momentuHMM: R package for analysis of
telemetry data using generalized multivariate
hidden Markov models of animal movement

Brett T. McClintock! and Théo Michelot?

"Marine Mammal Laboratory
Alaska Fisheries Science Center
NOAA National Marine Fisheries Service

Seattle, U.S.A.
Email: brett.mcclintock@noaa.gov

?Department of Mathematics and Statistics

Dalhousie University
Halifax, Canada

RUNNING HEAD: R package momentuHMM

October 21, 2025

Summary

1. Discrete-time hidden Markov models (HMMs) have become an immensely popular
tool for inferring latent animal behaviors from telemetry data, largely because they are
relatively fast and easy to implement when data streams are observed without error
and at regular time intervals. While movement HMMSs typically rely solely on location
data, auxiliary biotelemetry and environmental data are powerful and readily-available
resources for incorporating much more behavioral realism and inferring ecological re-
lationships that would otherwise be difficult or impossible to infer from location data
alone. However, there is a paucity of generalized user-friendly software available for
implementing (multivariate) HMMs of animal movement. Furthermore, location mea-
surement error, temporal irregularity, and other forms of missing data are often perva-
sive in telemetry studies (particularly in marine systems).

2. Here we provide a guide to using an open-source R package, momentuHMM version
1.5.7, that addresses many of the deficiencies in existing software. Features for mul-
tivariate HMMs in momentuHMM (pronounced “momentum”) include: 1) tools for data
pre-processing and visualization; 2) user-specified probability distributions for an un-
limited number of data streams and latent behavior states, such as those based on
location (e.g., step length, turning angle) and auxiliary biotelemetry data (e.g., from
pressure, conductivity, heart rate, or motion sensors); 3) biased and correlated ran-
dom walk movement models, including “activity centers” associated with attractive or
repulsive forces; 4) user-specified design matrices and constraints for covariate mod-
elling of initial distribution, state transition probability, and probability distribution
parameters using linear model formulas familiar to most R users; 5) multiple impu-
tation methods that account for observation error attributable to measurement error
and temporally-irregular or missing data; 6) seamless integration of spatio-temporal
covariate raster data; 7) cosinor and spline regression formulas for cyclical (e.g., daily,
seasonal) and other complicated patterns; 8) discrete individual-level random effects on
state transition probabilities; 9) hierarchical hidden Markov models for data streams
and/or state switching at multiple time scales; 10) “recharge” models for an aggregated
physiological process associated with state switching in heterogeneous environments;
11) model checking and selection; and 12) data simulation capabilities for study design,
power analyses and assessing model performance, including simulation of location data

subject to movement constraints (e.g. land for marine animals), temporal irregularity,

and/or measurement error.

3. After providing a brief introduction to (multivariate) HMMs for telemetry data, we
demonstrate some of the capabilities of momentuHMM using real-world examples. This
brief tutorial includes workflows for data formatting, model specification, model fitting,
and diagnostics.

4. While many of the features of momentuHMM were motivated by animal movement
data, the package can be used for analyzing any type of data that is amenable to (mul-
tivariate) HMMs. Practitioners interested in additional features for momentuHMM are

encouraged to contact the authors.

Key-words animal biotelemetry, biologging, crawl, moveHMM, state-space model, state-

switching
Contents
1 Introduction 4
2 momentuHMM overview 9
2.1 Data preparation and visualization 10
2.2 HMM specification and fitting 14
2.3 Circular-circular regression model for the angle mean 18
2.4 Individual-level random effectso 19
2.4.1 Discrete-valued random effects 20
2.4.2 Continuous-valued random effects 21
2.5 Hierarchical hidden Markov models 21
2.6 Random walk probability distributions 21
2.7 Recharge dynamics 22
2.8 Multiple imputation Lo 23
2.9 Model visualization and diagnostics 24
2.10 Simulation 25
3 Examples 26
3.1 African elephant 26
3.2 Northern furseal 31

