, 9,1, 2, 3, 4, 5,6, 7, 8,
9

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Sz6r", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, o, 0, 0, 0, 0, @, 90, 0, 0, @, @, 1, 1, 1, 1, 1,1, 1, 1, 1)

obsvector <- c(0, 1, 0, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)

matvector <- c(0, @, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1)

’

’ ’ ’

102 flefko3

immvector <- c(1, 1, @, @, 0, 0, 0, @, @, 0, 0, 0, @, @, 0, 0, 0, @, @0, 0, 0)
propvector <- c(1, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0O,
2)

indataset <- c(o0, 1, 1, 1, 1, 1, 1,1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1)

binvec <- c(0, 4.6, 0.5, 9.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,

fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "mat"”, "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "Sdl1", "rep", "rep"),
stagel = c("Sd", "rep”, "Sd", "rep”, "Sd", "mat”, "mat"),
eststage3 = c(NA, NA, NA, NA, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, "Sdl”, NA, NA),
eststagel c(NA, NA, NA, NA, "Sdl", NA, NA),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeln, historical = TRUE)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = lathvertln_adults, family = "binomial)

obs_data <- subset(lathvertln_adults, alive3 == 1)
obs_model <- glm(obsstatus3 ~ as.factor(patchid), data = obs_data,
family = "binomial™)

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- Im(sizea3 ~ sizea2 + sizeal + repstatusl + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = size_data, family = "binomial”)

fec_data <- subset(lathvertln_adults, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizea2 + sizeal + repstatusl + as.factor(patchid),
data = fec_data, family = "poisson")

fletko3 103

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data = lathvertln_juvs,
family = "binomial™)

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1lm(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- @
jmatst_model <- 1

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[13] <- "sizeal”
mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[19] <- "repstatusl”

lathmat31ln <- flefko3(year = "all", patch = "all"”, data = lathvertln,
stageframe = lathframeln, supplement = lathsupp3, paramnames = mod_params,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model, reduce = FALSE)

Cypripedium example using three size metrics for classification
data(cypdata)

sizevector_f <- c(@, 0, 0, 0, @, @, seq(1, 12, by = 1), seq(@, 9, by = 1),
seq(@, 8, by 1), seq(@, 7, by = 1), seq(@, 6, by = 1), seq(@, 5, by = 1),
seq(@, 4, by = 1), seq(@, 3, by = 1), 0, 1, 2, 0, 1, 0,

0, 0, 1, 9

sizebvector_f <- c(0, 0, 0, @, @0, 0, rep(@, 12), rep(1, 10), rep(2, 9),
rep(3, 8), rep(4, 7), rep(5, 6), rep(6, 5), rep(7, 4), rep(8, 3), 9, 9, 10,
0, 1, 1, 2)

sizecvector_f <- c(0, 0, 0, @, 0, 0, rep(@, 12), rep(@, 10), rep(0, 9),
rep(@, 8), rep(@, 7), rep(@, 6), rep(@, 5), rep(o, 4), 0, 0, 0, 0, 0, O,

1, 1, 1, 1)
stagevector_f <- c("DS", "P1", "P2", "P3", "Sdl", "Dorm", "V1 I0 D@",
"vV2 10 De", "V3 Ie De", "Vv4 Io D", "V5 Ie Do", "Vé6 Io De", "V7 10 Do",
"v8 Ie D@", "V9 Ie De", "V1e Ieo De", "V11 Ie D", "V12 Ie Do", "Ve I1 Do",
"V1 11 De"”, "v2 I1 De", "v3 I1 De", "v4 I1 De", "V5 I1 De"”, "Vé6 I1 Do",
"v7 11 De", "Vv8 I1 De", "Vv9 I1 D@", "Ve I2 De", "V1 I2 De", "V2 I2 Do",
"v3 I2 De", "v4 I2 De", "V5 I2 D", "Vé I2 De", "V7 I2 De", "v8 I2 De",
"V@ I3 De"”, "V1 I3 De", "v2 I3 De", "V3 I3 Do", "v4 I3 De"”, "V5 I3 Do",

104

"v6 I3 D@", "V7 I3 D@", "Vo I4 D", "V1 I4 De", "v2 I4 De", "V3 I4 Deo",
"V4 I4 D@", "V5 I4 DO", "V6 I4 De”, "Ve I5 Do", "V1 I5 De”, "v2 I5 De",
"V3 I5 De", "v4 15 De", "V5 I5 De"”, "Ve I6 De", "V1 16 D", "V2 I6 De",
"v3 I6 De", "V4 I6 De", "Ve I7 D", "v1 I7 De", "v2 I7 De", "v3 I7 De",
"vo I8 D@"”, "V1 I8 De", "v2 I8 De”, "Ve I9 Do", "Vv1 I9 De”, "Ve I10 De",
"Ve Ie D1", "ve I1 D1", "V1 I1 D1", "Ve I2 D1")

repvector_f <- c(0, 0, 0, @, @, rep(@, 13), rep(1, 59))

obsvector_f <- c(o, o, 0, 0, @, @, rep(1, 71))

matvector_f <- c(@, 0, 0, @, 0, rep(1, 72))

immvector_f <- c(o, 1, 1, 1, 1, rep(0, 72))

propvector_f <- c(1, rep(@, 76))

indataset_f <- c(@, 0, 0, 0, @, rep(1, 72))

binvec_f <- c(0, 0, 0, @, 0, rep(0.5, 72))

binbvec_f <- c(0, 0, 0, 0, 0, rep(0.5, 72))

bincvec_f <- c(0, 0, 0, 0, 0, rep(0.5, 72))

vertframe_f <- sf_create(sizes = sizevector_f, sizesb = sizebvector_f,
sizesc = sizecvector_f, stagenames = stagevector_f, repstatus = repvector_f,
obsstatus = obsvector_f, propstatus = propvector_f, immstatus = immvector_f,
matstatus = matvector_f, indataset = indataset_f, binhalfwidth = binvec_f,
binhalfwidthb = binbvec_f, binhalfwidthc = bincvec_f)

vert_data_f <- verticalize3(cypdata, noyears = 6, firstyear = 2004,

individcol = "plantid”, blocksize = 4, sizeacol = "Veg.04",
sizebcol = "Inf.04", sizeccol = "Inf2.04", repstracol = "Inf.04",
repstrbcol = "Inf2.04", fecacol = "Pod.04", censorcol = "censor”,

censorkeep = 1, censorRepeat = FALSE, stageassign = vertframe_f,
stagesize = "sizeabc"”, NAas@ = TRUE, censor = FALSE)

vertsupp3f <- supplemental(stage3 = c("DS", "P1", "DS", "P1", "P2", "P2", "P3",

"Sdl", "Sdl", "Sdl1", "Dorm", "V1 I@ D@", "V2 I@ De", "V3 I0 D@", "Dorm",
"V1 10 De", "V2 Ie D", "V3 I0 Do", "mat"”, "mat”, "mat”, "mat”, "DS", "P1"),

stage2 = c("DS", "DS", "DS", "DS", "P1", "P1", "P2", "P3", "Sdl", "Sdl", "Sdl",
"Sdl", "Sdl", "Ssdl”, "Sdl1", "Sdl", "Sdl", "Sdl"”, "Dorm", "V1 I@ D@",
"V2 10 Do", "V3 Io D", "rep", "rep"),

stagel = c("DS", "DS", "rep", "rep"”, "DS", "rep”, "P1", "P2", "P3", "Sdl",
"Sdl", "Sdi1", "sdi”, "sdi", "p3", "P3", "P3", "P3", "Sdl", "Sdl"”, "Sdl",
"Sdl", "mat”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "Dorm”, "V1 I0 D@",
"V2 10 De", "V3 I De", "Dorm", "V1 I0@ D@", "V2 Ie D", "V3 I@ Do", "mat",
"mat”, "mat”, "mat”, NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "V1 Ie De", "V1 Io Do",
"Vv1 1o De"”, "V1 Ie De", "Vvi1 Ie D", "V1 Ie De", "V1 Ie De", "V1 I0o De",
"Dorm”, "V1 I0 D@", "V2 I0 D", "V3 I0 D@", NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "vV1 Ioe De", "V1 Io Do",
"v1 1o De"”, "V1 Ie De", "Vvi1 Ie D", "V1 Ie De", "V1 Ie De", "V1 I0 De",
"V1 I0 De", "V1 Ie D@", "V1 Ie De", "V1 I0 Do", NA, NA),

givenrate = c(0.10, 0.20, 0.10, 0.20, 0.20, 0.20, 0.20, 0.25, 0.40, 0.40, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0.5 *x 5000, 0.5 * 5000),

type =c(1, 1, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1,1,1,1,1, 1,1, 1,
3, 3),

flefko3

fleslie 105

type_t12 = c(1, 1, 2, 2, 1, 2, 1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1,
1! 1! 1)7
stageframe = vertframe_f, historical = TRUE)

surv_model <- glm(alive3 ~ sizea2 + sizeb2, data = vert_data_f,
family = "binomial™)

obs_data <- subset(vert_data_f, alive3 == 1)
obs_model <- glm(obsstatus3 ~ sizeb2 + sizecl + as.factor(year2),
data = obs_data, family = "binomial")

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- MASS::glm.nb(sizea3 ~ sizea2 + sizeal + sizebl, data = size_data)
sizb_model <- glm(sizeb3 ~ sizea2 + sizeb2 + sizecl + repstatus2 + repstatusl +

as.factor(year2), data = size_data, family = "poisson”)
sizc_model <- glm(sizec3 ~ sizeal + repstatus2, data = size_data,
family = "poisson”)

reps_model <- glm(repstatus3 ~ sizea2 + sizeb2 + repstatus2 + as.factor(year2),
data = size_data, family = "binomial")

fec_data <- subset(vert_data_f, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizeb2 + as.factor(year2), data = fec_data,
family = "poisson”)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[13] <- "sizeal”
mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[19] <- "repstatus1”

vert_mats_f3 <- flefko3(stageframe = vertframe_f, supplement = vertsupp3f,
data = vert_data_f, surv_model = surv_model, obs_model = obs_model,
size_model = siz_model, sizeb_model = sizb_model, sizec_model = sizc_model,
repst_model = reps_model, fec_model = fec_model, paramnames = mod_params,
sparse_output = TRUE)

fleslie Create Function-based Age-based (Leslie) Matrix Projection Model

106 fleslie

Description

Function fleslie() returns age-based (Leslie) MPMs corresponding to the patches and occasions
given, including the associated component transition and fecundity matrices, data frames detailing
the characteristics of the exact ages corresponding to rows and columns in estimated matrices, and
a data frame characterizing the patch and occasion combinations corresponding to these matrices.

Usage

fleslie(
year = "all"”,
patch = NULL,
prebreeding = TRUE,
data = NULL,
modelsuite = NULL,
surv_model = NULL,
fec_model = NULL,
paramnames = NULL,
supplement = NULL,
start_age = NA,
last_age = NA,
fecage_min = NA,
fecage_max = NA,
continue = TRUE,
inda = NULL,
indb = NULL,
indc = NULL,
annua = NULL,
annub = NULL,
annuc NULL,
surv_dev = 0,
fec_dev = 0,
density = NA,
fecmod = 1,
random.inda = FALSE,
random.indb = FALSE,
random.indc = FALSE,
negfec = FALSE,
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
exp_tol = 700,
theta_tol = 1e+08,
sparse_output = FALSE

fleslie 107

Arguments

year A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in linear model development. De-
faults to "all”, in which case matrices will be estimated for all occasions.

patch A variable designating which patches or subpopulations will have matrices esti-
mated. Defaults to "all"”, but can also be set to specific patch names or a vector
thereof.

prebreeding A logical value indicating whether the life history model is a pre-breeding model.
Defaults to TRUE.

data The historical vertical demographic data frame used to estimate vital rates (class
hfvdata). The original data frame is generally required in order to initialize
occasions and patches properly, and to assess the range of ages observed in the
population. Not required if option modelsuite is set to a vrm_input object.

modelsuite One of three kinds of lists. The first is a lefkoMod object holding the vi-
tal rate models and associated metadata. The second is a lefkoModList ob-
ject, which is a list of lefkoMod objects generally created to conduct a boot-
strapped MPM analysis. Alternatively, an object of class vrm_input may be
provided. If given, then surv_model, obs_model, size_model, sizeb_model,
sizec_model, repst_model, fec_model, jsurv_model, jobs_model, jsize_model,
jsizeb_model, jsizec_model, jrepst_model, jmatst_model, and paramnames
are not required. One or more of these models should include size or reproduc-
tive status in occasion #-1. Although this is optional input, it is recommended,
and without it all vital rate model inputs (named XX_model) are required.

surv_model A linear model predicting survival probability. This can be a model of class glm
or glmer, and requires a predicted binomial variable under a logit link. Ignored
if modelsuite is provided. This model must have been developed in a modeling
exercise testing only the impacts of occasion .

fec_model A linear model predicting fecundity. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing only the
impacts of occasion .

paramnames A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required if modelsuite is not supplied.

supplement An optional data frame of class lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental () function.

start_age The age from which to start the matrix. Defaults to NA, in which case age 1 is
used if prebreeding = TRUE, and age 0 is used if prebreeding = FALSE.

last_age

fecage_min

fecage_max

continue

inda

indb

indc

annua

annub

annuc

surv_dev

fec_dev

density

fecmod

random.inda

random. indb

random. indc

negfec

fleslie

The final age to use in the matrix. Defaults to NA, in which case the highest age
in the dataset is used.

The minimum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed starting in the minimum
age observed in the dataset.

The maximum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed until the final observed
age.

A logical value designating whether to allow continued survival of individuals
past the final age noted in the stageframe, using the demographic characteristics
of the final age. Defaults to TRUE.

Can be a single value to use for individual covariate a in all matrices, or a vector
of such values corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate b in all matrices, or a vector
of such values corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for individual covariate c in all matrices, or a vector
of such values corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

Can be a single value to use for annual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL.

A numeric value to be added to the y-intercept in the linear model for survival
probability. Defaults to @.

A numeric value to be added to the y-intercept in the linear model for fecundity.
Defaults to .

A numeric value indicating density value to use to propagate matrices. Only
needed if density is an explanatory term used in linear models. Defaults to NA.

A scalar multiplier of fecundity. Defaults to 1. 0.

A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

A logical value denoting whether fecundity values estimated to be negative
should be reset to @. Defaults to FALSE.

fleslie

reduce

simple

err_check

exp_tol

theta_tol

sparse_output

Value

109

A logical value denoting whether to remove ages associated solely with @ tran-
sitions. These are only removed in cases where the associated row and column
sums in ALL matrices estimated equal 0. Defaults to FALSE, and should gener-
ally not be used in age-based MPMs.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard lefkoMod or vrm_input object in argument modelsuite, or individual
vital rate models are input separately,then this function will return an object of class lefkoMat. If
the user inputs an object of class lefkoModList in argument modelsuite, then the output will be
an object of class lefkoMatList, in which each element is an object of class lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

hstages
agestages

ahstages

labels

datagc

matrixqc

modelqc

A list of full projection matrices in order of sorted patches and occasions. All
matrices output in R’s matrix class, or in the dgCMatrix class from the Matrix
package if sparse.

A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

Set to NA for Leslie MPMs.
Set to NA for Leslie MPMs.

A data frame detailing the characteristics of associated ages, in the form of a
modified stageframe including reproduction status.

A data frame giving the patch and year of each matrix in order. In fleslie(),
only one population may be analyzed at once.

A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

This is the gc portion of the modelsuite input.

110 fleslie

prob_out An optional element only added if err_check = TRUE. This is a list of vital rate
probability matrices, with 7 columns in the order of survival, observation prob-
ability, reproduction probability, primary size transition probability, secondary
size transition probability, tertiary size transition probability, and probability of
juvenile transition to maturity.

Notes
Unlike rlefko2(), rlefko3(), arlefko2(), and rleslie(), this function does not currently dis-
tinguish populations.

This function will yield incorrect estimates if the models utilized incorporate state in occasion #-1,
or any size or reproductive status terms.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or
subpopulations, but without discriminating between those patches or subpopulations. Should the
aim of analysis be a general MPM that does not distinguish these patches or subpopulations, the
modelsearch() run should not include patch terms.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and 7. Rearranging the order will lead to erroneous calculations, and may lead to fatal errors.

Care should be taken to match the random status of year and patch to the states of those variables
within the modelsuite. If they do not match, then they will be treated as zeroes in vital rate estima-
tion.

Individual covariates are treated as categorical only if they are set as random terms. Fixed categor-
ical individual covariates are currently not allowed. However, such terms may be supplied if the
modelsuite option is set to a vrm_input object. In that case, the user should also set the logical
random switch for the individual covariate to be used to TRUE (e.g., random. inda = TRUE).

See Also

mpm_create()
flefko3()
flefko2()
aflefko2()
arlefko2()
rlefko3()
rlefko2()
rleslie()

Examples

data(lathyrus)

lathvert_base <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
sizeacol = "Volume88", repstracol = "FCODE88", fecacol = "Intactseed88",
deadacol = "Dead1988", censorcol = "Missing1988", censorkeep = NA,
censor = TRUE, NAas@ = TRUE, NRasRep = TRUE, NOasObs = TRUE)

f_projection3 111

lathvert_base$feca3 <- round(lathvert_base$feca3)
lathvert_base$feca2 <- round(lathvert_base$feca2)
lathvert_base$fecal <- round(lathvert_base$fecal)

lathvert_age <- subset(lathvert_base, firstseen > 1988)

lath_survival <- glm(alive3 ~ obsage + as.factor(year2), data = lathvert_age,
family = "binomial™)

lath_fecundity <- glm(feca2 ~ obsage + as.factor(year2), data = lathvert_age,
family = "poisson”)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[22] <- "obsage”

lathmat2fleslie <- fleslie(year = "all”, data = lathvert_age,
surv_model = lath_survival, fec_model = lath_fecundity,
paramnames = mod_params, fecage_min = 1)

f_projection3 Project Function-based Matrix Projection Model

Description

Function f_projection3() develops and projects function-based matrix models. Unlike projection3(),
which uses matrices provided as input via already created 1efkoMat objects, function f_projection3()
creates matrices at each time step from vital rate models and parameter inputs provided. Projections

may be stochastic or not, and may be density dependent in either case. Also handles replication.

Usage

f_projection3(
format,
prebreeding = TRUE,
start_age = NA_integer_,
last_age = NA_integer_,
fecage_min = NA_integer_,
fecage_max = NA_integer_,
cont = TRUE,
stochastic = FALSE,
standardize = FALSE,
growthonly = TRUE,
repvalue = FALSE,
integeronly = FALSE,
substoch = 0oL,
ipm_cdf = TRUE,
nreps = 1L,

112 f_projection3

times = 10000L,
repmod = 1,

exp_tol = 700,
theta_tol = 1e+08,
random_inda = FALSE,
random_indb = FALSE,
random_indc = FALSE,
err_check = FALSE,
quiet = FALSE,

data = NULL,
stageframe = NULL,
supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
modelsuite = NULL,
paramnames = NULL,
year = NULL,

patch = NULL,
sp_density = NULL,
ind_terms = NULL,
ann_terms = NULL,
dev_terms = NULL,
surv_model = NULL,
obs_model = NULL,
size_model = NULL,
sizeb_model = NULL,
sizec_model = NULL,
repst_model = NULL,
fec_model = NULL,
jsurv_model = NULL,
jobs_model = NULL,
jsize_model = NULL,
jsizeb_model = NULL,
jsizec_model = NULL,
jrepst_model = NULL,
jmatst_model = NULL,
start_vec = NULL,
start_frame = NULL,
tweights = NULL,
density = NULL,
density_vr = NULL,
stage_weights = NULL,
sparse = NULL

Arguments

format An integer indicating the kind of function-based MPM to create. Possible choices
include: 1, Ehrlen-format historical MPM; 2, deVries-format historical MPM;

f_projection3

prebreeding

start_age

last_age

fecage_min

fecage_max

cont

stochastic

standardize

growthonly

repvalue

integeronly

substoch

ipm_cdf

nreps
times

repmod

113

3, ahistorical MPM; 4, age-by-stage MPM; and 5, Leslie (age-based) MPM.

A logical value indicating whether the life history model is a pre-breeding model.
Only used in Leslie and age-by-stage MPMs. Defaults to TRUE.

The age from which to start the matrix. Defaults to NA, in which case age 1 is
used if prebreeding = TRUE, and age @ is used if prebreeding = FALSE.

The final age to use in the matrix. Defaults to NA, in which case the highest age
in the dataset is used.

The minimum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed starting in the minimum
age observed in the dataset.

The maximum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed until the final observed
age.

A logical value designating whether to allow continued survival of individuals
past the final age noted in the stageframe, using the demographic characteristics
of the final age. Defaults to TRUE.

A logical value denoting whether to conduct a stochastic projection or a deter-
ministic / cyclical projection.

A logical value denoting whether to re-standardize the population size to 1.0 at
each occasion. Used in density-independent simulations in which it is more im-
portant to know the general trend in population growth than the explicit growth
rate. Defaults to FALSE.

A logical value indicating whether to produce only the projected population size
at each occasion (TRUE), or also to produce vectors showing the stage distribu-
tion at each occasion (FALSE). Defaults to TRUE.

A logical value indicating whether to calculate reproductive value vectors at
each time step. Can only be set to TRUE if growthonly = FALSE. Setting to TRUE
may dramatically increase the duration of calculations. Defaults to FALSE.

A logical value indicating whether to round the number of individuals projected
in each stage at each occasion to the nearest integer. Defaults to FALSE.

An integer value indicating whether to force survival- transition matrices to be
substochastic in density dependent and density independent simulations. De-
faults to @, which does not enforce substochasticity. Alternatively, 1 forces all
survival-transition elements to range from 0.0 to 1.0, and forces fecundity to be
non-negative; and 2 forces all column rows in the survival-transition matrices
to total no more than 1.0, in addition to the actions outlined for option 1. Both
settings 1 and 2 change negative fecundity elements to . 0.

A logical value indicating whether to estimate size transitions using the cumu-
lative density function in cases with continuous distributions. Defaults to TRUE,
with the midpoint method used if FALSE.

The number of replicate projections. Defaults to 1.
Number of occasions to iterate per replicate. Defaults to 10000.

A scalar multiplier of fecundity. Defaults to 1.

114 f_projection3

exp_tol A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

theta_tol A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

random_inda A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

random_indb A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

random_indc A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE.

err_check A logical value indicating whether to append extra output for debugging pur-
poses. Defaults to FALSE.

quiet A logical value indicating whether warning messages should be suppressed. De-
faults to FALSE.

data The historical vertical demographic data frame used to estimate vital rates (class
hfvdata), which is required to initialize times and patches properly. Variable
names should correspond to the naming conventions in verticalize3() and
historicalize3(). If attempting bootstrapped projection, then an object of
class hfvlist is required.

stageframe An object of class stageframe. These objects are generated by function sf_create(),
and include information on the size, observation status, propagule status, repro-
duction status, immaturity status, maturity status, stage group, size bin widths,
and other key characteristics of each ahistorical stage. Required for all MPM
formats except Leslie MPMs.

supplement An optional data frame of class lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental () function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

repmatrix An optional reproduction matrix. This matrix is composed mostly of @s, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
flefko3() will assume that all stages marked as reproductive produce offspring
at 1x that of estimated fecundity, and that offspring production will yield the
first stage noted as propagule or immature. May be the dimensions of either a
historical or an ahistorical matrix. If the latter, then all stages will be used in
occasion #-1 for each suggested ahistorical transition.

overwrite An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated

f_projection3 115

transitions. Note that this function supplements overwrite data provided in
supplement.

modelsuite A lefkoMod object, at minimum with all required best-fit vital rate models and
a paramnames data frame, and following the naming conventions used in this
package. If given, then surv_model, obs_model, size_model, sizeb_model,
sizec_model, repst_model, fec_model, jsurv_model, jobs_model, jsize_model,
jsizeb_model, jsizec_model, jrepst_model, jmatst_model, paramnames,
yearcol, and patchcol are not required. Alternatively, an object of class vrm_input,
serving the same role. Although this is optional input, it is recommended,
and without it separate vital rate model inputs (named XX_model) are required.
If conducting bootstrapped projection, then an object of lefkoModList is re-
quired.

paramnames A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required if modelsuite is not supplied.

year Either a single integer value corresponding to the year to project, or a vector of
times elements with the year to use at each time step. Defaults to NA, in which
the first year in the set of years in the dataset is projected. If a vector shorter
than times is supplied, then this vector will be cycled.

patch A value of NA, a single string value corresponding to the patch to project, or a
vector of times elements with the patch to use at each time step. If a vector
shorter than times is supplied, then this vector will be cycled. Note that this
function currently does not handle multiple projections for different patches in
the same run.

sp_density Either a single numeric value of spatial density to use in vital rate models in all
time steps, or a vector of times elements of such numeric values. Defaults to
NA.

ind_terms An optional data frame with 3 columns and times rows giving the values of

individual covariates a, b, and c, respectively, for each projected time. Unused
terms must be set to @ (use of NA will produce errors.)

ann_terms An optional data frame with 3 columns and times rows giving the values of
annual covariates a, b, and c, respectively, for each projected time. Unused
terms must be set to @ (use of NA will produce errors.)

dev_terms An optional data frame with 14 columns and times rows showing the values of
the deviation terms to be added to each linear vital rate. The column order should
be: 1: survival, 2: observation, 3: primary size, 4: secondary size, 5: tertiary
size, 6: reproduction, 7: fecundity, 8: juvenile survival, 9: juvenile observation,
10: juvenile primary size, 11: juvenile secondary size, 12: juvenile tertiary size,
13: juvenile reproduction, and 14: juvenile maturity transition. Unused terms
must be set to @ (use of NA will produce errors.)

surv_model A linear model predicting survival probability. This can be a model of class glm
or glmer, and requires a predicted binomial variable under a logit link. Ignored
if modelsuite is provided. This model must have been developed in a modeling
exercise testing the impacts of occasions ¢ and #-1.

obs_model

size_model

sizeb_model

sizec_model

repst_model

fec_model

jsurv_model

jobs_model

jsize_model

jsizeb_model

jsizec_model

jrepst_model

f_projection3

A linear model predicting sprouting or observation probability. This can be a
model of class glm or glmer, and requires a predicted binomial variable under
a logit link. Ignored if modelsuite is provided. This model must have been
developed in a modeling exercise testing the impacts of occasions ¢ and 7-1.

A linear model predicting primary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or lmer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions ¢ and 7-1.

A linear model predicting secondary size. This can be a model of class glm,
glmer, glmmTMB, zeroinfl, vglm, 1m, or 1mer. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing the
impacts of occasions ¢ and #-1.

A linear model predicting tertiary size. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions ¢ and #-1.

A linear model predicting reproduction probability. This can be a model of class
glm or glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing the impacts of occasions ¢ and 7-1.

A linear model predicting fecundity. This can be a model of class glm, glmer,
glmmTMB, zeroinfl, vglm, 1m, or Imer. Ignored if modelsuite is provided.
This model must have been developed in a modeling exercise testing the impacts
of occasions ¢ and #-1.

A linear model predicting juvenile survival probability. This can be a model of
class glmor glmer, and requires a predicted binomial variable under a logit link.
Ignored if modelsuite is provided. This model must have been developed in a
modeling exercise testing the impacts of occasions ¢ and #-1.

A linear model predicting juvenile sprouting or observation probability. This
can be a model of class glm or glmer, and requires a predicted binomial variable
under a logit link. Ignored if modelsuite is provided. This model must have
been developed in a modeling exercise testing the impacts of occasions ¢ and 7-1.

A linear model predicting juvenile primary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Ilmer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting juvenile secondary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or Ilmer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting juvenile tertiary size. This can be a model of class
glm, glmer, glmmTMB, zeroinfl, vglm, 1m, or 1mer. Ignored if modelsuite is
provided. This model must have been developed in a modeling exercise testing
the impacts of occasions ¢ and #-1.

A linear model predicting reproduction probability of a mature individual that
was immature in time ¢. This can be a model of class glm or glmer, and requires

f_projection3

jmatst_model

start_vec

start_frame

tweights

density

density_vr

stage_weights

sparse

Value

117

a predicted binomial variable under a logit link. Ignored if modelsuite is pro-
vided. This model must have been developed in a modeling exercise testing the
impacts of occasions ¢ and #-1.

A linear model predicting maturity probability of an individual that was imma-
ture in time ¢. This can be a model of class glm or glmer, and requires a predicted
binomial variable under a logit link. Ignored if modelsuite is provided. This
model must have been developed in a modeling exercise testing the impacts of
occasions ¢ and #-1.

An optional numeric vector denoting the starting stage distribution for the pro-
jection. Defaults to a single individual of each stage.

An optional data frame characterizing stages, age-stages, or stage-pairs that
should be set to non-zero values in the starting vector, and what those values
should be. Can only be used with lefkoMat objects.

An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

An optional data frame describing the matrix elements that will be subject to
density dependence, and the exact kind of density dependence that they will be
subject to. The data frame used should be an object of class lefkoDens, which
is the output from function density_input().

An optional data frame describing density dependence relationships in vital
rates, if such relationships are to be assumed. The data frame must be of class
lefkoDensVR, which is the output from the function density_vr().

An optional object of class lefkoEq giving the degree to which individuals in
each stage are equivalent to one another. May also be a numeric vector, in which
case the vector must have the same number of elements as the number of rows
in the associated MPM, with each element giving the effect of an individual
of that age, stage, age-stage, or stage-pair, depending on whether the MPM is
age-based, ahistorical stage-based, age-by-stage, or historical stage-based, re-
spectively.

A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero. Can also be entered as a logical value
if forced sparse (TRUE) or forced dense (FALSE) projection is desired.

If running a single (including replicated) projection, then the output is a list of class lefkoProj,
which always includes the first three elements of the following, and also includes the remaining
elements below when a 1efkoMat object is used as input:

projection

A list of lists of matrices showing the total number of individuals per stage
per occasion. The first list corresponds to each pop-patch followed by each

f_projection3

population (this top-level list is a single element in f_projection3()). The
inner list corresponds to replicates within each pop-patch or population.

stage_dist A list of lists of the actual stage distribution in each occasion in each replicate in
each pop-patch or population. The list structure is the same as in projection3().

rep_value A list of lists of the actual reproductive value in each occasion in each replicate in
each pop-patch or population. The list structure is the same as in projection3().

pop_size A list of matrices showing the total population size in each occasion per replicate
(row within matrix) per pop-patch or population (list element). Only a single
pop-patch or population is allowed in f_projection3().

labels A data frame showing the order of populations and patches in item projection.

ahstages The original stageframe used in the study.

hstages A data frame showing the order of historical stage pairs.

agestages A data frame showing the order of age-stage pairs.

labels A short data frame indicating the population (always 1), and patch (either the
numeric index of the single chosen patch, or 1 in all other cases).

control A short vector indicating the number of replicates and the number of occasions
projected per replicate.

density The data frame input under the density option. Only provided if input by the
user.

density_vr The data frame input under the density_vr option. Only provided if input by the

user.

If running bootstrapped projections (i.e. using hfvlist and lefkoModList input), then will output
an object of class lefkoProjList, which is just a simple list of 1efkoProj objects.

Notes

Population projection can be a very time-consuming activity, and it is most time-consuming when
matrices need to be created at each time step. We have created this function to work as quickly as
possible, but some options will slow analysis. First, the err_check option should always be set to
FALSE, as the added created output will not only slow the analysis down but also potentially crash
the memory if matrices are large enough. Second, the repvalue option should be set to FALSE
unless reproductive values are genuinely needed, since this step requires concurrent backward pro-
jection and so in some cases may double total run time. Next, if the only needed data is the total
population size and age/stage structure at each time step, then setting growthonly = TRUE will yield
the quickest possible run time. Finally, the default behavior of the function is to round down frac-
tional values of individuals, and to stop running projections (replicates) when the population drops
to 0. Setting integeronly = FALSE will have the impact of increasing runtime, potentially dramati-
cally, since the population can reach a point in which the population size is extremely small but not
equal to 0.

Projections with large matrices may take a long time to run. To assess the likely running time, try
using a low number of iterations on a single replicate first. For example, set nreps = 1 and times =
10 for a trial run. If a full run is set and takes too long, press the STOP button in RStudio to cancel
the projection run, or click esc.

This function currently allows three forms of density dependence. The first modifies matrix ele-
ments on the basis of the input provided in option density, and so alters matrix elements once the

f_projection3 119

matrix has already been created. The second form alters the vital rates estimated, and so estimates
matrix elements using vital rate values already modified by density. This second form uses the in-
put provided in option density_vr. These two forms of density dependence utilize the projected
population size at some time to make these alterations. The third form of density dependence also
alters the vital rates, but using spatial density supplied via option sp_density and only in vital rates
in which spatial density is included as a fixed factor in the associated vital rate model.

When running density dependent simulations involving user-set exponents, such as the beta term in
the Ricker function and both the alpha and beta terms in the Usher function, values above or below
the computer limits may cause unpredictable behavior. Noted odd behavior includes sudden shifts
in population size to negative values. This function produces warnings when such values are used,
and the values used for warnings may be reset with the exp_tol term. In addition, this function
resets beta values for the Ricker function automatically to positive or negative exp_tol, giving a
warning when doing so.

Consistently positive population growth can quickly lead to population size numbers larger than
can be handled computationally. In that circumstance, a continuously rising population size will
suddenly become NaN for the remainder of the projection.

This function does not reduce the dimensionality of matrices developed for projection.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

Some issues may arise in first-order Markovian stochastic projections if the year argument is used.
Use the matrix input in the tweights argument to eliminate any years from consideration that are
not needed.

See Also

start_input()
density_input()
density_vr()
projection3()
flefko3()
flefko2()
aflefko2()
fleslie()
append_1P()
summary.lefkoProj()
plot.lefkoProj()

Examples

data(lathyrus)

sizevector <- c(0, 4.6, 0, 1, 2, 3, 4, 5,6, 7, 8,9, 1,2, 3,4,5,6, 7,8,

120

f_projection3

9)
stagevector <- c("Sd", "Sdl1", "Dorm”, "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szébnr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Szb5r", "Szé6r", "Sz7r", "Sz8r", "Sz9r")
repvector <- c(0, 0, 9, 0, 0, 9, 0, 9, 9, 0, @, @, 1, 1, 1, 1,1, 1, 1, 1, 1)
obsvector <- c(@, 1, 0, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1)
matvector <- c(0, @, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1)
immvector <- ¢(1, 1, 0, ¢, @, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, Q)
propvector <- c(1, o0, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0,
0)
indataset <- c(o, 1, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1)
binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5)
lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)
lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988"”, stageassign = lathframeln, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ sizea2 + sizeal + as.factor(patchid) +

as.factor(year2), data = lathvertln_adults, family = "binomial")

obs_data <- subset(lathvertln_adults, alive3 == 1)

obs_model <- glm(obsstatus3 ~ as.factor(patchid), data = obs_data,
family = "binomial")
size_data <- subset(obs_data, obsstatus3 == 1)

siz_model <- Im(sizea3 ~ sizea2 + sizeal + repstatusl + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = size_data, family = "binomial"”)

fec_data <- subset(lathvertln_adults, repstatus2 1)
fec_model <- glm(feca2 ~ sizea2 + sizeal + repstatusl + as.factor(patchid),
data = fec_data, family = "poisson”)

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data =
family = "binomial")

lathvertln_juvs,

f_projection3

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1lm(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- @
jmatst_model <- 1

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[13] <- "sizeal”
mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[19] <- "repstatus1”

lathsupp3 <- supplemental(stage3 = c("Sd”, "Sd", "Sdl1"”, "Sdl1", "mat", "Sd", "Sdl"),

#
#

stage2 = c("sd", "sd", "Sd", "Sd", "Sdl1", "rep", "rep"),

stagel = c("Sd", "rep”, "Sd”, "rep", "Sd", "mat”, "mat"),
eststage3 = c(NA, NA, NA, NA, "mat”, NA, NA),

eststage2 = c(NA, NA, NA, NA, "Sdl”, NA, NA),

eststagel c(NA, NA, NA, NA, "Sdl”, NA, NA),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),

type = c(1, 1, 1, 1, 1, 3, 3), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeln, historical = TRUE)

While we do not use MPMs to initialize f_projections3(), we do use MPMs to
initialize functions start_input() and density_input().

lathmat31ln <- flefko3(year = "all", patch = "all"”, data = lathvertln,

stageframe = lathframeln, supplement = lathsupp3, paramnames = mod_params,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,

jrepst_model = jrepst_model, jmatst_model = jmatst_model, reduce = FALSE)

e3m_sv <- start_input(lathmat3ln, stage2 = "Sd", stagel = "Sd"”, value = 1000)

dyn7 <- c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE)

dst7 <- c(1, @, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 0, @)
dal7 <- c(0.5, 0, @, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
dbe7 <- c(1, @, @, 0, 0, 0, @, @, 0, 0, 0, 0, 0, 0)

e3d_vr <- density_vr(density_yn = dyn7, style = dst7, alpha = dal7,

trial7_dvr_1 <- f_projection3(format = 1, data = lathvertln, supplement = lathsupp3,

beta = dbe7)

121

122 htv_gc
paramnames = mod_params, stageframe = lathframeln, nreps = 2,
surv_model = surv_model, obs_model = obs_model, size_model = siz_model,
repst_model = reps_model, fec_model = fec_model, jsurv_model = jsurv_model,
jobs_model = jobs_model, jsize_model = jsiz_model,
jrepst_model = jrepst_model, jmatst_model = jmatst_model,
times = 100, stochastic = TRUE, standardize = FALSE, growthonly = TRUE,
substoch = @, sp_density = @, start_frame = e3m_sv, density_vr = e3d_vr)

hfv_qgc Assess Quality of hfv Datasets
Description

Function hfv_qc() tests the overall quality of hfv datasets, and also runs a series of tests to assess
which statistical distributions match the variables within these datasets. The input format is equiv-
alent to the input format of function modelsearch(), allowing users to assess vital rate variable
distributions assuming the same internal dataset subsetting used by the latter function and simply
copy and pasting the parameter options from one function to the other.

Usage

hfv_gc(

data,
stageframe = NULL,
historical = TRUE,

suite = "size",

vitalrates = c("surv"”, "size", "fec"),

surv = c("alive3", "alive2", "alivel”),

obs = c("obsstatus3”, "obsstatus2”, "obsstatus1"),
size = c("sizea3", "sizea2", "sizeal”),

sizeb = c(NA, NA, NA),
sizec = c(NA, NA, NA),

repst = c("repstatus3”, "repstatus2”, "repstatus1”),
fec = c("feca3", "feca2", "fecal"),

stage = c("stage3", "stage2", "stagel"),

matstat = c("matstatus3”, "matstatus2"”, "matstatusl”),
indiv = "individ",

patch = NA,

year = "year2",

density = NA,

patch.as.random = TRUE,
year.as.random = TRUE,
juvestimate = NA,
juvsize = FALSE,
fectime = 2,

censor = NA,

hfv_qc

age = NA,

indcova
indcovb
indcovc

NA,
NA,
NA,

123

random.indcova = FALSE,
random.indcovb = FALSE,
random.indcovc = FALSE,
test.group = FALSE,

Arguments

data

stageframe

historical

suite

vitalrates

surv

obs

size

The vertical dataset to be used for analysis. This dataset should be of class
hfvdata, but can also be a data frame formatted similarly to the output format
provided by functions verticalize3() or historicalize3(), as long as all
needed variables are properly designated.

The stageframe characterizing the life history model used. Optional unless
test.group = TRUE, in which case it is required. Defaults to NULL.

A logical variable denoting whether to assess the effects of state in occasion -1,
in addition to state in occasion ¢. Defaults to TRUE.

This describes the global model for each vital rate estimation, and has the fol-
lowing possible values: full, includes main effects and all two-way interactions
of size and reproductive status; main, includes main effects only of size and re-
productive status; size, includes only size (also interactions between size in
historical model); rep, includes only reproductive status (also interactions be-
tween status in historical model); age, all vital rates estimated with age and
y-intercepts only; cons, all vital rates estimated only as y-intercepts. Defaults
to size.

A vector describing which vital rates will be estimated via linear modeling, with
the following options: surv, survival probability; obs, observation probabil-
ity; size, overall size; repst, probability of reproducing; and fec, amount of
reproduction (overall fecundity). May also be set to vitalrates = "leslie”,
which is equivalent to setting c("surv"”, "fec") for a Leslie MPM. This choice
also determines how internal data subsetting for vital rate model estimation will
work. Defaults to c("surv”, "size", "fec").

A vector indicating the variable names coding for status as alive or dead in
occasions #+1, t, and #-1, respectively. Defaults to c("alive3”, "alive2",
"alivel").

A vector indicating the variable names coding for observation status in occasions
t+1, t, and t-1, respectively. Defaults to c("obsstatus3”, "obsstatus2”,
"obsstatus1").

A vector indicating the variable names coding for the primary size variable on
occasions #+1, t, and #-1, respectively. Defaults to c("sizea3"”, "sizea2",
"sizeal").

124

sizeb

sizec

repst

fec

stage

matstat

indiv

patch

year

density

patch.as.random

year.as.random

juvestimate

juvsize

fectime

htv_gc

A vector indicating the variable names coding for the secondary size variable on
occasions 7+1, t, and #-1, respectively. Defaults to c(NA, NA, NA), in which case
sizeb is not used.

A vector indicating the variable names coding for the tertiary size variable on
occasions 7+1, t, and #-1, respectively. Defaults to c(NA, NA, NA), in which case
sizec is not used.

A vector indicating the variable names coding for reproductive status in occa-
sions #+1, t, and -1, respectively. Defaults to c("repstatus3”, "repstatus2”,
"repstatus1”).

A vector indicating the variable names coding for fecundity in occasions #+1, ¢,
and #-1, respectively. Defaults to c("feca3”, "feca2"”, "fecal").

A vector indicating the variable names coding for stage in occasions #+1, ¢, and
t-1. Defaults to c("stage3”, "stage2", "stagel").

A vector indicating the variable names coding for maturity status in occasions
t+1, t, and ¢-1. Defaults to c("matstatus3”, "matstatus2”, "matstatus1”).

A text value indicating the variable name coding individual identity. Defaults to
"individ".

A text value indicating the variable name coding for patch, where patches are
defined as permanent subgroups within the study population. Defaults to NA.

A text value indicating the variable coding for observation occasion ¢. Defaults
to "year2".

A text value indicating the name of the variable coding for spatial density, should
the user wish to test spatial density as a fixed factor affecting vital rates. Defaults
to NA.

If set to TRUE and approach = "mixed”, then patch is included as a random
factor. If set to FALSE and approach = "glm", then patch is included as a fixed
factor. All other combinations of logical value and approach lead to patch not
being included in modeling. Defaults to TRUE.

If set to TRUE and approach = "mixed", then year is included as a random fac-
tor. If set to FALSE, then year is included as a fixed factor. All other combina-
tions of logical value and approach lead to year not being included in modeling.
Defaults to TRUE.

An optional variable denoting the stage name of the juvenile stage in the vertical
dataset. If not NA, and stage is also given (see below), then vital rates listed in
vitalrates other than fec will also be estimated from the juvenile stage to all
adult stages. Defaults to NA, in which case juvenile vital rates are not estimated.

A logical variable denoting whether size should be used as a term in models
involving transition from the juvenile stage. Defaults to FALSE, and is only used
if juvestimate does not equal NA.

A variable indicating which year of fecundity to use as the response term in
fecundity models. Options include 2, which refers to occasion #, and 3, which
refers to occasion t+1. Defaults to 2.

hfv_qc

censor

age

indcova

indcovb

indcovc

random. indcova

random. indcovb

random. indcovc

test.group

Value

125

A vector denoting the names of censoring variables in the dataset, in order from
occasion t+1, followed by occasion ¢, and lastly followed by occasion #-1. De-
faults to NA.

