| Title: | R6-Based ML Survival Learners for 'mlexperiments' | 
| Version: | 0.0.6 | 
| Description: | Enhances 'mlexperiments' https://CRAN.R-project.org/package=mlexperiments with additional machine learning ('ML') learners for survival analysis. The package provides R6-based survival learners for the following algorithms: 'glmnet' https://CRAN.R-project.org/package=glmnet, 'ranger' https://CRAN.R-project.org/package=ranger, 'xgboost' https://CRAN.R-project.org/package=xgboost, and 'rpart' https://CRAN.R-project.org/package=rpart. These can be used directly with the 'mlexperiments' R package. | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/kapsner/mlsurvlrnrs | 
| BugReports: | https://github.com/kapsner/mlsurvlrnrs/issues | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | data.table, kdry, mlexperiments (≥ 0.0.7), mllrnrs, R6, stats | 
| Suggests: | glmnet, lintr, measures, ParBayesianOptimization, quarto, ranger, rpart, splitTools, survival, testthat (≥ 3.0.1), xgboost | 
| VignetteBuilder: | quarto | 
| Config/testthat/edition: | 3 | 
| Config/testthat/parallel: | false | 
| Date/Publication: | 2025-09-09 12:20:02 UTC | 
| Encoding: | UTF-8 | 
| SystemRequirements: | Quarto command line tools (https://github.com/quarto-dev/quarto-cli). | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-09-09 07:04:39 UTC; user | 
| Author: | Lorenz A. Kapsner | 
| Maintainer: | Lorenz A. Kapsner <lorenz.kapsner@gmail.com> | 
| Repository: | CRAN | 
R6 Class to construct a Cox proportional hazards survival learner
Description
The LearnerSurvCoxPHCox class is the interface to perform a Cox
regression with the survival R package for use with the mlexperiments
package.
Details
Can be used with
Super class
mlexperiments::MLLearnerBase -> LearnerSurvCoxPHCox
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvCoxPHCox object.
Usage
LearnerSurvCoxPHCox$new()
Returns
A new LearnerSurvCoxPHCox R6 object.
Examples
LearnerSurvCoxPHCox$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvCoxPHCox$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
Examples
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvCoxPHCox$new(),
  fold_list = fold_list,
  ncores = 1L,
  seed = seed
)
surv_coxph_cox_optimizer$performance_metric <- c_index
# set data
surv_coxph_cox_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_coxph_cox_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvCoxPHCox$new`
## ------------------------------------------------
LearnerSurvCoxPHCox$new()
R6 Class to construct a Glmnet survival learner for Cox regression
Description
The LearnerSurvGlmnetCox class is the interface to perform a Cox
regression with the glmnet R package for use with the mlexperiments
package.
Details
Optimization metric: C-index Can be used with
Super class
mlexperiments::MLLearnerBase -> LearnerSurvGlmnetCox
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvGlmnetCox object.
Usage
LearnerSurvGlmnetCox$new()
Returns
A new LearnerSurvGlmnetCox R6 object.
Examples
LearnerSurvGlmnetCox$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvGlmnetCox$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
glmnet::glmnet(), glmnet::cv.glmnet()
Examples
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
param_list_glmnet <- expand.grid(
  alpha = seq(0, 1, .2)
)
ncores <- 2L
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_glmnet_cox_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvGlmnetCox$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)
surv_glmnet_cox_optimizer$learner_args <- list(
  alpha = 0.8,
  lambda = 0.002
)
surv_glmnet_cox_optimizer$performance_metric <- c_index
# set data
surv_glmnet_cox_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_glmnet_cox_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvGlmnetCox$new`
## ------------------------------------------------
LearnerSurvGlmnetCox$new()
R6 Class to construct a Ranger survival learner for Cox regression
Description
The LearnerSurvRangerCox class is the interface to perform a Cox
regression with the ranger R package for use with the mlexperiments
package.
Details
Optimization metric: C-index Can be used with
Super class
mlexperiments::MLLearnerBase -> LearnerSurvRangerCox
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvRangerCox object.
Usage
LearnerSurvRangerCox$new()
Returns
A new LearnerSurvRangerCox R6 object.
Examples
LearnerSurvRangerCox$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvRangerCox$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
Examples
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
param_list_ranger <- expand.grid(
  sample.fraction = seq(0.6, 1, .2),
  min.node.size = seq(1, 5, 4),
  mtry = seq(2, 6, 2),
  num.trees = c(5L, 10L),
  max.depth = seq(1, 5, 4)
)
ncores <- 2L
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_ranger_cox_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvRangerCox$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)
surv_ranger_cox_optimizer$learner_args <- as.list(
  data.table::data.table(param_list_ranger[1, ], stringsAsFactors = FALSE)
)
surv_ranger_cox_optimizer$performance_metric <- c_index
# set data
surv_ranger_cox_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_ranger_cox_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvRangerCox$new`
## ------------------------------------------------
LearnerSurvRangerCox$new()
LearnerSurvRpartCox R6 class
Description
This learner is a wrapper around rpart::rpart() in order to fit recursive
partitioning and regression trees with survival data.
Details
Optimization metric: C-index * Can be used with
Implemented methods:
-  $fitTo fit the model.
-  $predictTo predict new data with the model.
-  $cross_validationTo perform a grid search (hyperparameter optimization).
-  $bayesian_scoring_functionTo perform a Bayesian hyperparameter optimization.
Parameters that are specified with parameter_grid and / or learner_args
are forwarded to rpart's argument control (see
rpart::rpart.control() for further details).
Super class
mlexperiments::MLLearnerBase -> LearnerSurvRpartCox
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvRpartCox object.