3.3 Loggerhead turtle 36

3.4 Greyseal 40
3.5 Southern elephant seals 43
3.6 Group dynamic animal movemento 51
3.7 Harbourseals 56
3.8 Northern fulmars 62
3.9 Pilot whales 73
3.10 Hierarchical HMMs 87
3.10.1 Harbor porpoise o 88
3.10.2 Garter snakes 106
3.10.3 Atlanticcod 119
3.10.4 Hornshark 126

3.11 African buffalo recharge dynamics 136
3.12 Simulating constrained movement 145
4 Discussion 149

1 Introduction

Discrete-time hidden Markov models (HMMs) have become immensely popular for the
analysis of animal telemetry data (e.g. Morales et al. 2004; Jonsen et al. 2005; Langrock
et al. 2012; McClintock et al. 2012). In short, an HMM is a time series model composed
of a (possibly multivariate) observation process (Zy, ..., Zr), in which each data stream
is generated by N state-dependent probability distributions, and where the unobserv-
able (hidden) state sequence (S; € {1,...,N},t =1,...,T) is assumed to be a Markov
chain. The state sequence of the Markov chain is governed by (typically first-order)
state transition probabilities, ’yi(w =Pr(Syy1 =715 =i) fori,j=1,...,N, and an

initial distribution 6. The likelihood of an HMM can be succinctly expressed using

the forward algorithm:
L= 6(0)F(1)P<Z1)F(2)P(Z2)F(3) tee F(T_I)P(ZT_l)I‘(T)P(ZT>].N, (].)

where T®) = (%(]t)> is the N x N transition probability matrix, P(z;) = diag(pi(z¢), - .., pn(2t)),
ps(z;) is the conditional probability density of Z; given S; = s, and 1% is a N-vector of

ones (for a thorough introduction to HMMs see Zucchini et al. 2016).

One of the most common discrete-time animal movement HMMs for telemetry loca-
tion data is composed of two data streams, step length and turning angle (or bearing),
which are calculated for each of the T" time steps from the temporally-regular obser-
vations of an animal’s position, (z,y;), for t = 1,...,7 4+ 1 (e.g. Morales et al. 2004;
Langrock et al. 2012; McClintock et al. 2012). Step length () is typically calculated as
the Euclidean distance between the locations (x4, y;) and (2411, y¢+1), while turning an-
gle (¢,) is calculated as the change in bearing (b, = atan2(y;+1 — ys, Tr11 — o)) between
the intervals [t —1,¢] and [t,t+1] (e.g. ¢+ = 0if by_; = b;). For this HMM composed of
2 data streams, z; = (l;, ¢;), and, conditional on the latent state S;, independent proba-
bility distributions are typically assumed for each stream; that is, ps(z;) = ps(ly)ps(o¢).
Some common probability distributions for the step length data stream are the gamma
or Weibull distributions, while the wrapped Cauchy or von Mises distributions are of-
ten employed for turning angle or bearing. For a fitted HMM, the Viterbi algorithm is
used to compute the most likely sequence of underlying states (Zucchini et al. 2016).
In movement HMMs, the states are often considered as proxies for animal behaviour.

While HMMs for animal movement based solely on location data are somewhat
limited in the number and type of biologically-meaningful movement behavior states
they are able to accurately identify, advances in biologging technology are now allowing
the collection of valuable auxiliary biotelemetry data (e.g., dive activity, accelerometer,
heart rate, stomach temperature), which, when combined with location data, allow for
multivariate HMMs that can incorporate much more behavioral realism and facilitate
inferences about complex ecological relationships that would otherwise be difficult or
impossible to infer from location data alone (e.g. McClintock et al. 2013; DeRuiter
et al. 2017; McClintock et al. 2017). Multivariate HMMs that utilize both location and
auxiliary biotelemetry data can facilitate the identification of additional states that go
beyond the N = 2 state approaches that are most frequently used by practitioners. For
example, the most widely used 2-state HMMs for animal movement include “encamped”
(or “foraging”) and “exploratory” (or “transit”) states characterized by area-restricted-
search-type movements (shorter step lengths with little to no directional persistence)
and migratory-type movements (longer step lengths with high directional persistence),
respectively (Morales et al. 2004; Jonsen et al. 2005). However, very different behav-

iors can exhibit similar horizontal trajectories. For example, for herbivores such as

North American elk (Morales et al. 2004) or central-place foragers such as harbour
seals (McClintock et al. 2013), the horizontal trajectories of “resting” and “foraging”
movements can be very difficult to distinguish. Standard 2-state HMMs based solely
on horizontal trajectory will tend to lump these behaviors together, and this could
have unintended consequences if, for example, one intends to use the estimated state
sequences to identify foraging habitat. In order to tweeze apart distinct behaviors with
similar horizontal trajectories, additional states can be informed by auxiliary informa-
tion (such as mandible accelerometer or dive data), incorporated as additional data
stream(s) in a multivariate HMM.