Designates the name of the variable corresponding to age in time ¢ in the vertical
dataset. Defaults to NA, in which case age is not included in linear models.
Should only be used if building Leslie or age x stage matrices.

Vector designating the names in occasions #+1, ¢, and #-1 of an individual co-
variate. Defaults to NA.

Vector designating the names in occasions #+1, ¢, and #-1 of a second individual
covariate. Defaults to NA.

Vector designating the names in occasions #+1, ¢, and #-1 of a third individual
covariate. Defaults to NA.

A logical value indicating whether indcova should be treated as a random cate-
gorical factor, rather than as a fixed factor. Defaults to FALSE.

A logical value indicating whether indcovb should be treated as a random cate-
gorical factor, rather than as a fixed factor. Defaults to FALSE.

A logical value indicating whether indcovc should be treated as a random cate-
gorical factor, rather than as a fixed factor. Defaults to FALSE.

A logical value indicating whether to include the group variable from the input
stageframe as a fixed categorical variable in linear models. Defaults to FALSE.

Other parameters.

This function yields text output describing the subsets to be used in linear vital rate modeling. No
value or object is returned.

Notes

This function is meant to handle input as would be supplied to function modelsearch(). To use
most easily, users may copy all input parameters from a call to function modelsearch(), and paste
directly within this function. The exact subsets used in the modelsearch() run will also be created

here.

Tests of Gaussian normality are conducted as Shapiro-Wilk tests via base R’s shapiro.test()
function. If datasets with more than 5000 rows are supplied, function hfv_gc() will sample 5000
rows from the dataset and conduct the Shapiro-Wilk test on the data sample.

Random factor variables are also tested for the presence of singleton categories, which are factor
values that occur only once in the used data subset. Singleton categories may cause problems with
estimation under mixed modeling.

Examples

data(lathyrus)

sizevector <- c(o, 4.6, 0, 1, 2, 3, 4, 5, 6, 7,8, 9,1, 2, 3, 4,5,6, 17, 8,

9

126 historicalize3

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Sz6r", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, o, o, 0, 0, 9, @, 0, 0, 0, @, @, 1, 1, 1, 1, 1,1, 1, 1, 1)

obsvector <- ¢(@, 1, @, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1)

matvector <- c(0, @, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1)

immvector <- c(1, 1, @0, 0, @, 0, 0, 0, 0, @, 0, 0, 0, 0, @, 0, @0, 0, 0, @, Q)

propvector <- ¢(1, @, 0, 9, 0, 0, 0, 0, @, 0, 0, 0, 0, @, 0, 0, 0, 0, 0, O,
0)

indataset <- c(o, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)

binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,

fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

hfv_gc(lathvertln, historical = TRUE, suite = "main”,

vitalrates = c("surv", "obs", "size", "repst”, "fec"), juvestimate = "Sdl",
indiv = "individ”, patch = "patchid”, year = "year2",year.as.random = TRUE,
patch.as.random = TRUE)
historicalize3 Create Historical Vertical Data Frame from Ahistorical Vertical Data
Frame

Description

Function historicalize3() returns a vertically formatted demographic data frame organized to
create historical projection matrices, given a vertically but ahistorically formatted data frame. This
data frame is in standard hfvdata format and can be used in all functions in the package.

Usage

historicalize3(
data,
popidcol = 0,

historicalize3 127

patchidcol = 0,
individcol,
year2col = 0,
year3col = 0,
xcol = 0,
ycol = 0,
sizea2col =
sizea3col =
sizeb2col =
sizeb3col =
sizec2col =
sizec3col =
repstra2col
repstra3col =
repstrb2col =
repstrb3col =
feca2col =
feca3col
fecb2col
fecb3col
indcova2col
indcova3col
indcovb2col =
indcovb3col =
indcovc2col =
indcovc3col =
alive2col = 0,
alive3col = 0@
dead2col = 0,
dead3col = 0,
obs2col = 0,
obs3col = 0,
nonobs2col = 0,
nonobs3col = 0,
repstrrel = 1,

I ©o 0o 0o o0
[SS RGN GG

1
[SEEIR RN

[SEEIRC RN RN RG]

’

fecrel = 1,
stage2col = 0,
stage3col = 0,
juv2col = 0,
juv3col = 0,

stageassign = NA,
stagesize = NA,
censor = FALSE,
censorcol = 0,
censorkeep = 0,
spacing = NA,
NAas@ = FALSE,
NRasRep = FALSE,

128 historicalize3

NOasObs = FALSE,
prebreeding = TRUE,
age_offset = 0,
reduce = TRUE,
a2check = FALSE,
quiet = FALSE

)
Arguments

data The horizontal data file.

popidcol A variable name or column number corresponding to the identity of the popula-
tion for each individual.

patchidcol A variable name or column number corresponding to the identity of the patch
or subpopulation for each individual, if patches have been designated within
populations.

individcol A variable name or column number corresponding to the unique identity of each
individual.

year2col A variable name or column number corresponding to occasion # (year or time).

year3col A variable name or column number corresponding to occasion #+1 (year or
time).

xcol A variable name or column number corresponding to the X coordinate of each
individual in Cartesian space.

ycol A variable name or column number corresponding to the Y coordinate of each
individual in Cartesian space.

sizea2col A variable name or column number corresponding to the primary size entry in
occasion .

sizea3col A variable name or column number corresponding to the primary size entry in
occasion 7+1.

sizeb2col A variable name or column number corresponding to the secondary size entry
in occasion f.

sizeb3col A variable name or column number corresponding to the secondary size entry
in occasion 7+1.

sizec2col A variable name or column number corresponding to the tertiary size entry in
occasion .

sizec3col A variable name or column number corresponding to the tertiary size entry in
occasion #+1.

repstra2col A variable name or column number corresponding to the production of repro-
ductive structures, such as flowers, in occasion ¢. This can be binomial or count
data, and is used to in analysis of the probability of reproduction.

repstra3col A variable name or column number corresponding to the production of repro-

ductive structures, such as flowers, in occasion 7+1. This can be binomial or
count data, and is used to in analysis of the probability of reproduction.

historicalize3

repstrb2col

repstrb3col

feca2col

feca3col

fecb2col

fecb3col

indcova2col

indcova3col

indcovb2col

indcovb3col

indcovc2col

indcovc3col

alive2col

alive3col

dead2col

dead3col

obs2col

obs3col

129

A second variable name or column number corresponding to the production of
reproductive structures, such as flowers, in occasion #. This can be binomial or
count data.

A second variable name or column number corresponding to the production of
reproductive structures, such as flowers, in occasion 7+1. This can be binomial
or count data.

A variable name or column number corresponding to fecundity in occasion t.
This may represent egg counts, fruit counts, seed production, etc.

A variable name or column number corresponding to fecundity in occasion 7+1.
This may represent egg counts, fruit counts, seed production, etc.

A second variable name or column number corresponding to fecundity in occa-
sion ¢. This may represent egg counts, fruit counts, seed production, etc.

A second variable name or column number corresponding to fecundity in occa-
sion #+1. This may represent egg counts, fruit counts, seed production, etc.

A variable name or column number corresponding to an individual covariate to
be used in analysis, in occasion .

A variable name or column number corresponding to an individual covariate to
be used in analysis, in occasion #+1.

A variable name or column number corresponding to a second individual co-
variate to be used in analysis, in occasion ¢.

A variable name or column number corresponding to a second individual co-
variate to be used in analysis, in occasion #+1.

A variable name or column number corresponding to a third individual covariate
to be used in analysis, in occasion ¢.

A variable name or column number corresponding to a third individual covariate
to be used in analysis, in occasion 7+1.

A variable name or column number that provides information on whether an
individual is alive in occasion . If used, living status must be designated as
binomial (living = 1, dead = 0).

A variable name or column number that provides information on whether an
individual is alive in occasion r+1. If used, living status must be designated as
binomial (living = 1, dead = 9).

A variable name or column number that provides information on whether an
individual is dead in occasion t. If used, dead status must be designated as
binomial (living = 0, dead = 1).

A variable name or column number that provides information on whether an
individual is dead in occasion #+1. If used, dead status must be designated as
binomial (living = @, dead = 1).

A variable name or column number providing information on whether an indi-
vidual is in an observable stage in occasion ¢. If used, observation status must
be designated as binomial (observed = 1, not observed = 0).

A variable name or column number providing information on whether an indi-
vidual is in an observable stage in occasion #+1. If used, observation status must
be designated as binomial (observed = 1, not observed = 0).

nonobs2col

nonobs3col

repstrrel

fecrel

stage2col

stage3col

juv2col

juv3col

stageassign

stagesize

censor

censorcol

censorkeep

spacing

historicalize3

A variable name or column number providing information on whether an indi-
vidual is in an unobservable stage in occasion ¢. If used, observation status must
be designated as binomial (observed = @, not observed = 1).

A variable name or column number providing information on whether an indi-
vidual is in an unobservable stage in occasion #+1. If used, observation status
must be designated as binomial (observed = @, not observed = 1).

This is a scalar multiplier making the variable represented by repstrb2col
equivalent to the variable represented by repstra2col. This can be useful if
two reproductive status variables have related but unequal units, for example if
repstrb2col refers to one-flowered stems while repstra2col refers to two-
flowered stems.

This is a scalar multiplier making the variable represented by fecb2col equiva-
lent to the variable represented by feca2col. This can be useful if two fecundity
variables have related but unequal units.

Optional variable name or column number corresponding to life history stage in
occasion .

Optional variable name or column number corresponding to life history stage in
occasion 7+1.

A variable name or column number that marks individuals in immature stages
in occasion t. Function historicalize3() assumes that immature individuals
are identified in this variable marked with a number equal to or greater than 1,
and that mature individuals are marked as @ or NA.

A variable name or column number that marks individuals in immature stages in
occasion t+1. Function historicalize3() assumes that immature individuals
are identified in this variable marked with a number equal to or greater than 1,
and that mature individuals are marked as @ or NA.

The stageframe object identifying the life history model being operationalized.
Note that if stage2col is provided, then this stageframe is not utilized in stage
designation.

A variable name or column number describing which size variable to use in stage
estimation. Defaults to NA, and can also take sizea, sizeb, sizec, sizeab,
sizebc, sizeac, sizeabc, or sizeadded, depending on which size variable
within the input dataset is chosen. Note that the variable(s) chosen should be
presented in the order of the primary, secondary, and tertiary variables in the
stageframe input with stageassign. For example, choosing sizeb assumes
that this size variable in the dataset is the primary variable in the stageframe.

A logical variable determining whether the output data should be censored using
the variable defined in censorcol. Defaults to FALSE.

A variable name or column number corresponding to a censor variable within
the dataset, used to distinguish between entries to use and those to discard from
analysis, or to designate entries with special issues that require further attention.
The value of the censoring variable identifying data that should be included in
analysis. Defaults to @, but may take any value including NA.

The spacing at which density should be estimated, if density estimation is de-
sired and X and Y coordinates are supplied. Given in the same units as those
used in the X and Y coordinates given in xcol and ycol. Defaults to NA.

historicalize3

NAas@

NRasRep

NOasObs

prebreeding

age_offset

reduce

a2check

quiet

Value

131

If TRUE, then all NA entries for size and fecundity variables will be set to @. This
can help increase the sample size analyzed by modelsearch(), but should only
be used when it is clear that this substitution is biologically realistic. Defaults to
FALSE.

If set to TRUE, then this function will treat non-reproductive but mature individ-
uals as reproductive during stage assignment. This can be useful when a matrix
is desired without separation of reproductive and non-reproductive but mature
stages of the same size. Only used if stageassign is set to a valid stageframe.
Defaults to FALSE.

If TRUE, then will treat individuals that are interpreted as not observed in the
dataset as though they were observed during stage assignment. This can be use-
ful when a MPM is desired without separation of observable and unobservable
stages. Only used if stageassign is set to a stageframe. Defaults to FALSE.

A logical term indicating whether the life history model is pre-breeding. If so,
then 1 is added to all ages. Defaults to TRUE.

A number to add automatically to all values of age at time ¢. Defaults to 0.

A logical variable determining whether unused variables and some invariant
state variables should be removed from the output dataset. Defaults to TRUE.

A logical variable indicating whether to retain all data with living status at oc-
casion ¢. Defaults to FALSE, in which case data for occasions in which the indi-
vidual is not alive in time 7 is not retained. This option should be kept FALSE,
except to inspect potential errors in the dataset.

A logical variable indicating whether to silence warnings. Defaults to FALSE.

If all inputs are properly formatted, then this function will output a historical vertical data frame
(class hfvdata), meaning that the output data frame will have three consecutive years of size and
reproductive data per individual per row. This data frame is in standard format for all functions
used in lefko3, and so can be used without further modification. Note that determination of state in
occasions #-1 and #+1 gives preference to condition in occasion ¢ within the input dataset. Conflicts
in condition in input datasets that have both occasions ¢ and #+1 listed per row are resolved by using
condition in occasion .

Variables in this data frame include the following:

rowid
popid
patchid
individ
year?2
firstseen
lastseen
obsage

obslifespan

Unique identifier for the row of the data frame.

Unique identifier for the population, if given.

Unique identifier for patch within population, if given.

Unique identifier for the individual.

Year or time in occasion .

Occasion of first observation.

Occasion of last observation.

Observed age in occasion ¢, assuming first observation corresponds to age = 0.

Observed lifespan, given as lastseen - firstseen + 1.

132 historicalize3

Xxpos1, Xxpos2, xpos3
X position in Cartesian space in occasions #-1, f, and #+1, respectively, if pro-

vided.
ypos1, ypos2, ypos3

Y position in Cartesian space in occasions ¢-1, ¢, and #+1, respectively, if pro-

vided.
sizeal, sizea2, sizea3

Main size measurement in occasions #-1, ¢, and #+1, respectively.
sizeb1, sizeb2, sizeb3
Secondary size measurement in occasions #-1, f, and #+1, respectively.
sizecl, sizec2, sizec3
Tertiary size measurement in occasions #-1, ¢, and #+1, respectively.
sizeladded, size2added, size3added
Sum of primary, secondary, and tertiary size measurements in occasions #-1, f,
and r+1, respectively.
repstral, repstraz2, repstra3
Main numbers of reproductive structures in occasions #-1, ¢, and 7+1, respec-
tively.
repstrbi, repstrb2, repstrb3
Secondary numbers of reproductive structures in occasions #-1, t, and r+1, re-
spectively.
repstriladded, repstr2added, repstr3added
Sum of primary and secondary reproductive structures in occasions #-1, ¢, and
t+1, respectively.
fecal, feca2, feca3
Main numbers of offspring in occasions #-1, t, and #+1, respectively.
fecb1, fecb2, fecb3
Secondary numbers of offspring in occasions #-1, ¢, and #+1, respectively.
fecladded, fec2added, fec3added
Sum of primary and secondary fecundity in occasions ¢-1, t, and #+1, respec-
tively.
censorl, censor2, censor3
Censor status values in occasions #-1, ¢, and #+1, respectively.
juvgivenl, juvgiven2, juvgiven3
Binomial variable indicating whether individual is juvenile in occasions #-1, f,
and r+1. Only given if juvcol is provided.
obsstatus1, obsstatus2, obsstatus3
Binomial observation status in occasions #-1, #, and 7+1, respectively.
repstatusi, repstatus2, repstatus3
Binomial reproductive status in occasions #-1, ¢, and #+1, respectively.
fecstatus1, fecstatus?2, fecstatus3
Binomial offspring production status in occasions ¢-1, ¢, and #+1, respectively.
matstatusi, matstatus2, matstatus3
Binomial maturity status in occasions #-1, ¢, and 7+1, respectively.
alivel, alive2, alive3
Binomial status as alive in occasions #-1, ¢, and #+1, respectively.
density Density of individuals per unit designated in spacing. Only given if spacing is
not NA.

historicalize3 133

Notes

Warnings that some individuals occur in state combinations that do not match any stages in the
stageframe used to assign stages, and that some individuals match characteristics of several stages
in the stageframe, are common when first working with a dataset. Typically, these situations can be
identified as NoMatch entries in stage3, although such entries may crop up in stage1 and stage2,
as well. In some cases, these warnings will arise with no concurrent NoMatch entries. These are
important warnings and suggest that there is likely a problem with the stageframe. The most com-
mon such problems are: 1) stages have significant overlap in characteristics, with the most common
being overlapping size bins caused by erroneous definitions of size bin halfwidths; and 2) some
individuals exist in states not defined within the stageframe.

In some datasets with unobservable stages, observation status (obsstatus) might not be inferred
properly if a single size variable is used that does not yield sizes greater than O in all cases in which
individuals were observed. Such situations may arise, for example, in plants when leaf number
is the dominant size variable used, but individuals occasionally occur with inflorescences but no
leaves. In this instances, it helps to mark related variables as sizeb and sizec, because observation
status will be interpreted in relation to all 3 size variables. Alternatively, observation status may
be input via obs2col and obs3col to force computation with given values (although this requires
all instances of observation and non-observation to be known and coded ahead of time). Further
analysis can then utilize only a single size variable, of the user’s choosing. Similar issues can arise
in reproductive status (repstatus).

Juvenile designation should only be used when juveniles fall outside of the size classification
scheme used in determining stages. If juveniles are to be size classified along the size spectrum
that adults also fall on, then it is best to treat juveniles as mature but not reproductive.

Care should be taken to avoid variables with negative values indicating size, fecundity, or reproduc-
tive or observation status. Negative values can be interpreted in different ways, typically reflecting
estimation through other algorithms rather than actual measured data. Variables holding negative
values can conflict with data management algorithms in ways that are difficult to predict.

Unusual errors (e.g. "Error in pjf...") may occur in cases where the variables are improperly
passed, or where seemingly numeric variables include text and so get automatically converted to
string variables.

Density estimation is performed as a count of individuals alive and within the radius specified in
spacing of the respective individual at some point in time.

Examples

data(cypvert)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2", "P3”, "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, o, 0, 0, @, 0, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

134 hist_null

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v2 <- historicalize3(data = cypvert, patchidcol = "patch”,
individcol = "plantid”, year2col = "year2", sizea2col = "Inf2.2",
sizea3col = "Inf2.3", sizeb2col = "Inf.2", sizeb3col = "Inf.3",
sizec2col = "Veg.2", sizec3col = "Veg.3", repstra2col = "Inf2.2",
repstra3col = "Inf2.3", repstrb2col = "Inf.2", repstrb3col = "Inf.3",
feca2col = "Pod.2", feca3col = "Pod.3", repstrrel = 2,
stageassign = cypframe_raw, stagesize = "sizeadded”, censorcol = "censor”,
censor = FALSE, NAas@ = TRUE, NRasRep = TRUE, reduce = TRUE)

hist_null Create Historical MPMs Assuming No Influence of Individual History

Description

Function hist_null() uses ahistorical MPMs to create the equivalent MPMs in the structure of
historical MPMs. These MPMs have the same dimensions and stage structure of hMPMs but assume

no influence of individual history, and so can be compared to actual hMPMs.

Usage

hist_null(mpm, format = 1L, err_check = FALSE)

Arguments
mpm An ahistorical MPM of class 1efkoMat.
format An integer stipulating whether historical matrices should be produced in Ehrlen
format (1) or deVries format (2).
err_check A logical value indicating whether to output the main index data frames used to
sort elements in the matrices.
Value

An object of class lefkoMat, with the same list structure as the input object, but with A, U, and F
elements replaced with lists of historically-structured matrices, and with element hstages changed
from NA to an index of stage pairs corresponding to the rows and columns of the new matrices. If
err_check = TRUE, then a list of three data frames showing the values used to determine matrix

element index values is also exported.

Notes

This function does not currently identify biologically impossible transitions. Ahistorical transition

values are placed in all theoretically possible historical transitions.

image3 135

Examples

sizevector <- c(1, 1, 2, 3)

stagevector <- c("Sdl"”, "Veg", "SmFlo", "LFlo")
repvector <- c(0, o, 1, 1)
obsvector <- c(1, 1, 1, 1)
matvector <- c(@, 1, 1, 1)
immvector <- c(1, 0, 0, 0)
propvector <- c(@, 0, 0, 0)
indataset <- c(1, 1, 1, 1)
binvec <- c¢(0.5, 0.5, 9.5, 0.5)

anthframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

POPN C 2003-2004

XC3 <- matrix(c(o, 0, 1.74, 1.74,

0.208333333, 0, 0, 0.057142857,

0.041666667, 0.076923077, 0, 0,

0.083333333, 0.076923077, 0.066666667, 0.028571429), 4, 4, byrow = TRUE)

2004-2005

XC4 <- matrix(c(o, 0, 0.3, 0.6,

0.32183908, 0.142857143, 0, O,

0.16091954, 0.285714286, 0, O,

0.252873563, 0.285714286, 0.5, 0.6), 4, 4, byrow = TRUE)

mats_list <- list(XC3, XC4)
yr_ord <- c(1, 2)
pch_ord <- c(1, 1)

anth_lefkoMat <- create_lM(mats_list, anthframe, hstages = NA, historical = FALSE,
poporder = 1, patchorder = pch_ord, yearorder = yr_ord)

nullmodell <- hist_null(anth_lefkoMat, 1) # Ehrlen format
nullmodel2 <- hist_null(anth_lefkoMat, 2) # deVries format

image3 Create Matrix Image

Description

Function image3() is a generic function that creates matrix plots.

Usage

image3(mats, ...)

136 image3

Arguments
mats A lefkoMat object, or a single projection matrix, for which the dominant eigen-
value is desired.
Other parameters
Value

Produces a single matrix image, or a series of images, depending on the input. Non-zero elements
appear as red space, while zero elements appear as white space.

See Also
image3.lefkoMat ()

image3.matrix()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "Sdl1", "Sd", "Sdl1", "mat"),
stage2 = c("sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage?2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),

image3.dgCMatrix

stageframe = lathframe, historical = TRUE)
ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")

image3(ehrlen3, used = 1, type = "U")

137

image3.dgCMatrix Create a Matrix Image for a Single Sparse Matrix

Description

Function image3.dgCMatrix plots a matrix image for a single sparse matrix.

Usage
S3 method for class 'dgCMatrix'
image3(mats, ...)

Arguments
mats A matrix class object.

Other parameters.

Value

Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero

elements as white space.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, @)
stagevector <- c("Sd"”, "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,

138 image3.lefkoElas

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all”,
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,

yearcol = "year2", indivcol = "individ"”, sparse_output = TRUE)

image3(ehrlen3$UL[11])

image3.lefkoElas Create Matrix Image(s) for lefkoElas Object

Description

Function image3. lefkoElas plots matrix images for elasticity matrices supplied within lefkoElas

objects.
Usage
S3 method for class 'lefkoElas'
image3(mats, used = "all”, type = "a", ...)
Arguments
mats A lefkoElas object.
used A numeric value or vector designating the matrices to plot. Can also take the

value "all”, which plots all matrices. Defaults to "all”.

type Character value indicating whether to plot "a"historical or "h"istorical elasticity
matrices. Defaults to "a"historical, but will plot a historical elasticity matrix
image if no ahistorical elasticity matrix exists.

Other parameters.

image3.letkoElas

Value

139

Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero

elements as white space.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, o, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, @, 0)

9..
9~.
.®~
~.®‘.
&
S
~—

propvector <- c(1,
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize

1988,
9:

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea”,

censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep”, "Sdl"),

stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3"”, "stage2”, "stagel"”),
supplement = lathsupp3, yearcol = "year2", indivcol = "individ")

ehrlen_elas <- elasticity3(ehrlen3)

image3(ehrlen_elas, used = 1, type = "h")

140 image3.letkoMat

image3.lefkoMat Create Matrix Image(s) for lefkoMat Object

Description

Function image3.lefkoMat plots matrix images for matrices supplied within lefkoMat objects.

Usage
S3 method for class 'lefkoMat'
image3(mats, used = "all”, type = "A", ...)
Arguments
mats A lefkoMat object.
used A numeric value or vector designating the matrices to plot. Can also take the

value "all”, which plots all matrices. Defaults to "all”.
type Character value indicating whether to plot A, U, or F matrices. Defaults to "A".

Other parameters.

Value
Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero
elements as white space.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c(”"Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- ¢c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",

image3.letkoSens 141

fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”"Sd", "Sd", "Sdl", "Sdl1"”, "Sd", "Sdl1", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

image3(ehrlen3, used = 1, type = "U")

image3.lefkoSens Create Matrix Image(s) for lefkoSens Object

Description

Function image3. lefkoSens plots matrix images for sensitivity matrices supplied within lefkoSens

objects.
Usage
S3 method for class 'lefkoSens'
image3(mats, used = "all”, type = "a", ...)
Arguments
mats A lefkoSens object.
used A numeric value or vector designating the matrices to plot. Can also take the

value "all”, which plots all matrices. Defaults to "all”.

type Character value indicating whether to plot "a"historical or "h"istorical sensi-
tivity matrices. Defaults to "a"historical, but will plot a historical sensitivity
matrix image if no ahistorical sensitivity matrix exists.

Other parameters.
Value

Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero
elements as white space.

142

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, o0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,

censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

image3.1ist

lathsupp3 <- supplemental(stage3 = c("Sd”, "Sd", "Sdl1"”, "sdl1", "Sd", "Sdl", "mat"),

stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),

stagel = c("Sd", "rep”, "Sd", "rep", "npr"”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3"”, "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2"”, indivcol = "individ")

ehrlen_sens <- sensitivity3(ehrlen3)

image3(ehrlen_sens, used = 1, type = "h")

image3.list Create Matrix Images for Matrices in a List

image3.1ist

Description

Function image3.1list plots matrix images for matrices contained in a list of matrices.

Usage
S3 method for class 'list'
image3(mats, used = "all", ...)
Arguments
mats A list class object.
used A numeric vector of projection matrices within mats to represent as matrix im-

ages. Can also take the text value "all”, which will produce images of all

matrices. Defaults to "all”.

Other parameters.

Value

Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero

elements as white space.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢c("Sd", "Sdl", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 9, 0)

propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

988,

lathsupp3 <- supplemental(stage3 = c("Sd”, "Sd", "Sdl"”, "sdl", "Sd", "Sdl1"),
stage2 = c(”sd”, "sd”, "sd”, "sd”, "rep”, "rep"),
stagel = c(”sd”, "rep”, "sd”, "rep”, "all”, "all"),

144

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054),

type = c(1, 1, 1, 1, 3, 3), type_t12 =c(1, 2, 1, 2, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")

image3(ehrlen3$A, used = 1)

image3.matrix

image3.matrix Create a Matrix Image for a Single Matrix

Description

Function image3.matrix plots a matrix image for a single matrix.

Usage
S3 method for class 'matrix'
image3(mats, ...)

Arguments
mats A matrix class object.

Other parameters.

Value

Plots a matrix image, or series of matrix images, denoting non-zero elements as red space and zero

elements as white space.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, @)
stagevector <- c("Sd"”, "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, 90, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lambda3 145

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd”, "Sd", "Sdl1"”, "Ssdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all”,
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,

yearcol = "year2", indivcol = "individ"”, sparse_output = FALSE)

image3(ehrlen3$UL[11])

lambda3 Estimate Actual or Deterministic Population Growth Rate

Description

Function lambda3 () is a generic function that returns the dominant eigenvalue of a matrix, set of
dominant eigenvalues of a set of matrices, set of dominant eigenvalues for a lefkoMat object, or
actual)\ in each year in a lefkoProj object. It can handle large and sparse matrices supplied as
lefkoMat objects or as individual matrices, and can be used with large historical matrices, IPMs,
age x stage matrices, as well as smaller ahistorical matrices, and general projetions.

Usage

lambda3(mpm, force_sparse = NULL)

Arguments

mpm A lefkoMat object, a lefkoMatList object, a list of projection matrices, a
lefkoProj object, or a single projection matrix in either standard or sparse for-
mat.

146

force_sparse

Value

lambda3

A logical value or string detailing whether to force sparse matrix encoding for
simple matrix input. Defaults to "auto”, which only forces sparse matrix cod-
ing if simple matrices are input that are both sparse (i.e, percentage of matrix
elements that are non-zero <= 50 and have more than 20 rows. Can also be set
to "yes”, "no”, TRUE, or FALSE. Note that sparse matrix coding is always used
for lefkoMat objects with matrices in sparse format (class dgCMatrix). Ignored
with lefkoProj objects.

The value returned depends on the class of the mpm argument. If a lefkoMat object is provided,
then this function will return the labels data frame with a new column named lambda showing the
dominant eigenvalues for each matrix. If a lefkoMatList object is provided, then a two element
list in which the first element is a vector composed of the mean lambda values of each lefkoMat
element within the list is provided, and the second element is a list of lefkoMat lambda summaries
as previously described. If a list of matrices is provided, then this function will produce a numeric
vector with the dominant eigenvalues provided in order of matrix. If a single matrix is provided,
then this function will return the dominant eigenvalue of that matrix. Only the largest real parts of
the eigenvalues are returned.

If a lefkoProj object is provided, then the output consists of a list with three elements. The second
and third elements are lists of matrices with each lower-level list elements corresponding to labels
rows, and matrices within these lists showing the actual A and log)\ for each consecutive year or
time index (columns) within each replicate (row).

See Also
slambda3 ()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)
propvector <- c(1, @0, 0, 0, @, 0, 0)

indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88"

lambda3

fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”"Sd", "Sd", "Sdl", "Sdl1"”, "Sd", "Sdl1", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
lambda3(ehrlen3mean)

Cypripedium example
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3”, "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, @, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, 0, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sD", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep”),

147

148 lathyrus

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,

yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
lambda3(cypmatrix2r)
lathyrus Demographic Dataset of Lathyrus vernus Population
Description

A dataset containing the states and fates of Lathyrus vernus (spring vetch), family Fabaceae, from
a population in Sweden monitored annually from 1988 to 1991 in six study plots.

Usage
data(lathyrus)

Format

A data frame with 1119 individuals and 34 variables. Each row corresponds to a unique individual,
and each variable from Volume88 on refers to the state of the individual in a given year.

SUBPLOT A variable refering to patch within the population.

GENET A numeric variable giving a unique number to each individual.
Volume88 Aboveground volume in cubic mm in 1988.

InVoI88 Natural logarithm of Volume88.

FCODES8 Equals 1 if flowering and O if not flowering in 1988.
Flow88 Number of flowers in 1988.

Intactseed88 Number of intact mature seeds produced in 1988. Not always an integer, as in some
cases seed number was estimated via linear modeling.

Dead1988 Marked as 1 if known to be dead in 1988.
Dormant1988 Marked as 1 if known to be alive but vegetatively dormant in 1988.
Missing1988 Marked as 1 if not found in 1988.

Seedling1988 Marked as 1, 2, or 3 if observed as a seedling in year z. Numbers refer to certainty
of assignment: 1 = certain that plant is a seedling in 1988, 2 = likely that plant is a seedling in
1988, 3 = probable that plant is a seedling in 1988.

lathyrus 149

Volume89 Aboveground volume in cubic mm in 1989.

InVol89 Natural logarithm of Volume89.

FCODES9 Equals 1 if flowering and 0 if not flowering in 1989.
Flow89 Number of flowers in 1989.

Intactseed89 NZumber of intact mature seeds produced in 1989. Not always an integer, as in some
cases seed number was estimated via linear modeling.

Dead1989 Marked as 1 if known to be dead in 1989.
Dormant1989 Marked as 1 if known to be alive but vegetatively dormant in 1989.
Missing1989 Marked as 1 if not found in 1989.

Seedling1989 Marked as 1, 2, or 3 if observed as a seedling in year #. Numbers refer to certainty
of assignment: 1 = certain that plant is a seedling in 1989, 2 = likely that plant is a seedling in
1989, 3 = probable that plant is a seedling in 1989.

Volume90 Aboveground volume in mm³ in 1990.
InVol90 Natural logarithm of Volume90.

FCODE90 Equals 1 if flowering and O if not flowering in 1990.
Flow90 Number of flowers in 1990.

Intactseed90 NZumber of intact mature seeds produced in 1990. Not always an integer, as in some
cases seed number was estimated via linear modeling.

Dead1990 Marked as 1 if known to be dead in 1990.
Dormant1990 Marked as 1 if known to be alive but vegetatively dormant in 1990.
Missing1990 Marked as 1 if not found in 1990.

Seedling1990 Marked as 1, 2, or 3 if observed as a seedling in year . Numbers refer to certainty
of assignment: 1 = certain that plant is a seedling in 1990, 2 = likely that plant is a seedling in
1990, 3 = probable that plant is a seedling in 1990.

Volume91 Aboveground volume in mm³ in 1991.
InVol91 Natural logarithm of Volume91.

FCODE91 Equals 1 if flowering and O if not flowering in 1991.
Flow91 Number of flowers in 1991.

Intactseed91 NZumber of intact mature seeds produced in 1991. Not always an integer, as in some
cases seed number was estimated via linear modeling.

Dead1991 Marked as 1 if known to be dead in 1991.
Dormant1991 Marked as 1 if known to be alive but vegetatively dormant in 1991.
Missing1991 Marked as 1 if not found in 1991.

Seedling1991 Marked as 1, 2, or 3 if observed as a seedling in year . Numbers refer to certainty
of assignment: 1 = certain that plant is a seedling in 1991, 2 = likely that plant is a seedling in
1991, 3 = probable that plant is a seedling in 1991.

Source

Ehrlen, J. 2000. The dynamics of plant populations: does the history of individuals matter? Ecology
81(6):1675-1684.

150

Examples

lathyrus

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, @)
stagevector <- c("Sd", "Sdl", "vSm"”, "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, o0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET",
juvcol = c("Seedling1988", "Seedlingl1989"”, "Seedling1990"”, "Seedling1991"),
sizeacol = c("Volume88", "Volume89"”, "Volume90", "Volume91"),
repstracol = c("FCODE88", "FCODE89", "FCODE9@", "FCODE91"),
fecacol = c("Intactseed88”, "Intactseed89”, "Intactseed90”, "Intactseed91"),
deadacol = c(”"Dead1988"”, "Dead1989"”, "Dead1990", "Dead1991"),
nonobsacol = c(”"Dormant1988", "Dormant1989", "Dormant1990", "Dormant1991"),
censorcol = c("Missing1988", "Missing1989"”, "Missingl1990"”, "Missingl1991"),
stageassign = lathframe, stagesize = "sizea”,
censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
ehrlen3mean$A[[1]]

lambda3(ehrlen3mean)

Imean 151

Imean Estimate Mean Projection Matrices

Description

Function 1Imean() estimates mean projection matrices as element-wise arithmetic means. It pro-
duces lefkoMat objects if provided with them, or single matrices in a simple one-element list
if provided a list of matrices. Will produce a lefkoMatList object, in which each element is a
lefkoMat object, if provided with a lefkoMatList object.

Usage

Imean(mats, matsout = NULL, force_sparse = FALSE)

Arguments
mats A lefkoMat object, a lefkoMatList object, or a list of square matrices of equal
dimension in standard or sparse format.
matsout A string identifying which means to estimate. Option "pop"” indicates population-

level only, "patch” indicates patch-level only, and "all” indicates that both
patch- and population-level means should be estimated. Defaults to "all”.

force_sparse A logical value identifying whether to output the mean matrices in sparse format,
if input as standard matrices.

Value

Yields a lefkoMat object, a lefkoMatList object, or a list of matrices. If a lefkoMat object. then
will have the following characteristics:

A A list of full mean projection matrices in order of sorted populations, patches,
and years. These are typically estimated as the sums of the associated mean U
and F matrices. All matrices output in either the matrix class, or the dgCMatrix

class.

U A list of mean survival-transition matrices sorted as in A. All matrices output in
the matrix class.

F A list of mean fecundity matrices sorted as in A. All matrices output in the
matrix class.

hstages A data frame showing the pairing of ahistorical stages used to create historical
stage pairs. Given if the MPM is historical.

ahstages A data frame detailing the characteristics of associated ahistorical stages.

labels A data frame detailing the order of population, patch, and year of each mean

matrix. If pop, patch, or year2 are NA in the original labels set, then these will
be re-labeled as A, 1, or 1, respectively.

matrixqc A short vector describing the number of non-zero elements in U and F mean
matrices, and the number of annual matrices.

152

modelqc

dataqc

Examples

data(cypdata

)

Imean

This is the gc portion of the modelsuite input. Only output from lefkoMat
objects resulting from function-based estimation.

A vector showing the numbers of individuals and rows in the vertical dataset
used as input. Only output from lefkoMat objects resulting from raw matrix
estimation.

sizevector <- c(0, 0, @, 0, 0, @, 1, 2.5, 4.5, 8, 17.5)
stagevector <= c("SDY, "P1", "P2n. p3n. mSL®. mpn mysmr nsmr nMgn ngh

"XLg")
repvector <-
obsvector <-
matvector <-
immvector <-

c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
c(0, 0, 0, 0, 0, 0, 1,1, 1,1,1)
c(o, 0, 0, 0,0, 1,1, 1, 1,1, 1)
c(o, 1, 1,1, 1,0, 0, 0, 0, 0, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,

propstatus

propvector, immstatus = immvector, indataset = indataset,

binhalfwidth = binvec)

cypraw_vl <-
patchidcol
sizeacol =
repstracol
stageassig

n

\

n

erticalize3(data = cypdata, noyears = 6, firstyear = 2004,
"patch”, individcol = "plantid”, blocksize = 4,

Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
"Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",

= cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"XSm”, "sm”, "SD", "P1"Y,
stage2 = c(”SD”, "SD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",

"rep"),
eststage3
eststage2
givenrate
multiplier
type =c(1,
stageframe

I =

c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

, 1,1,1, 1,1, 1, 3, 3),

cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cyp2mean <- lmean(cypmatrix2r)

logistic3

153

logistic3

Two-Parameter logistic Function

Description

Function logistic3() creates a vector of values produced by the logistic function as applied with
a user-specified time lag. The logistic function is given as ¢¢11 = ¢ (1 — ny/K). Here, if no
separate_N vector is provided, then n; = ¢;. If A is not provided, then it defaults to 1. 0.

Usage

logistic3(
start_value,
alpha,
beta = 0,
lambda = 1,
time_steps =

100L,

time_lag = 1L,

ALSE,
0,

NULL

pred_subs = F
pre@_value =
substoch = oL,
separate_N =
)
Arguments

start_value
alpha
beta

lambda

time_steps

time_lag

pre@_subs

pred_value

substoch

separate_N

A positive number to start the return vector in time 0.
The carrying capacity K.

If set to some positive number, then this number is the maximum value of phi to
enforce. Otherwise, equals @ and enforces no limit.

The value of the discrete population growth rate to use. Equal to the natural
logarithm of the instantaneous growth rate, r.

The number of time steps to run the projection. Must be a positive integer.

A positive integer denoting the number of time steps back for the value of phi in
the logistic function.

A logical value indicating whether to use a number other than that given in
start_value for values of phi lagged from times prior to time O.

A positive number to use for phi lagged from times prior to time 0. Only used if
pre@_subs = TRUE.

An integer value indicating the kind of substochasticity to use. Values include:
0, no substochasticity enforced (the default); 1, all numbers must be non-negative;
and 2, all numbers should be forced to the interval [0, 1].

An optional numeric vector with values of N in each time, if phi is to be treated
as different from N in the logistic model.

154 Itre3

Value

A numeric vector of values showing values projected under the- logistic function.

Examples

trial_runl <- logistic3(1, alpha = 5)
plot(trial_run1)

trial_run2 <- logistic3(1, alpha = 5, beta = 5)
plot(trial_run2)

trial_run3 <- logistic3(1, alpha = 100)
plot(trial_run3)

trial_run4 <- logistic3(1, alpha = 100, beta
plot(trial_run4)

50)

trial_run5 <- logistic3(1, alpha = 500)
plot(trial_run5)

trial_run6é <- logistic3(1, alpha = 500, beta = 501)
plot(trial_run6)

used_Ns <- c(10, 15, 12, 14, 14, 150, 15, 1, 5, 7, 9, 14, 13, 16, 17, 19,
25, 26)

trial_run7 <- logistic3(1, alpha = 500, beta = 501, separate_N = used_Ns)

plot(trial_run7)

ltre3 Conduct a Life Table Response Experiment

Description

1tre3() returns a set of matrices of one-way LTRE (life table response experiment), stochastic
LTRE (sLTRE) matrices, or small noise approximation LTRE (sna-LTRE) contributions.

Usage
1tre3(
mats,
refmats = NA,
ref = NA,

stochastic = FALSE,
times = 10000,
burnin = 3000,
tweights = NA,
sparse = "auto”,
seed = NA,

Itre3 155

append_mats = FALSE,
sna_ltre = FALSE,
tol = 1e-30,

Arguments

mats

refmats

ref

stochastic

times

burnin

tweights

sparse

seed

append_mats

sha_ltre

tol

An object of class lefkoMat.

A reference lefkoMat object, or matrix, for use as the control. Default is NA,
which sets to the same object as mats.

A numeric value indicating which matrix or matrices in refmats to use as the
control. The numbers used must correspond to the number of the matrices in the
labels element of the associated 1efkoMat object. The default setting, NA, uses
all entries in refmats.

A logical value determining whether to conduct a deterministic (FALSE) or stochas-
tic (TRUE) elasticity analysis. Defaults to FALSE.

The number of occasions to project forward in stochastic simulation. Defaults
to 10000.

The number of initial steps to ignore in stochastic projection when calculating
stochastic elasticities. Must be smaller than steps. Defaults to 3000.

An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices. Note that
SNA-LTRE analysis cannot take matrix input.

A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

Optional numeric value corresponding to the random seed for stochastic simu-
lation.

A logical value denoting whether to include the original A, U, and F matrices in
the returned 1lefkoLTRE object. Defaults to FALSE.

A logical value indicating whether to treat stochastic LTRE via the sna-LTRE
approach from Davison et al. (2019) (TRUE), or the stochastic LTRE approxima-
tion from Davison et al. (2010) (FALSE). Defaults to FALSE.

A numeric value indicating a lower positive limit to matrix element values when
applied to stochastic and small noise approximation LTRE estimation protocols.
Matrix element values lower than this will be treated as 0.9 values. Defaults to
le-30.

Other parameters.

156 Itre3

Value

This function returns an object of class 1efkoLTRE. This includes a list of LTRE matrices as ob-
ject cont_mean if a deterministic LTRE is called for, or a list of mean-value LTRE matrices as
object cont_mean and a list of SD-value LTRE matrices as object cont_sd if a stochastic LTRE
is called for. If a small-noise approximation LTRE (SNA-LTRE) is performed, then the output
includes six objects: cont_mean, which provides the contributions of shifts in mean matrix ele-
ments; cont_elas, which provides the contributions of shifts in the elasticities of matrix elements;
cont_cv, which provides the contributions of temporal variation in matrix elements; cont_corr,
which provides the contributions of temporal correlations in matrix elements; r_values_m, which
provides a vector of log deterministic lambda values for treatment populations; and r_values_ref,
which provides the log deterministic lambda of the mean reference matrix.This is followed by the
stageframe as object ahstages, the order of historical stages as object hstages, the age-by-stage
order as object agestages, the order of matrices as object labels, and, if requested, the original
A, U, and F matrices.

Notes

Function 1tre3() cannot handle lefkoMatList inputs, although individual lefkoMat elements
within these lists can be used.

Deterministic LTRE is one-way, fixed, and based on the sensitivities of the matrix midway be-
tween each input matrix and the reference matrix, per Caswell (2001, Matrix Population Models,
Sinauer Associates, MA, USA). Stochastic LTRE is performed via two methods. The stochastic
LTRE approximation is simulated per Davison et al. (2010) Journal of Ecology 98:255-267 (doi:
10.1111/§.1365-2745.2009.01611.x). The small noise approximation (sna-LTRE) is analyzed per
Davison et al. (2019) Ecological Modelling 408: 108760 (doi: 10.1016/j.ecolmodel.2019.108760).