Usage
LearnerSurvRpartCox$new()
Details
This learner is a wrapper around rpart::rpart() in order to fit
recursive partitioning and regression trees with survival data.
Examples
LearnerSurvRpartCox$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvRpartCox$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
rpart::rpart(), c_index(),
rpart::rpart.control()
Examples
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
ncores <- 2L
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_rpart_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvRpartCox$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)
surv_rpart_optimizer$learner_args <- list(
  minsplit = 10L,
  maxdepth = 20L,
  cp = 0.03,
  method = "exp"
)
surv_rpart_optimizer$performance_metric <- c_index
# set data
surv_rpart_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_rpart_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvRpartCox$new`
## ------------------------------------------------
LearnerSurvRpartCox$new()
R6 Class to construct a Xgboost survival learner for accelerated failure time models
Description
The LearnerSurvXgboostAft class is the interface to accelerated failure
time models with the xgboost R package for use with the mlexperiments
package.
Details
Optimization metric: needs to be specified with the learner parameter
eval_metric.
Can be used with
Also see the official xgboost documentation on aft models: https://xgboost.readthedocs.io/en/stable/tutorials/aft_survival_analysis.html
Super classes
mlexperiments::MLLearnerBase -> mllrnrs::LearnerXgboost -> LearnerSurvXgboostAft
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvXgboostAft object.
Usage
LearnerSurvXgboostAft$new(metric_optimization_higher_better)
Arguments
- metric_optimization_higher_better
- A logical. Defines the direction of the optimization metric used throughout the hyperparameter optimization. 
Returns
A new LearnerSurvXgboostAft R6 object.
Examples
LearnerSurvXgboostAft$new(metric_optimization_higher_better = FALSE)
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvXgboostAft$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
xgboost::xgb.train(), xgboost::xgb.cv()
Examples
# execution time >2.5 sec
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
param_list_xgboost <- expand.grid(
  objective = "survival:aft",
  eval_metric = "aft-nloglik",
  subsample = seq(0.6, 1, .2),
  colsample_bytree = seq(0.6, 1, .2),
  min_child_weight = seq(1, 5, 4),
  learning_rate = c(0.1, 0.2),
  max_depth = seq(1, 5, 4)
)
ncores <- 2L
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_xgboost_aft_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)
surv_xgboost_aft_optimizer$learner_args <- c(as.list(
  data.table::data.table(param_list_xgboost[1, ], stringsAsFactors = FALSE)
),
nrounds = 45L
)
surv_xgboost_aft_optimizer$performance_metric <- c_index
# set data
surv_xgboost_aft_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_xgboost_aft_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvXgboostAft$new`
## ------------------------------------------------
LearnerSurvXgboostAft$new(metric_optimization_higher_better = FALSE)
R6 Class to construct a Xgboost survival learner for Cox regression
Description
The LearnerSurvXgboostCox class is the interface to perform a Cox
regression with the xgboost R package for use with the mlexperiments
package.
Details
Optimization metric: needs to be specified with the learner parameter
eval_metric.
Can be used with
Super classes
mlexperiments::MLLearnerBase -> mllrnrs::LearnerXgboost -> LearnerSurvXgboostCox
Methods
Public methods
Inherited methods
Method new()
Create a new LearnerSurvXgboostCox object.
Usage
LearnerSurvXgboostCox$new(metric_optimization_higher_better)
Arguments
- metric_optimization_higher_better
- A logical. Defines the direction of the optimization metric used throughout the hyperparameter optimization. 
Returns
A new LearnerSurvXgboostCox R6 object.
Examples
LearnerSurvXgboostCox$new(metric_optimization_higher_better = FALSE)
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerSurvXgboostCox$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
xgboost::xgb.train(), xgboost::xgb.cv()
Examples
# execution time >2.5 sec
# survival analysis
dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
param_list_xgboost <- expand.grid(
  objective = "survival:cox",
  eval_metric = "cox-nloglik",
  subsample = seq(0.6, 1, .2),
  colsample_bytree = seq(0.6, 1, .2),
  min_child_weight = seq(1, 5, 4),
  learning_rate = c(0.1, 0.2),
  max_depth = seq(1, 5, 4)
)
ncores <- 2L
split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)
train_x <- model.matrix(
  ~ -1 + .,
  dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
  event = (dataset[, get("status")] |>
             as.character() |>
             as.integer()),
  time = dataset[, get("time")],
  type = "right"
)
fold_list <- splitTools::create_folds(
  y = split_vector,
  k = 3,
  type = "stratified",
  seed = seed
)
surv_xgboost_cox_optimizer <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvXgboostCox$new(
    metric_optimization_higher_better = FALSE
  ),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)
surv_xgboost_cox_optimizer$learner_args <- c(as.list(
  data.table::data.table(param_list_xgboost[1, ], stringsAsFactors = FALSE)
),
nrounds = 45L
)
surv_xgboost_cox_optimizer$performance_metric <- c_index
# set data
surv_xgboost_cox_optimizer$set_data(
  x = train_x,
  y = train_y
)
surv_xgboost_cox_optimizer$execute()
## ------------------------------------------------
## Method `LearnerSurvXgboostCox$new`
## ------------------------------------------------
LearnerSurvXgboostCox$new(metric_optimization_higher_better = FALSE)
c_index
Description
Calculate the Harrell's concordance index (C-index)
Usage
c_index(ground_truth, predictions)
Arguments
| ground_truth | A  | 
| predictions | A vector with predictions. | 
Details
A wrapper function around glmnet::Cindex() for use with mlexperiments.
See Also
Examples
set.seed(123)
gt <- survival::Surv(
  time = rnorm(100, 50, 15),
  event = sample(0:1, 100, TRUE)
)
preds <- rbeta(100, 2, 5)
c_index(gt, preds)