When data streams are observed without error and at regular time intervals, a major
advantage of HMMs is the relatively fast and efficient maximization of the likelihood
using the forward algorithm (Eq. 1). However, location measurement error is rarely
non-existent in animal-borne telemetry studies and depends on both the device and
the system under study. For example, GPS errors are typically less than 50m, but
Argos errors can exceed 10km (e.g. Costa et al. 2010). An extreme case of missing
data can arise when location data are obtained with little or no temporal regularity, as
in many marine mammal telemetry studies (e.g. Jonsen et al. 2005), such that few (if
any) observations align with the regular time steps required by discrete-time HMMs.
When explicitly accounting for uncertainty attributable to location measurement error,
temporally-irregular observations, or other forms of missing data, one must typically
fit (multivariate) HMMs using computationally-intensive (and often time-consuming)
model fitting techniques such as Markov chain Monte Carlo (Jonsen et al. 2005; Mc-
Clintock et al. 2012). However, complex analyses requiring novel statistical methods
and custom model-fitting algorithms are not practical for many practitioners.

While statisticians have been applying HMMs to telemetry data for decades, R
(R Core Team 2017) packages such as bsam (Jonsen et al. 2005), moveHMM (Michelot
et al. 2016), and swim (Whoriskey et al. 2017) have recently helped make these mod-
els of animal movement behavior more accessible to the practitioners that are actually
conducting telemetry studies. These advances represent important steps toward mak-
ing HMMs of animal movement more accessible, but the models that can currently
be implemented using existing software remain limited in many key respects. For ex-
ample, existing HMM software for animal movement is limited to two data streams

based solely on location data (e.g. step length and turning angle), and while moveHMM

allows for a user-specified number of latent behavioral states (bsam and swim are lim-
ited to N = 2 states), it is typically difficult to identify >2 biologically-meaningful
behavior states from only 2 data streams (e.g. Morales et al. 2004; Beyer et al. 2013;
McClintock et al. 2014). Both moveHMM and swim are designed for temporally-regular
(or linearly-interpolated) location data with negligible measurement error, but the re-
alities of animal-borne telemetry often yield temporally-irregular location data subject
to error (particularly in aquatic environments). Other notable deficiencies of exist-
ing software include limited abilities to incorporate spatio-temporal environmental or
individual covariates on parameters, biased (or directed) movements in response to at-
tractive or repulsive forces (e.g. McClintock et al. 2012; Langrock et al. 2014), cyclical
(e.g. daily, seasonal) and other more complicated behavioral patterns, or constraints
on parameters.

To address these deficiencies in existing software, we developed a user-friendly R
package, momentuHMM (Maximum likelihood analysis Of animal MovemENT behavior
Using multivariate Hidden Markov Models), intended for practitioners wishing to im-
plement more flexible and realistic (multivariate) HMM analyses of animal movement
while accounting for common challenges associated with telemetry data (McClintock
& Michelot 2018). Features for multivariate HMM analyses in momentuHMM include: 1)
tools for data pre-processing and visualization; 2) user-specified probability distribu-
tions for an unlimited number of data streams and latent behavior states; 3) biased
and correlated random walk movement models, including “activity centers” associated
with attractive or repulsive forces (e.g. McClintock et al. 2012); 4) user-specified de-
sign matrices and constraints for covariate modelling of state transition probability
and probability distribution parameters using linear model formulas familiar to most R
users; 5) multiple imputation methods that account for observation error attributable
to measurement error and temporally-irregular or missing data (Hooten et al. 2017;
McClintock 2017); 6) seamless integration of spatio-temporal environmental covariate
data (e.g., wind direction, forest cover, sea ice concentration) using the raster package
(Hijmans 2016b); 7) cosinor (e.g. Cornelissen 2014) and spline regression formulas for
cyclical and other complicated behavioral patterns; 8) discrete individual-level random
effects on state transition probabilities (e.g. DeRuiter et al. 2017); 9) hierarchical hidden
Markov models (e.g. Leos-Barajas et al. 2017; Adam et al. 2019) for data streams and/or