All stochastic and small noise approximation LTREs conducted without reference matrices are per-
formed as spatial tests of the population dynamics among patches.

Default behavior for stochastic LTRE uses the full population provided in mats as the reference if
no refmats and ref is provided. If no refmats is provided but ref is, then the matrices noted
in ref are used as the reference matrix set. Year and patch order is utilized from object mats, but
not from object refmats, in which each matrix is assumed to represent a different year from one
population. This function cannot currently handle multiple populations within the same mats object
(although such analysis is possible if these populations are designated as patches instead).

If sparse = "auto”, the default, then sparse matrix encoding will be used if the size of the input
matrices is at least 50 columns by 50 rows for deterministic and stochastic LTREs and 10 columns
by 10 rows for small noise approximation LTREs, in all cases as long as 50% of the elements in the
first matrix are non-zero.

Stochastic LTREs do not test for the impact of temporal change in vital rates. An MPM with a single
population, a single patch, and only annual matrices will produce contributions of 0 to stochastic .

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 10 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

SNA-LTRE analysis cannot test the impact of first-order Markovian environments. However, dif-
ferent random weightings of annual matrices are allowed if given in vector format.

Itre3 157

The time_weights, steps, force_sparse, and rseed arguments are now deprecated. Instead,
please use the tweights, times, sparse, and seed arguments.
See Also

summary . lefkoLTRE()

Examples

data(cypdata)

sizevector <- c(0, o, @0, 0, 0, @, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 9, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
HXSmII’ Ilsmll’ ”SD"’ IIP‘I Il)’
stage2 = c("SD", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep”),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type :c(1! 1! 1! 1’ 1’ 1) 1) 1) 3) 3)!
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

ltre3(cypmatrix2r, sna_ltre = TRUE)

158 markov_run

markov_run Creates Vector of Times Based on First-Order Markov Transition Ma-
trix

Description

Creates a vector of randomly sampled years / times to be used in projection. Random sampling
requires a 1st order Markovian transition matrix, showing the probability of transitioning to each
time from each time. Note that this function is not required if the probability of transitioning to a
particular time does not vary with time.

Usage

markov_run(main_times, mat, times = 10000L, start = NULL)

Arguments
main_times An integer vector giving the years / times to use.
mat A matrix giving the transition probabilities from each time to each time. Must
have the same number of columns and rows as there are elements in vector
times.
times The number of times to project forward. Defaults to 10000.
start The start time to use. Defaults to the first time in vector main_times.
Value

An integer vector giving the order of times / years to use in projection. This can be used as input in
the year option in functions projection3() and f_projection3().

See Also

projection3()
f_projection3()

Examples

Cypripedium example
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, @, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, 0, @, 0, Q)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)

markov_run 159

indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp3r <- supplemental(stage3 = c("SD", "sb”, "P1", "P1", "P2", "P3", "SL",
"D", "XSm", "Sm", "D", "XSm”, "Sm", "mat"”, "mat”, "mat”, "SD", "P1"),
stage2 = c("sSD", "sb", "sb", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"SLM, "SL™, D", "XSm", "Sm", "rep", "rep"),
stagel = c("SD", "rep”, "SD", "rep”, "SD", "P1", "P2", "P3", "P3", "P3",
"sL™, "sL", "sL", "sL", "SL", "SL", "mat"”, "mat"),
eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm”, "Sm", "D", "XSm", "Sm",
"mat"”, "mat”, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm"”, "XSm", "XSm", "XSm",
"Xsm", "D", "XSm", "Sm", NA, NA),
eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm", "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),
type = c(1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 3, 3),
type_t12 = c(1, 2, 1, 2,1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1),
stageframe = cypframe_raw, historical = TRUE)

n

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2"”, indivcol = "individ")

used_years <-c(2005, 2006, 2007, 2008)

yr_tx_vec <- c(0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.2,
0.2, 0.2, 0.2, 0.4)
yr_tx_mat <- matrix(yr_tx_vec, 4, 4)

set.seed(1)
cyp_markov_vec_1 <- markov_run(main_times = used_years, mat = yr_tx_mat,
times = 100)

set.seed(2)
cyp_markov_vec_2 <- markov_run(main_times = used_years, mat = yr_tx_mat,
times = 100)

160 matrix_interp

set.seed(3)
cyp_markov_vec_3 <- markov_run(main_times = used_years, mat = yr_tx_mat,

times = 100)

cypstoch_1 <- projection3(cypmatrix3r, nreps = 1, times = 100,
year = cyp_markov_vec_1)

cypstoch_2 <- projection3(cypmatrix3r, nreps = 1, times = 100,

year = cyp_markov_vec_2)
cypstoch_3 <- projection3(cypmatrix3r, nreps = 1, times = 100,
year = cyp_markov_vec_3)

matrix_interp Arranges Matrix Elements in Order of Magnitude for Interpretation

Description

Function matrix_interp summarizes matrices from lefkoMat, lefkoSens, lefkoElas, and 1efkoLTRE
objects in terms of the magnitudes of their elements. It can also create ordered summaries of stan-
dard matrices and sparse matrices.

Usage

matrix_interp(object, mat_chosen = 1L, part = 1L, type = 3L)

Arguments

object A list object in one of lefko3’s output formats, or a standard matrix or sparse
matrix in dgCMatrix format. Standard 1efko3 output formats include lefkoMat,
lefkoSens, lefkoElas, and 1lefkoLTRE objects.

mat_chosen The number of the matrix to assess, within the appropriate matrix list. See Notes
for further details.

part An integer noting whether to provide assessments of which of the main types
of matrices to analyze. In a standard lefkoMat object, the integers 1, 2, and 3
correspond to the A, U, and F lists, respectively. In lefkoSens and lefkoElas
objects, the integers 1 and 2 correspond to the ahistorical matrix sets and the
historical matrix sets, respectively. In deterministic and stochastic 1lefkoLTRE
objects, the integers 1 and 2 correspond to the cont_mean and cont_sd lists,
respectively.

type An integer corresponding to the type of order summary, including most to least

positive (1), most to least negative (2), and greatest to lowest absolute magnitude
(3). Defaults to type 3.

Value

A data frame arranging all elements in the matrix chosen from greatest and smallest. This can be a
data frame of only positive elements, of only negative elements, or all elements in order of absolute
magnitude.

matrix_interp 161

Notes

Argument mat_chosen refers to the number of the matrix within the list that it is held in. For
example, if the function is applied to the cont_sd portion of a stochastic LTRE, and there are four
LTRE matrices within that list element corresponding to three patch LTRE matrices and one overall
population-level LTRE matrix, then setting this value to 4 would focus the function on the overall
population-level LTRE matrix associated with contributions of the standard deviations of elements.
This argument should be left blank if a standard matrix or sparse matrix is input.

Huge sparse matrices may take more time to process than small, dense matrices.

Examples

data(cypdata)

sizevector <- c(0, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(@, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o0, 1, 1, 1, 1, @, @, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 9, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
IIXS"]"y "Sm"’ IISDII’ IVP-I IY)y
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep”),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =C(1y 1: 1: 1) 1) 1: 1: 1: 3: 3):
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

162

miniMod

aaa <- ltre3(cypmatrix2r, stochastic = TRUE)

matrix_interp(aaa, mat_chosen = 1, part = 2, type = 3)

miniMod

Minimize lefkoMod Object by Conversion to vim_input Object

Description

This function takes a lefkoMod object, which consists of vital rate models, their associated dredge
model tables, and related metadata, and converts them to minimal data frame lists useable in MPM
creation and projection. The main advantage to using this approach is in memory savings.

Usage

miniMod(

1Mod,
hfv_data =
stageframe
all_years =
all_patches
all_groups
all_indcova
all_indcovb
all_indcovc

Arguments

1Mod
hfv_data
stageframe

all_years

all_patches

all_groups

all_indcova

all_indcovb

NULL,
NULL,

NULL,

NULL,

NULL,

NULL,
NULL,
NULL

A lefkoMod object.
The hfv_data formatted data frame used to develop object 1Mod.
The stageframe used to develop object 1Mod.

A vector giving the times / years used to develop object 1Mod, exactly as used in
the latter. Only needed if object hfv_data not provided.

A vector giving the patch names used to develop object 1Mod, exactly as used in
the latter. Only needed if object hfv_data not provided.

A vector giving the stage groups used to develop object 1Mod, exactly as used in
the latter. Only needed if object stageframe not provided.

The name of individual covariate a if quantitative and non-categorical, or of
the categories used if the covariate is a factor variable. Only needed if object
hfv_data not provided but individual covariates used in vital rate models.

The name of individual covariate a if quantitative and non-categorical, or of
the categories used if the cvoariate is a factor variable. Only needed if object
hfv_data not provided but individual covariates used in vital rate models.

miniMod 163

all_indcovc The name of individual covariate a if quantitative and non-categorical, or of
the categories used if the covariate is a factor variable. Only needed if object
hfv_data not provided but individual covariates used in vital rate models.

Value

An object of class vrm_input. See function vrm_import () for details.

Examples

data(lathyrus)

sizevector <- c(o, 4.6, 0, 1, 2, 3, 4, 5, 6, 7,8, 9,1, 2, 3, 4,5,6, 17, 8,
9)

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(o, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, @, 1, 1, 1, 1, 1, 1, 1, 1, 1)
obsvector <- c(@, 1, @, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1)
matvector <- c(0, @, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1, 1)
immvector <- c(1, 1, @, 0, @, 0, 0, 0, 0, @, 0, @0, 0, 0, @, 0, @0, 0, 0, @, Q)
propvector <- c(1, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0,
2)
indataset <- c(o0, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1)
binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)
lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframeln, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, NAas@ = TRUE, censor = TRUE)
lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)
lathmodelsln3 <- modelsearch(lathvertln, historical = TRUE,
approach = "mixed”, suite = "main”,
vitalrates = c("surv"”, "obs", "size", "repst"”, "fec"), juvestimate = "Sdl",
bestfit = "AICc&k", sizedist = "gaussian”, fecdist = "poisson”,

indiv = "individ", patch = "patchid”, year = "year2",
year.as.random = TRUE, patch.as.random = TRUE, show.model.tables = TRUE,
quiet = "partial”)

lathmodels_mini <- miniMod(lathmodelsln3, hfv_data = lathvertln,

164 modelsearch

stageframe = lathframeln)
lathmodels_mini

modelsearch Develop Best-fit Vital Rate Estimation Models for MPM Development

Description

Function modelsearch() runs exhaustive model building and selection for each vital rate needed
to estimate a function-based MPM or IPM. It returns best-fit models for each vital rate, model table
showing all models tested, and model quality control data. The final output can be used as input in
other functions within this package.

Usage
modelsearch(
data,
stageframe = NULL,
historical = TRUE,
approach = "mixed"”,
suite = "size",

interactions = FALSE,
bestfit = "AICc&k",

vitalrates = c("surv"”, "size", "fec"),
surv = c("alive3”, "alive2", "alivel”),
obs = c("obsstatus3”, "obsstatus2”, "obsstatusl1"),
size = c("sizea3", "sizea2", "sizeal”),

sizeb = c(NA, NA, NA),

sizec = c(NA, NA, NA),

repst = c("repstatus3”, "repstatus2”, "repstatus1”),
fec = c("feca3”, "feca2", "fecal”),

stage = c("stage3", "stage2", "stagel"),

matstat = c("matstatus3”, "matstatus2”, "matstatusl”),
indiv = "individ”,

patch = NA,

year = "year2",

density = NA,

test.density = FALSE,

sizedist = "gaussian”,

sizebdist = NA,

sizecdist = NA,

fecdist = "gaussian”,

size.zero = FALSE,

sizeb.zero = FALSE,

sizec.zero = FALSE,

n

modelsearch 165

size.trunc = FALSE,
sizeb.trunc = FALSE,
sizec.trunc = FALSE,
fec.zero = FALSE,
fec.trunc = FALSE,
patch.as.random = TRUE,
year.as.random = TRUE,
juvestimate = NA,
juvsize = FALSE,
jsize.zero = FALSE,
jsizeb.zero = FALSE,
jsizec.zero = FALSE,
jsize.trunc = FALSE,
jsizeb.trunc = FALSE,
jsizec.trunc = FALSE,
fectime = 2,

censor = NA,

age = NA,

test.age = FALSE,
indcova = NA,

indcovb = NA,

indcovc = NA,
random.indcova = FALSE,
random.indcovb = FALSE,
random. indcovc = FALSE,
test.indcova = FALSE,
test.indcovb = FALSE,
test.indcovc = FALSE,
annucova = NA,

annucovb = NA,

annucovc = NA,
test.annucova = FALSE,
test.annucovb = FALSE,
test.annucovc = FALSE,
test.group = FALSE,
show.model . tables = TRUE,
global.only = FALSE,
accuracy = TRUE,
data_out = FALSE,

quiet = FALSE

Arguments

data The vertical dataset to be used for analysis. This dataset should be of class
hfvdata, but can also be a data frame formatted similarly to the output format
provided by functions verticalize3() or historicalize3(), as long as all
needed variables are properly designated. Can also be a list of class hfvlist, if
bootstrapping is desired.

166

stageframe

historical

approach

suite

interactions

bestfit

vitalrates

surv

obs

size

modelsearch

The stageframe characterizing the life history model used. Optional unless
test.group = TRUE, in which case it is required. Defaults to NULL.

A logical variable denoting whether to assess the effects of state in occasion #-1,
in addition to state in occasion ¢. Defaults to TRUE.

The statistical approach to be taken for model building. The default is "mixed"”,
which uses the mixed model approach utilized in packages 1me4 and glmmTMB.
Other options include "glm", which uses generalized linear modeling assuming
that all factors are fixed.

Either a single string value or a vector of 14 strings for each vital rate model.
Describes the global model for each vital rate estimation, and has the following
possible values: full, includes main effects and all two-way interactions of size
and reproductive status; main, includes main effects only of size and reproduc-
tive status; size, includes only size (also interactions between size in historical
model); rep, includes only reproductive status (also interactions between sta-
tus in historical model); age, all vital rates estimated with age and y-intercepts
only; cons, all vital rates estimated only as y-intercepts. If approach ="glm"
and year.as.random = FALSE, then year is also included as a fixed effect, and,
if interactions = TRUE, is included in two-way interactions. Order of models
in the string vector if more than 1 value is used is: 1) survival, 2) observation,
3) primary size, 4) secondary size, 5) tertiary size, 6) reproductive status, 7) fe-
cundity, 8) juvenile survival, 9) juvenile observation, 10) juvenile primary size,
11) juvenile secondary size, 12) juvenile tertiary size, 13) juvenile reproductive
status, and 14) juvenile maturity status. Defaults to size.

A variable denoting whether to include two-way interactions between all fixed
factors in the global model. Defaults to FALSE.

A variable indicating the model selection criterion for the choice of best-fit
model. The default is AICc&k, which chooses the best-fit model as the model
with the lowest AICc or, if not the same model, then the model that has the
lowest degrees of freedom among models with AAICc <= 2.0. Alternatively,
AICc may be chosen, in which case the best-fit model is simply the model with
the lowest AICc value.

A vector describing which vital rates will be estimated via linear modeling, with
the following options: surv, survival probability; obs, observation probabil-
ity; size, overall size; repst, probability of reproducing; and fec, amount of
reproduction (overall fecundity). May also be set to vitalrates = "leslie”,
which is equivalent to setting c("surv"”, "fec") for a Leslie MPM. This choice
also determines how internal data subsetting for vital rate model estimation will
work. Defaults to c("surv"”, "size", "fec").

A vector indicating the variable names coding for status as alive or dead in
occasions #+1, #, and #-1, respectively. Defaults to c("alive3”, "alive2",
"alivel").

A vector indicating the variable names coding for observation status in occasions
t+1, ¢, and #-1, respectively. Defaults to c("obsstatus3”, "obsstatus2”,
"obsstatus1").

A vector indicating the variable names coding for the primary size variable on
occasions #+1, t, and #-1, respectively. Defaults to c("sizea3", "sizea2",
"sizeal").

modelsearch 167

sizeb A vector indicating the variable names coding for the secondary size variable on
occasions 7+1, t, and #-1, respectively. Defaults to c(NA, NA, NA), in which case
sizeb is not used.

sizec A vector indicating the variable names coding for the tertiary size variable on
occasions r+1, t, and ¢-1, respectively. Defaults to c(NA, NA, NA), in which case
sizec is not used.

repst A vector indicating the variable names coding for reproductive status in occa-
sions #+1, f, and #-1, respectively. Defaults to c("repstatus3”, "repstatus2”,
"repstatus1”).

fec A vector indicating the variable names coding for fecundity in occasions #+1, ,
and #-1, respectively. Defaults to c("feca3”, "feca2"”, "fecal").

stage A vector indicating the variable names coding for stage in occasions #+1, #, and
t-1. Defaults to c("stage3”, "stage2”, "stagel").

matstat A vector indicating the variable names coding for maturity status in occasions
t+1, t, and -1. Defaults to c("matstatus3”, "matstatus2”, "matstatus1”).

indiv A text value indicating the variable name coding individual identity. Defaults to
"individ".
patch A text value indicating the variable name coding for patch, where patches are

defined as permanent subgroups within the study population. Defaults to NA.

year A text value indicating the variable coding for observation occasion ¢. Defaults
to year?2.

density A text value indicating the name of the variable coding for spatial density, should
the user wish to test spatial density as a fixed factor affecting vital rates. Defaults
to NA.

test.density Either a logical value indicating whether to include density as a fixed categor-
ical variable in linear models, or a logical vector of such values for 14 models,
in order: 1) survival, 2) observation, 3) primary size, 4) secondary size, 5) ter-
tiary size, 6) reproductive status, 7) fecundity, 8) juvenile survival, 9) juvenile
observation, 10) juvenile primary size, 11) juvenile secondary size, 12) juvenile
tertiary size, 13) juvenile reproductive status, and 14) juvenile maturity status.
Defaults to FALSE.

sizedist The probability distribution used to model primary size. Options include "gaussian”
for the Normal distribution (default), "poisson” for the Poisson distribution,
"negbin” for the negative binomial distribution (quadratic parameterization),
and "gamma” for the Gamma distribution.

sizebdist The probability distribution used to model secondary size. Options include
"gaussian” for the Normal distribution, "poisson” for the Poisson distribu-
tion, "negbin” for the negative binomial distribution (quadratic parameteriza-
tion), and "gamma" for the Gamma distribution. Defaults to NA.

sizecdist The probability distribution used to model tertiary size. Options include "gaussian”
for the Normal distribution, "poisson” for the Poisson distribution, "negbin”
for the negative binomial distribution (quadratic parameterization), and "gamma"
for the Gamma distribution. Defaults to NA.

168

fecdist

size.zero

sizeb.zero

sizec.zero

size.trunc

sizeb.trunc

sizec.trunc

fec.zero

fec.trunc

patch.as.random

year.as.random

juvestimate

juvsize

modelsearch

The probability distribution used to model fecundity. Options include "gaussian”
for the Normal distribution (default), "poisson"” for the Poisson distribution,
"negbin” for the negative binomial distribution (quadratic parameterization),
and "gamma" for the Gamma distribution.

A logical variable indicating whether the primary size distribution should be
zero-inflated. Only applies to Poisson and negative binomial distributions. De-
faults to FALSE.

A logical variable indicating whether the secondary size distribution should be
zero-inflated. Only applies to Poisson and negative binomial distributions. De-
faults to FALSE.

A logical variable indicating whether the tertiary size distribution should be
zero-inflated. Only applies to Poisson and negative binomial distributions. De-
faults to FALSE.

A logical variable indicating whether the primary size distribution should be
zero-truncated. Only applies to Poisson and negative binomial distributions.
Defaults to FALSE. Cannot be TRUE if size.zero = TRUE.

A logical variable indicating whether the secondary size distribution should be
zero-truncated. Only applies to Poisson and negative binomial distributions.
Defaults to FALSE. Cannot be TRUE if sizeb.zero = TRUE.

A logical variable indicating whether the tertiary size distribution should be
zero-truncated. Only applies to Poisson and negative binomial distributions.
Defaults to FALSE. Cannot be TRUE if sizec.zero = TRUE.

A logical variable indicating whether the fecundity distribution should be zero-
inflated. Only applies to Poisson and negative binomial distributions. Defaults
to FALSE.

A logical variable indicating whether the fecundity distribution should be zero-
truncated. Only applies to the Poisson and negative binomial distributions. De-
faults to FALSE. Cannot be TRUE if fec.zero = TRUE.

If set to TRUE and approach = "mixed”, then patch is included as a random
factor. If set to FALSE and approach = "glm", then patch is included as a fixed
factor. All other combinations of logical value and approach lead to patch not
being included in modeling. Defaults to TRUE.

If set to TRUE and approach = "mixed”, then year is included as a random fac-
tor. If set to FALSE, then year is included as a fixed factor. All other combina-
tions of logical value and approach lead to year not being included in modeling.
Defaults to TRUE.

An optional variable denoting the stage name of the juvenile stage in the vertical
dataset. If not NA, and stage is also given (see below), then vital rates listed in
vitalrates other than fec will also be estimated from the juvenile stage to all
adult stages. Defaults to NA, in which case juvenile vital rates are not estimated.

A logical variable denoting whether size should be used as a term in models
involving transition from the juvenile stage. Defaults to FALSE, and is only used
if juvestimate does not equal NA.

modelsearch

jsize.zero

jsizeb.zero

jsizec.zero

jsize.trunc

jsizeb.trunc

jsizec.trunc

fectime

censor

age

test.age

indcova

indcovb

indcovc

random. indcova

random. indcovb

169

A logical variable indicating whether the primary size distribution of juveniles
should be zero-inflated. Only applies to Poisson and negative binomial distribu-
tions. Defaults to FALSE.

A logical variable indicating whether the secondary size distribution of juve-
niles should be zero-inflated. Only applies to Poisson and negative binomial
distributions. Defaults to FALSE.

A logical variable indicating whether the tertiary size distribution of juveniles
should be zero-inflated. Only applies to Poisson and negative binomial distribu-
tions. Defaults to FALSE.

A logical variable indicating whether the primary size distribution in juveniles
should be zero-truncated. Defaults to FALSE. Cannot be TRUE if jsize.zero =
TRUE.

A logical variable indicating whether the secondary size distribution in juveniles
should be zero-truncated. Defaults to FALSE. Cannot be TRUE if jsizeb.zero =
TRUE.

A logical variable indicating whether the tertiary size distribution in juveniles
should be zero-truncated. Defaults to FALSE. Cannot be TRUE if jsizec.zero =
TRUE.

A variable indicating which year of fecundity to use as the response term in
fecundity models. Options include 2, which refers to occasion ¢, and 3, which
refers to occasion t+1. Defaults to 2.

A vector denoting the names of censoring variables in the dataset, in order from
occasion t+1, followed by occasion ¢, and lastly followed by occasion #-1. De-
faults to NA.

Designates the name of the variable corresponding to age in time ¢ in the vertical
dataset. Defaults to NA, in which case age is not included in linear models.
Should only be used if building Leslie or age x stage matrices.

Either a logical value indicating whether to include age as a fixed categorical
variable in linear models, or a logical vector of such values for 14 models, in
order: 1) survival, 2) observation, 3) primary size, 4) secondary size, 5) tertiary
size, 6) reproductive status, 7) fecundity, 8) juvenile survival, 9) juvenile ob-
servation, 10) juvenile primary size, 11) juvenile secondary size, 12) juvenile
tertiary size, 13) juvenile reproductive status, and 14) juvenile maturity status.
Defaults to FALSE.

Vector designating the names in occasions #+1, ¢, and #-1 of an individual co-
variate. Defaults to NA.

Vector designating the names in occasions #+1, ¢, and 7-1 of a second individual
covariate. Defaults to NA.

Vector designating the names in occasions #+1, ¢, and -1 of a third individual
covariate. Defaults to NA.

A logical value indicating whether indcova should be treated as a random cate-
gorical factor, rather than as a fixed factor. Defaults to FALSE.

A logical value indicating whether indcovb should be treated as a random cate-
gorical factor, rather than as a fixed factor. Defaults to FALSE.

170

modelsearch

random. indcovc A logical value indicating whether indcovc should be treated as a random cate-

test.indcova

test.indcovb

test.indcovc

annucova

annucovb

annucovc

test.annucova

test.annucovb

test.annucovc

gorical factor, rather than as a fixed factor. Defaults to FALSE.

Either a logical value indicating whether to include the indcova variable as a
fixed categorical variable in linear models, or a logical vector of such values for
14 models, in order: 1) survival, 2) observation, 3) primary size, 4) secondary
size, 5) tertiary size, 6) reproductive status, 7) fecundity, 8) juvenile survival, 9)
juvenile observation, 10) juvenile primary size, 11) juvenile secondary size, 12)
juvenile tertiary size, 13) juvenile reproductive status, and 14) juvenile maturity
status. Defaults to FALSE.

Either a logical value indicating whether to include the indcovb variable as a
fixed categorical variable in linear models, or a logical vector of such values for
14 models, in order: 1) survival, 2) observation, 3) primary size, 4) secondary
size, 5) tertiary size, 6) reproductive status, 7) fecundity, 8) juvenile survival, 9)
juvenile observation, 10) juvenile primary size, 11) juvenile secondary size, 12)
juvenile tertiary size, 13) juvenile reproductive status, and 14) juvenile maturity
status. Defaults to FALSE.

Either a logical value indicating whether to include the indcovc variable as a
fixed categorical variable in linear models, or a logical vector of such values for
14 models, in order: 1) survival, 2) observation, 3) primary size, 4) secondary
size, 5) tertiary size, 6) reproductive status, 7) fecundity, 8) juvenile survival, 9)
juvenile observation, 10) juvenile primary size, 11) juvenile secondary size, 12)
juvenile tertiary size, 13) juvenile reproductive status, and 14) juvenile maturity
status. Defaults to FALSE.

A numeric vector of annual covariates to test within all vital rate models. If
historical = TRUE, then the number of elements must be equal to the number
of values of year? in the dataset plus one, and the vector should start with the
value to be used in time #-1 in the first year of the dataset. In all other cases, the
length of the vector must equal the number of values of year2 in the dataset.
Defaults to NA.

A second numeric vector of annual covariates to test within all vital rate models.
Ifhistorical = TRUE, then the number of elements must be equal to the number
of values of year? in the dataset plus one, and the vector should start with the
value to be used in time -1 in the first year of the dataset. In all other cases, the
length of the vector must equal the number of values of year2 in the dataset.
Defaults to NA.

A third numeric vector of annual covariates to test within all vital rate models. If
historical = TRUE, then the number of elements must be equal to the number
of values of year? in the dataset plus one, and the vector should start with the
value to be used in time -1 in the first year of the dataset. In all other cases, the
length of the vector must equal the number of values of year2 in the dataset.
Defaults to NA.

A logical value indicating whether to test the variable given as annucova as a
fixed factor in analysis. Defaults to FALSE.
A logical value indicating whether to test the variable given as annucovb as a
fixed factor in analysis. Defaults to FALSE.
A logical value indicating whether to test the variable given as annucovc as a
fixed factor in analysis. Defaults to FALSE.

modelsearch 171

test.group Either a logical value indicating whether to include the group variable from the
input stageframe as a fixed categorical variable in linear models, or a logical
vector of such values for 14 models, in order: 1) survival, 2) observation, 3)
primary size, 4) secondary size, 5) tertiary size, 6) reproductive status, 7) fe-
cundity, 8) juvenile survival, 9) juvenile observation, 10) juvenile primary size,
11) juvenile secondary size, 12) juvenile tertiary size, 13) juvenile reproductive
status, and 14) juvenile maturity status. Defaults to FALSE.

show.model . tables
If set to TRUE, then includes full modeling tables in the output. Defaults to

TRUE.

global.only If set to TRUE, then only global models will be built and evaluated. Defaults to
FALSE.

accuracy A logical value indicating whether to test accuracy of models. See Notes section

for details on how accuracy is assessed. Defaults to TRUE.

data_out A logical value indicating whether to append all subsetted datasets used in model
building and selection to the output. Defaults to FALSE.

non

quiet May be a logical value, or any one of the strings "yes”, "no”, or "partial”. If
set to TRUE or "yes", then model building and selection will proceed with most
warnings and diagnostic messages silenced. If set to FALSE or "no”, then all
warnings and diagnostic messages will be displayed. If set to "partial”, then
only messages related to transitions between different vital rate models will be
displayed. Defaults to FALSE.

Value

This function yields an object of class 1efkoMod, or a list of class lefkoModList if the data entered
is of class hfvlist. If the latter, then each element is an object of class lefkoMod. Class lefkoMod
objects are themselves lists. The first 14 elements are the best-fit models for survival, observation
status, primary size, secondary size, tertiary size, reproductive status, fecundity, juvenile survival,
juvenile observation, juvenile primary size, juvenile secondary size, juvenile tertiary size, juvenile
transition to reproduction, and juvenile transition to maturity, respectively. This is followed by 14
elements corresponding to the model tables for each of these vital rates, in order, followed by a data
frame showing the order and names of variables used in modeling, followed by a single character
element denoting the criterion used for model selection, and ending on a data frame with quality
control data:

survival_model Best-fit model of the binomial probability of survival from occasion ¢ to occasion
t+1. Defaults to 1.

observation_model
Best-fit model of the binomial probability of observation in occasion #+1 given
survival to that occasion. Defaults to 1.

size_model Best-fit model of the primary size metric on occasion #+1 given survival to and
observation in that occasion. Defaults to 1.

sizeb_model Best-fit model of the secondary size metric on occasion 7+1 given survival to
and observation in that occasion. Defaults to 1.

sizec_model Best-fit model of the tertiary size metric on occasion 7+1 given survival to and
observation in that occasion. Defaults to 1.

172 modelsearch

repstatus_model
Best-fit model of the binomial probability of reproduction in occasion #+1, given
survival to and observation in that occasion. Defaults to 1.

fecundity_model
Best-fit model of fecundity in occasion #+1 given survival to, and observation
and reproduction in that occasion. Defaults to 1.

juv_survival_model
Best-fit model of the binomial probability of survival from occasion ¢ to occasion
t+1 of an immature individual. Defaults to 1.

juv_observation_model
Best-fit model of the binomial probability of observation in occasion #+1 given
survival to that occasion of an immature individual. Defaults to 1.

juv_size_model Best-fit model of the primary size metric on occasion #+1 given survival to and
observation in that occasion of an immature individual. Defaults to 1.
juv_sizeb_model
Best-fit model of the secondary size metric on occasion 7+1 given survival to
and observation in that occasion of an immature individual. Defaults to 1.
juv_sizec_model
Best-fit model of the tertiary size metric on occasion 7+1 given survival to and
observation in that occasion of an immature individual. Defaults to 1.
juv_reproduction_model
Best-fit model of the binomial probability of reproduction in occasion #+1, given
survival to and observation in that occasion of an individual that was immature in
occasion t. This model is technically not a model of reproduction probability for
individuals that are immature, rather reproduction probability here is given for
individuals that are mature in occasion #+1 but immature in occasion ¢. Defaults
to 1.
juv_maturity_model
Best-fit model of the binomial probability of becoming mature in occasion 7+1,
given survival to that occasion of an individual that was immature in occasion .
Defaults to 1.

survival_table Full dredge model table of survival probability.

observation_table
Full dredge model table of observation probability.

size_table Full dredge model table of the primary size variable.
sizeb_table Full dredge model table of the secondary size variable.
sizec_table Full dredge model table of the tertiary size variable.

repstatus_table

Full dredge model table of reproduction probability.
fecundity_table

Full dredge model table of fecundity.
juv_survival_table

Full dredge model table of immature survival probability.
juv_observation_table

Full dredge model table of immature observation probability.

juv_size_table Full dredge model table of primary size in immature individuals.

modelsearch 173

juv_sizeb_table

Full dredge model table of secondary size in immature individuals.
juv_sizec_table

Full dredge model table of tertiary size in immature individuals.
juv_reproduction_table

Full dredge model table of immature reproduction probability.
juv_maturity_table

Full dredge model table of the probability of an immature individual transition-
ing to maturity.

paramnames A data frame showing the names of variables from the input data frame used
in modeling, their associated standardized names in linear models, and a brief
comment describing each variable.

criterion Character variable denoting the criterion used to determine the best-fit model.

qc Data frame with five variables: 1) Name of vital rate, 2) number of individuals
used to model that vital rate, 3) number of individual transitions used to model
that vital rate, 4) parameter distribution used to model the vital rats, and 5)
accuracy of model, given as detailed in Notes section.

subdata An optional list of data frames, each of which is the data frame used to develop
each model in the 1efkoMod object, in order.

Notes

When modelsearch() is called, it first trims the dataset down to just the variables that will be used
(including all response terms and independent variables). It then subsets the data to only complete
cases for those variables. Next, it builds global models for all vital rates, and runs them. If a global
model fails, then the function proceeds by dropping terms. If approach = "mixed”, then it will
determine which random factor term contains the most categories in the respective subset, and drop
that term. If this fails, or if approach = "glm", then it will drop any two-way interactions and run
the model. If this fails, then the function will attempt to drop further terms, first patch alone, then
year alone, then individual covariates by themselves, then combinations of these four, and finally
individual identity. If all of these attempts fail and the approach used is mixed, then the function will
try running a glm version of the original failed model. Finally, if all attempts fail, then the function
displays a warning and returns 1 to allow model building assuming a constant rate or probability.

Including annual covariates is easy via the arguments annucova, annucovb, and annucovc together
with test.annucova, test.annucovb, and test.annucovc. Rather than incorporate a nnual co-
variates into the dataset, the values corresponding to each year may be concatenated into a numeric
vector, and then used in one of these three arguments. Function modelsearch() will then append
the value associated with each year into the dataset, and proceed with model building. Two-way
interactions can be explored with other main effects fixed variables by setting interactions =
TRUE.

Setting suite = "cons” prevents the inclusion of size and reproductive status as fixed, independent
factors in modeling. However, it does not prevent any other terms from being included. Density,
age, individual covariates, individual identity, patch, and year may all be included.

The mechanics governing model building are fairly robust to errors and exceptions. The function
attempts to build global models, and simplifies models automatically should model building fail.
Model building proceeds through the functions 1m() (GLM with Gaussian response), glm() (GLM

174 modelsearch

with Poisson, Gamma, or binomial response), glm.nb() (GLM with negative binomial response),
zeroinfl() (GLM with zero-inflated Poisson or negative binomial response), vglm() (GLM with
zero-truncated Poisson or negative binomial response), 1mer() (mixed model with Gaussian re-
sponse), glmer() (mixed model with binomial, Poisson, or Gamma response), and glmmTMB()
(mixed model with negative binomial, or zero-truncated or zero-inflated Poisson or negative bino-
mial response). See documentation related to these functions for further information. Any response
term that is invariable in the dataset will lead to a best-fit model for that response represented by a
single constant value.

Exhaustive model building and selection proceeds via the dredge() function in package MuMIn.
This function is verbose, so that any errors and warnings developed during model building, model
analysis, and model selection can be found and dealt with. Interpretations of errors during global
model analysis may be found in documentation for the functions and packages mentioned. Package
MuMIn is used for model dredging (see dredge()), and errors and warnings during dredging can be
interpreted using the documentation for that package. Errors occurring during dredging lead to
the adoption of the global model as the best-fit, and the user should view all logged errors and
warnings to determine the best way to proceed. The quiet = TRUE and quiet = "partial” options
can be used to silence dredge warnings, but users should note that automated model selection can
be viewed as a black box, and so care should be taken to ensure that the models run make biological
sense, and that model quality is prioritized.

Exhaustive model selection through dredging works best with larger datasets and fewer tested pa-
rameters. Setting suite = "full” and interactions = TRUE may initiate a dredge that takes a dra-
matically long time, particularly if the model is historical, individual or annual covariates are used,
or a zero-inflated distribution is assumed. In such cases, the number of models built and tested will
run at least in the millions. Small datasets will also increase the error associated with these tests,
leading to adoption of simpler models overall. Note also that zero-inflated models are processed
as two models, and so include twice the assumed number of parameters. If suite = "full”, then
this function will switch to a main effects global model for the zero-inflated parameter models if
the total number of parameters to test rises above the limits imposed by the dredge() function in
package MuMIn.

Accuracy of vital rate models is calculated differently depending on vital rate and assumed distri-
bution. For all vital rates assuming a binomial distribution, including survival, observation status,
reproductive status, and juvenile version of these, accuracy is calculated as the percent of predicted
responses equal to actual responses. In all other models, accuracy is actually assessed as a simple
R-squared in which the observed response values per data subset are compared to the predicted re-
sponse values according to each best-fit model. Note that some situations in which factor variables
are used may result in failure to assess accuracy. In these cases, function modelsearch() simply
yields NA values.

Care must be taken to build models that test the impacts of state in occasion #-1 for historical
models, and that do not test these impacts for ahistorical models. Abhistorical matrix modeling
particularly will yield biased transition estimates if historical terms from models are ignored. This
can be dealt with at the start of modeling by setting historical = FALSE for the ahistorical case,
and historical = TRUE for the historical case.

This function handles generalized linear models (GLMs) under zero-inflated distributions using the
zeroinfl() function, and zero- truncated distributions using the vglm() function. Model dredging
may fail with these functions, leading to the global model being accepted as the best-fit model.
However, model dredges of mixed models work for all distributions. We encourage the use of
mixed models in all cases.

modelsearch 175

The negative binomial and truncated negative binomial distributions use the quadratic structure
emphasized in Hardin and Hilbe (2018, 4th Edition of Generalized Linear Models and Extensions).
The truncated negative binomial distribution may fail to predict size probabilities correctly when
dispersion is near that expected of the Poisson distribution. To prevent this problem, we have
integrated a cap on the overdispersion parameter. However, when using this distribution, please
check the matrix column sums to make sure that they do not predict survival greater than 1.0. If
they do, then please use either the negative binomial distribution or the zero-truncated Poisson
distribution.

If density dependence is explored through function modelsearch(), then the interpretation of den-
sity is not the full population size but rather the spatial density term included in the dataset.

Users building vital rate models for Leslie matrices must set vitalrates = c("surv"”, "fec") or
vitalrates = "leslie” rather than the default, because only survival and fecundity should be
estimated in these cases. Also, the suite setting can be set to either age or cons, as the results will
be exactly the same.

Users wishing to test age, density, group, or individual covariates, must include test.age = TRUE,
test.density = TRUE, test.group = TRUE, or test.indcova = TRUE (or test.indcovb = TRUE or
test.indcovc = TRUE, whichever is most appropriate), respectively, in addition to stipulating the
name of the variable within the dataset. The default for these options is always FALSE.

lefkoMod objects can be quite large when datasets are large and models are complicated. To reduce
the amount of memory taken up by models, vrm_input objects can be created to summarize all
relevant aspects of the vital rate models using function miniMod().

Examples

data(lathyrus)

sizevector <- c(o0, 4.6, 0, 1, 2, 3, 4, 5,6, 7,8, 9,1, 2, 3, 4, 5,6,7, 8,
9

stagevector <- c("Sd", "Sdl1", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, 0, @, @, 0, 0, 0, @, @, 0, @, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)

obsvector <- ¢c(@0, 1, 0, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1)

matvector <- c(0, @, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1)

immvector <- c(1, 1, o, @, 0, 0, 0, @, @, 0, 0, 0, @, @, 0, 0, 0, @, @, 0, Q)

propvector <- c(1, o, 0, o0, 0, o, 0, 0, 0, 0, 0, 0, @0, 0, 0, 0, 0, @, 0, 0O,
0)

indataset <- c(o, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1)

binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 9.5, 0.5, 0.5, 9.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,

fecacol = "Intactseed88"”, deadacol = "Dead1988",

176 mpm_create

nonobsacol = "Dormant1988"”, stageassign = lathframeln, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca?2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathmodelsln3 <- modelsearch(lathvertln, historical = TRUE,
approach = "mixed”, suite = "main”,

vitalrates = c("surv", "obs", "size", "repst”, "fec"), juvestimate = "Sdl",
bestfit = "AICc&", sizedist = "gaussian”, fecdist = "poisson”,
indiv = "individ”, patch = "patchid”, year = "year2", year.as.random = TRUE,

patch.as.random = TRUE, show.model.tables = TRUE, quiet = "partial”)

Here we use supplemental() to provide overwrite and reproductive info
lathsupp3 <- supplemental(stage3 = c("Sd"”, "Sd", "Sdl1"”, "Sdl1", "mat", "Sd", "Sdl"),
stage2 = c("sd", "sd", "Sd", "Sd", "Sdl1", "rep", "rep"),
stagel = c("Sd", "rep”, "Sd", "rep", "Sd", "mat", "mat"),
eststage3 = c(NA, NA, NA, NA, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, "Sdl”, NA, NA),
eststagel = c(NA, NA, NA, NA, "Sdl”, NA, NA),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeln, historical = TRUE)

lathmat31ln <- flefko3(year = "all”, patch = "all”, stageframe = lathframeln,
modelsuite = lathmodelsln3, data = lathvertln, supplement = lathsupp3,
reduce = FALSE)

mpm_create General Matrix Projection Model and Bootstrapped MPM Creation

Description

Function mpm_create() is the core workhorse function that creates all flavors of MPM in lefko3.
All other MPM creation functions act as wrappers for this function.

Usage

mpm_create(
historical = FALSE,
stage = TRUE,
age = FALSE,
devries = FALSE,
reduce = FALSE,
simple = FALSE,

mpm_create 177

err_check = FALSE,

data = NULL,
year = NULL,
pop = NULL,

patch = NULL,

stageframe = NULL,
supplement = NULL,
overwrite = NULL,
repmatrix = NULL,

alive = NULL,
obsst = NULL,
size = NULL,
sizeb = NULL,
sizec = NULL,
repst = NULL,
matst = NULL,
fec = NULL,

stages = NULL,
yearcol = NULL,

popcol = NULL,
patchcol = NULL,
indivcol = NULL,
agecol = NULL,

censorcol = NULL,
modelsuite = NULL,
paramnames = NULL,

inda = NULL,

indb = NULL,

indc = NULL,

annua = NULL,

annub = NULL,

annuc = NULL,

dev_terms = NULL,
density = NA_real_,

CDF = TRUE,

random_inda = FALSE,
random_indb = FALSE,
random_indc = FALSE,
negfec = FALSE,

exp_tol = 700L,
theta_tol = 100000000L,
censor = FALSE,
censorkeep = NULL,
start_age = NA_integer_,
last_age = NA_integer_,
fecage_min = NA_integer_,
fecage_max = NA_integer_,
fectime = 2L,

178 mpm_create

fecmod = 1,

cont = TRUE,
prebreeding = TRUE,
stage_NRasRep = FALSE,
sparse_output = FALSE

)
Arguments

historical A logical value indicating whether to build a historical MPM. Defaults to FALSE.

stage A logical value indicating whether to build a stage-based MPM. If both stage =
TRUE and age = TRUE, then will proceed to build an age-by-stage MPM. Defaults
to TRUE.

age A logical value indicating whether to build an age-based MPM. If both stage =
TRUE and age = TRUE, then will proceed to build an age-by-stage MPM. Defaults
to FALSE.

devries A logical value indicating whether to use deVries format for historical MPMs.
Defaults to FALSE, in which case historical MPMs are created in Ehrlen format.

reduce A logical value denoting whether to remove ages, ahistorical stages, or histori-
cal stages associated exclusively with zero transitions. These are removed only
if the respective row and column sums in ALL matrices estimated equal 0. De-
faults to FALSE.

simple A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

err_check A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

data A data frame of class hfvdata. Required for all MPMs, except for function-
based MPMs in which modelsuite is set to a vrm_input object.

year A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in vital rate model development.
Can also equal "all”, in which case matrices will be estimated for all occasions.
Defaults to "all".

pop A variable designating which populations will have matrices estimated. Should
be set to specific population names, or to "all” if all populations should have
matrices estimated. Only used in raw MPMs.

patch A variable designating which patches or subpopulations will have matrices esti-
mated. Should be set to specific patch names, or to "all” if matrices should be
estimated for all patches. Defaults to NULL, in which case patch designations are
ignored.

stageframe An object of class stageframe. These objects are generated by function sf_create(),

and include information on the size, observation status, propagule status, repro-
duction status, immaturity status, maturity status, stage group, size bin widths,
and other key characteristics of each ahistorical stage. Not needed for purely
age-based MPMs.

mpm_create 179

supplement An optional data frame of class 1lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental () function. Can be used in place of or in addition to an over-
write table (see overwrite below) and a reproduction matrix (see repmatrix
below).

overwrite An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

repmatrix An optional reproduction matrix. This matrix is composed mostly of @s, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then all
stages marked as reproductive produce offspring at 1x that of estimated fecun-
dity, and that offspring production will yield the first stage noted as propagule
or immature. May be the dimensions of either a historical or an ahistorical ma-
trix. If the latter, then all stages will be used in occasion #-1 for each suggested
ahistorical transition. Not used in purely age-based MPMs.

alive A vector of names of binomial variables corresponding to status as alive (1) or
dead (@) in occasions t+1, t, and #-1, respectively. Defaults to c("alive3”,
"alive2", "alivel") for historical MPMs, and c("alive3"”, "alive2") for
ahistorical MPMs. Only needed for raw MPMs.

obsst A vector of names of binomial variables corresponding to observation status in
occasions t+1, #, and -1, respectively. Defaults to c("obsstatus3”, "obsstatus2”,
"obsstatus1”) for historical MPMs, and c("obsstatus3”, "obsstatus2")
for ahistorical MPMs. Only needed for raw MPMs.

size A vector of names of variables coding the primary size variable in occasions
t+1, ¢, and #-1, respectively. Defaults to c("sizea3”, "sizea2", "sizeal")
for historical MPMs, and c("sizea3", "sizea2") for ahistorical MPMs. Only
needed for raw, stage-based MPMs.

sizeb A vector of names of variables coding the secondary size variable in occasions
t+1, ¢, and t-1, respectively. Defaults to an empty set, assuming that secondary
size is not used. Only needed for raw, stage-based MPMs.

sizec A vector of names of variables coding the tertiary size variable in occasions #+1,
t, and r-1, respectively. Defaults to an empty set, assuming that tertiary size is
not used. Only needed for raw, stage-based MPMs.

repst A vector of names of binomial variables corresponding to reproductive sta-
tus in occasions #+1, ¢, and t-1, respectively. Defaults to c("repstatus3”,
"repstatus2”, "repstatus1”) for historical MPMs, and c("repstatus3”,
"repstatus2"”) for ahistorical MPMs. Only needed for raw MPMs.

matst A vector of names of binomial variables corresponding to maturity status in oc-
casions 7+1, ¢, and ¢-1, respectively. Defaults to c("matstatus3”, "matstatus2”,
"matstatus1”) for historical MPMs, and c("matstatus3”, "matstatus2”)
for ahistorical MPMs. Must be provided if building raw MPMs, and stages is
not provided.

fec

stages

yearcol

popcol

patchcol

indivcol

agecol

censorcol

modelsuite

paramnames

inda

indb

mpim_create

A vector of names of variables coding for fecundity in occasions 7+1, #, and -1,
respectively. Defaults to c("feca3”, "feca2”, "fecal”) for historical MPMs,
and c("feca3”, "feca2") for ahistorical MPMs. Only needed for raw, stage-
based MPMs.

An optional vector denoting the names of the variables within the main vertical
dataset coding for the stages of each individual in occasions #+1 and ¢, and #-1,
if historical. The names of stages in these variables should match those used
in the stageframe exactly. If left blank, then rlefko3() will attempt to infer
stages by matching values of alive, obsst, size, sizev, sizec, repst, and
matst to characteristics noted in the associated stageframe. Only used in raw,
stage-based MPMs.

The variable name or column number corresponding to occasion ¢ in the dataset.
Defaults to "year2"”. Only needed for raw MPMs.

The variable name or column number corresponding to the identity of the pop-
ulation. Defaults to "popid"” if a value is provided for pop; otherwise empty.
Only needed for raw MPMs.

The variable name or column number corresponding to patch in the dataset.
Defaults to "patchid” if a value is provided for patch; otherwise empty. Only
needed for raw MPMs.

The variable name or column number coding individual identity. Only needed
for raw MPMs.

The variable name or column corresponding to age in time ¢. Defaults to "obsage”.
Only used in raw age-based and age-by-stage MPMs.

The variable name or column number denoting the censor status. Only needed
in raw MPMs, and only if censor = TRUE.

One of three kinds of lists. The first is a lefkoMod object holding the vital rate
models and associated metadata. Alternatively, an object of class vrm_input
may be provided. Finally, this argument may simply be a list of models used
to parameterize the MPM. In the final scenario, data and paramnames must
also be given, and all variable names must match across all objects. If entered,
then a function-based MPM will be developed. Otherwise, a raw MPM will be
developed. Only used in function-based MPMs.

A data frame with three columns, the first describing all terms used in linear
modeling, the second (must be called mainparams) giving the general model
terms that will be used in matrix creation, and the third showing the equivalent
terms used in modeling (must be named modelparams). Function create_pm()
can be used to create a skeleton paramnames object, which can then be edited.
Only required to build function-based MPMs if modelsuite is neither a 1efkoMod
object nor a vrm_input object.

Can be a single value to use for individual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

Can be a single value to use for individual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values

mpm_create

indc

annua

annub

annuc

dev_terms

density

CDF

random_inda

random_indb

random_indc

negfec

exp_tol

theta_tol

181

corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

Can be a single value to use for individual covariate ¢ in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

Can be a single value to use for annual covariate a in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

Can be a single value to use for annual covariate b in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

Can be a single value to use for annual covariate c in all matrices, a pair of
values to use for times ¢ and #-1 in historical matrices, or a vector of such values
corresponding to each occasion in the dataset. Defaults to NULL. Only used in
function-based MPMs.

A numeric vector of 2 elements in the case of a Leslie MPM, and of 14 elements
in all other cases. Consists of scalar additions to the y-intercepts of vital rate
linear models used to estimate vital rates in function-based MPMs. Defaults to
0 values for all vital rates.

A numeric value indicating density value to use to propagate matrices. Only
needed if density is an explanatory term used in one or more vital rate models.
Defaults to NA. Only used in function_based MPMs.

A logical value indicating whether to use the cumulative distribution function to
estimate size transition probabilities in function-based MPMs. Defaults to TRUE,
and should only be changed to FALSE if approximate probabilities calculated via
the midpoint method are preferred.

A logical value denoting whether to treat individual covariate a as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE. Only used in function-based MPMs.

A logical value denoting whether to treat individual covariate b as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE. Only used in function-based MPMs.

A logical value denoting whether to treat individual covariate ¢ as a random,
categorical variable. Otherwise is treated as a fixed, numeric variable. Defaults
to FALSE. Only used in function-based MPMs.

A logical value denoting whether fecundity values estimated to be negative
should be reset to @. Defaults to FALSE.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700. Only used in
function-based MPMs.

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking. Only used in function-based MPMs.

censor

censorkeep

start_age

last_age

fecage_min

fecage_max

fectime

fecmod

cont

prebreeding

stage_NRasRep

sparse_output

Value

mpim_create

If TRUE, then data will be removed according to the variable set in censorcol,
such that only data with censor values equal to censorkeep will remain. De-
faults to FALSE. Only used in raw MPMs.

The value of the censor variable denoting data elements to keep. Defaults to ©.
Only used in raw MPMs.

The age from which to start the matrix. Defaults to NULL, in which case age 1 is
used if prebreeding = TRUE, and age @ is used if prebreeding = FALSE. Only
used in age-based MPMs.

The final age to use in the matrix. Defaults to NULL, in which case the highest
age in the dataset is used. Only used in age-based and age-by-stage MPMs.

The minimum age at which reproduction is possible. Defaults to NULL, which is
interpreted to mean that fecundity should be assessed starting in the minimum
age observed in the dataset. Only used in age-based MPMs.

The maximum age at which reproduction is possible. Defaults to NULL, which
is interpreted to mean that fecundity should be assessed until the final observed
age. Only used in age-based MPMs.

An integer indicating whether to estimate fecundity using the variable given
for fec in time ¢ (2) or time #+1 (3). Only used for purely age-based MPMs.
Defaults to 2.

A scalar multiplier for fecundity. Only used for purely age-based MPMs. De-
faults to 1. 0.

A logical value designating whether to allow continued survival of individuals
past the final age noted in age-based and age-by-stage MPMs, using the demo-
graphic characteristics of the final age. Defaults to TRUE.

A logical value indicating whether the life history model is a pre-breeding model.
Defaults to TRUE.

A logical value indicating whether to treat non-reproductive individuals as re-
productive. Used only in raw, stage-based MPMs in cases where stage assign-
ment must still be handled. Not used in function-based MPMs, and in stage-
based MPMs in which a valid hfvdata class data frame with stages already
assigned is provided.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

The dominant output is an object of class lefkoMat. If data of class hfv_1list for empirical models,
or modelsuites of class lefkoModList for function-based models are provided, then a list of class
lefkoMatList is provided. The latter is a list in which each element is a separate 1lefkoMat object,
providing output for a bootstrapped MPM analysis.

Class lefkoMat objects are lists holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

A list of full projection matrices in order of sorted patches and occasion times.
All matrices output in R’s matrix class, or in the dgCMatrix class from the
Matrix package if sparse.

mpm_create

hstages

agestages

ahstages

labels

datagc

matrixqc

modelqc

prob_out

allstages

data

General Notes

183

A list of survival transition matrices sorted as in A. All matrices output in R’s
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

A list of fecundity matrices sorted as in A. All matrices output in R’s matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Only used in historical MPMs.

A data frame showing age-stage pairs. Only used in age-by-stage MPMs.

A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction. Used in all stage-based and age-by-stage MPMs.

A data frame giving the population, patch, and year of each matrix in order.

A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

This is the gc portion of the modelsuite input.

An optional element only added if err_check = TRUE. This is a list of vital rate
probability matrices, with 7 columns in the order of survival, observation prob-
ability, reproduction probability, primary size transition probability, secondary
size transition probability, tertiary size transition probability, and probability of
juvenile transition to maturity.

An optional element only added if err_check = TRUE. This is a data frame giv-
ing the values used to determine each matrix element capable of being estimated.

An optional element only added if err_check = TRUE and a raw MPM is re-
quested. This consists of the original dataset as edited by this function for in-
dexing purposes.

This function automatically determines whether to create a raw or function-based MPM given inputs
supplied by the user.

If used, the reproduction matrix (field repmatrix) may be supplied as either historical or ahistorical.
If provided as historical, then a historical MPM must be estimated.

If neither a supplement nor a reproduction matrix are used, and the MPM to create is stage-based,
then fecundity will be assumed to occur from all reproductive stages to all propagule and immature

stages.

Function-based MPM Notes

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or
subpopulations, but without discriminating between those patches or subpopulations. Should the
aim of analysis be a general MPM that does not distinguish these patches or subpopulations, the
modelsearch() run should not include patch terms.

mpim_create

Input options including multiple variable names must be entered in the order of variables in occasion
t+1, ¢, and #-1. Rearranging the order will lead to erroneous calculations, and will may lead to fatal
errors.

This function provides two different means of estimating the probability of size transition. The
midpoint method (CDF = FALSE) refers to the method in which the probability is estimated by first
estimating the probability associated with transition from the exact size at the midpoint of the size
class using the corresponding probability density function, and then multiplying that value by the
bin width of the size class. Doak et al. 2021 (Ecological Monographs) noted that this method can
produce biased results, with total size transitions associated with a specific size not totaling to 1.0
and even specific size transition probabilities capable of being estimated at values greater than 1.0.
The alternative and default method (CDF = TRUE) uses the cumulative density function to estimate
the probability of size transition as the cumulative probability of size transition at the greater limit
of the size class minus the cumulative probability of size transition at the lower limit of the size
class. This latter method avoids this bias. Note, however, that both methods are exact and unbiased
for negative binomial and Poisson distributions.

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero val-
ues when the true probability is extremely close to 0. This will result in the summary . lefkoMat ()
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

Examples

data(lathyrus)

sizevector <- c(o0, 4.6, 0, 1, 2, 3, 4, 5,6, 7,8, 9,1, 2, 3, 4, 5,6, 7,8,
9

stagevector <- c("Sd", "Sdl1", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, 0, @, @, 0, 0, 0, @, @, 0, @, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)

obsvector <- c(@, 1, 0, 1, 1, 1, 1, 1,1, 1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1)

matvector <- c(0, @, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1)

immvector <- c(1, 1, o, @, 0, 0, 0, @, @, 0, 0, 0, @, @, 0, 0, 0, @, @, 0, Q)

propvector <- c(1, o, 0, o0, o0, o, 0, 0, 0, 0, 0, 0, @0, @, 0, 0, 0, @, 0, 0,
0)

indataset <- c(o, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1,1, 1, 1)

binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 9.5, 0.5, 0.5, 9.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

mpm_create 185

nonobsacol = "Dormant1988", stageassign = lathframeln, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca?2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

lathvertln_adults <- subset(lathvertln, stage2index > 2)
surv_model <- glm(alive3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = lathvertln_adults, family = "binomial)

obs_data <- subset(lathvertln_adults, alive3 == 1)
obs_model <- glm(obsstatus3 ~ as.factor(patchid), data = obs_data,
family = "binomial™)

size_data <- subset(obs_data, obsstatus3 == 1)
siz_model <- Im(sizea3 ~ sizea2 + sizeal + repstatusl + as.factor(patchid) +
as.factor(year2), data = size_data)

reps_model <- glm(repstatus3 ~ sizea2 + sizeal + as.factor(patchid) +
as.factor(year2), data = size_data, family = "binomial”)

fec_data <- subset(lathvertln_adults, repstatus2 == 1)
fec_model <- glm(feca2 ~ sizea2 + sizeal + repstatusl + as.factor(patchid),
data = fec_data, family = "poisson")

lathvertln_juvs <- subset(lathvertln, stage2index < 3)
jsurv_model <- glm(alive3 ~ as.factor(patchid), data = lathvertln_juvs,
family = "binomial™)

jobs_data <- subset(lathvertln_juvs, alive3 == 1)
jobs_model <- glm(obsstatus3 ~ 1, family = "binomial”, data = jobs_data)

jsize_data <- subset(jobs_data, obsstatus3 == 1)
jsiz_model <- 1m(sizea3 ~ as.factor(year2), data = jsize_data)

jrepst_model <- @
jmatst_model <- 1

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[3] <- "patchid”
mod_params$modelparams[4] <- "alive3”
mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "feca2"
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[13] <- "sizeal”
mod_params$modelparams[18] <- "repstatus2”
mod_params$modelparams[19] <- "repstatus1”

used_models <- list(survival_model = surv_model, observation_model = obs_model,
size_model = siz_model, sizeb_model = 1, sizec_model = 1,

186 overwrite

repstatus_model = reps_model, fecundity_model = fec_model,
juv_survival_model = jsurv_model, juv_observation_model = jobs_model,
juv_size_model = jsiz_model, juv_sizeb_model = 1, juv_sizec_model = 1,
juv_reproduction_model = @, juv_maturity_model = 1, paramnames = mod_params)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "mat"”, "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "Sdl1", "rep", "rep"),
stagel = c("Sd", "rep”, "Sd", "rep”, "Sd", "mat”, "mat"),
eststage3 = c(NA, NA, NA, NA, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, "Sdl”, NA, NA),
eststagel c(NA, NA, NA, NA, "Sdl", NA, NA),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeln, historical = TRUE)

While we do not use MPMs to initialize f_projections3(), we do use MPMs to

initialize functions start_input() and density_input().

lathmat31ln <- mpm_create(historical = TRUE, year = "all", patch = "all",
data = lathvertln, stageframe = lathframeln, supplement = lathsupp3,
modelsuite = used_models, reduce = FALSE)

overwrite Create Overwrite Table for MPM Development

Description

overwrite() returns a data frame describing which particular transitions within an ahistorical or
historical projection matrix to overwrite with either given rates and probabilities, or other estimated
transitions. This function is now deprecated in favor of function supplemental().

Usage

overwrite(

stage3,

stage2,

stagel = NA,
eststage3
eststage?
eststagel
givenrate
type = NA,
type_t12 = NA

NA,
NA,
NA,
NA,

overwrite

Arguments

stage3

stage2

stagel

eststage3

eststage?

eststagel

givenrate

type

type_t12

Value

187

The name of the stage in occasion 7+1 in the transition to be replaced. Abbrevi-
ations for groups of stages are also allowed (see Notes).

The name of the stage in occasion ¢ in the transition to be replaced. Abbrevia-
tions for groups of stages are also allowed (see Notes).

The name of the stage in occasion #-1 in the transition to be replaced. Only
needed if a historical matrix is to be produced. Abbreviations for groups of
stages are also allowed (see Notes).

The name of the stage to replace stage3. Only needed if a transition will be
replaced by another estimated transition.

The name of the stage to replace stage2. Only needed if a transition will be
replaced by another estimated transition.

The name of the stage to replace stagel. Only needed if a transition will be
replaced by another estimated transition, and the matrix to be estimated is his-
torical.

A fixed rate or probability to replace for the transition described by stage3s,
stage2, and stagel.

A vector denoting the kind of transition between occasions ¢ and #+1 to be re-
placed. This should be entered as 1, S, or s for the replacement of a survival
transition; or 2, F, or f for the replacement of a fecundity transition. If empty or
not provided, then defaults to 1 for survival transition.

An optional vector denoting the kind of transition between occasions -1 and .
Only necessary if a historical MPM in deVries format is desired. This should be
entered as 1, S, or s for a survival transition; or 2, F, or f for a fecundity transi-
tions. Defaults to 1 for survival transition, with impacts only on the construction
of deVries-format hMPMs.

A data frame that puts the above vectors together and can be used as inputin flefko3(), flefko2(),
rlefko3(),rlefko2(), and aflefko2().

Variables in this data frame include the following:

stage3
stage2
stagel
eststage3

eststage?

eststagel

givenrate

Stage at occasion #+1 in the transition to be replaced.
Stage at occasion ¢ in the transition to be replaced.
Stage at occasion #-1 in the transition to be replaced.

Stage at occasion #+1 in the transition to replace the transition designated by
stage3, stage?, and stagel.

Stage at occasion ¢ in the transition to replace the transition designated by stage3,
stage2, and stagel.

Stage at occasion f-1 in the transition to replace the transition designated by
stage3, stage?2, and stagel.

A constant to be used as the value of the transition.

188 plot.lefkoProj

convtype Designates whether the transition from occasion ¢ to occasion #+1 is a survival-
transition probability (1) or a fecundity rate (2).

convtype_t12 Designates whether the transition from occasion #-1 to occasion ¢ is a survival
transition probability (1), a fecundity rate (2).

Notes

This function is deprecated. Please use supplemental().

Entries in stage3, stage2, and stage1 can include abbreviations for groups of stages. Use rep
if all reproductive stages are to be used, nrep if all mature but non-reproductive stages are to be
used, mat if all mature stages are to be used, immat if all immature stages are to be used, prop if all
propagule stages are to be used, npr if all non-propagule stages are to be used, and leave empty or
use all if all stages in stageframe are to be used.

Examples

cypover2r <- overwrite(stage3 = c("sSD", "P1", "P2", "P3", "SL", "D",
"Xsm”, "sm"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm"),
eststage?2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm"),
givenrate = c(0.1, 0.2, 0.2, 0.2, 0.25, NA, NA, NA),
type = c("S", "S", "s", "s", "S" "S", B "S"_ "S"))

cypover2r

cypover3r <- overwrite(stage3 = c("”sSD", "sD", "P1", "P1", "P2", "P3", "SL",
"D", "XSm", "Sm", "D", "XSm", "Sm"),
stage2 = c("sb", "sb", "sp", "sb", "P1", "P2", "P3", "SL", "SL", "SL",
"sL", "sL", "SL"),
stagel = c("SD", "rep"”, "SD", "rep"”, "SD", "P1", "P2", "P3", "P3", "P3",
"sL", "sLt, "SL"),
eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm",

"sn"),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, “XSm", "XSm”, "XSm", "XSm",
"XSm", "XSm"),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm",
"XSm", "XSm"),

givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA),
fype = c("S", "S". msn ngn wgn mgn mgn wgw ngn wgn mgn g ngny

cypover3r

plot.lefkoProj Plot Projection Simulations

plot.lefkoProj 189

Description

Function plot.lefkoProj() produces plots of lefkoProj objects. Acts as a convenient wrapper
for the plot.default() function.

Usage
S3 method for class 'lefkoProj'
plot(
X’
variable = "popsize”,
style = "time",
repl = "all",
patch = "pop",

auto_ylim = TRUE,
auto_col = TRUE,
auto_lty = TRUE,
auto_title = FALSE,

)
Arguments

X A lefkoProj object.

variable The focus variable of the plot to produce. Defaults to "popsize”, which pro-
duces line plots of the popsize element in object x.

style A string denoting ther kind of plot to produce. Currently limited to "timeseries”,
which shows variable against time on the x axis. Other choices include "statespace”,
which plots variable at one time on the x axis against the same variable in the
next time on the y axis.

repl The replicate to plot. Defaults to "all”, in which case all replicates are plotted.

patch The patch to plot, as labeled in the labels element in object x. Defaults to
"pop”, in which case only the final population-level projection is plotted. Can
also be set to "all”, in which case projections for all patches and population in
the labels element are plotted.

auto_ylim A logical value indicating whether the maximum of the y axis should be deter-
mined automatically. Defaults to TRUE, but reverts to FALSE if any setting for
ylimis given.

auto_col A logical value indicating whether to shift the color of lines associated with each
patch automatically. Defaults to TRUE, but reverts to FALSE if any setting for col
is given.

auto_lty A logical value indicating whether to shift the line type associated with each
replicate automatically. Defaults to TRUE, but reverts to FALSE if any setting for
1ty is given.

auto_title A logical value indicating whether to add a title to each plot. The plot is com-

posed of the concatenated population and patch names. Defaults to FALSE.

Other parameters used by functions plot.default() and lines().

190 plot.lefkoProj

Value

A plot of the results of a projection3() run.

Notes

Output plots are currently limited to time series and state space plots of population size.

The default settings will preferentially plot any projections marked as @ in the patch portion of the
labels element of the input MPM. This can produce confusing results if a mean MPM resulting
from the Imean() function is used as input and the add_mean setting is set to the default, which is
TRUE.

Examples

data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, @0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathrepm <- matrix(@, 7, 7)
lathrepm[1, 6] <- 0.345
lathrepm[2, 6] <- 0.054

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl"),
stage2 = c("sd", "sd", "sd", "sd", "rep"”, "rep"),
stagel = c("Sd", "rep”, "Sd", "rep”, "all”, "all"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3"”, "stage2”, "stagel"”),

projection3 191

repmatrix = lathrepm, supplement = lathsupp3, yearcol = "year2"”,
indivcol = "individ")

lathproj <- projection3(ehrlen3, nreps = 5, stochastic = TRUE)
plot(lathproj)

projection3 Conduct Population Projection Simulations

Description

Function projection3() runs projection simulations. It projects the population and patches for-
ward in time by a user-defined number of occasions. A given set of matrices is utilized and not
recreated, although elements may be altered if density dependence is set. Projections may be de-
terministic or stochastic, and may be density dependent in either case. If deterministic, then pro-
jections will be cyclical if matrices exist covering multiple occasions for each population or patch.
If stochastic, then annual matrices will be shuffled within patches and populations. Also produces
replicates if set.

Usage
projection3(
mpm,
nreps = 1L,

times = 10000L,
historical = FALSE,
stochastic = FALSE,
standardize = FALSE,
growthonly = TRUE,
integeronly = FALSE,
substoch = oL,
exp_tol = 700,
sub_warnings = TRUE,
quiet = FALSE,

year = NULL,
start_vec = NULL,
start_frame = NULL,
tweights = NULL,
density = NULL,
stage_weights = NULL,
sparse = NULL

Arguments

mpm A matrix projection model of class lefkoMat, a list of class lefkoMatList
including bootstrapped MPMs, or a list of full matrix projection matrices.

nreps
times

historical
stochastic

standardize

growthonly

integeronly

substoch

exp_tol

sub_warnings

quiet

year

start_vec

start_frame

tweights

projection3

The number of replicate projections.
Number of occasions to iterate per replicate. Defaults to 10,000.

An optional logical value only used if object mpm is a list of matrices, rather than
a lefkoMat object. Defaults to FALSE for the former case, and overridden by
information supplied in the lefkoMat object for the latter case.

A logical value denoting whether to conduct a stochastic projection or a deter-
ministic / cyclical projection.

A logical value denoting whether to re-standardize the population size to 1.0 at
each occasion. Defaults to FALSE.

A logical value indicating whether to produce only the projected population size
at each occasion, or a vector showing the stage distribution followed by the
reproductive value vector followed by the full population size at each occasion.
Defaults to TRUE.

A logical value indicating whether to round the number of individuals projected
in each stage at each occasion to the nearest integer. Defaults to FALSE.

An integer value indicating whether to force survival- transition matrices to be
substochastic in density dependent simulations. Defaults to @, which does not
force substochasticity. Alternatively, 1 forces all survival-transition elements to
range from 0.0 to 1.0, and forces fecundity to be non-negative; and 2 forces
all column rows in the survival-transition matrices to total no more than 1.0, in
addition to the actions outlined for option 1.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

A logical value indicating whether to warn the user if density dependence yields
matrix values outside of the realm of possibility. Generally, this means that
survival-transition elements altered to values outside of the interval [0, 1], and
negative fecundity values, will both yield warnings. Defaults to TRUE, but be-
comes FALSE if quiet = TRUE.

A logical value indicating whether to suppress warnings. Defaults to FALSE.

Either a single integer value corresponding to the year to project, or a vector
of times elements with the year to use at each time step. If a vector shorter
than times is supplied, then this vector will be cycled. If not provided, then all
annual matrices will be cycled within patches or populations.

An optional numeric vector denoting the starting stage distribution for the pro-
jection. Defaults to a single individual of each stage.

An optional data frame characterizing stages, age-stages, or stage-pairs that
should be set to non-zero values in the starting vector, and what those values
should be. Can only be used with lefkoMat objects.

An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

projection3

density

stage_weights

sparse

Value

193

An optional data frame describing the matrix elements that will be subject to
density dependence, and the exact kind of density dependence that they will be
subject to. The data frame used should be an object of class lefkoDens, which
is the output from function density_input().

An optional object of class lefkoEq giving the degree to which individuals in
each stage are equivalent to one another. May also be a numeric vector, in which
case the vector must have the same number of elements as the number of rows
in the associated MPM, with each element giving the effect of an individual
of that age, stage, age-stage, or stage-pair, depending on whether the MPM is
age-based, ahistorical stage-based, age-by-stage, or historical stage-based, re-
spectively.

A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"), if the lefkoMat object input as mpm is composed of
standard matrices. Defaults to "auto”, in which case sparse matrix encoding
is used with standard, square matrices with at least 50 rows and no more than
50% of elements with values greater than zero, or when input lefkoMat objects
include matrices of class dgCMatrix.

If a 1efkoMat object or a simple list of matrices is used as input, then this function will produce a
list of class lefkoProj, which always includes the first three elements of the following, and also
includes the remaining elements below when a lefkoMat object is used as input:

projection

stage_dist

rep_value

pop_size

labels
ahstages
hstages
agestages

control

density

A list of lists of matrices showing the total number of individuals per stage
per occasion. The first list corresponds to each pop-patch followed by each
population. The inner list corresponds to replicates within each pop-patch or
population.

A list of lists of the actual stage distribution in each occasion in each replicate
in each pop-patch or population. The list order is the same as in projection.

A list of lists of the actual reproductive value in each occasion in each replicate
in each pop-patch or population. The list order is the same as in projection.

A list of matrices showing the total population size in each occasion per replicate
(row within matrix) per pop-patch or population (list element).

A data frame showing the order of populations and patches in item projection.
The original stageframe used in the study.

A data frame showing the order of historical stage pairs.

A data frame showing the order of age-stage pairs.

A short vector indicating the number of replicates and the number of occasions
projected per replicate.

The data frame input under the density option. Only provided if input by the
user.

If a lefkoMatList object is entered, then this function will produce a list of class lefkoProjList,
in which each element is an object of class lefkoProj.

194 projection3

Notes

Density dependent projections require lefkoMat objects as inputs. Users using simple lists of
matrices cannot set density dependence without first setting a life history model and importing their
matrices using function create_1M().

Projections are run both at the patch level and at the population level. Population level estimates
will be noted at the end of the data frame with @ entries for patch designation.

Weightings given in tweights do not need to sum to 1. Final weightings used will be based on the
proportion per element of the sum of elements in the user-supplied vector.

Starting vectors can be input in one of two ways: 1) as start_vec input, which is a vector of
numbers of the numbers of individuals in each stage, stage pair, or age-stage, with the length of
the vector necessarily as long as there are rows in the matrices of the MPM; or 2) as start_frame
input, which is a data frame showing only those stages, stage pairs, or age-stages that should begin
with more than 0 individuals, and the numbers of individuals that those stages should start with (this
object is created using the start_input () function). If both are provided, then start_frame takes
precedence and start_vec is ignored. If neither is provided, then projection3() automatically
assumes that each stage, stage pair, or age-stage begins with a single individual. Importantly, if a
lefkoMat object is not used, and a list of matrices is provided instead, then start_frame cannot
be utilized and a full start_vec must be provided to conduct a simulation with starting numbers of
individuals other than 1 per stage.

The resulting data frames in element projection are separated by pop-patch according to the order
provided in element labels, but the matrices for each element of projection have the result of
each replicate stacked in order on top of one another without any break or indication. Results for
each replicate must be separated using the information provided in elements control and the 3
stage descriptor elements.

Density dependent projections are automatically set up if object density is input. If this object
is not included, then density independent projections will be set up. Note that currently, density
dependent projections can only be performed with lefkoMat objects.

When running density dependent simulations involving user-set exponents, such as the beta term in
the Ricker function and both the alpha and beta terms in the Usher function, values above or below
the computer limits may cause unpredictable behavior. Noted odd behavior includes sudden shifts
in population size to negative values. This function produces warnings when such values are used,
and the values used for warnings may be reset with the exp_tol term.

The stage distributions and reproductive values produced are not the asymptotic values as would be
given by the standardized right and left eigenvectors associated with the dominant eigenvalue of a
matrix, but are vectors describing these values at the specific points in time projected. See equa-
tions 14.86 and 14.88 and section 14.4 on Sensitivity and Elasticity Analysis under Environmental
Stochasticity in Caswell (2001, Matrix Population Models, Sinauer Associates) for more details.

Consistently positive population growth can quickly lead to population size numbers larger than
can be handled computationally. In that circumstance, a continuously rising population size will
suddenly become NaN for the remainder of the projection.

Users wishing to run a projection of a single patch in a lefkoMat object with multiple patches
should subset the MPM first to contain only the patch needed. This can be accomplished with the
subset_1M() function.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and

projection3

195

300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse. Speed can also be maximized by keeping the default setting, integeronly = TRUE, since
the default behavior is to run each projection (replicate) until either the end, or the population size
drops to 0. Setting integeronly = FALSE may increase runtime dramatically, since the population

size can reach extremely small levels without dropping to 0.

See Also

start_input()
density_input()
f_projection3()
append_1P()
summary . lefkoProj()
plot.lefkoProj()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)

stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")
repvector <- c(0, 0, 0, 9, 0, 1
obsvector <- c(0, 1, 1, 1, 1, 1
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, @, 0, 0, 0
propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)

binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88"

fecacol = "Intactseed88", deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",

censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "Sdl1", "Sd", "Sd1"),

stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep"),

stagel = c("Sd", "rep”, "Sd", "rep”, "all", "all"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054),

type = c(1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1),
stageframe = lathframe, historical = TRUE)

196

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3", "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2"”, indivcol = "individ")

lathproj <- projection3(ehrlen3, nreps = 5, stochastic = TRUE)

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)

stagevector <- c(”SD", "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",

"XLg")
repvector <- c(0, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o0, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,

propstatus = propvector, immstatus = immvector, indataset = indataset,

binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,

patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

projection3

cypsupp3r <- supplemental(stage3 = c("SD", "sb", "P1", "P1", "P2", "P3", "SL",

”D”, "XSm", “Sm“, “D", "XSm”, nsmn, ”mat“, “mat", ”mat”, IISDII’ nP-In)’

stage2 = c(”SD", "SD", "SD", "SD", "P1", "P2", "P3", “SL",6 "SL", "SL" 6 "SL",

nSLn’ nSLn’ an, ”XSm", "Sm"’ "r'ep”, "rep”),

Stage1 - C(IISDII, urepn’ ”SD”, urepu’ "SD", nP-In’ ”PZ”, ”P3”, “P3“, IIP3II,

LM MGLM MSLM_ MGLM MSLYM MSLM . "mat”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm", "Sm",

"mat”, "mat”, "mat", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",

"XSm”, "D, "XSm", "Sm”, NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",

"XSm”, "XSm", "XSm", "XSm”, NA, NA),

givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,

NA, 0.5, 0.5),
type = c(1, 1, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 3, 3),
type_t12 = c(1, 2, 1, 2, 1,1, 1, 1, 1,1, 1, 1,1, 1, 1, 1, 1, 1),
stageframe = cypframe_raw, historical = TRUE)

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,

pyrola 197

year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added”, "size2added", "sizeladded"),

supplement = cypsupp3r, yearcol = "year2",

patchcol = "patchid”, indivcol = "individ")

cypstoch <- projection3(cypmatrix3r, nreps = 5, stochastic = TRUE)

pyrola Demographic Dataset of Pyrola japonica and Pyrola subaphylla Pop-
ulations, in Horizontal Format

Description

A dataset containing the states and fates of Pyrola japonica and Pyrola subaphylla, family Eri-
caceae, from populations in the vicinity of Mt. Bandai, Fukushima Prefecture, Japan, resulting
from monitoring that occurred annually between 2015 and 2020.

Usage
data(pyrola)

Format

A data frame with 454 individuals and 57 variables. Each row corresponds to an unique individual,
and each variable from sprouted. 2015 on refers to the state of the individual in a particular year.

species String denoting which of the two species the individual belongs to.

population Integer denoting whcih population the individual belongs to. Synonymous with species
in this dataset.

id A numeric variable giving a unique number to each individual within each species. Note that
numbers are reused among the two species.

sprouted.2015 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2015 census.

Ivs.num.2015 Number of leaves in 2015.

Ivs.Ing.2015 Length of largest leaf in 2015.
Ivs.wdt.2015 Width of largest leaf in 2015.
inf.num.2015 Number of inflorescences in 2015.
inf.Ing.tot.2015 Summed inflorescence length in 2015.
flo.tot.2015 Number of flowers in 2015.

frt.tot.2015 Number of fruits in 2015.

sprouted.2016 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2016 census.

Ivs.num.2016 Number of leaves in 2016.

198 pyrola

Ivs.Ing.2016 Length of largest leaf in 2016.
Ivs.wdt.2016 Width of largest leaf in 2016.
inf.num.2016 Number of inflorescences in 2016.
inf.lng.tot.2016 Summed inflorescence length in 2016.
flo.tot.2016 Number of flowers in 2016.

frt.tot.2016 Number of fruits in 2016.

sprouted.2017 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2017 census.

lvs.num.2017 Number of leaves in 2017.

Ivs.Ing.2017 Length of largest leaf in 2017.
Ivs.wdt.2017 Width of largest leaf in 2017.
inf.num.2017 Number of inflorescences in 2017.
inf.lng.tot.2017 Summed inflorescence length in 2017.
flo.tot.2017 Number of flowers in 2017.

frt.tot.2017 Number of fruits in 2017.

sprouted.2018 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2018 census.

lvs.num.2018 Number of leaves in 2018.

1vs.Ing.2018 Length of largest leaf in 2018.
Ivs.wdt.2018 Width of largest leaf in 2018.
inf.num.2018 Number of inflorescences in 2018.
inf.lng.tot.2018 Summed inflorescence length in 2018.
flo.tot.2018 Number of flowers in 2018.

frt.tot.2018 Number of fruits in 2018.

sprouted.2019 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2019 census.

lvs.num.2019 Number of leaves in 2019.

1vs.Ing.2019 Length of largest leaf in 2019.
Ivs.wdt.2019 Width of largest leaf in 2019.
inf.num.2019 Number of inflorescences in 2019.
inf.lng.tot.2019 Summed inflorescence length in 2019.
flo.tot.2019 Number of flowers in 2019.

frt.tot.2019 Number of fruits in 2019.

sprouted.2020 A binomial indicating whether the individual had living aboveground tissue observ-
able in the 2020 census.

Ivs.num.2020 Number of leaves in 2020.

1vs.Ing.2020 Length of largest leaf in 2020.
Ivs.wdt.2020 Width of largest leaf in 2020.
inf.num.2020 Number of inflorescences in 2020.
inf.lng.tot.2020 Summed inflorescence length in 2020.
flo.tot.2020 Number of flowers in 2020.

frt.tot.2020 Number of fruits in 2020.

pyrola 199

Source

Shefferson, R.P., K. Shutoh, and K. Suetsugu. In review. Vegetative dormancy and the evolution of
mycoheterotrophy in sister Pyrola species. Journal of Ecology.

Examples

data(pyrola)

pyrola$species <- as.factor(pyrola$species)

pyrola$population <- as.factor(pyrola$population)

jreg <- pyrolal[which(pyrola$population == 1),]

stagevec_jp <- c("P1", "Sdl", "Dorm", "Vonr", "Vinr", "V2nr", "V3nr", "Vinr",
"ver", "Vir", "v2r", "V3r", "V4r")

sizeavec_jp <- c(0, 0, 0, o0, 1, 2, 3, 7, 0, 1, 2, 3, 7)

sizeahbin_jp <- c(0.5, 0.5, @.5, 0.5, 0.5, 0.5, 0.5, 3.5, 0.5, 0.5, 0.5, 0.5,
3.5)

repvec_jp <- c(0, @, 0, 0, rep(@, 4), rep(1, 5))

propvec_jp <- c(1, rep(@, 12))

immvec_jp <- c(1, 1, rep(@, 11))

matvec_jp <- c(0, @, rep(1, 11))

obsvec_jp <- c(0, @, 0, rep(1, 10))

indata_jp <- c(0, 0, rep(1, 11))

comments_jp <- c("protocorm”, "seedling”, "dormant adult”, "stump”, "11f nr",
"21f nr", "31f nr", "4+1f nr", "@1f r", "11f r", "21f r", "31f r",
"4+1f r")

jp_frame <- sf_create(sizes = sizeavec_jp, stagenames = stagevec_jp,
binhalfwidth = sizeahbin_jp, repstatus = repvec_jp, obsstatus = obsvec_jp,
indataset = indata_jp, propstatus = propvec_jp, immstatus = immvec_jp,
matstatus = matvec_jp, comments = comments_jp)

jhfv <- verticalize3(data = jreg, noyears = 6, firstyear = 2015,
individcol = "id”, blocksize = 8, sizeacol = "lvs.num.2015",
obsacol = "sprouted.2015", repstracol = "flo.tot.2015",
repstrbcol = "frt.tot.2015", fecacol = "flo.tot.2015",
fecbcol = "frt.tot.2015", NAas@ = TRUE, stagesize = "sizea",
stageassign = jp_frame)

surv_model <- glm(alive3 ~ sizea2 + as.factor(year2), data = jhfv, family = "binomial”)

obs_data <- subset(jhfv, alive3 == 1)
obs_model <- glm(obsstatus3 ~ as.factor(year2), data = obs_data, family = "binomial")

size_data <- subset(obs_data, obsstatus3 == 1)
size_model <- glm(sizea3 ~ sizea2, data = size_data, family = "poisson”)
reps_model <- glm(repstatus3 ~ sizea2, data = size_data, family = "binomial"”)

fec_data <- subset(jhfv, repstatus2 == 1)
fec_model <- MASS::glm.nb(fec2added ~ 1, data = fec_data)

mod_params <- create_pm(name_terms = TRUE)
mod_params$modelparams[4] <- "alive3”

200 repvalue3

mod_params$modelparams[5] <- "obsstatus3”
mod_params$modelparams[6] <- "sizea3"
mod_params$modelparams[9] <- "repstatus3”
mod_params$modelparams[11] <- "fec2added”
mod_params$modelparams[12] <- "sizea2"
mod_params$modelparams[18] <- "repstatus2”

jp_germ <- 0.90
jp_supp2 <- supplemental(stage3 = c("Sdl"”, "Dorm", "V@nr", "Vinr", "P1", "Sdl"),
stage2 = c("P1", "Sdl”, "Sdl1", "Sdl1", "rep", "rep"),
eststage3 = c(NA, NA, NA, NA, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA),
givenrate = c(0.25, 9.35, 0.10, ©.10, NA, NA), # 0.345, 0.054
multiplier = c(NA, NA, NA, NA, jp_germ * 0.5, jp_germ * 0.5),
type = c(1, 1, 1, 1, 3, 3), stageframe = jp_frame, historical = FALSE)

jp_ahmpm <- flefko2(year = "all", stageframe = jp_frame, supplement = jp_supp2,
paramnames = mod_params, surv_model = surv_model, obs_model = obs_model,
size_model = size_model, repst_model = reps_model, fec_model = fec_model,
data = jhfv, err_check = TRUE)

lambda3 (jp_ahmpm)

repvalue3 Estimate Reproductive Value

Description

repvalue3() is a generic function that estimates returns the reproductive values of stages in a
population projection matrix or a set of matrices. The specifics of estimation vary with the class of
input object. This function is made to handle very large and sparse matrices supplied as lefkoMat
objects or as individual matrices, and can be used with large historical matrices, IPMs, age x stage
matrices, as well as ahistorical matrices.

Usage
repvalue3(mats, ...)
Arguments
mats A lefkoMat object, a population projection matrix, or a list of population pro-
jection matrices for which the reproductive value vector is desired.
Other parameters.
Value

The value returned depends on the class of the mats argument. See related functions for details.

repvalue3 201

See Also

repvalue3.lefkoMat ()
repvalue3.matrix()
repvalue3.dgCMatrix()
repvalue3.list()

Examples

Lathyrus deterministic example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, @)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”"Sd"”, "Sd", "Sdl", "Sdl"”, "Sd", "Sdl", "mat"),
stage2 = c("sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
repvalue3(ehrlen3mean)

202

repvalue3.dgCMatrix

Cypripedium stochastic example
data(cypdata)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”"SD”, "P1", "P2", "P3”, "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 0, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, 0, o0, @, 0, 0, @)
propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

sizevector, stagenames = stagevector,
obsvector, matstatus = matvector,

cypframe_raw <- sf_create(sizes
repstatus = repvector, obsstatus

propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",

"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <-

rlefko2(data = cypraw_v1, stageframe = cypframe_raw,

year = "all"” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),

size = c("size3added”, "size2added"), supplement = cypsupp2r,

yearcol = "year2"”, patchcol = "patchid”, indivcol = "individ")
repvalue3(cypmatrix2r, stochastic = TRUE)

repvalue3.dgCMatrix

Estimate Reproductive Value Vector for a Single Population Projection
Matrix

repvalue3.dgCMatrix 203

Description

repvalue3.dgCMatrix() returns the reproductive values for stages in a sparse population pro-
jection matrix. The function makes no assumptions about whether the matrix is ahistorical and
simply provides standard reproductive values corresponding to each row, meaning that the over-
all reproductive values of basic life history stages in a historical matrix are not provided (the
repvalue3.lefkoMat () function estimates these on the basis of stage description information pro-
vided in the lefkoMat object used as input in that function).

Usage
S3 method for class 'dgCMatrix'
repvalue3(mats, ...)

Arguments
mats A population projection matrix.

Other parameters.

Value

This function returns a vector data frame characterizing the reproductive values for stages of a
population projection matrix. This is given as the left eigenvector associated with largest real part
of the dominant eigenvalue, divided by the first non-zero element of the left eigenvector.

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have several hundred
rows and columns. Defaults work best when matrices are very small and dense, or very large and
sparse.

See Also

repvalue3()
repvalue3.lefkoMat ()
repvalue3.matrix()

repvalue3.list()
Examples
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, @)
stagevector <- c("Sd", "Sdl", "vSm”, "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

«® -
..® -
..® -
..® -
©
v

propvector <- c(1, 0,

204 repvalue3.lefkoMat

indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd"”, "Sd", "Sdl1"”, "sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep", "npr"”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all”,
stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ"”, sparse_output = TRUE)

repvalue3(ehrlen3$AL[1]])

repvalue3.lefkoMat Estimate Reproductive Value Vectors of Matrices in a lefkoMat Object

Description

repvalue3.lefkoMat () returns the reproductive values for stages in a set of population projection
matrices provided as a lefkoMat object. This function can handle large and sparse matrices, and
so can be used with large historical matrices, IPMs, age x stage matrices, as well as ahistorical
matrices.

Usage

S3 method for class 'lefkoMat'
repvalue3(

mats,

stochastic = FALSE,

times = 10000,

repvalue3.lefkoMat 205

tweights = NA,

seed = NA,
force_sparse = "auto”,
)
Arguments
mats An object of class lefkoMat object.
stochastic A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.
times An integer variable indicating number of occasions to project if using stochastic
analysis. Defaults to 10000.
tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.
seed A number to use as a random number seed.

force_sparse A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

Value

This function returns the asymptotic reproductive value vectors if deterministic analysis is chosen,
and long-run mean reproductive value vectors if stochastic analysis is chosen.

The output depends on whether the lefkoMat object used as input is ahistorical or historical, and
whether the analysis is deterministic or stochastic. If deterministic and ahistorical, then a single data
frame is output, which includes the number of the matrix within the A element of the input lefkoMat
object, followed by the stage id (numeric and assigned through sf_create()), the stage name, and
the estimated proportion of the reproductive value vector (rep_value). If stochastic and ahistorical,
then a single data frame is output starting with the number of the population-patch (matrix_set),
a string concatenating the names of the population and the patch (poppatch), the assigned stage id
number (stage_id), and the stage name (stage), and the long-run mean reproductive value vector
(rep_value).

If a historical matrix is used as input, then two data frames are output into a list object. The hist
element describes the historical stage-pair reproductive values, while the ahist element describes
the stage reproductive values. If deterministic, then hist contains a data frame including the matrix
number (matrix), the numeric stage designations for stages in occasions ¢ and #-1, (stage_id_2
and stage_id_1, respectively), followed by the respective stage names (stage_2 and stage_1),
and ending with the estimated reproductive values (rep_value). The associated ahist element is
as before. If stochastic, then the hist element contains a single data frame with the number of the

206 repvalue3.lefkoMat

population-patch (matrix_set), a string concatenating the names of the population and the patch
(poppatch), the assigned stage id numbers in times ¢ and #-1 (stage_id_2 and stage_id_2, re-
spectively), and the associated stage names (stage_2 and stage_1, respectively), and the long-run
mean reproductive values (rep_value). The associated ahist element is as before in the ahistori-
cal, stochastic case.

In addition to the data frames noted above, stochastic analysis will result in the additional output
of a list of matrices containing the actual projected reproductive value vectors across all projected
occasions, in the order of population-patch combinations in the lefkoMat input.

Notes

In stochastic analysis, the projected mean reproductive value vector is the arithmetic mean across
the final projected 1000 occasions if the simulation is at least 2000 projected occasions long. If
between 500 and 2000 projected occasions long, then only the final 200 are used, and if fewer
than 500 occasions are used, then all are used. Note that because reproductive values in stochastic
simulations can change greatly in the initial portion of the run, we encourage a minimum 2000
projected occasions per simulation, with 10000 preferred.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have several hundred
rows and columns. Defaults work best when matrices are very small and dense, or very large and
sparse.

See Also

repvalue3()
repvalue3.matrix()
repvalue3.dgCMatrix()
repvalue3.list()

Examples

data(cypdata)

sizevector <- c(o, o0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3”, "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgN)

repvector <- c(0, @0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(@, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, 0, 0, 0, 0 , 1, 1,
binvec <- c(0, o, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

repvalue3.lefkoMatList 207

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"Xsm", "Sm”, "SD", "P1"),
stage2 = c("sD”, "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep”,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

repvalue3(cypmatrix2r, stochastic = TRUE)

repvalue3.lefkoMatList
Estimate Reproductive Value Vectors of Matrices in a lefkoMatList Ob-
Jject

Description

repvalue3.lefkoMatList() returns the reproductive values for stages in sets of population pro-
jection matrices provided within a lefkoMatList object. This function can handle large and sparse
matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as well as
ahistorical matrices.

Usage

S3 method for class 'lefkoMatList'
repvalue3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

force_sparse = "auto”,

208 repvalue3.lefkoMatList

)
Arguments

mats An object of class lefkoMatList object.

stochastic A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.

times An integer variable indicating number of occasions to project if using stochastic
analysis. Defaults to 10000.

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed.

force_sparse A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

Value

This function returns a list with two elements. The first is the mean reproductive value vector
(and long-run mean reproductive value vectors from stochastic analysis), and the second is a list of
reproductive value vectors (and long-run mean reproductive value vectors from stochastic analysis)
corresponding to the lefkoMat objects in the original lefkoMatList list input in argument mats.

The vector format depends on whether the 1efkoMat object used as input is ahistorical or historical,
and whether the analysis is deterministic or stochastic. If deterministic and ahistorical, then a single
data frame is output, which includes the number of the matrix within the A element of the input
lefkoMat object, followed by the stage id (numeric and assigned through sf_create()), the stage
name, and the estimated proportion of the reproductive value vector (rep_value). If stochastic
and ahistorical, then a single data frame is output starting with the number of the population-patch
(matrix_set), a string concatenating the names of the population and the patch (poppatch), the
assigned stage id number (stage_id), and the stage name (stage), and the long-run mean repro-
ductive value vector (rep_value).

If a historical matrix is used as input, then two data frames are output into a list object. The hist
element describes the historical stage-pair reproductive values, while the ahist element describes
the stage reproductive values. If deterministic, then hist contains a data frame including the matrix
number (matrix), the numeric stage designations for stages in occasions ¢ and -1, (stage_id_2
and stage_id_1, respectively), followed by the respective stage names (stage_2 and stage_1),
and ending with the estimated reproductive values (rep_value). The associated ahist element is
as before. If stochastic, then the hist element contains a single data frame with the number of the
population-patch (matrix_set), a string concatenating the names of the population and the patch

repvalue3.lefkoMatList

209

(poppatch), the assigned stage id numbers in times ¢ and #-1 (stage_id_2 and stage_id_2, re-
spectively), and the associated stage names (stage_2 and stage_1, respectively), and the long-run
mean reproductive values (rep_value). The associated ahist element is as before in the ahistori-

cal, stochastic case.

In addition to the data frames noted above, stochastic analysis will result in the additional output
of a list of matrices containing the actual projected reproductive value vectors across all projected

occasions, in the order of population-patch combinations in the lefkoMat input.

Notes

In stochastic analysis, the projected mean reproductive value vector is the arithmetic mean across
the final projected 1000 occasions if the simulation is at least 2000 projected occasions long. If
between 500 and 2000 projected occasions long, then only the final 200 are used, and if fewer
than 500 occasions are used, then all are used. Note that because reproductive values in stochastic
simulations can change greatly in the initial portion of the run, we encourage a minimum 2000

projected occasions per simulation, with 10000 preferred.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have several hundred
rows and columns. Defaults work best when matrices are very small and dense, or very large and

sparse.

See Also
repvalue3()
repvalue3.matrix()
repvalue3.dgCMatrix()
repvalue3.list()

Examples

Lathyrus deterministic example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 9, 0)

propvector <- c(1, @0, 0, 0, 0, 0, 0)
indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,

210 repvalue3.lefkoMatList

patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,

juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathvert_boot <- bootstrap3(lathvert, reps = 3)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3_boot <- rlefko3(data = lathvert_boot, stageframe = lathframe,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3_boot)
repvalue3(ehrlen3mean)

Cypripedium stochastic example
data(cypdata)

sizevector <- c(0, o, o0, 0, 0, @0, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr <_ C(IISDH’ IVP-I Il’ IIPZII’ IIP3II’ “SL“, IIDII’ "XSm”, llsm”, ”Md“, lILglI’
"XLg")

repvector <- c(0, 0, 9, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, 9, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, @, @, 0)

propvector <- c(1, o, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 9, 9, 9, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypraw_v1_boot <- bootstrap3(cypraw_v1l, reps = 3)

repvalue3.list 211

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"Xsm", "Ssm”, "SD", "P1"),
stage2 = c("sD”, "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep”,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type :C(1y 1: 1’ 1’ 1’ 1: 1) 1; 3; 3):
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r_boot <- rlefko2(data = cypraw_v1_boot, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

repvalue3(cypmatrix2r_boot, stochastic = TRUE)

repvalue3.list Estimate Reproductive Value Vector for a List of Projection Matrices

Description

repvalue3.list() returns the reproductive values for stages in population projection matrices
arranged in a general list. The function makes no assumptions about whether the matrix is ahis-
torical and simply provides standard reproductive values corresponding to each row, meaning that
the overall reproductive values of basic life history stages in a historical matrix are not provided
(the repvalue3.lefkoMat () function estimates these on the basis of stage description information
provided in the lefkoMat object used as input in that function). This function can handle large and
sparse matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as
well as smaller ahistorical matrices.

Usage

S3 method for class 'list'
repvalue3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

force_sparse = "auto”,

212

Arguments

mats

stochastic

times

tweights

seed

force_sparse

Value

repvalue3.list

A list of population projection matrices, all in either class matrix or class
dgCMatrix.

A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.

An integer variable indicating number of occasions to project if using stochastic
analysis. Defaults to 10000.

An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

A number to use as a random number seed in stochastic projection.

A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

This function returns a list of vector data frames characterizing the reproductive values for stages of
each population projection matrix. This is given as the left eigenvector associated with largest real
part of the dominant eigenvalue, divided by the first non-zero element of the left eigenvector.

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have several hundred
rows and columns. Defaults work best when matrices are very small and dense, or very large and

sparse.

See Also

repvalue3()

repvalue3.lefkoMat ()

repvalue3.dgCMatrix()

repvalue3.matrix()

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvalue3.matrix 213

repvector <- c(0, @, o0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, Q)

propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

988,

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")
repvalue3(ehrlen3$A)
repvalue3.matrix Estimate Reproductive Value Vector for a Single Population Projection
Matrix
Description

repvalue3.matrix() returns the reproductive values for stages in a population projection matrix.
The function makes no assumptions about whether the matrix is ahistorical and simply provides
standard reproductive values corresponding to each row, meaning that the overall reproductive val-
ues of basic life history stages in a historical matrix are not provided (the repvalue3.lefkoMat()
function estimates these on the basis of stage description information provided in the lefkoMat
object used as input in that function). This function can handle large and sparse matrices, and so

214 repvalue3.matrix

can be used with large historical matrices, [IPMs, age x stage matrices, as well as smaller ahistorical

matrices.
Usage
S3 method for class 'matrix'
repvalue3(mats, force_sparse = "auto”, ...)
Arguments
mats A population projection matrix.

force_sparse A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

Value

This function returns a vector data frame characterizing the reproductive values for stages of a
population projection matrix. This is given as the left eigenvector associated with largest real part
of the dominant eigenvalue, divided by the first non-zero element of the left eigenvector.

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

See Also

repvalue3()
repvalue3.lefkoMat ()
repvalue3.dgCMatrix()
repvalue3.list()

Examples
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, @, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, Q)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)

ricker3

binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stage2 = c("Sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),

stagel = c("sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
repvalue3(ehrlen3mean$A[[1]])

215

rickers3 Two-Parameter Ricker Function

Description

Function ricker3() creates a vector of values produced by the two- parameter Ricker function
as applied with a user-specified time lag. The two-parameter Ricker function is given as ¢y =

d)tae’ﬁnf. Here, if no separate_N vector is provided, then n; = ¢.

Usage

ricker3(
start_value,
alpha,
beta,
time_steps = 100L,
time_lag = 1L,

216 ricker3

pre@_subs = FALSE,
pre@_value = 0,
substoch = 0oL,
separate_N = NULL

)
Arguments
start_value A positive number to start the return vector in time O.
alpha The alpha parameter in the two-parameter Ricker function. Must be non-negative.
beta The beta parameter in the two-parameter Ricker function.
time_steps The number of time steps to run the projection. Must be a positive integer.
time_lag A positive integer denoting the number of time steps back for the value of phi in
the two-parameter Ricker function.
pred_subs A logical value indicating whether to use a number other than that given in
start_value for values of phi lagged from times prior to time O.
pred_value A positive number to use for phi lagged from times prior to time 0. Only used if
pre@_subs = TRUE.
substoch An integer value indicating the kind of substochasticity to use. Values include:
0, no substochasticity enforced (the default); 1, all numbers must be non-negative;
and 2, all numbers should be forced to the interval [0, 1].
separate_N An optional numeric vector with values of N in each time, if phi is to be treated
as different from N in the two-parameter model.
Value

A numeric vector of values showing values projected under the two- parameter Ricker function.

Examples

trial_runl <- ricker3(1, alpha = 0.5, beta = -0.009)
plot(trial_run1)

trial_run2 <- ricker3(1, alpha = 0.5, beta = 0.009)
plot(trial_run2)

trial_run3 <- ricker3(1, alpha = 1, beta = -0.009)
plot(trial_run3)

trial_run4 <- ricker3(1, alpha = 1, beta = 0.009)
plot(trial_run4)

trial_run5 <- ricker3(1, alpha = 5, beta = -0.009)
plot(trial_run5)

trial_run6 <- ricker3(1, alpha = 5, beta = 0.009)
plot(trial_run6)

rlefko2 217

used_Ns <- c(10, 15, 12, 14, 14, 150, 15, 1, 5, 7, 9, 14, 13, 16, 17, 19,
25, 26)

trial_run7 <- ricker3(1, alpha = 1, beta = -0.009, separate_N = used_Ns)

plot(trial_run7)

rlefko2 Create Raw Ahistorical Matrix Projection Model

Description

Function rlefko2() returns raw ahistorical MPMs, including the associated component transition
and fecundity matrices, a data frame describing the ahistorical stages used, and a data frame de-
scribing the population, patch, and occasion time associated with each matrix.

Usage
rlefko2(
data,
stageframe,
year = "all”,
pop = NULL,
patch = NULL,

censor = FALSE,
stages = NULL,

alive = c("alive3", "alive2"),

obsst = NULL,

size = c("sizea3"”, "sizea2"),

sizeb = NULL,

sizec = NULL,

repst = c("repstatus3”, "repstatus2"),
matst = c("matstatus3”, "matstatus2"),

fec = c("feca3"”, "feca2"),
supplement = NULL,
repmatrix = NULL,
overwrite = NULL,
yearcol = NULL,
popcol = NULL,
patchcol = NULL,
indivcol = NULL,
censorcol = NULL,
censorkeep = 0,
NRasRep = FALSE,
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
sparse_output = FALSE

218

Arguments

data

stageframe

year

pop

patch

censor

stages

alive

obsst

size

sizeb

sizec

repst

matst

rletko2

A vertical demographic data frame, with variables corresponding to the naming
conventions in functions verticalize3() and historicalize3(). Alterna-
tively, a list of bootstrapped data of class hfv_list.

A stageframe object that includes information on the size, observation status,
propagule status, reproduction status, immaturity status, and maturity status of
each ahistorical stage.

A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in vital rate model development.
Can also equal "all”, in which case matrices will be estimated for all occasion
times. Defaults to "all”.

A variable designating which populations will have matrices estimated. Should
be set to specific population names, or to "all” if all populations should have
matrices estimated.

A variable designating which patches or subpopulations will have matrices esti-
mated. Should be set to specific patch names, or to "all” if matrices should be
estimated for all patches. Defaults to NA, in which case patch designations are
ignored..

If TRUE, then data will be removed according to the variable set in censorcol,
such that only data with censor values equal to censorkeep will remain. De-
faults to FALSE.

An optional vector denoting the names of the variables within the main verti-
cal dataset coding for the stages of each individual in occasions #+1 and 7. The
names of stages in these variables should match those used in the stageframe
exactly. If left blank, then rlefko2() will attempt to infer stages by matching
values of alive, size, repst, and matst to characteristics noted in the associ-
ated stageframe.

A vector of names of binomial variables corresponding to status as alive (1) or
dead (@) in occasions 7+1 and ¢, respectively.

A vector of names of binomial variables corresponding to observation status in
occasions t+1, ¢, and #-1, respectively. Defaults to NULL, in which case observa-
tion status is not used.

A vector of names of variables coding the primary size variable in occasions #+1
and ¢, respectively. Defaults to c("sizea3", "sizea2").

A vector of names of variables coding the secondary size variable in occasions
t+1 and 1, respectively. Defaults to NULL, in which case this variable is not used.

A vector of names of variables coding the tertiary size variable in occasions #+1
and ¢, respectively. Defaults to NULL, in which case this variable is not used.

A vector of names of variables coding reproductive status in occasions #+1 and ¢,
respectively. Defaults to c("repstatus3”, "repstatus2”). Must be supplied
if stages is not provided.

A vector of names of variables coding maturity status in occasions #+1 and f,
respectively. Defaults to c("matstatus3”, "matstatus2”). Must be supplied
if stages is not provided.

rlefko2

fec

supplement

repmatrix

overwrite

yearcol

popcol

patchcol
indivcol

censorcol

censorkeep

NRasRep

reduce

simple

err_check

sparse_output

219

A vector of names of variables coding fecundity in occasions #+1 and ¢, respec-
tively. Defaults to c("feca3"”, "feca2").

An optional data frame of class 1efkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipliers
for fecundity. This data frame should be produced using the supplemental()
function. Should be used in place of or in addition to an overwrite table (see
overwrite below) and a reproduction matrix (see repmatrix below).

An optional reproduction matrix. This matrix is composed mostly of Os, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then
rlefko2() will assume that all stages marked as reproductive produce offspring
at 1x that of estimated fecundity, and that offspring production will yield the
first stage noted as propagule or immature. To prevent this behavior, input just
0, which will result in fecundity being estimated only for transitions noted in
supplement above. Must be the dimensions of an ahistorical matrix.

An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

The variable name or column number corresponding to occasion ¢ in the dataset.

The variable name or column number corresponding to the identity of the popu-
lation.

The variable name or column number corresponding to patch in the dataset.
The variable name or column number coding individual identity.

The variable name or column number denoting the censor status. Only needed
if censor = TRUE.

The value of the censor variable denoting data elements to keep. Defaults to .

If data does not include stage assignments, then this option determines whether
non-reproductive and reproductive individuals should be lumped into the same
stages. Defaults to FALSE.

A logical value denoting whether to remove ahistorical stages associated with
only zero transitions. These are removed only if the respective row and column
sums in ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

220 rletko2

Value

If the user inputs a standard hfv_data object in argument data, then this function will return an
object of class lefkoMat. If the user inputs an object of class hfv_list in argument data, then
the output will be an object of class lefkoMatList, in which each element is an object of class
lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A A list of full projection matrices in order of sorted populations, patches, and
occasions. All matrices output in the matrix class, or in the dgCMatrix class
from the Matrix package if sparse.

u A list of survival transition matrices sorted as in A. All matrices output in the
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

F A list of fecundity matrices sorted as in A. All matrices output in the matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Set to NA for ahistorical matrices.

agestages A data frame showing age-stage pairs. In this function, it is set to NA. Only used
in output to function aflefko2().

ahstages A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

labels A data frame giving the population, patch, and year of each matrix in order.

dataqc A vector showing the numbers of individuals and rows in the vertical dataset

used as input.

matrixqc A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

modelqc This is the gc portion of the modelsuite input in function-based MPMs. Empty
in this function.

Notes

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or sub-
populations. Should the aim of analysis be a general MPM that does not distinguish these patches
or subpopulations, the patchcol variable should be left to NA, which is the default. Otherwise the
variable identifying patch needs to be named.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and r. Rearranging the order WILL lead to erroneous calculations, and may lead to fatal errors.

Although this function is capable of assigning stages given an input stageframe, it lacks the power
of verticalize3() and historicalize3() in this regard. Users are strongly encouraged to use
the latter two functions for stage assignment.

rlefko2 221

See Also

mpm_create()
flefko3()
flefko2()
aflefko2()
arlefko2()
fleslie()
rlefko3()
rleslie()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol "Dead1988", nonobsacol = "Dormant1988",
stageassign = lathframe, stagesize = "sizea"”, censorcol = "Missing1988",
censorkeep = NA, censor = TRUE)

lathsupp2 <- supplemental(stage3 = c("Sd", "Sdl1", "Sd", "Sdl"),
stage2 = c("Sd"”, "Sd", "rep", "rep"),
givenrate = c(0.345, 0.054, NA, NA),
multiplier = c(NA, NA, 0.345, 0.054),
type = c(1, 1, 3, 3), stageframe = lathframe, historical = FALSE)

ehrlen2 <- rlefko2(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3"”, "stage2"), supplement = lathsupp2, yearcol = "year2",
indivcol = "individ")

Cypripedium example
data(cypdata)

222 rletko3

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, @, @, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(e, 1, 1, 1, 1, 0, 0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, @, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("”sb", "sD”, "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all”, patch = "all", stages = c("stage3"”, "stage2"”, "stagel"),

size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
rlefko3 Create Raw Historical Matrix Projection Model
Description

Function rlefko3() returns raw historical MPMs, including the associated component transition
and fecundity matrices, data frames describing the ahistorical stages used and the historical paired
stages, and a data frame describing the population, patch, and occasion time associated with each
matrix.

rlefko3 223
Usage
rlefko3(

data,

stageframe,

year = "all”,

pop = NULL,

patch = NULL,

censor = FALSE,

stages = NULL,

alive = c("alive3", "alive2", "alivel"),

obsst = NULL,

size = c("sizea3"”, "sizea2", "sizeal”),

sizeb = NULL,

sizec = NULL,

repst = c("repstatus3”, "repstatus2", "repstatus1”),

matst = c("matstatus3”, "matstatus2”, "matstatus1”),

fec = c("feca3"”, "feca2", "fecal"),

supplement = NULL,

repmatrix = NULL,

overwrite = NULL,

yearcol = NULL,
popcol = NULL,
= NULL,
= NULL,
censorcol = NULL,
censorkeep = 0,
NRasRep = FALSE,

patchcol
indivcol

format = "ehrlen”,
reduce = FALSE,
simple = FALSE,

err_check = FALSE,
sparse_output = FALSE

Arguments

data

stageframe

year

pop

A vertical demographic data frame, with variables corresponding to the naming
conventions in functions verticalize3() and historicalize3(). Alterna-
tively, a list of bootstrapped data of class hfv_list.

A stageframe object that includes information on the size, observation status,
propagule status, reproduction status, immaturity status, and maturity status of
each ahistorical stage.

A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in vital rate model development.
Can also equal "all”, in which case matrices will be estimated for all occasions.
Defaults to "all".

A variable designating which populations will have matrices estimated. Should

224

patch

censor

stages

alive

obsst

size

sizeb

sizec

repst

matst

fec

supplement

repmatrix

rletko3

be set to specific population names, or to "all” if all populations should have
matrices estimated.

A variable designating which patches or subpopulations will have matrices esti-
mated. Should be set to specific patch names, or to "all” if matrices should be
estimated for all patches. Defaults to NA, in which case patch designations are
ignored..

If TRUE, then data will be removed according to the variable set in censorcol,
such that only data with censor values equal to censorkeep will remain. De-
faults to FALSE.

An optional vector denoting the names of the variables within the main vertical
dataset coding for the stages of each individual in occasions #+1, 7, and ¢-1. The
names of stages in these variables should match those used in the stageframe
exactly. If left blank, then rlefko3() will attempt to infer stages by matching
values of alive, size, repst, and matst to characteristics noted in the associ-
ated stageframe.

A vector of names of binomial variables corresponding to status as alive (1) or
dead (@) in occasions 7+1, t, and #-1, respectively.

A vector of names of binomial variables corresponding to observation status in
occasions #+1, t, and t-1, respectively. Defaults to NULL, in which case observa-
tion status is not used.

A vector of names of variables coding the primary size variable in occasions
t+1, t, and ¢-1, respectively. Defaults to c("sizea3", "sizea2", "sizeal").

A vector of names of variables coding the secondary size variable in occasions
t+1, t, and #-1, respectively. Defaults to NULL, in which case this variable is not
used.

A vector of names of variables coding the tertiary size variable in occasions 7+1,
t, and t-1, respectively. Defaults to NULL, in which case this variable is not used.

A vector of names of variables coding reproductive status in occasions #+1, ¢, and
t-1, respectively. Defaults to c("repstatus3”, "repstatus2”, "repstatusi”).
Must be supplied if stages is not provided.

A vector of names of variables coding maturity status in occasions #+1, , and 7-1,
respectively. Defaults to c("matstatus3”, "matstatus2”, "matstatus1”).
Must be supplied if stages is not provided.

A vector of names of variables coding fecundity in occasions 7+1, ¢, and #-1,
respectively. Defaults to c("feca3”, "feca2”, "fecal”).

An optional data frame of class 1efkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipliers
for fecundity. This data frame should be produced using the supplemental()
function. Should be used in place of or in addition to an overwrite table (see
overwrite below) and a reproduction matrix (see repmatrix below).

An optional reproduction matrix. This matrix is composed mostly of Os, with
non-zero entries acting as element identifiers and multipliers for fecundity (with
1 equaling full fecundity). If left blank, and no supplement is provided, then

rlefko3

overwrite

yearcol

popcol

patchcol
indivcol

censorcol

censorkeep

NRasRep

format

reduce

simple

err_check

sparse_output

Value

225

rlefko3() will assume that all stages marked as reproductive produce offspring
at 1x that of estimated fecundity, and that offspring production will yield the
first stage noted as propagule or immature. To prevent this behavior, input just
0, which will result in fecundity being estimated only for transitions noted in
supplement above. May be the dimensions of either a historical or an ahistorical
matrix. If the former, then the fecundity estimation of this function may be
unpredictable. If the latter, then all stages will be used in occasion ¢-1 for each
suggested ahistorical transition.

An optional data frame developed with the overwrite() function describing
transitions to be overwritten either with given values or with other estimated
transitions. Note that this function supplements overwrite data provided in
supplement.

The variable name or column number corresponding to occasion 7 in the dataset.

The variable name or column number corresponding to the identity of the popu-
lation.

The variable name or column number corresponding to patch in the dataset.
The variable name or column number coding individual identity.

The variable name or column number denoting the censor status. Only needed
if censor = TRUE.

The value of the censor variable denoting data elements to keep. Defaults to @.

If data does not include stage assignments, then this option determines whether
non-reproductive and reproductive individuals should be lumped into the same
stages. Defaults to FALSE.

A string indicating whether to estimate matrices in ehrlen format or deVries
format. The latter adds one unborn prior stage to account for the prior state of
newborns. Defaults to ehrlen format.

A logical value denoting whether to remove historical stages associated exclu-
sively with zero transitions. These are removed only if the respective row and
column sums in ALL matrices estimated equal 0. Defaults to FALSE.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard hfv_data object in argument data, then this function will return an
object of class lefkoMat. If the user inputs an object of class hfv_list in argument data, then
the output will be an object of class lefkoMatList, in which each element is an object of class

lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

226 rletko3

A A list of full projection matrices in order of sorted populations, patches, and
occasions. All matrices output in the matrix class, or in the dgCMatrix class
from the Matrix package if sparse.

u A list of survival transition matrices sorted as in A. All matrices output in the
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

F A list of fecundity matrices sorted as in A. All matrices output in the matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

hstages A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs.

agestages A data frame showing age-stage pairs. In this function, it is set to NA. Only used
in output to function aflefko2().

ahstages A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

labels A data frame giving the population, patch, and year of each matrix in order.

dataqc A vector showing the numbers of individuals and rows in the vertical dataset

used as input.

matrixqc A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

modelqc This is the gc portion of the modelsuite input in function-based MPMs. Empty
in this function.

Notes

The default behavior of this function is to estimate fecundity with regards to transitions specified via
associated fecundity multipliers in the supplement. If this field is left empty, then fecundity will
be estimated at full for all transitions leading from reproductive stages to immature and propagule
stages.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or sub-
populations. Should the aim of analysis be a general MPM that does not distinguish these patches
or subpopulations, the patchcol variable should be left to NA, which is the default. Otherwise the
variable identifying patch needs to be named.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1, t, and 7-1. Rearranging the order WILL lead to erroneous calculations, and may lead to fatal
errors.

Although this function is capable of assigning stages given an input stageframe, it lacks the power
of verticalize3() and historicalize3() in this regard. Users are strongly encouraged to use
the latter two functions for stage assignment.

See Also

mpm_create()
flefko3()
flefko2()

rlefko3 227

aflefko2()
arlefko2()
fleslie()
rlefko2()
rleslie()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 9, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988", nonobsacol = "Dormant1988",
stageassign = lathframe, stagesize = "sizea"”, censorcol = "Missing1988",
censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”"Sd", "Sd", "Sdl", "Sdl1", "Sd", "Sdl", "mat"),
stage2 = c("sd", "Ssd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

Cypripedium example
data(cypdata)

228

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”"SD”, "P1", "P2", "P3”, "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 0, 0, 0, @, 1, 1, 1, 1, 1)

obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

matvector <- c(90, @, @, 0, @, 1, 1, 1, 1, 1, 1)

immvector <- c(o, 1, 1, 1, 1, 0, o0, @, 0, 0, @)

propvector <- c(1, o, 0, 0, 0, 0, 0, 0, 0, 0, Q)

indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)

binvec <- c(0, @, 9, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp3r <- supplemental(stage3 = c(”"SD", "SD", "P1", "P1",

"DT"XSm", "Sm", "D", "XSm", "Sm”, "mat”, "mat”, "mat”,

stage2 = c("sD”, "sD", "sb", "sb”, "P1", "P2", "P3", "SL",
"sLt, "sL", "D", "XSm", "Sm", "rep"”, "rep"),

stagel = c("SD", "rep”, "SD", "rep", "SD", "P1", "P2", "P3", "P3", "P3",
"sL™, "sL™, "sL", "sL", "SL", "SL", "mat"”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm", "Sm",
"mat”, "mat”, "mat", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA,
"XSm", "D", "XSm", "Sm", NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA,
"XSm", "XSm", "XSm", "XSm", NA, NA),

givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),

uP2u7 ”P3”, HSLH,
"SD", "P1”),
"SL", "SL", "SL”,

NA, "XSm”, "XSm”, "XSm", "XSm", "XSm",

NA, “XSm", "XSm", "XSm", ”XSm“, “XSm",

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),

type = c(1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 3, 3),

type_t12 = c(1, 2, 1, 2, 1, 1, 1, 1, 1 1,1,1, 1,1, 1,1, 1),

’ 17
stageframe = cypframe_raw, historical = TRUE)
cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,

year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),

size = c("size3added”, "size2added", "sizeladded"),

rleslie

supplement = cypsupp3r, yearcol = "year2", patchcol = "patchid”,
indivcol = "individ")
rleslie Create Raw Leslie (Age-based) Matrix Projection Model

rleslie 229

Description

Function rleslie() returns raw Leslie MPMs, including the associated component transition and
fecundity matrices, a data frame describing the ages used, and a data frame describing the popula-
tion, patch, and occasion time associated with each matrix.

Usage

rleslie(
data,
start_age = NA,
last_age = NA,
continue = TRUE,
fecage_min = NA,
fecage_max = NA,

alive = c("alive3”, "alive2", "alivel”),
repst = c("repstatus3”, "repstatus2”, "repstatusl”),
fec = c("feca3”, "feca2", "fecal”),
agecol = "obsage"”,

year = "all”,

supplement = NULL,

pop = NULL,

patch = NULL,

yearcol = NULL,

popcol = NULL,

patchcol = NULL,

indivcol = NULL,

censor = FALSE,

censorcol = NULL,
censorkeep = 0,
fectime = 2,

fecmod = 1,
prebreeding = TRUE,
reduce = FALSE,
simple = FALSE,
err_check = FALSE,
sparse_output = FALSE

)
Arguments

data A vertical demographic data frame, with variables corresponding to the naming
conventions in functions verticalize3() and historicalize3(). Alterna-
tively, a list of bootstrapped data of class hfv_list.

start_age The age from which to start the matrix. Defaults to NA, age 1 is used if prebreeding
= TRUE, and age 0 is used if prebreeding = FALSE.

last_age The final age to use in the matrix. Defaults to NA, in which case the highest age

in the dataset is used.

continue

fecage_min

fecage_max

alive

repst

fec

agecol

year

supplement

pop

patch

yearcol

popcol

patchcol
indivcol

censor

censorcol

rleslie

A logical value designating whether to allow continued survival of individuals
past the final age noted in the stageframe, using the demographic characteristics
of the final age. Defaults to TRUE.

The minimum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed starting in the minimum
age observed in the dataset.

The maximum age at which reproduction is possible. Defaults to NA, which is
interpreted to mean that fecundity should be assessed until the final observed
age.

A vector of names of binomial variables corresponding to status as alive (1) or
dead (@) in occasions #+1 ans ¢, respectively.

A vector of names of variables coding reproductive status in occasions #+1 and
t, respectively. Defaults to c("repstatus3”, "repstatus2”).

A vector of names of variables coding fecundity in occasions #+1 and ¢, respec-
tively. Defaults to c("feca3"”, "feca2").

The name or column number of the variable coding for age in data. Defaults to
"obsage”.

A variable corresponding to observation occasion, or a set of such values, given
in values associated with the year term used in vital rate model development.
Can also equal "all”, in which case matrices will be estimated for all occasion
times. Defaults to "all”.

An optional data frame of class lefkoSD that provides supplemental data that
should be incorporated into the MPM. Three kinds of data may be integrated
this way: transitions to be estimated via the use of proxy transitions, transition
overwrites from the literature or supplemental studies, and transition multipli-
ers for survival and fecundity. This data frame should be produced using the
supplemental () function.

A variable designating which populations will have matrices estimated. Should
be set to specific population names, or to "all” if all populations should have
matrices estimated.

A variable designating which patches or subpopulations will have matrices esti-
mated. Should be set to specific patch names, or to "all” if matrices should be
estimated for all patches. Defaults to "all”.

The variable name or column number corresponding to occasion ¢ in the dataset.

The variable name or column number corresponding to the identity of the popu-
lation.

The variable name or column number corresponding to patch in the dataset.
The variable name or column number coding individual identity.

If TRUE, then data will be removed according to the variable set in censorcol,
such that only data with censor values equal to censorkeep will remain. De-
faults to FALSE.

The variable name or column number denoting the censor status. Only needed
if censor = TRUE.

rleslie

censorkeep

fectime

fecmod

prebreeding

reduce

simple

err_check

sparse_output

Value

231

The value of the censor variable denoting data elements to keep. Defaults to .

An integer indicating whether to estimate fecundity using the variable given for
fec in time 7 (2) or time 7+1 (3).

A scalar multiplier for fecundity. Defaults to 1. 0.

A logical value indicating whether the life history model is a pre-breeding model.
Defaults to TRUE.

A logical value denoting whether to remove ages associated with only zero tran-
sitions. These are removed only if the respective row and column sums in ALL
matrices estimated equal 0. Defaults to FALSE, and should generally not be used
in age-based MPMs.

A logical value indicating whether to produce A, U, and F matrices, or only the
latter two. Defaults to FALSE, in which case all three are output.

A logical value indicating whether to append extra information used in matrix
calculation within the output list. Defaults to FALSE.

A logical value indicating whether to output matrices in sparse format. Defaults
to FALSE, in which case all matrices are output in standard matrix format.

If the user inputs a standard hfv_data object in argument data, then this function will return an
object of class lefkoMat. If the user inputs an object of class hfv_list in argument data, then
the output will be an object of class lefkoMatList, in which each element is an object of class

lefkoMat.

A lefkoMat object is a list that holds one full matrix projection model and all of its metadata. The
structure has the following elements:

A

hstages

agestages

ahstages

labels
dataqgc

A list of full projection matrices in order of sorted populations, patches, and
occasions. All matrices output in the matrix class, or in the dgCMatrix class
from the Matrix package if sparse.

A list of survival transition matrices sorted as in A. All matrices output in the
matrix class, or in the dgCMatrix class from the Matrix package if sparse.

A list of fecundity matrices sorted as in A. All matrices output in the matrix
class, or in the dgCMatrix class from the Matrix package if sparse.

A data frame matrix showing the pairing of ahistorical stages used to create
historical stage pairs. Set to NA for ahistorical matrices.

A data frame showing age-stage pairs. In this function, it is set to NA. Only used
in output to function aflefko2().

A data frame detailing the characteristics of associated ahistorical stages, in the
form of a modified stageframe that includes status as an entry stage through
reproduction.

A data frame giving the population, patch, and year of each matrix in order.

A vector showing the numbers of individuals and rows in the vertical dataset
used as input.

232

matrixqc

modelqc

Notes

rleslie

A short vector describing the number of non-zero elements in U and F matrices,
and the number of annual matrices.

This is the gc portion of the modelsuite input in function-based MPMs. Empty
in this function.

In order to accomodate survival to time #+1 in the final year of a study, the maximum age assessed
if no input last_age is provided is one time step past the final described age.

Users may at times wish to estimate MPMs using a dataset incorporating multiple patches or sub-
populations. Should the aim of analysis be a general MPM that does not distinguish these patches
or subpopulations, the patchcol variable should be left to NA, which is the default. Otherwise the
variable identifying patch needs to be named.

Input options including multiple variable names must be entered in the order of variables in occasion
t+1 and 7. Rearranging the order WILL lead to erroneous calculations, and may lead to fatal errors.

See Also

mpm_create()
flefko3()
flefko2()
aflefko2()
arlefko2()
fleslie()
rlefko3()
rlefko2()

Examples

data(cypdata)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,

patchidcol =
"Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol =
age_offset =

sizeacol =

"patch”, individcol = "plantid”, blocksize = 4,

"Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",

3, NAas® = TRUE, NRasRep = TRUE)

cyp_rl <- rleslie(data = cypraw_v1, start_age = 0, last_age = 4,
continue = TRUE, fecage_min = 3, year = "all”, pop = NA, patch = "all",
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

sensitivity3 233

sensitivity3 Estimate Sensitivity of Population Growth Rate to Matrix Elements

Description

sensitivity3() is a generic function that returns the sensitivity of the population growth rate to
the elements of the matrices in a matrix population model. Currently, this function estimates both
deterministic and stochastic sensitivities, where the growth rate is A in the former case and the log
of the stochastic A in the latter case. This function is made to handle very large and sparse matrices
supplied as lefkoMat objects, as lists of matrices, and as individual matrices.

Usage
sensitivity3(mats, ...)
Arguments
mats A lefkoMat object, or population projection matrix, for which the stable stage
distribution is desired.
Other parameters
Value

The value returned depends on the class of the mats argument.

See Also

sensitivity3.lefkoMat()
sensitivity3.matrix()
sensitivity3.dgCMatrix()
sensitivity3.list()

Examples
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, o, o0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, Q)
propvector <- c(1, 0, 0, 0, 0, 0, 0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,

234 sensitivity3.dgCMatrix

repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")

sensitivity3(ehrlen3)

sensitivity3.dgCMatrix
Estimate Sensitivity of Population Growth Rate of a Single Matrix

Description

sensitivity3.dgCMatrix() returns the sensitivities of A to elements of a single, sparse matrix.
Because this handles only one matrix, sensitivities are inherently deterministic and based on the
dominant eigen value as the best metric of the population growth rate.

Usage
S3 method for class 'dgCMatrix'
sensitivity3(mats, sparse = "auto”, ...)
Arguments

mats An object of class dgCMatrix.

sensitivity3.dgCMatrix

sparse

Value

235

A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

Other parameters.

This function returns a single deterministic sensitivity matrix.

Notes

All sensitivity matrix outputs from this function are in standard matrix format.

See Also

sensitivity3()

sensitivity3.lefkoMat()

sensitivity3.list()

sensitivity3.matrix()

sensitivity3.lefkoMatList()

Examples

data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0,
obsvector <- c(0,
matvector <- c(0,
immvector <- c(1,

propvector <- c(1
indataset <- c(0,

» 0)
» 0)
» D
, 6,0,0, 0
, 0,0, 0,0, 0,0
1, 1,1,1,1, 1

’ ’

0, 0, 0, 0, 1
1, 1,1, 1,1
0, 1,1, 1, 1
1, 0, 0, 0, 0

binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes
repstatus = repvector, obsstatus
immvector, indataset = indataset, binhalfwidth = binvec,

immstatus

sizevector, stagenames = stagevector,
obsvector, matstatus = matvector,

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize

4, firstyear

1988,
9,

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign
censorcol = "Missing1988"”, censorkeep = NA, censor

lathframe, stagesize
TRUE)

"sizea",

lathsupp3 <- supplemental(stage3 = c(”"Sd”, "Sd”, "Sdl”, "sdl”, "sd”, "Sdl”, "mat"),
stage2 = c("Sd", "sd". "sd". "sd”. "rep". "rep". "Sdl"),

236 sensitivity3.lefkoMat

stagel = c("Ssd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_ti2 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2", "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ"”, sparse_output = TRUE)

sensitivity3(ehrlen3$AL[1]])

sensitivity3.lefkoMat Estimate Sensitivity of Population Growth Rate of a lefkoMat Object

Description

sensitivity3.lefkoMat () returns the sensitivities of population growth rate to elements of all $A
matrices in an object of class lefkoMat. If deterministic, then)\ is taken as the population growth
rate. If stochastic, then the log of stochastic A, or the log stochastic growth rate, is taken as the
population growth rate. This function can handle large and sparse matrices, and so can be used with
large historical matrices, IPMs, age x stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'lefkoMat'
sensitivity3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

sparse = "auto”,

append_mats = FALSE,

)
Arguments
mats An object of class lefkoMat.
stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) sensitivity analysis. Defaults to FALSE.
times The number of occasions to project forward in stochastic simulation. Defaults

to 10000.

sensitivity3.lefkoMat 237

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed in stochastic projection.

sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

append_mats A logical value indicating whether to include the original A, U, and F matrices
in the output lefkoSens object.
Other parameters.

Value

This function returns an object of class lefkoSens, which is a list of 8 elements. The first,
h_sensmats, is a list of historical sensitivity matrices (NULL if an ahMPM is used as input). The
second, ah_elasmats, is a list of either ahistorical sensitivity matrices if an ahMPM is used as
input, or, if an hMPM is used as input, then the result is a list of ahistorical matrices based on
the equivalent historical dependencies assumed in the input historical matrices. The third element,
hstages, is a data frame showing historical stage pairs (NULL if an ahMPM used as input). The
fourth element, agestages, show the order of age-stage combinations, if age-by-stage MPMs have
been supplied. The fifth element, ahstages, is a data frame showing the order of ahistorical stages.
The last 3 elements are the A, U, and F portions of the input.

Notes

All sensitivity matrix outputs from this function are in standard matrix format.

Deterministic sensitivities are estimated as eqn. 9.14 in Caswell (2001, Matrix Population Mod-
els). Stochastic sensitivities are estimated as eqn. 14.97 in Caswell (2001). Note that stochastic
sensitivities are of the log of the stochastic \.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights and steps arguments are now deprecated. Instead, please use the tweights
and times arguments.

See Also

sensitivity3()
sensitivity3.matrix()
sensitivity3.dgCMatrix()
sensitivity3.list()
sensitivity3.lefkoMatList()

sensitivity3.lefkoMatList

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd”, "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, @, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 9, Q)

u® N
v® N
~.® -
~.® -
S
©
.

propvector <- c(1,
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"”), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")

sensitivity3(ehrlen3, stochastic = TRUE)

sensitivity3.lefkoMatList

Estimate Sensitivity of Population Growth Rate of a lefkoMatList Ob-
Jject

sensitivity3.lefkoMatList 239

Description

sensitivity3.lefkoMatList() returns the sensitivities of population growth rate to elements of
all $A matrices in all 1efkoMat objects in a list of class lefkoMatList. If deterministic, then A is
taken as the population growth rate. If stochastic, then the log of stochastic A, or the log stochastic
growth rate, is taken as the population growth rate. This function can handle large and sparse
matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as well as
smaller ahistorical matrices.

Usage

S3 method for class 'lefkoMatList'
sensitivity3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,

sparse = "auto",

append_mats = FALSE,

)
Arguments

mats An object of class lefkoMatList.

stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) sensitivity analysis. Defaults to FALSE.

times The number of occasions to project forward in stochastic simulation. Defaults
to 10000.

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed in stochastic projection.

sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense
matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

append_mats A logical value indicating whether to include the original A, U, and F matrices

in the output lefkoSens object.

Other parameters.

240 sensitivity3.lefkoMatList

Value

This function returns a list with two elements. The first is an object of class lefkoSens that contains
the mean sensitivity matrices of the bootstrapped sensitivity matrices. The second is a list containing
lefkoSens objects giving the sensitivity matrices of all bootstrapped matrices.

Within these lists are objects of class lefkoSens, which are comprised of lists of 8 elements. The
first, h_sensmats, is a list of historical sensitivity matrices (NULL if an ahMPM is used as input).
The second, ah_elasmats, is a list of either ahistorical sensitivity matrices if an ahMPM is used
as input, or, if an hMPM is used as input, then the result is a list of ahistorical matrices based on
the equivalent historical dependencies assumed in the input historical matrices. The third element,
hstages, is a data frame showing historical stage pairs (NULL if an ahMPM used as input). The
fourth element, agestages, show the order of age-stage combinations, if age-by-stage MPMs have
been supplied. The fifth element, ahstages, is a data frame showing the order of ahistorical stages.
The last 3 elements are the A, U, and F portions of the input.

Notes

All sensitivity matrix outputs from this function are in standard matrix format.

Deterministic sensitivities are estimated as eqn. 9.14 in Caswell (2001, Matrix Population Mod-
els). Stochastic sensitivities are estimated as eqn. 14.97 in Caswell (2001). Note that stochastic
sensitivities are of the log of the stochastic \.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights and steps arguments are now deprecated. Instead, please use the tweights
and times arguments.

See Also
sensitivity3()
sensitivity3.lefkoMat()
sensitivity3.matrix()
sensitivity3.dgCMatrix()
sensitivity3.list()

Examples
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, @, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, Q)

propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)

sensitivity3.list 241

binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathvert_boot <- bootstrap3(lathvert, reps = 3)

lathsupp3 <- supplemental(stage3 = c("Sd”, "sd”, "sdl”, "sdl”, "sd”, "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3_boot <- rlefko3(data = lathvert_boot, stageframe = lathframe,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2"”, indivcol = "individ")

sensitivity3(ehrlen3_boot, stochastic = TRUE)

sensitivity3.list Estimate Sensitivity of Population Growth Rate of a List of Matrices

Description

sensitivity3.1list() returns the sensitivities of population growth rate to elements of matrices
supplied in a list. The sensitivity analysis can be deterministic or stochastic, but if the latter then
at least two A matrices must be included in the list. This function can handle large and sparse
matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as well as
smaller ahistorical matrices.

Usage

S3 method for class 'list'
sensitivity3(
mats,

242 sensitivity3.list
stochastic = FALSE,
times = 10000,
tweights = NA,
historical = FALSE,
seed = NA,
sparse = "auto",
append_mats = FALSE,
)
Arguments
mats An object of class matrix.
stochastic A logical value determining whether to conduct a deterministic (FALSE) or
stochastic (TRUE) sensitivity analysis. Defaults to FALSE.
times The number of occasions to project forward in stochastic simulation. Defaults
to 10,000.
tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.
historical A logical value indicating whether matrices are historical. Defaults to FALSE.
seed A number to use as a random number seed in stochastic projection.
sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense

append_mats

Value

matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

A logical value indicating whether to include the original matrices input as ob-
ject mats in the output lefkoSense object. Defaults to FALSE.

Other parameters.

This function returns an object of class lefkoSens, which is a list of 8 elements. The first,
h_sensmats, is a list of historical sensitivity matrices (NULL if an ahMPM is used as input). The
second, ah_elasmats, is a list of ahistorical sensitivity matrices if an ahMPM is used as input (NULL
if an hMPM is used as input). The third element, hstages, the fourth element, agestages, and the
fifth element, ahstages, are NULL. The last 3 elements include the original A matrices supplied (as
the A element), followed by NULLs for the U and F elements.

Notes

All sensitivity matrix outputs from this function are in standard matrix format.

sensitivity3.list 243

Deterministic sensitivities are estimated as eqn. 9.14 in Caswell (2001, Matrix Population Mod-
els). Stochastic sensitivities are estimated as eqn. 14.97 in Caswell (2001). Note that stochastic
sensitivities are with regard to the log of the stochastic .

Currently, this function does not estimate equivalent ahistorical stochastic sensitivities for input
historical matrices, due to the lack of guidance input on the order of stages (guidance is provided
within lefkoMat objects).

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

The time_weights and steps arguments are now deprecated. Instead, please use the tweights
and times arguments.

See Also
sensitivity3()
sensitivity3.lefkoMat()
sensitivity3.matrix()
sensitivity3.dgCMatrix()
sensitivity3.lefkoMatList()

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(9, o, o0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, @, 0)

propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988"”, stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

988,

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

244

sensitivity3.list

stage2 = c("sd"”, "sd", "sd", "Sd", "rep"”, "rep”, "Sdl"),

stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

sensitivity3(ehrlen3$A)

Cypripedium example
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 9, @, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, 0, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",

"XSm", "Sm", "SD", "P1"),

stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),

givenrate = c(0.10, 0.20, 0.20, 0.20, .25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),

type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),

stageframe = cypframe_raw, historical = FALSE)

I =

sensitivity3.matrix 245

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

sensitivity3(cypmatrix2r$A)

sensitivity3.matrix Estimate Sensitivity of Population Growth Rate of a Single Matrix

Description

sensitivity3.matrix() returns the sensitivities of \ to elements of a single matrix. Because this
handles only one matrix, the sensitivities are inherently deterministic and based on the dominant
eigen value as the best metric of the population growth rate. This function can handle large and
sparse matrices, and so can be used with large historical matrices, IPMs, age x stage matrices, as
well as smaller ahistorical matrices.

Usage
S3 method for class 'matrix’
sensitivity3(mats, sparse = "auto”, ...)
Arguments
mats An object of class matrix.
sparse A text string indicating whether to use sparse matrix encoding ("yes") or dense

matrix encoding ("no"). Defaults to "auto”, in which case sparse matrix en-
coding is used with square matrices with at least 50 rows and no more than 50%
of elements with values greater than zero.

Other parameters.

Value

This function returns a single deterministic sensitivity matrix.

Notes

All sensitivity matrix outputs from this function are in standard matrix format.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

246

See Also

sensitivity3()
sensitivity3.lefkoMat()
sensitivity3.dgCMatrix()
sensitivity3.list()
sensitivity3.lefkoMatList()

Examples
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, @)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9

sensitivity3.matrix

juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",

fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize =
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

"sizea",

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stage2 = c("sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),

stagel = c("Sd", "rep”, "Sd”, "rep", "npr"”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",

stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
sensitivity3(ehrlen3mean$A[[1]1])

sf create 247

sf_create Create Stageframe for Population Matrix Projection Analysis

Description

Function sf_create() returns a data frame describing each ahistorical life history stage in the
life history model. This data frame can be used as input into MPM creation functions including
flefko3(), flefko2(), aflefko2(), rlefko3(), rlefko2(), and arlefko2(), in which it deter-
mines how each stage is treated during matrix estimation.

Usage

sf_create(
sizes,
stagenames = NULL,
sizesb = NULL,
sizesc = NULL,
repstatus = NULL,
obsstatus = NULL,
propstatus = NULL,
matstatus = NULL,
immstatus = NULL,
minage = NULL,
maxage = NULL,
indataset = NULL,
sizemin = NULL,
sizebmin = NULL,
sizecmin = NULL,
sizemax = NULL,
sizebmax = NULL,
sizecmax = NULL,
binhalfwidth = NULL,

binhalfwidthb = NULL,
binhalfwidthc = NULL,
group = NULL,

comments = NULL,
roundsize = 5L,
roundsizeb = 5L,
roundsizec = 5L,
ipmbins = 100L,
ipmbinsb = NA_integer_,
ipmbinsc = NA_integer_

Arguments

sizes A numeric vector of the typical or representative size of each life history stage.
If making function-based MPMs, then this may be a vector composed of the

248

stagenames

sizesb

sizesc

repstatus

obsstatus

propstatus

matstatus

immstatus

minage

maxage

indataset

sizemin

sizebmin

sizecmin

sizemax

st _create

midpoints of each size bin, or simply of sizes characteristic of the size bins. If
denoting the boundary of an automated size classification group, then should
denote the absolute minimum size of that group, or the absolute size of that
group (see Notes).

A vector of stage names, in the same order as elements in sizes. Can also be set
to ipm for automated size classification (see Notes section).

An optional numeric vector for a second size metric for each life history stage.
Only to be used if stages are defined by at least two size metrics in all cases.
Same issues apply as in sizes.

An optional numeric vector for a third size metric for each life history stage.
Only to be used if stages are defined by at least three size metrics in all cases.
Same issues apply as in sizes.

A vector denoting the binomial reproductive status of each life history stage.
Defaults to 1.

A vector denoting the binomial observation status of each life history stage.
Defaults to 1, but may be changed for unobservable stages.

A vector denoting whether each life history stage is a propagule. Such stages
are generally only used in fecundity estimation. Defaults to 0.

A vector denoting whether each stage is mature. Must be composed of binomial
values if given. Defaults to 1 for all stages defined in sizes.

A vector denoting whether each stage is immature. Must be composed of bino-
mial values if given. Defaults to the complement of vector matstatus.

An optional vector denoting the minimum age at which a stage can occur. Only
used in age X stage matrix development. Defaults to NA.

An optional vector denoting the maximum age at which a stage should occur.
Only used in age x stage matrix development. Defaults to NA.

A vector designating which stages are found within the dataset. While rlefko2()
and rlefko3() can use all stages in the input dataset, flefko3() and flefko2()

can only handle size-classified stages with non-overlapping combinations of size

and status variables. Stages that do not actually exist within the dataset should

be marked as @ in this vector.

A vector giving the absolute minimum values corresponding to each size in the
sizes vector. Requires associated values for sizemax if used. Only required if
not using binhalfwidth.

A vector giving the absolute minimum values corresponding to each size in the
sizesb vector. Requires associated values for sizebmax if used. Only required
if not using binhalfwidthb.

A vector giving the absolute minimum values corresponding to each size in the
sizesc vector. Requires associated values for sizecmax if used. Only required
if not using binhalfwidthc.

A vector giving the absolute maximum values corresponding to each size in the
sizes vector. Requires associated values for sizemin if used. Only required if
not using binhalfwidth.

sf create

sizebmax

sizecmax

binhalfwidth

binhalfwidthb

binhalfwidthc

group

comments

roundsize

roundsizeb

roundsizec

ipmbins

ipmbinsb

ipmbinsc

249

A vector giving the absolute maximum values corresponding to each size in the
sizesb vector. Requires associated values for sizebmin if used. Only required
if not using binhalfwidthb.

A vector giving the absolute maximum values corresponding to each size in the
sizesc vector. Requires associated values for sizecmin if used. Only required
if not using binhalfwidthc.

A numeric vector giving the half-width of size bins. Required if sizemin and
sizemax are not used. Defaults to @.5 for all sizes.

A numeric vector giving the half-width of size bins used for the optional second
size metric. Required if sizebmin and sizebmax are not used but two or three
size classes are used. Defaults to 0.5 for all sizes.

A numeric vector giving the half-width of size bins used for the optional third
size metric. Required if sizecmin and sizecmax are not used but three size
classes are used. Defaults to .5 for all sizes.

An integer vector providing information on each respective stage’s size classifi-
cation group. If used, then function-based MPM creation functions flefko2(),
flefko3(), and aflefko2() will estimate transitions only within these groups
and for allowed cross-group transitions noted within the supplement table. De-
faults to @.

An optional vector of text entries holding useful text descriptions of all stages.

This parameter sets the precision of size classification, and equals the number
of digits used in rounding sizes. Defaults to 5.

This parameter sets the precision of size classification in the optional second
size metric, and equals the number of digits used in rounding sizes. Defaults to
5.

This parameter sets the precision of size classification in the optional third size
metric, and equals the number of digits used in rounding sizes. Defaults to 5.

An integer giving the number of size bins to create using the primary size classi-
fication variable. This number is in addition to any stages that are not size clas-
sified. Defaults to 100, and numbers greater than this yield a warning about the
loss of statistical power and increasing chance of matrix over-parameterization
resulting from increasing numbers of stages.

An optional integer giving the number of size bins to create using the secondary
size classification variable. This number is in addition to any stages that are not
size classified, as well as in addition to any automated size classification using
the primary and tertiary size variables. Defaults to NA, and must be set to a
positive integer for automated size classification to progress.

An optional integer giving the number of size bins to create using the tertiary
size classification variable. This number is in addition to any stages that are not
size classified, as well as in addition to any automated size classification using
the primary and secondary size variables. Defaults to NA, and must be set to a
positive integer for automated size classification to progress.

250 st _create

Value

A data frame of class stageframe, which includes information on the stage name, size, reproductive
status, observation status, propagule status, immaturity status, maturity status, presence within the
core dataset, stage group classification, raw bin half-width, and the minimum, center, and maximum
of each size bin, as well as its width. If minimum and maximum ages were specified, then these are
also included. Also includes an empty string variable that can be used to describe stages meaning-
fully. This object can be used as the stageframe input for flefko3() flefko2(), rlefko3(), and
rlefko2().

Variables in this data frame include the following:

stage The unique names of the stages to be analyzed.

size The typical or representative size at which each stage occurs.

size_b Size at which each stage occurs in terms of a second size variable, if one exists.
size_c Size at which each stage occurs in terms of a third size variable, if one exists.
min_age The minimum age at which the stage may occur.

max_age The maximum age at which the stage may occur.

repstatus A binomial variable showing whether each stage is reproductive.

obsstatus A binomial variable showing whether each stage is observable.

propstatus A binomial variable showing whether each stage is a propagule.

immstatus A binomial variable showing whether each stage can occur as immature.
matstatus A binomial variable showing whether each stage occurs in maturity.
indataset A binomial variable describing whether each stage occurs in the input dataset.

binhalfwidth_raw
The half-width of the size bin, as input.

sizebin_min The minimum size at which the stage may occur.
sizebin_max The maximum size at which the stage may occur.
sizebin_center The midpoint of the size bin at which the stage may occur.

sizebin_width The width of the size bin corresponding to the stage.
binhalfwidthb_raw
The half-width of the size bin of a second size variable, as input.
sizebinb_min The minimum size at which the stage may occur.
sizebinb_max The maximum size at which the stage may occur.
sizebinb_center
The midpoint of the size bin at which the stage may occur, in terms of a second
size variable.

sizebinb_width The width of the size bin corresponding to the stage, in terms of a second size
variable.
binhalfwidthc_raw

The half-width of the size bin of a third size variable, as input.
sizebinc_min The minimum size at which the stage may occur, in terms of a third size variable.

sizebinc_max The maximum size at which the stage may occur, in terms of a third size variable.

sf create 251

sizebinc_center
The midpoint of the size bin at which the stage may occur, in terms of a third
size variable.

sizebinc_width The width of the size bin corresponding to the stage, in terms of a third size

variable.
group An integer denoting the size classification group that the stage falls within.
comments A text field for stage descriptions.

Notes

Vectors used to create a stageframe may not mix NA values with non-NA values.

If an IPM or function-based matrix with automated size classification is desired, then two stages that
occur within the dataset and represent the lower and upper size limits of the IPM must be marked
with ipmin the stagenames vector. These stages should have all characteristics other than size equal,
and the size input for whichever size will be classified automatically must include the minimum in
one stage and the maximum in the other. The actual characteristics of the first stage encountered in
the inputs will be used as the template for the creation of these sizes. Note that ipm refers to size
classification with the primary size variable. To automate size classification with the secondary size
variable, use ipmb, and to automate size classification with the tertiary size variable, use ipmc. To
nest automated size classifications, use ipmab for the primary and secondary size variables, ipmac
for the primary and tertiary size variables, ipmbc for the secondary and tertiary size variables, and
ipmabc for all three size variables. The primary size variable can also be set with ipma.

If two or more groups of stages, each with its own characteristics, are to be developed for an IPM
or function-based MPM, then an even number of stages with two stages marking the minimum and
maximum size of each group should be marked with the same code as given above, with all other
characteristics equal within each group.

Stage classification groups set with the group variable create zones within function-based matrices
in which survival transitions are estimated. These groups should not be set if transitions are possible
between all stages regardless of group. To denote specific transitions as estimable between stage
groups, use the supplemental () function.

If importing an IPM rather than building one with lefko3: Using the vrm_import approach to
building function-based MPMs with provided linear model slope coefficients requires careful at-
tention to the stageframe. Although no hfv data frame needs to be entered in this instance, stages
for which vital rates are to be estimated via linear models parameterized with coefficients provided
via function vrm_import () should be marked as occurring within the dataset. Stages for which the
provided coefficients should not be used should be marked as not occurring within the dataset.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)

stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")
repvector <- c(0, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1,1, 1, @)
matvector <- c(0, 1, 1, 1, 1, 1)
immvector <- c(1, 0, 0, 0, 0,)

’ ’ ’

9,
1,
9, 1,1,
1, 0,

’ ’

252 st _distrib

propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”"SD”, "P1", "P2", "P3”, "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLeg")

repvector <- c(0, @, 0, 0, 0, @, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

sf_distrib Test Overdispersion and Zero Inflation in Size and Fecundity Distribu-
tions

Description

Function sf_distrib takes a historically formatted vertical data as input and tests whether size
and fecundity data are dispersed according to a Poisson distribution (where mean = variance), and
whether the number of Os exceeds expectations. This function is now deprecated in favor of function
hfv_qgc().

Usage
sf_distrib(
data,
sizea = NA,
sizeb = NA,
sizec = NA,
obs3 = NA,

fec = NA,

st _distrib

repst =
zisizea
zisizeb
zisizec
zifec =
fectime
show.siz
show. fec

Arguments

data

sizea

sizeb

sizec

obs3

fec

repst

zisizea

zisizeb

zisizec

zifec

fectime

show.size

show. fec

253

NA,
= TRUE,

= TRUE,

= TRUE,
TRUE,
=2,

e = TRUE,
= TRUE

A historical vertical data file, which is a data frame of class hfvdata.

A vector holding the name or column number of the variables corresponding to
primary size in occasions 7+1 and ¢. Input only if sizea is to be tested.

A vector holding the name or column number of the variables corresponding to
secondary size in occasions #+1 and ¢. Input only if sizeb is to be tested.

A vector holding the name or column number of the variables corresponding to
tertiary size in occasions #+1 and 7. Input only if sizec is to be tested.

The name or column number of the variable corresponding to observation status
in occasion #+1. This should be used if observation status will be used as a vital
rate to absorb states of size = 0.

A vector holding the names or column numbers of the variables corresponding
to in occasions f+1 and t. Input only if fec is to be tested.

A vector holding the names or column numbers of the variables corresponding
to reproductive status in occasions #+1 and ¢. If not provided, then fecundity will
be tested without subsetting to only reproductive individuals.

A logical value indicating whether to conduct a test of zero inflation in primary
size. Defaults to TRUE.

A logical value indicating whether to conduct a test of zero inflation in secondary
size. Defaults to TRUE.

A logical value indicating whether to conduct a test of zero inflation in tertiary
size. Defaults to TRUE.

A logical value indicating whether to conduct a test of zero inflation in fecundity.
Defaults to TRUE.

An integer indicating whether to treat fecundity as occurring in time ¢ (2) or time
t+1 (3). Defaults to 2.

A logical value indicating whether to show the output for tests of size. Defaults
to TRUE.

A logical value indicating whether to show the output for tests of fecundity.
Defaults to TRUE.

254

Value

st _distrib

Produces text describing the degree and significance of difference from expected dispersion, and
the degree and significance of zero inflation. The tests are chi-squared score tests based on the
expectations of mean = variance, and Os as abundant as predicted by the value of lambda estimated

from the dataset. See van der Broek (1995) for more details.

Notes

This function subsets the data in the same way as modelsearch() before testing underlying dis-
tributions, making the output much more appropriate than a simple analysis of size and fecundity

variables in data.

The specific test used for overdispersion is a chi-squared test of the dispersion parameter estimated
using a generalized linear model predicting the response given size in occasion ¢, under a quasi-

Poisson distribution.

The specific test used for zero-inflation is the chi-squared test presented in van der Broek (1995).

Examples

data(lathyrus)

sizevector <- c(o0, 4.6, 0, 1, 2, 3, 4, 5,6, 7,8, 9,1, 2, 3, 4, 5,6, 7,8,

9

stagevector <- c("Sd", "Sdl1", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Szér", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(o, o, o, 0, 0, 9, 0, 0, 0, 0, @, 0, 1, 1, 1, 1, 1, 1, 1, 1
obsvector <- c(@, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1, 1,1
matvector <- c(0, @, 1, 1, 1, 1,1, 1, 1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1, 1)
immvector <- ¢(1, 1, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, @0, 0, @0, 0, @, @0, 0, @

propvector <- c(1, o, 0, o0, 0, o, 0, 0, @, 0, 0, 0, @0, 0, 0, 0, 0, @, 0, 0,

0)

indataset <- c(o, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1

binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 9.5, 0.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988"”, stageassign = lathframeln, stagesize = "sizea”,

censorcol = "Missing1988", censorkeep = NA, NAas@ = TRUE, censor = TRUE)

lathvertln$feca2 <- round(lathvertln$feca?2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)

st skeleton 255

sf_distrib(lathvertln, sizea = c("sizea3", "sizea2"), fec = c("feca3"”, "feca2"),
repst = c("repstatus3”, "repstatus2"”), zifec = FALSE)

sf_skeleton Create Skeleton Stageframe

Description

Function sf_skeleton() creates a skeleton stageframe object.

Usage

sf_skeleton(stages, standard = TRUE)

Arguments
stages The number of stages, as an integer.
standard A logical value indicating whether to create a standard stageframe object (TRUE,
the default), or a reassessed stageframe object as created by function mpm_create()
(FALSE).
Value

A data frame of class stageframe.

slambda3 Estimate Stochastic Population Growth Rate

Description

Function slambda3() estimates the stochastic population growth rate, a, defined as the long-term
arithmetic mean of the log population growth rate estimated per simulated occasion. This function
can handle lefkoMat objects, lefkoMatList objects, and lists of full A matrices as input.

Usage

slambda3(
mpm,
times = 10000L,
historical = FALSE,
tweights = NULL,
force_sparse = NULL

256 slambda3

Arguments

mpm A matrix projection model of class lefkoMat, a bootstrapped MPM object of
class lefkoMatList, or a simple list of full matrix projection matrices.

times Number of occasions to iterate. Defaults to 10000.

historical An optional logical value only used if object mpm is a list of matrices, rather than
a lefkoMat object. Defaults to FALSE for the former case, and overridden by
information supplied in the lefkoMat object for the latter case.

tweights An optional numeric vector or matrix denoting the probabilities of choosing

each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

force_sparse A text string indicating whether to force sparse matrix encoding ("yes") or not
("no") if the MPM is composed of simple matrices. Defaults to "auto”, in
which case sparse matrix encoding is used with simple square matrices with at
least 50 rows and no more than 50% of elements with values greater than zero.

Value

A data frame with the following variables:

replicate The bootstrapped replicate. Only provided if a lefkoMatList object is entered
in argument mpm.

pop The identity of the population.

patch The identity of the patch.

a Estimate of stochastic growth rate, estimated as the arithmetic mean of the log
population growth rate across simulated occasions.

var The estimated variance of a.

sd The standard deviation of a.

se The standard error of a.

Notes

The log stochastic population growth rate, a, is as given in equation 2 of Tuljapurkar, Horvitz, and
Pascarella 2003. This term is estimated via projection of randomly sampled matrices, similarly to
the procedure outlined in Box 7.4 of Morris and Doak (2002).

Stochastic growth rate is estimated both at the patch level and at the population level. Population
level estimates will be noted at the end of the data frame with 0 entries for patch designation.

Weightings given in tweights do not need to sum to 1. Final weightings used will be based on the
proportion per element of the sum of elements in the user-supplied vector.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

slambda3 257

Examples

data(cypdata)

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, @, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypraw_boot <- bootstrap3(cypraw_v1l, reps = 3)

cypsupp3r <- supplemental(stage3 = c("SD", "sb", "pP1", "P1", "P2", "P3", "SL",
"D", "XSm", "Sm"”, "D", "XSm", "Sm", "mat”, "mat”, "mat”, "SD", "P1"),
stage2 = c("sb", "sb", "sp", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"sLM, "sL", "D", "XSm", "Sm", "rep"”, "rep"),
stagel = c("SD", "rep”, "SD", "rep", "SD", "P1", "P2", "P3", "P3", "P3",
"sL™, "sL™, "sL", "sL", "sL", "SL", "mat"”, "mat"),
eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm", "Sm",
"mat”, "mat”, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm", "D", "XSm", "Sm", NA, NA),
eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", "XSm", "XSm",
"XSm", "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),
type = c(1, 1, 1, 1, 1,1, 1,1, 1, 1, 1,1, 1,1, 1, 1, 3, 3),
type_t12 = c(1, 2, 1, 2, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1),
stageframe = cypframe_raw, historical = TRUE)

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2",

258 stablestage3

patchcol = "patchid”, indivcol = "individ")
cypstoch <- slambda3(cypmatrix3r)

cypmatrix3r_boot <- rlefko3(data = cypraw_boot, stageframe = cypframe_raw,
year = "all”, patch = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added"”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2",
patchcol = "patchid”, indivcol = "individ")

cypstoch_boot <- slambda3(cypmatrix3r_boot)

stablestage3 Estimate Stable Stage Distribution

Description

stablestage3() is a generic function that returns the stable stage distribution for a population
projection matrix or set of matrices. This function is made to handle very large and sparse matri-
ces supplied as lefkoMat objects or as individual matrices, and can be used with large historical
matrices, [PMs, age x stage matrices, as well as ahistorical matrices.

Usage
stablestage3(mats, ...)
Arguments
mats A lefkoMat object, a population projection matrix, or a list of population pro-
jection matrices for which the stable stage distribution is desired.
Other parameters.
Value

The value returned depends on the class of the mats argument. See related functions for details.

See Also

stablestage3.lefkoMat ()
stablestage3.list()
stablestage3.matrix()
stablestage3.dgCMatrix ()

stablestage3

Examples

Lathyrus deterministic example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, o0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)

propvector <- c(1, @0, 0, 0, 0, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear =

1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",

censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "Sdl1", "Sd", "Sdl", "mat"),

stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep"”, "Sdl"),

stagel = c("Sd", "rep”, "Sd", "rep", "npr"”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",

stages = c("stage3"”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
stablestage3(ehrlen3mean)

Cypripedium stochastic example
data(cypdata)

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)

stagevector <- c(”SD", "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",

HXLgII)
repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)

259

260 stablestage3.dgCMatrix

matvector <- c(@, 0, o0, 0, 0,
immvector <- c(o, 1, 1, 1, 1, 0, O,
propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, @, @, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
Stagez = C(HSD“, IISDII, IIP1 II, IIPZII, NP3II, IISLII’ 1ISLII’ IISLII’ Ilrepll,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, .20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel"),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

stablestage3(cypmatrix2r, stochastic = TRUE)

stablestage3.dgCMatrix
Estimate Stable Stage Distribution of a Single Population Projection
Matrix

Description

stablestage3.dgCMatrix () returns the stable stage distribution for a sparse population projection
matrix.

stablestage3.dgCMatrix

Usage
S3 method for class 'dgCMatrix'
stablestage3(mats, ...)

Arguments

mats A population projection matrix of class dgCMatrix.

Other parameters.

Value

This function returns the stable stage distribution corresponding to the input matrix.

See Also
stablestage3()
stablestage3.lefkoMat ()
stablestage3.list()
stablestage3.matrix()
stablestage3.lefkoMatList ()

Examples

data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, o0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, @, 0)

propvector <- c(1, @, 0, 0, 0, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT", individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”Sd”, "sd”, "Sdl”, "sdl”, "sd”, "sdl”, "mat"),
stage2 = c("Sd", "sd". "sd". "sd”. "rep". "rep", "Sdl"),

261

262 stablestage3.lefkoMat

eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

Stage1 - C(”Sd”, urepn’ "Sd”, nrepu’ nnprn nnprn’ ”Sd”),

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2", "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ"”, sparse_output = TRUE)

stablestage3(ehrlen3$AL[1]])

stablestage3.lefkoMat Estimate Stable Stage Distribution of Matrices in lefkoMat Object

Description

stablestage3.lefkoMat () returns the deterministic stable stage distributions of all A matrices in
an object of class lefkoMat, as well as the long-run projected mean stage distribution in stochastic
analysis. This function can handle large and sparse matrices, and so can be used with large historical
matrices, [PMs, age x stage matrices, as well as ahistorical matrices.

Usage

S3 method for class 'lefkoMat'
stablestage3(

mats,

stochastic = FALSE,

times = 10000,

tweights = NA,

seed = NA,
force_sparse = "auto”,
)
Arguments
mats An object of class lefkoMat.
stochastic A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.
times An integer variable indicating number of occasions to project if using stochastic

analysis. Defaults to 10000.

stablestage3.lefkoMat 263

tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

seed A number to use as a random number seed in stochastic projection.

force_sparse A text string indicating whether to use sparse matrix encoding ("yes") if stan-
dard matrices are provided. Defaults to "auto”, in which case sparse matrix
encoding is used with square matrices with at least 50 rows and no more than
50% of elements with values greater than zero.

Other parameters.

Value

This function returns the stable stage distributions (and long-run mean stage distributions in stochas-
tic analysis) corresponding to the matrices in a 1efkoMat object.

The output depends on whether the 1efkoMat object used as input is ahistorical or historical, and
whether the analysis is deterministic or stochastic. If deterministic and ahistorical, then a single data
frame is output, which includes the number of the matrix within the A element of the input 1lefkoMat
object, followed by the stage id (numeric and assigned through sf_create()), the stage name, and
the estimated proportion of the stable stage distribution (ss_prop). If stochastic and ahistorical,
then a single data frame is output starting with the number of the population-patch (matrix_set),
a string concatenating the names of the population and the patch (poppatch), the assigned stage
id number (stage_id), and the stage name (stage), and the long-run average stage distribution
(ss_prop).

If a historical matrix is used as input, then two data frames are output into a list object. The
hist element describes the historical stage-pair distribution, while the ahist element describes
the stage distribution. If deterministic, then hist contains a data frame including the matrix num-
ber (matrix), the numeric stage designations for stages in occasions ¢ and #-1, (stage_id_2 and
stage_id_1, respectively), followed by the respective stage names (stage_2 and stage_1), and
ending with the estimated stable stage-pair distribution. The associated ahist element is as before.
If stochastic, then the hist element contains a single data frame with the number of the population-
patch (matrix_set), a string concatenating the names of the population and the patch (poppatch),
the assigned stage id numbers in times ¢ and ¢-1 (stage_id_2 and stage_id_2, respectively), and
the associated stage names (stage_2 and stage_1, respectively), and the long-run average stage
distribution (ss_prop). The associated ahist element is as before in the ahistorical, stochastic case.

In addition to the data frames noted above, stochastic analysis will result in the additional output of
a list of matrices containing the actual projected stage distributions across all projected occasions,
in the order of population-patch combinations in the lefkoMat input.

Notes

In stochastic analysis, the projected mean distribution is the arithmetic mean across the final 1000
projected occasions if the simulation is at least 2000 projected occasions long. If between 500 and
2000 projected occasions long, then only the final 200 are used, and if fewer than 500 occasions are
used, then all are used. Note that because stage distributions in stochastic simulations can change

264

stablestage3.lefkoMat

greatly in the initial portion of the run, we encourage a minimum of 2000 projected occasions per
simulation, with 10000 preferred.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced

dense or sparse

matrix projection. This will most likely occur when matrices have between 30 and

300 rows and columns. Defaults work best when matrices are very small and dense, or very large

and sparse.

See Also

stablestage3()
stablestage3.list()
stablestage3.matrix()
stablestage3.dgCMatrix ()
stablestage3.lefkoMatList()

Examples

Lathyrus deterministic example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")

repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(@, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)
propvector <- c(1, @0, 0, 0, @, 0, 0)

indataset <- c(@, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus immvector, indataset = indataset, binhalfwidth = binvec,

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

"sizea",

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1"”, "Sdl1", "Sd", "Sdl1", "mat"),

stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

stablestage3.lefkoMat 265

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2", "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
stablestage3(ehrlen3mean)

Cypripedium stochastic example
data(cypdata)

sizevector <- c(0, 0, @, @, 0, @, 1, 2.5, 4.5, 8, 17.5)
stagevector <= c("SDY, "P17, "P2n. p3n. mSLM. mpn mysmr nsmr nugn mgh
IIXLgII)

repvector <- c(0, @, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(@, 0, 0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, 0, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(o, 0, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
Stagez = C(“SD“, IISDII, IIP1 II, VIPZII, IIP3II, IISLII’ IISLII’ IISLII’ Ilrepll,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1,1, 1,1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel"),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

266

stablestage3.lefkoMatList

stablestage3(cypmatrix2r, stochastic = TRUE)

stablestage3.lefkoMatList

Estimate Stable Stage Distribution of Matrices in lefkoMatList Object

Description

stablestage3.lefkoMatList() returns the deterministic stable stage distributions of all A matri-
ces in all objects of class lefkoMat stored within the entered lefkoMatList object, as well as the
long-run projected mean stage distribution in stochastic analysis. This function can handle large
and sparse matrices, and so can be used with large historical matrices, IPMs, age x stage matrices,
as well as ahistorical matrices.

Usage

S3 method for class 'lefkoMatList'

stablestage3(

mats,

stochastic

FALSE,

times = 10000,
tweights = NA,

seed = NA,

force_sparse

Arguments

mats

stochastic
times

tweights

seed

force_sparse

= "auto”,

An object of class lefkoMatList.

A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.

An integer variable indicating number of occasions to project if using stochastic
analysis. Defaults to 10000.

An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.

A number to use as a random number seed in stochastic projection.

A text string indicating whether to use sparse matrix encoding ("yes") if stan-
dard matrices are provided. Defaults to "auto”, in which case sparse matrix
encoding is used with square matrices with at least 50 rows and no more than
50% of elements with values greater than zero.

Other parameters.

stablestage3.lefkoMatList 267

Value

This function returns a list with two elements. The first is the mean stable stage distribution (and
long-run mean stage distributions from stochastic analysis), and the second is a list of stable stage
distributions (and long-run mean stage distributions from stochastic analysis) corresponding to the
lefkoMat objects in the original mats list.

The format of distributions in both cases depends on whether the 1efkoMat objects used as input
are ahistorical or historical, and whether the analysis is deterministic or stochastic. If determin-
istic and ahistorical, then a single data frame is output, which includes the number of the matrix
within the A element of the input lefkoMat object, followed by the stage id (numeric and assigned
through sf_create()), the stage name, and the estimated proportion of the stable stage distribution
(ss_prop). If stochastic and ahistorical, then a single data frame is output starting with the number
of the population-patch (matrix_set), a string concatenating the names of the population and the
patch (poppatch), the assigned stage id number (stage_id), and the stage name (stage), and the
long-run average stage distribution (ss_prop).

If historical matrices are used as input, then two data frames are output into a list object. The
hist element describes the historical stage-pair distribution, while the ahist element describes
the stage distribution. If deterministic, then hist contains a data frame including the matrix num-
ber (matrix), the numeric stage designations for stages in occasions ¢ and -1, (stage_id_2 and
stage_id_1, respectively), followed by the respective stage names (stage_2 and stage_1), and
ending with the estimated stable stage-pair distribution. The associated ahist element is as before.
If stochastic, then the hist element contains a single data frame with the number of the population-
patch (matrix_set), a string concatenating the names of the population and the patch (poppatch),
the assigned stage id numbers in times ¢ and ¢-1 (stage_id_2 and stage_id_2, respectively), and
the associated stage names (stage_2 and stage_1, respectively), and the long-run average stage
distribution (ss_prop). The associated ahist element is as before in the ahistorical, stochastic case.

In addition to the data frames noted above, stochastic analysis will result in the additional output of
a list of matrices containing the actual projected stage distributions across all projected occasions,
in the order of population-patch combinations in the lefkoMat input.

Notes

In stochastic analysis, the projected mean distribution is the arithmetic mean across the final 1000
projected occasions if the simulation is at least 2000 projected occasions long. If between 500 and
2000 projected occasions long, then only the final 200 are used, and if fewer than 500 occasions are
used, then all are used. Note that because stage distributions in stochastic simulations can change
greatly in the initial portion of the run, we encourage a minimum of 2000 projected occasions per
simulation, with 10000 preferred.

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

See Also

stablestage3()
stablestage3.list()
stablestage3.matrix()

268

stablestage3.lefkoMatList

stablestage3.dgCMatrix ()
stablestage3.lefkoMat ()

Examples

Lathyrus deterministic example
data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, o, o0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, @, 0)
propvector <- c(1, @0, 0, 0, 0, 0, 0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,

censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathvert_boot <- bootstrap3(lathvert, reps = 3)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl1”, "Sdl1”, "Sd", "Sdl", "mat"),

stage2 = c("sd”, "sd”, "Sd", "Sd", "rep", "rep”, "Sdl"),

stagel = c("Sd", "rep”, "Sd", "rep", "npr", "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),

stageframe = lathframe, historical = TRUE)

ehrlen3_boot <- rlefko3(data = lathvert_boot, stageframe = lathframe,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
supplement = lathsupp3, yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3_boot)
stablestage3(ehrlen3mean)

Cypripedium stochastic example
data(cypdata)

stablestage3.list 269

sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, @, @, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(e, 1, 1, 1, 1, 0, 0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, @, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypraw_v1_boot <- bootstrap3(cypraw_vl1, reps = 3)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
Ilrepll) s
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r_boot <- rlefko2(data = cypraw_vi1_boot, stageframe = cypframe_raw,
year = "all"” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2"”, patchcol = "patchid”, indivcol = "individ")

stablestage3(cypmatrix2r_boot, stochastic = TRUE)

stablestage3.list Estimate Stable Stage Distribution of a List of Projection Matrices

270

Description

stablestage3.list

stablestage3.1list() returns the stable stage distributions for stages in population projection ma-
trices arranged in a general list. The function makes no assumptions about whether the matrix is
ahistorical and simply provides stable stage distribution values corresponding to each row, meaning
that the overall stable stage distribution of basic life history stages in a historical matrix are not pro-
vided (the stablestage3.lefkoMat() historical estimates these on the basis of stage description
information provided in the lefkoMat object used as input in that function). This provided in the
handle large and sparse matrices, and so can be used with large historical matrices, IPMs, age x
stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'list'

stablestage3(
mats,

stochastic = FALSE,
times = 10000,

tweights = NA,
seed = NA,
force_sparse = "auto”,
)
Arguments
mats A list of population projection matrices, all in either class matrix or class
dgCMatrix.
stochastic A logical value indicating whether to use deterministic (FALSE) or stochastic
(TRUE) analysis. Defaults to FALSE.
times An integer variable indicating number of occasions to project if using stochastic
analysis. Defaults to 10000.
tweights An optional numeric vector or matrix denoting the probabilities of choosing
each matrix in a stochastic projection. If a matrix is input, then a first-order
Markovian environment is assumed, in which the probability of choosing a spe-
cific annual matrix depends on which annual matrix is currently chosen. If a
vector is input, then the choice of annual matrix is assumed to be independent
of the current matrix. Defaults to equal weighting among matrices.
seed A number to use as a random number seed in stochastic projection.

force_sparse

Value

A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

This function returns a list of vector data frames characterizing the stable stage distributions for
stages of each population projection matrix.

stablestage3.list 271

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

See Also

stablestage3()
stablestage3.lefkoMat ()
stablestage3.matrix()
stablestage3.dgCMatrix ()

Examples

data(lathyrus)

sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)

stagevector <- c("Sd", "Sdl1", "vSm", "Sm", "VLa", "Flo"”, "Dorm")
repvector <- c(0, 0, 0, 9, 0, 1
obsvector <- c(0, 1, 1, 1, 1, 1
matvector <- c(@, @, 1, 1, 1, 1, 1)
immvector <- c(1, 1, @, 0, 0, 0
propvector <- c(1, @0, 0, 0, 0, 0, 0)
indataset <- c(@, 1, 1, 1, 1, 1, 1)

binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd”, "sd”, "sdl”, "sdl”, "sd”, "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

272 stablestage3.matrix

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all”,
stages = c("stage3", "stage2", "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)
stablestage3(ehrlen3mean$A)

stablestage3.matrix Estimate Stable Stage Distribution of a Single Population Projection
Matrix

Description

stablestage3.matrix() returns the stable stage distribution for a population projection matrix.
This function can handle large and sparse matrices, and so can be used with large historical matrices,
IPMs, age x stage matrices, as well as smaller ahistorical matrices.

Usage

S3 method for class 'matrix'

stablestage3(mats, force_sparse = "auto”, ...)
Arguments

mats A population projection matrix of class matrix.

force_sparse A text string indicating whether to use sparse matrix encoding ("yes") when
supplied with standard matrices. Defaults to "auto”, in which case sparse ma-
trix encoding is used with square matrices with at least 50 rows and no more
than 50% of elements with values greater than zero.

Other parameters.

Value

This function returns the stable stage distribution corresponding to the input matrix.

Notes

Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced
dense or sparse matrix projection. This will most likely occur when matrices have between 30 and
300 rows and columns. Defaults work best when matrices are very small and dense, or very large
and sparse.

stablestage3.matrix 273

See Also

stablestage3()
stablestage3.lefkoMat ()
stablestage3.lefkoMatList()
stablestage3.list()
stablestage3.dgCMatrix ()

Examples
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c¢("Sd", "Sdl1", "VSm", "Sm", "VLa", "Flo", "Dorm")

repvector <- c(@, 0, 0, 9, @, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, @)

propvector <- c(1, o0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedlingl1988", sizeacol = "Volume88", repstracol = "FCODE&8",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c(”"Sd"”, "Sd", "Sdl", "Sdl"”, "Sd", "Sdl", "mat"),
stage2 = c("sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- lmean(ehrlen3)
stablestage3(ehrlen3mean$A[[11])

274

stage_weight

stage_weight

Create a Vector of Stage Weights for Density Dependence Calculations

Description

Function stage_weight() creates a data frame summarizing the weighting of individuals of dif-
ferent stages, stage-stage combinations, ages, or age-stages relative to one another in terms of the
total population size. Stage weights can be thought of as Lotka-Volterra coefficients applied to
individuals of different stages within a single population.

Usage

stage_weight(mpm, stage2 = NA, stagel = NA, age2 = NA, value = 1)

Arguments

mpm

stage2

stagel

age2

value

Value

The lefkoMat object to be used in projection. Can be an example MPM if
function-based projection is planned.

A vector showing the name or number of a stage in occasion ¢ that should be set
to a positive number of individuals in the start vector. Abbreviations for groups
of stages are also usable (see Notes). This input is required for all stage-based
and age-by-stage MPMs. Defaults to NA.

A vector showing the name or number of a stage in occasion #-1 that should
be set to a positive number of individuals in the start vector. Abbreviations for
groups of stages are also usable (see Notes). This is only used for historical
MPMs, since the rows of hMPMs correspond to stage-pairs in times ¢ and #-1 to-
gether. Only required for historical MPMs, and will result in errors if otherwise
used.

A vector showing the age of each respective stage in occasion ¢ that should be
set to a positive number of individuals in the start vector. Only used for Leslie
and age-by-stage MPMs. Defaults to NA.

A vector showing the values, in order, of the number of individuals set for the
stage or stage-pair in question. Defaults to 1.

A list of class lefkoEq, with four objects, which can be used as input in function projection3()
and f_projection3(). The last three include the ahstages, hstages, and agestages objects
from the lefkoMat object supplied in mpm. The first element in the list is a data frame with the
following variables:

stage2
stage_id_2
stagel
stage_id_1

Stage at occasion f.
The stage number associated with stage2.
Stage at occasion #-1, if historical. Otherwise NA.

The stage number associated with stage1.

stage_weight 275

age?2 The age of individuals in stage?2 and, if applicable, stagel. Only used in age-
by-stage MPMs.
row_num A number indicating the respective starting vector element.
value Number of individuals in corresponding stage or stage-pair.
Notes

Users should generally consider which stage to set as the reference, which should be designated
with a value of 1.

In some life histories, certain stages may not count against population size with regards to the kind
and value of density dependence decided on. An example might be the dormant seed stage in some
plant species. These stage weight values should be set to @.

Entries in stage2, and stage1 can include abbreviations for groups of stages. Use rep if all repro-
ductive stages are to be used, nrep if all mature but non-reproductive stages are to be used, mat if
all mature stages are to be used, immat if all immature stages are to be used, prop if all propagule
stages are to be used, npr if all non-propagule stages are to be used, obs if all observable stages are
to be used, nobs if all unobservable stages are to be used, and leave empty or use all if all stages
in stageframe are to be used.

Examples

library(lefko3)
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 9, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, 0, @0, @, @, 0, @)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, @, 9, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cycaraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm”, "Sm", "SD", "P1"),
stage2 = c(”SD”, "SD", "P1”, "P2", "P3", "SL", "SL", "SL", "rep",

276

Hrepll),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cycamatrix2r <- rlefko2(data = cycaraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cyca2_start <- start_input(cycamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(500, 100, 200))

cyp2_dv <- density_input(cycamatrix2r, stage3 = c("SD", "P1"),
stage2 = c("rep”, "rep"), style = c(1, 1), alpha = c(0.5, 1.2),
beta = c(1.0, 2.0), type = c(2, 1))

cyp_eq <- stage_weight(cycamatrix2r,
Stagez = C(HSD“, IIP1 II, “SL”, IIDII’ IIXsmll, llsmll’ 1IMdII’ IILgII’ IIXLgM)’
value = c(o, 1, 1, 1, 1, 1, 1, 1, 1))

cyca_proj <- projection3(mpm = cycamatrix2r, start_frame = cyca2_start,
density = cyp2_dv, stage_weights = cyp_eq, times = 10)

summary (cyca_proj)

start_input

start_input Create a Starting Vector for Population Projection

Description

Function start_input() creates a data frame summarizing the non-zero elements of the start vec-

tor for use in population projection analysis via function projection3().

Usage

start_input(mpm, stage2 = NA, stagel = NA, age2 = NA, value = 1)

Arguments
mpm The lefkoMat object to be used in projection analysis.
stage2 A vector showing the name or number of a stage in occasion ¢ that should be set

to a positive number of individuals in the start vector. Abbreviations for groups
of stages are also usable (see Notes). This input is required for all stage-based

and age-by-stage MPMs. Defaults to NA.

start_input

stagel

age2

value

Value

277

A vector showing the name or number of a stage in occasion #-1 that should
be set to a positive number of individuals in the start vector. Abbreviations for
groups of stages are also usable (see Notes). This is only used for historical
MPMs, since the rows of hMPMs correspond to stage-pairs in times ¢ and #-1 to-
gether. Only required for historical MPMs, and will result in errors if otherwise
used.

A vector showing the age of each respective stage in occasion ¢ that should be
set to a positive number of individuals in the start vector. Only used for Leslie
and age-by-stage MPMs. Defaults to NA.

A vector showing the values, in order, of the number of individuals set for the
stage or stage-pair in question. Defaults to 1.

A list of class lefkoSV, with four objects, which can be used as input in function projection3().
The last three include the ahstages, hstages, and agestages objects from the lefkoMat object
supplied in mpm. The first element in the list is a data frame with the following variables:

stage2
stage_id_2
stagel
stage_id_1
age2

row_num

value

Notes

Stage at occasion f.

The stage number associated with stage2.

Stage at occasion #-1, if historical. Otherwise NA.
The stage number associated with stage1.

The age of individuals in stage?2 and, if applicable, stage1. Only used in age-
by-stage MPMs.

A number indicating the respective starting vector element.

Number of individuals in corresponding stage or stage-pair.

Entries in stage2, and stage1 can include abbreviations for groups of stages. Use rep if all repro-
ductive stages are to be used, nrep if all mature but non-reproductive stages are to be used, mat if
all mature stages are to be used, immat if all immature stages are to be used, prop if all propagule
stages are to be used, npr if all non-propagule stages are to be used, obs if all observable stages are
to be used, nobs if all unobservable stages are to be used, and leave empty or use all if all stages
in stageframe are to be used.

See Also

density_input()
projection3()

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

278

repvector <-
obsvector <-
matvector <-
immvector <-

propvector <- c(1,

subset IM
c(o, 90, 90, 2, 0, 1, @)
c(@, 1, 1, 1, 1, 1, 0
c(@, 0, 1, 1, 1, 1, 1)
c(1, 1, o, o0, 0, 0, @)
o, 0, 90, 0, 0, @)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes
repstatus = repvector, obsstatus

immstatus

sizevector, stagenames = stagevector,
obsvector, matstatus = matvector,
indataset, binhalfwidth = binvec,

immvector, indataset

propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stagel = c("Sd", "rep”,

eststage3
eststage2

stage2 = c("sd", "Ssd", "sd", "Sd", "rep", "rep"”, "Sdl"),
" "Sd”, ”rep", "npr”, ”npr", "Sd"),
c(NA, NA, NA, NA, NA, NA, "mat"),
c(NA, NA, NA, NA, NA, NA, "Sdl"),
c(NA, NA, NA, NA, NA, NA, "NotAlive"),

eststagel
givenrate
multiplier

c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 =c(1, 2, 1, 2, 1, 1, 1),

stageframe

ehrlen3 <- rlefko3(data

lathframe, historical = TRUE)

lathvert, stageframe = lathframe, year = "all",

stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

ehrlen3mean <- 1lmean(ehrlen3)

e3m_sv <- start_input(ehrlen3mean, stage2 = "Sd", stagel = "Sd", value = 1000)
lathproj <- projection3(ehrlen3, nreps = 5, times = 100, stochastic = TRUE,
start_frame = e3m_sv)
subset_1M Create New lefkoMat or lefkoMatList Object as Subset of Another
Description

Function subset_1M() creates a new lefkoMat or lefkoMatList object from a subset of matrices
in another lefkoMat or lefkoMatList object.

subset_IM 279

Usage

subset_IM(IM, mat_num = NA, pop = NA, patch = NA, year = NA)

Arguments
M The lefkoMat or lefkoMatList object to select matrices from.
mat_num Either a single integer corresponding to the matrix to select within the labels
element of 1M, or a vector of such integers.
pop The population designation for matrices to select. Only used if mat_num is not
given.
patch The patch designation for matrices to select. Only used if mat_num is not given.
year The time ¢ designation for matrices to select. Only used if mat_num is not given.
Value

A lefkoMat or lefkoMatList object composed of the matrices specified in the options. Note
that, when applied to a lefkoMatList object, subsetting happens equivalently across all composite
lefkoMat objects.

Notes

If mat_num is not provided, then at least one of pop, patch, or year must be provided. If at least
two of pop, patch, and year are provided, then function subset_1IM() will identify matrices as the
intersection of provided inputs.

See Also

create_1IM()
add_1MQ)
delete_IM()

Examples

These matrices are of 9 populations of the plant species Anthyllis
vulneraria, and were originally published in Davison et al. (2010) Journal
of Ecology 98:255-267 (doi: 10.1111/3j.1365-2745.2009.01611.x%).

sizevector <- c(1, 1, 2, 3) # These sizes are not from the original paper
stagevector <- c("Sdl"”, "Veg", "SmFlo", "LFlo")

repvector <- c(0, o, 1, 1)
obsvector <- c(1, 1, 1, 1)
matvector <- c(0, 1, 1, 1)
immvector <- c(1, @, 0, 0)
propvector <- c(@, 0, 0, 0)
indataset <- c(1, 1, 1, 1)
binvec <- c(0.5, 0.5, 9.5, 0.5)

anthframe <- sf_create(sizes = sizevector, stagenames = stagevector,

280

repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

POPN C 2003-2004
XC3 <- matrix(c(0, 0, 1.74, 1.74,

0.208333333, 0, 0, 0.057142857,

0.041666667, 0.076923077, 0, 0,

0.083333333, 0.076923077, 0.066666667, 0.028571429), 4, 4, byrow = TRUE)

2004-2005

XC4 <- matrix(c(o, 0, 0.3, 0.6,

0.32183908, 0.142857143, 0, 0,

0.16091954, ©.285714286, 0, 0,

0.252873563, ©.285714286, 0.5, 0.6), 4, 4, byrow = TRUE)

2005-2006
XC5 <- matrix(c(0, 0, 0.50625, 0.675,
0, 0, 0, 0.035714286,
0.1, 0.068965517, 0.0625, 0.107142857,

0.3, 0.137931034, 0, 0.071428571), 4, 4, byrow = TRUE)

POPN E 2003-2004

XE3 <- matrix(c(0, 0, 2.44, 6.569230769,

0.196428571, @, 0, O,

0.125, 0.5, 0, 0,

0.160714286, 0.5, 0.133333333, 0.076923077), 4, 4, byrow = TRUE)

XE4 <- matrix(c(@, 0, 0.45, 0.646153846,

0.06557377, ©0.090909091, 0.125, 0,

0.032786885, @, 0.125, 0.076923077,

0.049180328, @, 0.125, 0.230769231), 4, 4, byrow = TRUE)

XE5 <- matrix(c(0, 0, 2.85, 3.99,

0.083333333, 0, 0, 0,

0, 0, 0, 0,

0.416666667, 0.1, 0, 0.1), 4, 4, byrow = TRUE)

POPN F 2003-2004
XF3 <- matrix(c(@, 0, 1.815, 7.058333333,
0.075949367, 0, 0.05, 0.083333333,

0.139240506, 0, 0, 0.25,

0.075949367, 0, 0, 0.083333333), 4, 4, byrow = TRUE)

XF4 <- matrix(c(@, 0, 1.233333333, 7.4,

0.223880597, 0, 0.111111111, 0.142857143,

0.134328358, 0.272727273, 0.166666667, 0.142857143,

0.119402985, 0.363636364, 0.055555556, 0.142857143), 4, 4, byrow = TRUE)

XF5 <- matrix(c(o, @, 1.06, 3.372727273,

0.073170732, 0.025, 0.033333333, 0,

0.036585366, 0.15, 0.1, 0.136363636,

0.06097561, 0.225, 0.166666667, ©.272727273), 4, 4, byrow = TRUE)

subset IM

subset IM 281

POPN G 2003-2004
XG3 <- matrix(c(@, 0, 0.245454545 2.1,

0, 0, 0.045454545, 0,

0.125, 0, 0.090909091, 0,

0.125, 0, 0.090909091, ©.333333333), 4, 4, byrow = TRUE)

XG4 <- matrix(c(o, @
0.111111111, o, o, 0,
0, 0, 0, 0,

9.111111111, @, @, @), 4, 4, byrow = TRUE)

XG5 <- matrix(c(o, @, 0, 1.5,

9, 9, 0, 0,

0.090909091, @, 0, 0,

0.545454545, 0.5, 0, 0.5), 4, 4, byrow = TRUE)

POPN L 2003-2004
XL3 <- matrix(c(@, @, 1.785365854, 1.856521739,
0.128571429, 0, 0, 0.010869565,

0.028571429, 0, 0, O,

0.014285714, @, 0, 0.02173913), 4, 4, byrow = TRUE)

XL4 <- matrix(c(0, @, 14.25, 16.625,
0.131443299, 0.057142857, @, 0.25,

0.144329897, 0, 0, O,

0.092783505, 0.2, @, 0.25), 4, 4, byrow = TRUE)

XL5 <- matrix(c(@, 0, 0.594642857, 1.765909091,

0, 0, 0.017857143, 0,

0.021052632, 0.018518519, 0.035714286, 0.045454545,

0.021052632, 0.018518519, 0.035714286, 0.068181818), 4, 4, byrow = TRUE)

POPN O 2003-2004
X03 <- matrix(c(o, @, 11.5, 2.775862069,

0.6, 0.285714286, ©.333333333, 0.24137931,

0.04, 0.142857143, 0, 0,

0.16, 0.285714286, 0, ©.172413793), 4, 4, byrow = TRUE)

X04 <- matrix(c(@, @, 3.78, 1.225,

0.28358209, 0.171052632, 0, 0.166666667,

0.084577114, ©.026315789, @, 0.055555556,

0.139303483, 0.447368421, 0, 0.305555556), 4, 4, byrow

TRUE)

X05 <- matrix(c(@, 0, 1.542857143, 1.035616438,

0.126984127, 0.105263158, 0.047619048, 0.054794521,
0.095238095, 0.157894737, 0.19047619, 0.082191781,
0.111111111, 0.223684211, 0, 0.356164384), 4, 4, byrow = TRUE)

POPN Q 2003-2004

XQ3 <- matrix(c(o, 0, 0.15, 0.175,
0, 0, 0, 0,

0, 0, 0, 0

’ ’ ’ ’

282

1! 0; 0; 0)y 4y 4, berW = TRUE)

XQ4 <- matrix(c(e, o, 0, 0.25,
0, 9, 0, 0,
0, 9, 0, 0,
1, 0.666666667, @, 1), 4, 4, byrow = TRUE)

’

XQ5 <- matrix(c(@, 0, @, 1.428571429,

0, 0, 0, 0.142857143,
0.25, 0, 0, 0,
0.25, 0, 0, 0.571428571), 4, 4, byrow = TRUE)

POPN R 2003-2004
XR3 <- matrix(c(o, @, 0.7, 0.6125,

0.25, 0, 0, 0.125,

0, 0, 0, 0,

0.25, 0.166666667, 0, ©.25), 4, 4, byrow = TRUE)

XR4 <- matrix(c(o, o, 0, 0.6,

0.285714286, 0, 0, 0,

0.285714286, ©.333333333, 0, 0,

0.285714286, ©.333333333, 0, 1), 4, 4, byrow = TRUE)

XR5 <- matrix(c(o, 0, 0.7, 0.6125,

0, 0, 0, 0,

0, 0, 0, 0,

0.333333333, 0, 0.333333333, 0.625), 4, 4, byrow = TRUE)

POPN S 2003-2004
XS3 <- matrix(c(@, 0, 2.1, 0.816666667,
0.166666667, 0, 0, 0,

0, 0, 0, 0,

0, 0, 0, 0.166666667), 4, 4, byrow = TRUE)

XS4 <- matrix(c(e, o, 0, 7,

0.333333333, 0.5, 0, 0,

0, 0, 0, 0,

0.333333333, 0, 0, 1), 4, 4, byrow = TRUE)

XS5 <- matrix(c(o, o, 0, 1.4,

0, 0, 0, 0,

0, 0, 0, 0.2,

0.111111111, 0.75, @, 0.2), 4, 4, byrow = TRUE)

mats_list <- 1ist(XC3, XC4, XC5, XE3, XE4, XE5, XF3, XF4, XF5, XG3, XG4, XG5,
XL3, XL4, XL5, X03, X04, X05, XQ3, XQ4, XQ5, XR3, XR4, XR5, XS3, XS4, XS5)

yr_ord <- ¢(1, 2, 3, 1, 2, 3,1, 2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,

2, 3,1,2,3)

pch_ord <- ¢(1, 1, 1, 2, 2, 2,3, 3,3, 4,4, 4,5, ,5,5,6,6,6,7,7,17,

8,8,8,9,9, 9

subset IM

summary.lefkoCondMat 283

anth_lefkoMat <- create_lM(mats_list, anthframe, hstages = NA, historical = FALSE,
poporder = 1, patchorder = pch_ord, yearorder = yr_ord)

smaller_anth_IM <- subset_lM(anth_lefkoMat, patch = c(1, 2, 3),
year = c(1, 2))

summary.lefkoCondMat Summary of Class "lefkoCondMat"

Description

This function provides basic information summarizing the characteristics of conditional matrices
derived from a lefkoCondMat object.

Usage
S3 method for class 'lefkoCondMat'
summary (object, ...)

Arguments
object An object of class lefkoCondMat.

Other parameters.

Value
A text summary of the object shown on the console, showing the number of historical matrices, as
well as the number of conditional matrices nested within each historical matrix.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(0, o, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, Q)
propvector <- c(1, 0, 0, 0, 0, 0, 0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

284 summary.lefkoCondMat

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988”, stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep”, "npr"”, "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2"”, indivcol = "individ")

lathcondmats <- cond_hmpm(ehrlen3)
summary (lathcondmats)

Cypripedium example
data(cypdata)

sizevector <- c(0, o, o0, 0, 0, o0, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr <_ C(IISDH’ IVP-I Il’ HPZII’ IIP3II’ “SL“, IIDII’ "XSm”, llsm”, IIMdH, lILglI’
"XLg")

repvector <- c(0, 0, 9, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 9, 9, 9, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp3r <- supplemental(stage3 = c("sSD", "sb", "pP1", "P1", "P2", "P3", "SL",

summary.lefkoElas 285

"D", "XSm", "Sm", "D", "XSm", "Sm", "mat", "mat”, "mat”, "SD", "P1"),

stage2 = c("sD”, "sD", "sb", "sb”, "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"sL", "SL", "D", "XSm", "Sm", "rep", "rep"),

stagel = c("sSD", "rep", "SD", "rep”, "SD", "P1", "P2", "P3", "P3", "P3",
"SLY) MSL™, "SL™, "SL", "SL”, "SL", "mat”, "mat"),

eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm", "Sm", "D", "XSm", "Sm",
"mat”, "mat"”, "mat", NA, NA),

eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm", "D", "XSm", "Sm", NA, NA),

eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm”, "XSm”, "XSm", "XSm”, NA, NA),

givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),

type = c(1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 3, 3),

type_t12 = c(1, 2, 1, 2, 1, 1, 1, 1, 1, 1,

stageframe = cypframe_raw, historical = TRUE)

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),

size = c("size3added"”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2", patchcol = "patchid”,
indivcol = "individ")

cypcondmats <- cond_hmpm(cypmatrix3r)

summary (cypcondmats)

summary . lefkoElas Summarize lefkoElas Objects

Description

Function summary . lefkoElas() summarizes lefkoElas objects. Particularly, it breaks down elas-
ticity values by the kind of ahistorical and, if applicable, historical transition.

Usage
S3 method for class 'lefkoElas'
summary (object, ...)

Arguments
object A lefkoElas object.

Other parameters currently not utilized.

286

Value

summary.lefkoElas

A list composed of 2 data frames. The first, hist, is a data frame showing the summed elasticities
for all 16 kinds of historical transition per matrix, with each column corresponding to each elasticity
matrix in order. The second, ahist, is a data frame showing the summed elasticities for all 4 kinds
of ahistorical transition per matrix, with each column corresponding to each elasticity matrix in

order.

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)

stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")
repvector <- c(9, o, o0, 0, 0, 1, @)

obsvector <- c(0, 1, 1, 1, 1, 1, @)

matvector <- c(0, o, 1, 1, 1, 1, 1)

immvector <- c(1, 1, 0, 0, 0, @, 0)
propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(o0, 1, 1, 1, 1, 1, 1)

binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

’ ’

’
’

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",

fecacol = "Intactseed88"”, deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,

censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),

stagel = c(”"sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel c(NA, NA, NA, NA, NA, NA, "NotAlive"),

givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

lathsupp2 <- supplemental(stage3 = c("Sd", "Sdl1", "Sd", "Sdl"),
stage2 = c("Sd"”, "Sd", "rep”, "rep"),
givenrate = c(0.345, 0.054, NA, NA),
multiplier = c(NA, NA, 0.345, 0.054),
type = c(1, 1, 3, 3), stageframe = lathframe, historical = FALSE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",

stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,

summary.lefkoLTRE 287

yearcol = "year2"”, indivcol = "individ")

ehrlen2 <- rlefko2(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2"), supplement = lathsupp2,
yearcol = "year2"”, indivcol = "individ")

ehrlen3elas <- elasticity3(ehrlen3)
ehrlen2elas <- elasticity3(ehrlen2)

summary (ehrlen3elas)
summary (ehrlen2elas)

summary . lefkoLTRE Summarize lefkoLTRE Objects

Description

Function summary.lefkoLTRE() summarizes lefkoLTRE objects. Particularly, it breaks down
LTRE contributions by the kind of ahistorical and, if applicable, historical transition.

Usage
S3 method for class 'lefkoLTRE'
summary (object, ...)

Arguments
object A lefkoLTRE object.

Other parameters currently not utilized.

Value

A list of data frames. In all cases, the first data frame is one showing the positive, negative, and total
contributions of elements in each LTRE contribution matrix. If not a SNA-LTRE, then there are an
additional two (if deterministic) or four (if stochastic) data frames. If deterministic, then hist_det
is a data frame showing the summed LTRE contributions for all 16 kinds of historical transition per
matrix, with each column corresponding to each A matrix in order, followed by all summed positive
and all summed negative contributions. Object ahist_det is a data frame showing the summed
LTRE contributions for all four kinds of ahistorical transition per matrix, with order as before,
followed by summed positive and summed negative contributions. If stochastic, then hist_mean
and hist_sd are the summed LTRE contributions for the mean vital rates and variability in vital
rates, respectively, according to all 16 historical transition types, followed by summed positive and
negative contributions, and ahist_mean and ahist_sd are the equivalent ahistorical versions. The
output for the SNA-LTRE also includes the logs of the deterministic lambda estimated through
function 1tre3().

288

Examples

data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("”Sd", "Sdl1", "VSm", "Sm", "VLa",

repvector <- c(0, @, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, @0, @, 0, 0)
propvector <- c(1, o0, 0, 0, 0, 0, 0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes =
repstatus = repvector, obsstatus =
immstatus = immvector, indataset =
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears =

juvcol = "Seedling1988", sizeacol = "Volume88",

fecacol = "Intactseed88"”, deadacol = "Dead1988",
lathframe, stagesize =
censorcol = "Missing1988", censorkeep = NA, censor =

nonobsacol = "Dormant1988", stageassign =

4, firstyear
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9

summary.lefkoLTRE

"EFlo" , "Dorm”)

sizevector, stagenames = stagevector,
obsvector, matstatus = matvector,
indataset, binhalfwidth = binvec,

1988,
repstracol = "FCODE88",

"sizea",
TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),

stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("Sd", "rep”, "Sd", "rep", "npr"”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),

eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),

eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),

type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

lathsupp2 <- supplemental(stage3 = c("”Sd", "Sdl1", "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "rep", "rep"),
givenrate = c(0.345, 0.054, NA, NA),
multiplier = c(NA, NA, 0.345, 0.054),
type = c(1, 1, 3, 3), stageframe = lathframe, historical = FALSE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3”, "stage2", "stagel"”), supplement = lathsupp3,

yearcol = "year2"”, indivcol = "individ")

ehrlen2 <- rlefko2(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"), supplement = lathsupp2,
yearcol = "year2", indivcol = "individ")

ehrlen3ltre <- 1ltre3(ehrlen3)
summary (ehrlen3ltre)

summary.lefkoMat 289

summary . lefkoMat Summary of Class "lefkoMat"

Description

A function to simplify the viewing of basic information describing the matrices produced through
functions flefko3 (), flefko2(), rlefko3(), rlefko2(), aflefko2(), rleslie(), and fleslie().

Usage
S3 method for class 'lefkoMat'
summary (object, colsums = TRUE, check_cycle = TRUE, ...)
Arguments
object An object of class lefkoMat.
colsums A logical value indicating whether column sums should be shown for U matri-

ces, allowing users to check stage survival probabilities. Defaults to TRUE.

check_cycle A logical value indicating whether to test matrices for stage discontinuities in
the life cycle. Defaults to TRUE.

Other parameters.

Value

A summary of the object, showing the number of each type of matrix, the number of annual matri-
ces, the number of estimated (non-zero) elements across all matrices and per matrix, the number of
unique transitions in the dataset, the number of individuals, and summaries of the column sums of
the survival-transition matrices. Stage discontinuities are also checked with function cycle_check.
This function will also yield warnings if any survival-transition matrices include elements outside
of the interval [0, 1], if any fecundity matrices contain negative elements, and if any matrices include
NA values.

Notes

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero
values when the true probability is extremely close to 0. This will result in the summary . lefkoMat
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

290 summary.lefkoMatList

Examples

data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(e, 1, 1, 1, 1, 0, @, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, @, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stagez = C(“SD“, IISDII, IIP1 VI, IIPZII, NP3II, IISLII’ IISLII’ IISLII’ Ilrepll,
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, .20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1,1, 1,1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all”, patch = "all", stages = c(”"stage3"”, "stage2"”, "stagel"),

size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
summary (cypmatrix2r)

summary.lefkoMatList Summary of Class "lefkoMatList"

summary.lefkoMatList 291

Description

A function to simplify the viewing of basic information describing the bootstrapped matrices pro-
duced through functions flefko3(), flefko2(), rlefko3(), rlefko2(), aflefko2(), rleslie(),
and fleslie() when using bootstrapped data input in format hfvlist.

Usage

S3 method for class 'lefkoMatList'
summary (

object,

elem_summaries = FALSE,

colsums = TRUE,

check_cycle = TRUE,

Arguments

object An object of class lefkoMatList.

elem_summaries A logical value indicating whether to include summaries of all lefkoMat ele-
ments within the input lefkoMatList object. Defaults to FALSE.

colsums If elem_summaries = TRUE, then this is a logical value indicating whether col-
umn sums should be shown for U matrices, allowing users to check stage sur-
vival probabilities. Defaults to TRUE.

check_cycle If elem_summaries = TRUE, then this is a logical value indicating whether to test
matrices for stage discontinuities in the life cycle. Defaults to TRUE.

Other parameters.

Value

A general summary of the lefkoMatList object, showing the number and type of lefkoMat objects
included, the mean number of annual matrices per lefkoMat element, the mean size of each matrix,
the mean number of estimated (non-zero) elements across all matrices and per matrix, the mean
number of unique transitions in the bootstrapped datasets, the mean number of individuals, and
summaries of the column sums of the survival-transition matrices across all 1lefkoMat objects.

if elem_summaries = TRUE, then summary.lefkoMat{} output is also shown for each lefkoMat
object per entered lefkoMatList object.

Stage discontinuities may also be also checked across all 1efkoMat objects with function cycle_check.
This function will also yield warnings if any survival-transition matrices include elements outside

of the interval [0, 1], if any fecundity matrices contain negative elements, and if any matrices include
NA values.

Notes

Under the Gaussian and gamma size distributions, the number of estimated parameters may differ
between the two ipm_method settings. Because the midpoint method has a tendency to incorporate
upward bias in the estimation of size transition probabilities, it is more likely to yield non- zero

292 summary.lefkoMatList

values when the true probability is extremely close to 0. This will result in the summary.lefkoMat
function yielding higher numbers of estimated parameters than the ipm_method = "CDF" yields in
some cases.

Examples
data(cypdata)
sizevector <- c(0, o0, 0, 0, @, 0, 1, 2.5, 4.5, 8, 17.5)

Stagevector’ <- C(”SD”, "P1", anny ”P3”, HSLH’ an} "XSm", ”Sm”, ”Md”, "Lg”,
uXLgrl)

repvector <- c(0, 0, 0, 0, 0, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 9, 0, 1, 1, 1, 1, 1)
matvector <- c(0, 0, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, 0, 0, 0, © , 1, 1,
binvec <- c(0, o, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypraw_v1_boot <- bootstrap3(cypraw_vi1, reps = 3)

Here we use supplemental() to provide overwrite and reproductive info
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sb", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r_boot <- rlefko2(data = cypraw_vi_boot, stageframe = cypframe_raw,
year = "all", patch = "all”, stages = c("stage3"”, "stage2", "stagel"),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

summary (cypmatrix2r_boot)

summary.lefkoMod 293

summary . lefkoMod Summary of Class "lefkoMod"

Description

A function to summarize objects of class lefkoMod. This function shows the best-fit models, sum-
marizes the numbers of models in the model tables, shows the criterion used to determine the best-fit
models, and provides some basic quality control information.

Usage
S3 method for class 'lefkoMod'
summary (object, ...)
Arguments
object An R object of class 1lefkoMod resulting from modelsearch().

Other parameters currently not utilized.

Value

A summary of the object, showing the best-fit models for all vital rates, with constants of O or 1 used
for unestimated models. This is followed by a summary of the number of models tested per vital
rate, and a table showing the names of the parameters used to model vital rates and represent tested
factors. At the end is a section describing the numbers of individuals and of individual transitions
used to estimate each vital rate best-fit model, along with the accuracy of each binomial model.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(0, 4.6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,1, 2, 3, 4, 5,6, 7,8,
9

stagevector <- c("Sd", "Sdl", "Dorm", "Szlnr", "Sz2nr", "Sz3nr", "Sz4nr",
"Sz5nr", "Szénr", "Sz7nr", "Sz8nr", "Sz9nr", "Szlr", "Sz2r", "Sz3r",
"Sz4r", "Sz5r", "Sz6r", "Sz7r", "Sz8r", "Sz9r")

repvector <- c(0, o, o, 0, 0, 0, 0, 90, 0, 0, @, @, 1, 1, 1, 1, 1,1, 1, 1, 1)

obsvector <- c(@, 1, @, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1,1, 1,1, 1, 1, 1, 1)

matvector <- c(0, @, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1,1, 1, 1,1, 1, 1)

immvector <- c(1, 1, o, 0, 0, 0, @0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0, @, @, Q)

propvector <- c(1, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, 0, 0,
0)

indataset <- c(o0, 1, 1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1)

:
binvec <- c(0, 4.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

lathframeln <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,

294 summary.letkoProj

immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvertln <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "1nVol88", repstracol = "Intactseed88”,
fecacol = "Intactseed88"”, deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframeln,
stagesize = "sizea", censorcol = "Missing1988", censorkeep = NA,
NAas@ = TRUE, censor = TRUE)
lathvertln$feca2 <- round(lathvertln$feca2)
lathvertln$fecal <- round(lathvertln$fecal)
lathvertln$feca3 <- round(lathvertln$feca3)
lathmodelsln2 <- modelsearch(lathvertln, historical = FALSE,
approach = "mixed”, suite = "main”,
vitalrates = c("surv"”, "obs", "size", "repst"”, "fec"), juvestimate = "Sdl",
bestfit = "AICc&k", sizedist = "gaussian”, fecdist = "poisson”,
indiv = "individ”, patch = "patchid”, year = "year2",

year.as.random = TRUE, patch.as.random = TRUE, show.model.tables = TRUE,
quiet = "partial”)

summary (lathmodelsln2)

summary . lefkoProj Summarize lefkoProj Objects

Description

Function summary.lefkoProj() summarizes lefkoProj objects. Particularly, it breaks down the
data frames provided in the projection element in ways meaningful for those running simulations.

Usage

S3 method for class 'lefkoProj'
summary (
object,
threshold = 1,
inf_alive = TRUE,
milepost = c(0, 0.25, 0.5, 0.75, 1),
ext_time = FALSE,

summary.letkoProj 295

Arguments
object A lefkoProj object.
threshold A threshold population size to be searched for in projections. Defaults to 1.
inf_alive A logical value indicating whether to treat infinitely large population size as
indicating that the population is still extant. If FALSE, then the population is
considered extinct. Defaults to TRUE.
milepost A numeric vector indicating at which points in the projection to assess detailed
results. Can be input as integer values, in which case each number must be
between 1 and the total number of occasions projected in each projection, or
decimals between 0 and 1, which would then be translated into the correspond-
ing projection steps of the total. Defaults to c(0, .25, 0.50, 0.75, 1.00).
ext_time A logical value indicating whether to output extinction times per population-
patch. Defaults to FALSE.
Other parameters currently not utilized.
Value

Apart from a statement of the results, this function outputs a list with the following elements:

milepost_sums A data frame showing the number of replicates at each of the milepost times that
is above the threshold population/patch size.

extinction_times
A dataframe showing the numbers of replicates going extinct (ext_reps) and
mean extinction time (ext_time) per population-patch. If ext_time = FALSE,
then only outputs NA.

Notes

The inf_alive and ext_time options both assess whether replicates have reached a value of NaN
or Inf. If inf_alive = TRUE or ext_time = TRUE and one of these values is found, then the repli-
cate is counted in the milepost_sums object if the last numeric value in the replicate is above the
threshold value, and is counted as extant and not extinct if the last numeric value in the replicate
is above the extinction threshold of a single individual.

Extinction time is calculated on the basis of whether the replicate ever falls below a single individ-
ual. A replicate with a positive population size below 0.0 that manages to rise above 1.0 individual
is still considered to have gone extinct the first time it crossed below 1.0.

If the input lefkoProj object is a mixture of two or more other lefkoProj objects, then mileposts
will be given relative to the maximum number of time steps noted.

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm”, "Sm", "VLa", "Flo", "Dorm")
repvector <- c(0, 0, o0, 0, 0, 1, 9)

296

obsvector <- c(o, 1, 1, 1, 1, 1
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, @, 0, 0, @
propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)

binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT”, individcol = "GENET"”, blocksize = 9,

summary.letkoProj

juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",

fecacol = "Intactseed88", deadacol = "Dead1988",

nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",

censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathrepm <- matrix(@, 7, 7)
lathrepm[1, 6] <- 0.345
lathrepm[2, 6] <- 0.054

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl"),

stage2 = c("Sd", "sSd", "Sd", "Sd", "rep", "rep"),

stagel = c("sd”, "rep”, "Sd", "rep”, "all”, "all"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054),

type = c(1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe,
year = c(1989, 1990), stages = c("stage3", "stage2", "stagel"”),
repmatrix = lathrepm, supplement = lathsupp3, yearcol = "year2"”,
indivcol = "individ")

lathproj <- projection3(ehrlen3, nreps = 5, stochastic = TRUE)
summary (lathproj)

Cypripedium example
data(cypdata)

sizevector <- c(0, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL". "D". "XSm", "Sm", "Md",
"XLg")

repvector <- c(@, 0, 0, @, 0, 0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 0, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, @, 0, @)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

"Lg”,

summary_hfv

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp3r <- supplemental(stage3 = c("SD", "sb", "P1", "P1", "P2", "P3", "SL",
"D", "XSm", "Sm", "D", "XSm", "Sm", "mat"”, "mat”, "mat”, "SD", "P1"),
stage2 = c("sSD", "sb", "sb", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "SL",
"sLM, "sSL", "D", "XSm", "Sm", "rep"”, "rep"),
stagel = c("SD", "rep", "SD", "rep", "SD", "P1", "P2", "P3", "P3", "P3",
"sL™, "sL", "sL", "sL", "SL", "SL", "mat"”, "mat"),
eststage3 = c(NA, NA, NA, NA, NA, NA, NA, "D", "XSm”, "Sm", "D", "XSm", "Sm",
"mat"”, "mat”, "mat”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"Xsm", "D", "XSm", "Sm", NA, NA),
eststagel = c(NA, NA, NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", "XSm", "XSm",
"XSm", "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.25, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0.5, 0.5),
type = c(1, 1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 3, 3),
type_t12 = c(1, 2, 1, 2, 1, 1,1, 1,1, 1, 1,1, 1,1
stageframe = cypframe_raw, historical = TRUE)

_
_
_
_
~

cypmatrix3r <- rlefko3(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added", "sizeladded"),
supplement = cypsupp3r, yearcol = "year2"”,
patchcol = "patchid”, indivcol = "individ")

cypstoch <- projection3(cypmatrix3r, nreps = 5, stochastic = TRUE)
summary (cypstoch, ext_time = TRUE)

297

summary_hfv Summary of Classes "hfvdata" and "hfvlist

Description

A function to simplify the viewing of basic information describing demographic data in historical
vertical format (data frames of class hfvdata, or bootstrapped data frames in lists of class hfvlist).

298 summary_hfv

Usage

summary_hfv(
object,
popid = "popid",
patchid = "patchid”,

individ = "individ",
year2id = "year2",
full = FALSE,

err_check = TRUE,

)
Arguments
object An object of either class hfvdata or class hfvlist.
popid A string denoting the name of the variable denoting population identity.
patchid A string denoting the name of the variable denoting patch identity.
individ A string denoting the name of the variable denoting individual identity.
year2id A string denoting the name of the variable denoting the year in time ¢.
full A logical value indicating whether to include basic data frame summary infor-
mation in addition to hfvdata-specific summary information. Defaults to FALSE.
err_check A logical value indicating whether to check for errors in stage assignment.
Other parameters.
Value

A summary of the object. If an object of class hfvdata is entered, then the first line of output
shows the numbers of populations, patches, individuals, and time steps. If full = TRUE, then this is
followed by a standard data frame summary of the hfv dataset. If err_check = TRUE, then a subset
of the original data frame input as object is exported with only rows showing stage assignment
issues.

If an object of class hfvlist in entered, then the first line of output shows the number of boot-
strapped datasets. This is followed by lines showing the mean number of rows and variables per
data frame, as well as the mean numbers of populations, patches, individuals, and years per data
frame. This is followed by lines showing the total number of unique populations, patches, individ-
uals, and years sampled across the bootstrapped data frames. If full = TRUE, then this is followed
by standard data frame summaries of all bootstrapped data frames. If err_check = TRUE, then a
data frame is output with all of the problem rows across all bootstrapped data frames, starting with
a new variable giving the bootstrap number of origin.

Notes

Stage assignment issue identified by option err_check fall under two categories. First, all rows
showing NoMatch as the identified stage for stagel, stage2, or stage3 are identified. Second,
all rows showing stagel = "NotAlive"” and alivel =1, stage2 = "NotAlive"” and alive2 =1, or
stage3 = "NotAlive"” and alive3 =1 are identified.

supplemental 299

Examples

data(cypdata)

sizevector <- c(0, o, o0, 0, 0, o0, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr‘ <_ C(IVSDII’ IIP-I Il’ HPZH’ IIP3I1’ “SL“, IIDM’ ”XSm”, llsm”, MMdH, MLgM’
"XLg")

repvector <- c(0, @0, 9, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, 9, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, @0, 0, 0)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

summary_hfv(cypraw_v1)
cypraw_v1_boot <- bootstrap3(cypraw_v1, reps = 3)

summary_hfv(cypraw_v1_boot)

supplemental Create a Data Frame of Supplemental Data for MPM Development

Description

Function supplemental () provides all necessary supplemental data for matrix estimation. It allows
the establishment of proxy rates, the entry of data to overwrite or offset existing rates, the identifi-
cation of complete reproductive transitions, and the entry of rate multipliers. The function should
be used to incorporate data that affects all matrices to be created. To edit MPMs after creation, use
edit_1M() instead

Usage

supplemental (
historical = TRUE,
stagebased = TRUE,

300

agebased = FALSE,
stageframe = NULL,
stage3 = NULL,
stage2 = NULL,
stagel = NULL,
age2 = NULL,
eststage3 = NULL,
eststage2 = NULL,
eststagel = NULL,
estage2 = NULL,
givenrate = NULL,
offset = NULL,
multiplier = NULL,
type = NULL,
type_t12 = NULL

Arguments

historical

stagebased

agebased

stageframe

stage3

stage2

stagel

age?2

eststage3

eststage?

eststagel

supplemental

A single logical value indicating whether the MPMs intended will be historical
or ahistorical. Defaults to TRUE.

A single logical value indicating whether the MPM will be stage-based or age-
by-stage. Defaults to TRUE.

A single logical value indicating whether the MPM will be age-based or age-by-
stage. Defaults to FALSE.

The stageframe used to produce the MPM. Required if producing any stage-

based or age-by-stage MPM. Must be omitted for purely age-based MPMs.

String vector of stage names in occasion #+1 in the transition to be affected.

Abbreviations for groups of stages are also usable (see Notes). Required in all

stage-based and age-by-stage MPMs.

String vector of stage names in occasion ¢ in the transition to be affected. Ab-

breviations for groups of stages are also usable (see Notes). Required in all

stage-based and age-by-stage MPMs.

String vector of stage names in occasion #-1 in the transition to be affected.

Only needed if a historical matrix is to be produced. Abbreviations for groups
of stages are also usable (see Notes). Required for historical stage-based MPMs.

An integer vector of the ages in occasion ¢ to use in transitions to be affected.
Required for all age- and age-by-stage MPMs.

String vector of stage names to replace stage3 in a proxy transition. Only

needed if a transition will be replaced by another estimated transition, and only

in stage-based and age-by-stage MPMs.

String vector of stage names to replace stage2 in a proxy transition. Only

needed if a transition will be replaced by another estimated transition, and only

in stage-based and age-by-stage MPMs.

String vector of stage names to replace stagel in a proxy historical transition.

Only needed if a transition will be replaced by another estimated transition, and

supplemental

estage?

givenrate

offset

multiplier

type

type_t12

Value

301

the matrix to be estimated is historical and stage-based. Stage NotAlive is also
possible for raw hMPMs as a means of handling the prior stage for individuals
entering the population in occasion z.

Integer vector of age at time ¢ to replace age?2 in a proxy transition. Only needed
if a transition will be replaced by another estimated transition, and only in age-
based and age-by-stage MPMs.

A numeric vector of fixed rates or probabilities to replace for the transition de-
scribed by stage3, stage2, stagel, and/or age?2.

A numeric vector of fixed numeric values to add to the transitions described by
stage3, stage2, stagel, and/or age2.

A numeric vector of multipliers for the transition described by stage3, stage2,
stagel, and/or age2, or for the proxy transitions described by eststage3,
eststage2, eststagel, and/or estage?2. Defaults to 1.

Integer vector denoting the kind of transition between occasions ¢ and #+1 to be
replaced. This should be entered as 1, S, or s for the replacement of a survival
transition; 2, F, or f for the replacement of a fecundity transition; or 3, R, or r for
a fecundity set value / general multiplier. If empty or not provided, then defaults
to 1 for survival transition.

An optional integer vector denoting the kind of transition between occasions
t-1 and t. Only necessary if a historical MPM in deVries format is desired.
This should be entered as 1, S, or s for a survival transition; or 2, F, or f for a
fecundity transitions. Defaults to 1 for survival transition, with impacts only on
the construction of deVries-format hMPMs.

A data frame of class 1efkoSD. This object can be used as inputin flefko3(), flefko2(), rlefko3(),
rlefko2(), and aflefko2().

Variables in this object include the following:

stage3
stage2
stagel
age2
eststage3

eststage?

eststagel

estage?
givenrate
offset

multiplier

Stage at occasion 7+1 in the transition to be replaced.
Stage at occasion 7 in the transition to be replaced.
Stage at occasion #-1 in the transition to be replaced.
Age at occasion ¢ in the transition to be replaced.

Stage at occasion #+1 in the transition to replace the transition designated by
stage3, stage?, and stagel.

Stage at occasion ¢ in the transition to replace the transition designated by stage3,
stage2, and stagel.

Stage at occasion #-1 in the transition to replace the transition designated by
stage3, stage2, and stagel.

Age at occasion ¢ in the transition to replace the transition designated by age?2.
A constant to be used as the value of the transition.
A constant value to be added to the transition or proxy transition.

A multiplier for proxy transitions or for fecundity.

302 supplemental

convtype Designates whether the transition from occasion ¢ to occasion #+1 is a survival
transition probability (1), a fecundity rate (2), or a fecundity multiplier (3).

convtype_t12 Designates whether the transition from occasion #-1 to occasion ¢ is a survival
transition probability (1), a fecundity rate (2).

Notes

Negative values are not allowed in givenrate and multiplier input, but are allowed in of fset, if
values are to be subtracted from specific estimated transitions. Stage entries should not be used for
purely age-based MPMs, and age entries should not be used for purely stage-based MPMs.

Fecundity multiplier data supplied via the supplemental() function acts in the same way as non-
zero entries supplied via a reproductive matrix, but gets priority in all matrix creations. Thus, in
cases where fecundity multipliers are provided for the same function via the reproductive matrix
and function supplemental (), the latter is used.

Entries in stage3, stage2, and stage1 can include abbreviations for groups of stages. Use rep
if all reproductive stages are to be used, nrep if all mature but non-reproductive stages are to be
used, mat if all mature stages are to be used, immat if all immature stages are to be used, prop if all
propagule stages are to be used, npr if all non-propagule stages are to be used, obs if all observable
stages are to be used, nobs if all unobservable stages are to be used, and leave empty or use all
if all stages in stageframe are to be used. Also use groupX to denote all stages in group X (e.g.
groupl will use all stages in the respective stageframe’s group 1).

Type 3 conversions are referred to as fecundity set values, or general fecundity multipliers. These
set the transitions to be used as fecundity transitions. Transitions set here will be interpreted as being
generally reproductive, meaning that the from and to stages will be used to determine the general
fecundity transitions to incorporate into stage-based MPMs, while the age portion of the input will
be used to incorporate the actual multiplier(s) specified. If only stage transitions at certain ages are
expected to be the sole contributors to fecundity, then type 2 conversions should also be included in
the supplement (Type 1 and 2 conversions can be purely age-specific, and do not set reproductive
transitions in MPM creation). For example, if all stage 2 to stage 3 transitions above age 2 yield
fecundity, then stage 2 to stage 3 can be set tomultiplier = 1.0 with convtype = 3, and the same
transition for age2 = c(1, 2) can be settomultiplier =c(0, 0).

Several operations may be included per transition. Operations on the same row of the resulting data
frame are generally handled with given rate substitutions first, then with proxy transitions, then by
additive offsets, and finally by multipliers. This order can be manipulated by ordering operations
across rows, with higher numbered rows in the data frame being performed later.

See Also
edit_1MQ)

Examples

Lathyrus example
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm”, "Sm", "VLa", "Flo", "Dorm")
repvector <- c(0, 0, 0, 0, 0, 1, 9)

supplemental 303

obsvector <- c(o, 1, 1, 1, 1, 1
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, @, 0, 0, @
propvector <- c(1, @0, 0, 0, @, 0, 0)
indataset <- c(o, 1, 1, 1, 1, 1, 1)

binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT”, individcol = "GENET"”, blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988"”, censorkeep = NA, censor = TRUE)

lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("sd", "sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stagel = c("sd”, "rep”, "Sd", "rep”, "npr”, "npr"”, "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststagel = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)

ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2"”, "stagel"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")

Cypripedium example
data(cypdata)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1”, "P2”, "P3”, "SL”, "D", "XSm", "Sm", "Md", "Lg",
IIXLgN)

repvector <- c(0, @0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, @, 9, 0, 1, 1, 1, 1, 1)
matvector <- c(@, @, 0, @, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, 0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, @0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, 9, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

304

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
Stagez = C(”SD“, “SD“, IIP1 II, IIPZN, IIP3II, ”SL“, “SL“, IISLII’ Ilrepll,
"rep”),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all” | patch = "all"”, stages = c("stage3", "stage2", "stagel”),

usher3

size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
usher3 Two-Parameter Usher Function
Description

Function usher3() creates a vector of values produced by the two- parameter Usher function as
applied with a user-specified time lag. The Usher function is given as ¢; 1 = ¢¢/(1 4 e*™+15).

Here, if no separate_N vector is provided, then n; = ¢;.

Usage

usher3(
start_value,
alpha,
beta,
time_steps = 100L,
time_lag = 1L,
pre@_subs = FALSE,
pre@_value = 0,
substoch = 0oL,
separate_N = NULL

usher3

Arguments

start_value
alpha

beta
time_steps

time_lag

pre@_subs

pre@_value

substoch

separate_N

Value

305

A positive number to start the return vector in time 0.

The alpha parameter in the two-parameter Usher function.

The beta parameter in the two-parameter Usher function.

The number of time steps to run the projection. Must be a positive integer.

A positive integer denoting the number of time steps back for the value of phi in
the two-parameter Usher function.

A logical value indicating whether to use a number other than that given in
start_value for values of phi lagged from times prior to time 0.

A positive number to use for phi lagged from times prior to time 0. Only used if
pre@_subs = TRUE.

An integer value indicating the kind of substochasticity to use. Values include:
0, no substochasticity enforced (the default); 1, all numbers must be non-negative;
and 2, all numbers should be forced to the interval [0, 1].

An optional numeric vector with values of N in each time, if phi is to be treated
as different from N in the two-parameter model.

A numeric vector of values showing values projected under the two- parameter Usher function.

Examples

trial_runl <- usher3(1,

plot(trial_runi)

trial_run2 <- usher3(1,

plot(trial_run2)

trial_run3 <- usher3(1,

plot(trial_run3)

trial_run4 <- usher3(1,

plot(trial_run4)

trial_run5 <- usher3(1,

plot(trial_run5)

trial_run6é <- usher3(1,

plot(trial_run6)

used_Ns <- c(10,
25, 26)

trial_run7 <- usher3(1, alpha =

plot(trial_run7)

alpha = -0.5, beta = 0.005)
alpha = 0.5, beta = 0.005)
alpha = -5, beta = 0.005)
alpha = 5, beta = 0.005)
alpha = -25, beta = 0.005)
alpha = 25, beta = 0.005)

15, 12, 14, 14, 150, 15, 1, 5, 7, 9, 14, 13, 16, 17, 19,

-0.5, beta = 0.005, separate_N = used_Ns)

306

verticalize3

verticalize3

Create Historical Vertical Data Frame from Horizontal Data Frame

Description

Usage

verticalize3(

data,

noyears,
firstyear = 1,
popidcol = 0,
patchidcol =
individcol =
blocksize = NA,
xcol = 0,

ycol = 0,
juvcol = 0,
sizeacol,
sizebcol = 0,
sizeccol = 0,
repstracol =
repstrbcol
fecacol = 0,
fecbcol = @
indcovacol
indcovbcol
indcovccol
aliveacol = 0,
deadacol = 0,
obsacol = 0,
nonobsacol = 0,
censorcol = 0,
repstrrel = 1,
fecrel = 1,
stagecol = 0,

o,
o,

9,
= @,

o,
o,
0

’

stageassign = NA,

stagesize = NA,
censorkeep = 0,

Function verticalize3() returns a vertically formatted demographic data frame organized to cre-
ate historical projection matrices, given a horizontally formatted input data frame. It also handles
stage assignments if given an appropriate stageframe.

censorRepeat = FALSE,

censor = FALSE,

coordsRepeat = FALSE,

spacing = NA,

verticalize3

NAas@ = FALSE,
NRasRep = FALSE,
NOasObs = FALSE,
prebreeding = TRUE,
age_offset = 0,
reduce = TRUE,
a2check = FALSE,

307

quiet =

Arguments

data
noyears

firstyear

popidcol

patchidcol

individcol

blocksize

xcol

ycol

juvcol

sizeacol

The horizontal data file. A valid data frame is required as input.

The number of years or observation occasions in the dataset. A valid integer is
required as input.

The first year or occasion of observation. Defaults to 1.

A variable name or column number corresponding to the identity of the popula-
tion for each individual.

A variable name or column number corresponding to the identity of the patch
or subpopulation for each individual, if patches have been designated within
populations.

A variable name or column number corresponding to the identity of each indi-
vidual.

The number of variables corresponding to each occasion in the input dataset
designated in data, if a set pattern of variables is used for each observation
occasion in the data frame used as input. If such a pattern is not used, and
all variable names are properly noted as character vectors in the other input
variables, then this may be set to NA. Defaults to NA.

A variable name(s) or column number(s) corresponding to the X coordinate of
each individual, or of each individual at each occasion, in Cartesian space. Can
refer to the only instance, the first instance, or all instances of X variables. In
the last case, the values should be entered as a vector.

A variable name(s) or column number(s) corresponding to the Y coordinate of
each individual, or of each individual at each occasion, in Cartesian space. Can
refer to the only instance, the first instance, or all instances of Y variables. In
the last case, the values should be entered as a vector.

A variable name(s) or column number(s) that marks individuals in immature
stages within the dataset. This function assumes that immature individuals are
identified in this variable marked with a number equal to or greater than 1, and
that mature individuals are marked as @ or NA. Can refer to the first instance, or
all instances of these variables. In the latter case, the values should be entered
as a vector.

A variable name(s) or column number(s) corresponding to the size entry asso-
ciated with the first year or observation occasion in the dataset. Can refer to the
first instance, or all instances of these variables. In the latter case, the values
should be entered as a vector. This variable should refer to the first size variable
in the stageframe, unless stagesize = "sizeadded".

308

sizebcol

sizeccol

repstracol

repstrbcol

fecacol

fecbcol

indcovacol

indcovbcol

indcovccol

aliveacol

verticalize3

A second variable name(s) or column number(s) corresponding to the size entry
associated with the first year or observation occasion in the dataset. Can refer
to the first instance, or all instances of these variables. In the latter case, the
values should be entered as a vector. This variable should refer to the second
size variable in the stageframe, unless stagesize = "sizeadded".

A third variable name(s) or column number(s) corresponding to the size entry
associated with the first year or observation occasion in the dataset. Can refer to
the first instance, or all instances of these variables. In the latter case, the values
should be entered as a vector. This variable should refer to the third size variable
in the stageframe, unless stagesize = "sizeadded".

A variable name(s) or column number(s) corresponding to the production of
reproductive structures, such as flowers, associated with the first year or obser-
vation period in the input dataset. This can be binomial or count data, and is
used to analyze the probability of reproduction. Can refer to the first instance,
or all instances of these variables. In the latter case, the values should be entered
as a vector.

A second variable name(s) or column number(s) corresponding to the produc-
tion of reproductive structures, such as flowers, associated with the first year or
observation period in the input dataset. This can be binomial or count data, and
is used to analyze the probability of reproduction. Can refer to the first instance,
or all instances of these variables. In the latter case, the values should be entered
as a vector.

A variable name(s) or column number(s) denoting fecundity associated with the
first year or observation occasion in the input dataset. This may represent egg
counts, fruit counts, seed production, etc. Can refer to the first instance, or all
instances of these variables. In the latter case, the values should be entered as a
vector.

A second variable name(s) or column number(s) denoting fecundity associated
with the first year or observation occasion in the input dataset. This may repre-
sent egg counts, fruit counts, seed production, etc. Can refer to the first instance,
or all instances of these variables. In the latter case, the values should be entered
as a vector.

A variable name(s) or column number(s) corresponding to an individual covari-
ate to be used in analysis. Can refer to the only instance, the first instance, or all
instances of these variables. In the last case, the values should be entered as a
vector.

A variable name(s) or column number(s) corresponding to an individual covari-
ate to be used in analysis. Can refer to the only instance, the first instance, or all
instances of these variables. In the last case, the values should be entered as a
vector.

A second variable name(s) or column number(s) corresponding to an individual
covariate to be used in analysis. Can refer to the only instance, the first instance,
or all instances of these variables. In the last case, the values should be entered
as a vector.

Variable name(s) or column number(s) providing information on whether an
individual is alive at a given occasion. If used, living status must be designated

verticalize3

deadacol

obsacol

nonobsacol

censorcol

repstrrel

fecrel

stagecol

stageassign

stagesize

309

as binomial (living = 1, dead = @). Can refer to the first instance of a living status
variable in the dataset, or a full vector of all living status variables in temporal
order.

Variable name(s) or column number(s) providing information on whether an
individual is alive at a given occasion. If used, dead status must be designated
as binomial (dead = 1, living = @). Can refer to the first instance of a dead status
variable in the dataset, or a full vector of all dead status variables in temporal
order.

A variable name(s) or column number(s) providing information on whether an
individual is in an observable stage at a given occasion. If used, observation
status must be designated as binomial (observed = 1, not observed = @). Can
refer to the first instance of an observation status variable in the dataset, or a full
vector of all observation status variables in temporal order.

A variable name(s) or column number(s) providing information on whether an
individual is in an unobservable stage at a given occasion. If used, observation
status must be designated as binomial (not observed = 1, observed = 0). Can
refer to the first instance of a non-observation status variable in the dataset, or a
full vector of all non-observation status variables in temporal order.

A variable name(s) or column number(s) corresponding to the first entry of a
censor variable, used to distinguish between entries to use and entries not to
use, or to designate entries with special issues that require further attention. Can
refer to the first instance of a censor status variable in the dataset, or a full vector
of all censor status variables in temporal order. Can also refer to a single censor
status variable used for the entire individual, if singlecensor = TRUE.

This is a scalar multiplier on variable repstrbcol to make it equivalent to
repstracol. This can be useful if two reproductive status variables have re-
lated but unequal units, for example if repstracol refers to one-flowered stems
while repstrbcol refers to two-flowered stems. Defaults to 1.

This is a scalar multiplier on variable fecbcol to make it equivalent to fecacol.
This can be useful if two fecundity variables have related but unequal units.
Defaults to 1.

Optional variable name(s) or column number(s) corresponding to life history
stage at a given occasion. Can refer to the first instance of a stage identity
variable in the dataset, or a full vector of all stage identity variables in temporal
order.

The stageframe object identifying the life history model being operationalized.
Note that if stagecol is provided, then this stageframe is not used for stage
designation.

A variable name or column number describing which size variable to use in stage
estimation. Defaults to NA, and can also take sizea, sizeb, sizec, sizeab,
sizebc, sizeac, sizeabc, or sizeadded, depending on which size variable
within the input dataset is chosen. Note that the variable(s) chosen should be
presented in the order of the primary, secondary, and tertiary variables in the
stageframe input with stageassign. For example, choosing sizeb assumes
that this size is the primary variable in the stageframe.

310

censorkeep

censorRepeat

censor

coordsRepeat

spacing

NAas@

NRasRep

NOasObs

prebreeding

age_offset

reduce

a2check

quiet

Value

verticalize3

The value of the censor variable identifying data to be included in analysis.
Defaults to @, but may take any value including NA. Note that if NA is the value
to keep, then this function will alter all NAs to @ values, and all other values to 1,
treating @ as the new value to keep.

A logical value indicating whether the censor variable is a single column, or
whether it repeats across occasion blocks. Defaults to FALSE.

A logical variable determining whether the output data should be censored using
the variable defined in censorcol. Defaults to FALSE.

A logical value indicating whether X and Y coordinates correspond to single X
and Y columns. If TRUE, then each observation occasion has its own X and Y
variables. Defaults to FALSE.

The spacing at which density should be estimated, if density estimation is de-
sired and X and Y coordinates are supplied. Given in the same units as those
used in the X and Y coordinates given in xcol and ycol. Defaults to NA.

If TRUE, then all NA entries for size and fecundity variables will be set to 0. This
can help increase the sample size analyzed by modelsearch(), but should only
be used when it is clear that this substitution is biologically realistic. Defaults to
FALSE.

If TRUE, then will treat non-reproductive but mature individuals as reproductive
during stage assignment. This can be useful when a MPM is desired without
separation of reproductive and non-reproductive but mature stages of the same
size. Only used if stageassign is set to a stageframe. Defaults to FALSE.

If TRUE, then will treat individuals that are interpreted as not observed in the
dataset as though they were observed during stage assignment. This can be use-
ful when a MPM is desired without separation of observable and unobservable
stages. Only used if stageassign is set to a stageframe. Defaults to FALSE.

A logical term indicating whether the life history model is pre-breeding. If so,
then 1 is added to all ages. Defaults to TRUE.

A number to add automatically to all values of age at time ¢. Defaults to 0.

A logical variable determining whether unused variables and some invariant
state variables should be removed from the output dataset. Defaults to TRUE.

A logical variable indicating whether to retain all data with living status at oc-
casion ¢. Defaults to FALSE, in which case data for occasions in which the indi-
vidual is not alive in time 7 is not retained. This option should be kept FALSE,
except to inspect potential errors in the dataset.

A logical variable indicating whether to silence warnings. Defaults to FALSE.

If all inputs are properly formatted, then this function will output a historical vertical data frame
(class hfvdata), meaning that the output data frame will have three consecutive occasions of size
and reproductive data per individual per row. This data frame is in standard format for all functions
used in lefko3, and so can be used without further modification.

Variables in this data frame include the following:

verticalize3 311

rowid Unique identifier for the row of the data frame.

popid Unique identifier for the population, if given.

patchid Unique identifier for patch within population, if given.

individ Unique identifier for the individual.

year?2 Year or time at occasion ¢.

firstseen Occasion of first observation.

lastseen Occasion of last observation.

obsage Observed age in occasion ¢, assuming first observation corresponds to age = 0.
obslifespan Observed lifespan, given as lastseen - firstseen + 1.

Xxpos1, xpos2, xpos3
X position in Cartesian space in occasions #-1, f, and #+1, respectively, if pro-

vided.
ypos1, ypos2, ypos3

Y position in Cartesian space in occasions -1, t, and 7+1, respectively, if pro-

vided.
sizeal, sizea2, sizea3

Main size measurement in occasions #-1, #, and r+1, respectively.
sizeb1, sizeb2, sizeb3
Secondary size measurement in occasions ¢-1, ¢, and 7+1, respectively.
sizecl, sizec?2, sizec3
Tertiary measurement in occasions #-1, ¢, and 7+1, respectively.
sizeladded, size2added, size3added
Sum of primary, secondary, and tertiary size measurements in occasions -1, t,
and r+1, respectively.
repstral, repstra2, repstra3
Main numbers of reproductive structures in occasions #-1, ¢, and #+1, respec-
tively.
repstrbi, repstrb2, repstrb3
Secondary numbers of reproductive structures in occasions #-1, ¢, and r+1, re-
spectively.
repstriladded, repstr2added, repstr3added
Sum of primary and secondary reproductive structures in occasions #-1, ¢, and
t+1, respectively.
fecal, feca2, feca3
Main numbers of offspring in occasions #-1, ¢, and #+1, respectively.
fecb1, fecb2, fecb3
Secondary numbers of offspring in occasions #-1, ¢, and #+1, respectively.
fecladded, fec2added, fec3added
Sum of primary and secondary fecundity in occasions #-1, 7, and #+1, respec-
tively.
censorl, censor2, censor3
Censor state values in occasions -1, ¢, and #+1, respectively.
juvgivenl, juvgiven2, juvgiven3
Binomial variable indicating whether individual is juvenile in occasions #-1, ¢,
and r+1. Only given if juvcol is provided.

312

verticalize3

obsstatus1, obsstatus2, obsstatus3

Binomial observation state in occasions #-1, ¢, and #+1, respectively.
repstatusi, repstatus2, repstatus3

Binomial reproductive state in occasions #-1, ¢, and #+1, respectively.
fecstatus1, fecstatus?2, fecstatus3

Binomial offspring production state in occasions #-1, ¢, and 7+1, respectively.
matstatusl, matstatus2, matstatus3

Binomial maturity state in occasions #-1, ¢, and t+1, respectively.
alivel, alive?2, alive3

Binomial state as alive in occasions #-1, t, and #+1, respectively.

density Radial density of individuals per unit designated in spacing. Only given if
spacing is not NA.

Notes

In some datasets on species with unobservable stages, observation status (obsstatus) might not be
inferred properly if a single size variable is used that does not yield sizes greater than 0 in all cases
in which individuals were observed. Such situations may arise, for example, in plants when leaf
number is the dominant size variable used, but individuals occasionally occur with inflorescences
but no leaves. In this instances, it helps to mark related variables as sizeb and sizec, because
observation status will be interpreted in relation to all 3 size variables. Further analysis can then
utilize only a single size variable, of the user’s choosing. Similar issues can arise in reproductive
status (repstatus).

Juvenile designation should only be used when juveniles fall outside of the size classification
scheme used in determining stages. If juveniles are to be size classified along the size spectrum
that adults also fall on, then it is best to treat juveniles as mature but not reproductive.

Warnings that some individuals occur in state combinations that do not match any stages in the
stageframe used to assign stages are common when first working with a dataset. Typically, these
situations can be identified as NoMatch entries in stage3, although such entries may crop up in
stagel and stage2, as well. In rare cases, these warnings will arise with no concurrent NoMatch
entries, which indicates that the input dataset contained conflicting state data at once suggesting
that the individual is in some stage but is also dead. The latter is removed if the conflict occurs in
occasion ¢ or #-1, as only living entries are allowed in time 7 and time #-1 may involve living entries
as well as non-living entries immediately prior to birth.

Care should be taken to avoid variables with negative values indicating size, fecundity, or reproduc-
tive or observation status. Negative values can be interpreted in different ways, typically reflecting
estimation through other algorithms rather than actual measured data. Variables holding negative
values can conflict with data management algorithms in ways that are difficult to predict.

Unusual errors (e.g. "Error in .pfj...") may occur in cases where the variables are improperly
passed, where seemingly numeric variables include text, or where the blocksize is improperly set.

Density estimation is performed as a count of individuals alive and within the radius specified in
spacing of the respective individual at some point in time.

If a censor variable is included for each monitoring occasion, and the blocksize option is set, then
the user must set censorRepeat = TRUE in order to censor the correct transitions. Failing this step
will likely lead to the loss of a large portion of the data as all data for entire individuals will be
excluded.

verticalize3

Examples

Lathyrus example using blocksize - when repeated patterns exist in variable
order
data(lathyrus)

sizevector <- c(@, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl1", "vSm"”, "Sm", "VLa", "Flo", "Dorm")

repvector <- c(9, o, 0, 0, 0, 1, @)
obsvector <- c(0, 1, 1, 1, 1, 1, @)
matvector <- c(0, o, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, @, 0)

9..
9~.
.®~
.®“
&
S
~—

propvector <- c(1,
indataset <- c(o0, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 100, 11, 103, 3500, 3800, 0.5)

lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)

lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT"”, individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea”,
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)

Cypripedium example using partial repeat patterns with blocksize and part
explicit variable name cast
data(cypdata)

sizevector <- c(0, 0, o0, 0, 0, @, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr <_ C(IISDII’ IVP-I IV’ IVPZIV’ IIP3II’ ”SL”, IIDII’ "XSm”, Vlsmll, VIMdlI, IILgII’
"XLg")

repvector <- c(0, @, 0, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = c("Inf.04", "Inf.05", "Inf.06", "Inf.07", "Inf.08", "Inf.09"),

repstrbcol = c("Inf2.04", "Inf2.05", "Inf2.06", "Inf2.07", "Inf2.08", "Inf2.09"),

313

314

vrm_import

fecacol = "Pod.04", stageassign = cypframe_raw, stagesize = "sizeadded”,
NAas@ = TRUE, NRasRep = TRUE)

vrm_import

Import Vital Rate Model Factor Values for Function-based MPM De-
velopment

Description

Function vrm_import () builds a skeleton list holding data frames and vectors that can be used to
import coefficient values for the factors of the vital rate models used to build function-based MPMs

or run function

Usage

vrm_import(
years = NU
patches =
groups = C
interactio
zi = FALSE
cat.indcov
cat.indcov
cat.indcov
dist.sizea
dist.sizeb
dist.sizec
dist.fec =
trunc.size
trunc.size
trunc.size
trunc.fec
use.juv =

Arguments

years
patches

groups

interactions

zi

-based projections.

LL,

c(1),

(),

ns = FALSE,

a = NULL,

b = NULL,

¢ = NULL,

= "gaussian”,
= "constant”,
= "constant”,
"gaussian”,

a = FALSE,

b = FALSE,

¢ = FALSE,

= FALSE,

FALSE

A numeric vector of the years or times at time t to be modeled.
A string or numeric vector of the patch names to be modeled.

An integer vector of stage groups to be modeled. Defaults to a vector with a
single element with value ©.

A logical value indicating whether to include two-way interactions between
main effects (TRUE), or only main effects (FALSE). Defaults to FALSE.

A logical value indicating whether to include coefficients for the binomial com-
ponents of zero-inflation models. Defaults to FALSE.

vrm_import

cat.indcova

cat.indcovb

cat.indcovc

dist.sizea

dist.sizeb

dist.sizec

dist.fec

trunc.sizea

trunc.sizeb

trunc.sizec

trunc.fec

use. juv

Value

315

If individual covariate a is categorical, then this term should equal a string vec-
tor of the names of the categories. Defaults to NULL, in which case individual
covariate a is either not used or is numeric.

If individual covariate b is categorical, then this term should equal a string vec-
tor of the names of the categories. Defaults to NULL, in which case individual
covariate b is either not used or is numeric.

If individual covariate c is categorical, then this term should equal a string vec-
tor of the names of the categories. Defaults to NULL, in which case individual
covariate c is either not used or is numeric.

string value givin e distribution of the variable coding prim:. size. Can

A st 1 the distribut: f th bl d C

equal "none”, "gamma”, "gaussian”, "poisson”, "negbin”, or "constant”.
ults ussi .

Defaults to "gaussian”

A string value giving the distribution of the variable coding secondary size. Can
equal "none”, "gamma”, "gaussian”, "poisson”, "negbin”, or "constant”.
Defaults to "constant”.

A string value giving the distribution of the variable coding tertiary size. Can
equal "none”, "gamma”, "gaussian”, "poisson”, "negbin”, or "constant”.
Defaults to "constant”.

A string value giving the distribution of the variable coding fecundity. Can
equal "none”, "gamma”, "gaussian”, "poisson”, or "negbin”. Defaults to
"gaussian”.

A logical value indicating whether the distribution of the primary size variable
should be zero-truncated. Defaults to FALSE. Currently only works with the
Poisson and negative binomial distributions.

A logical value indicating whether the distribution of the secondary size variable
should be zero-truncated. Defaults to FALSE. Currently only works with the
Poisson and negative binomial distributions.

A logical value indicating whether the distribution of the tertiary size variable
should be zero-truncated. Defaults to FALSE. Currently only works with the
Poisson and negative binomial distributions.

A logical value indicating whether the distribution of the fecundity variable
should be zero-truncated. Defaults to FALSE. Currently only works with the
Poisson and negative binomial distributions.

A logical value indicating whether to utilize juvenile vital rates. If FALSE, then
all juvenile vital rates will be set to constant distributions. Defaults to FALSE.

A list of class vrm_input, with up to 13 elements including:

vrm_frame

year_frame

patch_frame

A data frame holding the main slope coefficients for the linear vital rate models.

A data frame holding the main slope coefficients for the year at time t terms in
the linear vital rate models.

A data frame holding the main slope coefficients for the patch terms in the linear
vital rate models.

316 vrm_import

group2_frame A data frame holding the main slope coefficients for the stage group terms in
time ¢ in the linear vital rate models.

groupl1_frame A data frame holding the main slope coefficients for the stage group terms in
time #-1 in the linear vital rate models.

dist_frame A data frame giving the distributions of all variables, including primary, sec-
ondary, and tertiary size, and fecundity. Some variables begin as constant.

indcova2_frame A data frame holding the main slope coefficients for the categorical individual
covariate a terms in time ¢ in the linear vital rate models.

indcoval_frame A data frame holding the main slope coefficients for the categorical individual
covariate a terms in time #-1 in the linear vital rate models.

indcovb2_frame A data frame holding the main slope coefficients for the categorical individual
covariate b terms in time ¢ in the linear vital rate models.

indcovb1_frame A data frame holding the main slope coefficients for the categorical individual
covariate b terms in time #-1 in the linear vital rate models.

indcovc2_frame A data frame holding the main slope coefficients for the categorical individual
covariate ¢ terms in time ¢ in the linear vital rate models.

indcovci_frame A data frame holding the main slope coefficients for the categorical individual
covariate ¢ terms in time #-1 in the linear vital rate models.

st_frame A data frame holding values of sigma or theta for use in Gaussian or negative
binomial response terms, respectively.

The first element, called vrm_frame, is a data frame with the following 18 variables:

main_effect_1 The main effect for which coefficients are to be entered.
main_1_defined A more natural explanation of main_effect_1.
main_effect_2 If given, then indicates another effect in a two-way interaction withmain_effect_1.

main_2_defined A more natural explanation of main_effect_2.

surv A vector of coefficients for the factors in the model of adult survival.

obs A vector of coefficients for the factors in the model of adult observation status.

sizea A vector of coefficients for the factors in the model of adult primary size.

sizeb A vector of coefficients for the factors in the model of adult secondary size.

sizec A vector of coefficients for the factors in the model of adult tertiary size.

repst A vector of coefficients for the factors in the model of adult reproductive status.

fec A vector of coefficients for the factors in the model of adult fecundity.

jsurv A vector of coefficients for the factors in the model of juvenile survival.

jobs A vector of coefficients for the factors in the model of juvenile observation sta-
tus.

jsize A vector of coefficients for the factors in the model of juvenile primary size.

jsizeb A vector of coefficients for the factors in the model of juvenile secondary size.

jsizec A vector of coefficients for the factors in the model of juvenile tertiary size.

jrepst A vector of coefficients for the factors in the model of juvenile reproductive

status, for individuals maturing in the current time step.

vrm_import 317

jmat A vector of coefficients for the factors in the model of maturity status, for indi-
viduals capable of maturing at the current time step.

sizea_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of adult primary size, if zero-inflated models are being used.

sizeb_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of adult secondary size, if zero-inflated models are being used.

sizec_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of adult tertiary size, if zero-inflated models are being used.

fec_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of fecundity, if zero-inflated models are being used.

jsizea_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of juvenile primary size, if zero-inflated models are being used.

jsizeb_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of juvenile secondary size, if zero-inflated models are being used.

jsizec_zi A vector of coefficients for the factors in the binomial component of the zero-
inflated model of juvenile tertiary size, if zero-inflated models are being used.

Notes

All coefficients across all data frames are initially set to @. After using this function to create the
skeleton list, all relevant coefficient values should be set to non-zero values equal to the respective
slope from the appropriate linear model, and any vital rate model to be used should have its distri-
bution set to "binom”, "gaussian”, "gamma", "poisson”, or "negbin”. Unused vital rates should
be set to "constant”, and the first element of the correspoding column in vrm_frame (correspond-
ing to the y-intercept) should be set to the constant value to utilize (generally 1). If no values are
manually edited, then function-based MPM generator functions will not be able to generate valid

MPMs.

Users should never change the labels or the order of terms in the data frames and vectors produced
via this function, nor should they ever changes the names of core list elements in the vrm_input
object. Doing so will result either in fatal errors or erroneous matrix calculations.

Using the vrm_import () approach to building function-based MPMs requires attention to the stage-
frame. Although no hfv_data object needs to be input, stages for which vital rates are to be esti-
mated via models parameterized with coefficients provided via function vrm_import () should be
marked as occurring within the dataset, while stages for which the provided coefficients should not
be used should be marked as not occurring within the dataset.

Coefficients added to zero-inflation models can only be added to primary size, secondary size,
tertiary size, fecundity, and the juvenile versions of primary, secondary, and tertiary size. Care must
be taken to include zero- inflated coefficients only for variables without size-truncated distributions.
Adding such terms will result in fatal errors during matrix creation.

Examples

data(lathyrus)

sizevector <- c(@, 100, 0, 1, 7100)
stagevector <- c("Sd", "Sdl1”, "Dorm”, "ipm

”

, "ipm”)

318

repvector <-
obsvector <-
matvector <- c(0,
immvector <- c(1, 1, O,
propvector <- c(1, 0, 0,
indataset <- c(0, 1, 1, 1,
binvec <- c(0, 100, 0.5, 1,
comments <- c(”Dormant seed”, "Seedling”, "Dormant”, "ipm adult stage"”,
"ipm adult stage")
lathframeipm <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus repvector, obsstatus obsvector, propstatus = propvector,
immstatus = immvector, matstatus = matvector, comments = comments,
indataset = indataset, binhalfwidth = binvec, ipmbins = 100, roundsize

c(o,
C(@,

3)
lathsupp2 <- supplemental(stage3 = c("”Sd"”, "Sdl1", "Sd"”, "Sdl"),

Stagez = C(”Sd“, “Sd“, “rep”’ ”rep"),

givenrate = c(0.345, 0.054, NA, NA),

multiplier = c(NA, NA, 0.345, 0.054),

type = c(1, 1, 3, 3), stageframe = lathframeipm, historical = FALSE)

lath_vrm <- vrm_import(years = c(1988:1990), zi = TRUE, dist.fec

use.juv = TRUE)

"negbin”,

lath_vrmvrm_framesurv[1] <- 2.32571
lath_vrmvrm_framesurv[2] <- 0.00109
lath_vrmvrm_frameobs[1] <- 2.230
lath_vrmvrm_framesizeal[1] <- 164.0695
lath_vrmvrm_framesizeal[2] <- 0.6211
lath_vrmvrm_framefec[1] <- 1.517
lath_vrmvrm_framefec_zi[1] <- 6.252765
lath_vrmvrm_framefec_zi[2] <- -0.007313
lath_vrmvrm_framejsurv[1] <- 1.03
lath_vrmvrm_framejobs[1] <- 10.390
lath_vrmvrm_framejsizeal1] <- 3.0559
lath_vrmvrm_framejsizeal[2] <- 0.8482

lath_vrm$year_frame$fec[c(1:3)] <- c(-0.41749627, 0.51421684, -0.07964038)

lath_vrm$year_frame$fec_zi[c(1:3)] <- c(3.741475e-07, -7.804715e-08,
-2.533755e-07)

lath_vrm$year_frame$sizealc(1:3)] <- c(96.3244, -240.8036, 144.4792)

lath_vrm$year_frame$jobs[c(1:3)] <- c(-0.7459843, 0.6118826, -0.9468618)

lath_vrm$year_frame$jsizealc(1:3)] <- c(0.5937962, 1.4551236, -2.0489198)

lath_vrm$dist_frame$dist[2] <- "binom”
lath_vrm$dist_frame$dist[9] <- "binom”

lath_vrm$st_frame[3] <- 503.6167
lath_vrm$st_frame[7] <- 0.2342114
lath_vrm$st_frame[10] <- 5.831

lath_vrmvrm_framesizeb[1] <- 1
lath_vrmvrm_framesizec[1] <- 1
lath_vrmvrm_framerepst[1] <- 1

vrm_import

vrm_import 319

lath_vrmvrm_framejsizeb[1]
lath_vrmvrm_framejsizec[1]
lath_vrmvrm_framejrepst[1]
lath_vrmvrm_framejmatst[1]

lathmat2_importipm <- flefko2(stageframe = lathframeipm,
modelsuite = lath_vrm, supplement = lathsupp2, reduce = FALSE)

summary (lathmat2_importipm)

Index

+ datasets
anthyllis, 22
cypdata, 46
cypvert, 49
lathyrus, 148
pyrola, 197

actualstage3, 5

add_1M, 7,41, 51,279

add_stage, 10

aflefko2, 12, 29,44, 90, 101, 110, 119, 187.
221,227,232, 247,249, 289, 291,
301

anthyllis, 22

append_1P, 23, 119, 195

arlefko2, 19, 20, 25, 89, 90, 100, 101, 110,
221,227,232, 247

beverton3, 30
bootstrap3s, 32

cond_diff, 34

cond_hmpm, 37
create_1M, 8,39, 51, 194, 279
create_pm, 16, 44, 86, 97, 107, 115, 180
cycle_check, 45

cypdata, 46

cypvert, 49

delete_1M, 8, 41, 50, 279

density_input, 53,58, 117,119, 193, 195,
277

density_vr, 56,117,119

diff_1IM, 34, 60

dredge, 174

edit_1M, 11, 63, 299, 302

elasticity3, 65,68, 71,75,78, 81

elasticity3.dgCMatrix, 66, 68,71, 75,78,
81

elasticity3.lefkoMat, 66, 68, 69, 75, 78, 81

elasticity3.lefkoMatlList, 66, 68, 71, 73,
78, 81

elasticity3.1list, 66,68, 71,7577, 81

elasticity3.matrix, 66, 68, 71,75, 78, 80

f_projection3, 57, 58, 111, 158, 195, 274

flefko2, 20, 29, 44,82, 101, 110, 119, 187,
221,226, 232, 247-250, 289, 291,
301

flefko3, 20, 29, 44, 90, 93, 110, 119, 187.
221,226, 232, 247-250, 289, 291,
301

fleslie, 20, 29, 90, 101, 105, 119, 221, 227,
232,289, 291

glm, 173
glm.nb, 174
glmer, 174
glmmTMB, 174

hfv_qgc, 122, 252

hist_null, 134

historicalize3, 14, 26, 29,84, 96, 114, 123,
126, 165, 218, 220, 223, 226, 229

image3, 135
image3.dgCMatrix, 137
image3.lefkoElas, 138
image3.lefkoMat, 136, 140
image3.lefkoSens, 141
image3.list, 142
image3.matrix, 136, 144

lambda3, 145

lathyrus, 148

lefko3 (lefko3-package), 4
lefko3-package, 4

Im, 173

Imean, 151

lmer, 174

logistic3, 153

INDEX

1tre3, 154

markov_run, 158

matrix_interp, 160

miniMod, 162, 175

modelsearch, 122, 131, 164, 254, 293, 310

mpm_create, 20, 29, 90, 101, 110, 176, 221,
226, 232

overwrite, 14,27, 84, 96, 114, 179, 186, 219,
225

plot.lefkoProj, 119, 188, 195
projection3, 24, 54, 55,111, 118, 119, 158,
190, 191, 274, 276, 277

pyrola, 197

repvalue3, 200, 203, 206, 209, 212, 214

repvalue3.dgCMatrix, 201, 202, 206, 209,
212,214

repvalue3.lefkoMat, 201, 203, 204,
211-214

repvalue3.lefkoMatList, 207

repvalue3.list, 201, 203, 206, 209, 211, 214

repvalue3.matrix, 201, 203, 206, 209, 212,
213

ricker3s, 215

rlefko2, 19, 20, 29, 89, 90, 100, 101, 110,
187,217,227, 232, 247, 248, 250,
289, 291, 301

rlefko3, 19, 20, 29, 89, 90, 100, 101, 110,
187,221,222, 232, 247, 248, 250,
289, 291, 301

rleslie, 19, 20, 29, 89, 90, 100, 101, 110,
221,227,228, 289, 291

sensitivity3, 233, 235, 237, 240, 243, 246
sensitivity3.dgCMatrix, 233,234, 237,
240, 243, 246
sensitivity3.lefkoMat, 233, 235, 236, 240,
243,246
sensitivity3.lefkoMatList, 235, 237, 238,
243,246
sensitivity3.list, 233,235, 237, 240, 241,
246
sensitivity3.matrix, 233, 235, 237, 240,
243,245
sf_create, 13, 84, 95, 114, 178, 205, 208,
247, 263, 267

321

sf_distrib, 252

sf_skeleton, 255

slambda3, 146, 255

stablestage3, 258, 261, 264, 267, 271, 273

stablestage3.dgCMatrix, 258, 260, 264,
268,271,273

stablestage3.lefkoMat, 258, 261, 262, 268,
270, 271,273

stablestage3.lefkoMatList, 261, 264, 266,
273

stablestage3.list, 258, 261, 264, 267, 269,
273

stablestage3.matrix, 258, 261, 264, 267,
271,272

stage_weight, 274

start_input, 55, 119, 194, 195,276

subset_1M, 8, 41, 51, 194, 278

summary . lefkoCondMat, 283

summary . lefkoElas, 66, 68, 71, 75, 78, 81,
285

summary.lefkoLTRE, 157, 287

summary . lefkoMat, 40, 289, 291

summary.lefkoMatList, 290

summary . lefkoMod, 293

summary.lefkoProj, 119, 195, 294

summary_hfv, 297

supplemental, /4, 27,63, 65, 84, 95, 107.
114,179, 186, 188, 219, 224, 230,
251,299

usher3, 304

verticalize3, 14, 26, 29, 84, 96, 114, 123,
165, 218, 220, 223, 226, 229, 306

vglm, 174

vrm_import, 163,251, 314

zeroinfl, 174

	lefko3-package
	actualstage3
	add_lM
	add_stage
	aflefko2
	anthyllis
	append_lP
	arlefko2
	beverton3
	bootstrap3
	cond_diff
	cond_hmpm
	create_lM
	create_pm
	cycle_check
	cypdata
	cypvert
	delete_lM
	density_input
	density_vr
	diff_lM
	edit_lM
	elasticity3
	elasticity3.dgCMatrix
	elasticity3.lefkoMat
	elasticity3.lefkoMatList
	elasticity3.list
	elasticity3.matrix
	flefko2
	flefko3
	fleslie
	f_projection3
	hfv_qc
	historicalize3
	hist_null
	image3
	image3.dgCMatrix
	image3.lefkoElas
	image3.lefkoMat
	image3.lefkoSens
	image3.list
	image3.matrix
	lambda3
	lathyrus
	lmean
	logistic3
	ltre3
	markov_run
	matrix_interp
	miniMod
	modelsearch
	mpm_create
	overwrite
	plot.lefkoProj
	projection3
	pyrola
	repvalue3
	repvalue3.dgCMatrix
	repvalue3.lefkoMat
	repvalue3.lefkoMatList
	repvalue3.list
	repvalue3.matrix
	ricker3
	rlefko2
	rlefko3
	rleslie
	sensitivity3
	sensitivity3.dgCMatrix
	sensitivity3.lefkoMat
	sensitivity3.lefkoMatList
	sensitivity3.list
	sensitivity3.matrix
	sf_create
	sf_distrib
	sf_skeleton
	slambda3
	stablestage3
	stablestage3.dgCMatrix
	stablestage3.lefkoMat
	stablestage3.lefkoMatList
	stablestage3.list
	stablestage3.matrix
	stage_weight
	start_input
	subset_lM
	summary.lefkoCondMat
	summary.lefkoElas
	summary.lefkoLTRE
	summary.lefkoMat
	summary.lefkoMatList
	summary.lefkoMod
	summary.lefkoProj
	summary_hfv
	supplemental
	usher3
	verticalize3
	vrm_import
	Index