state switching at multiple time scales; 10) “recharge” models for an aggregated physi-

ological process associated with state switching in heterogeneous environments (Hooten
et al. 2019); 11) model checking and selection; and 12) data simulation capabilities for
study design, power analyses and assessing model performance, including simulation of
location data subject to movement constraints (e.g. land for marine animals), temporal
irregularity, and/or measurement error.

In the following tutorial, we demonstrate some of the capabilities of momentuHMM
using real-world examples, including an example of periodic cycles in African elephant
movement, a 3-state (“resting”, “foraging”, “transit”) northern fur seal example in-
corporating auxiliary dive activity data (McClintock et al. 2014), a loggerhead turtle
example relating “foraging” and “transit” movements to ocean surface currents, a 5-
state grey seal example incorporating biased movements toward haul-out and foraging
locations (McClintock et al. 2012), a 4-state (“outbound”, “searching”, “foraging”, “in-
bound”) southern elephant seal example with biased movements toward and away from
a colony (Michelot et al. 2017), a 3-state (“resting”, “foraging”, “transit”) harbour
seal example using population-level constraints on movement parameters (McClintock
et al. 2013), a 6-state northern fulmar example incorporating biased movements relative
to both static (i.e. colony) and dynamic (i.e. fishing vessels) activity centers (Pirotta
et al. 2018), a 4-state long-finned pilot whale example including individual-level random
effects on state transition probabilities (Isojunno et al. 2017), and hierarchical HMMs
fitted to harbor porpoise, garter snake, Atlantic cod, and horn shark data (Leos-Barajas
et al. 2017; Adam et al. 2019), and a recharge dynamics model for African buffalo move-
ments in a heterogeneous environment (Hooten et al. 2019). Using simulated data, we
also demonstrate how the group dynamic model of Langrock et al. (2014) can be imple-
mented using momentuHMM. Finally, we demonstrate how to simulate movement subject
to barriers or other constraints (e.g. land for marine animals) using potential functions
(e.g. Brillinger et al. 2012). This brief tutorial includes workflows for data format-
ting, model specification, model fitting, and diagnostics. While many of the features
of momentuHMM were motivated by animal movement data, the package can be used
for analyzing any type of data that is amenable to (multivariate) HMMs. Additional
information, including help files, data, examples, and package usage is available by
downloading the momentuHMM package from CRAN (https://cran.r-project.org) or
GitHub (https://github.com/bmcclintock/momentulMM). We ask that users please
submit bug reports, questions, and other issues to GitHub (https://github.com/

https://cran.r-project.org
https://github.com/bmcclintock/momentuHMM
https://github.com/bmcclintock/momentuHMM/issues
https://github.com/bmcclintock/momentuHMM/issues

Table 1. Workhorse functions for the R package momentuHMDM.
Function Description
crawlMerge Merge crawlWrap output with additional data streams or covariates
crawlWrap Fit crawl models and predict temporally-regular locations
fitHMM Fit a (multivariate) HMM to the data
MIfitHMM Fit (multivariate) HMMs to multiple imputation data
MIpool Pool momentuHMM model results across multiple imputations
plot.crwData Plot crawlWrap output
plot.miSum Plot summaries of multiple imputation momentuHMM models

plot.momentuHMM
plot.momentuHMMData
plotPR

plotSat
plotSpatialCov
plotStates
plotStationary
prepData
pseudoRes
simData
simHierData
stateProbs
viterbi

Plot summaries of momentuHMM models

Plot summaries of selected data streams and covariates
Plot time series, qqg-plots and sample ACF's of pseudo-residuals
Plot locations on satellite image

Plot locations on raster image

Plot the (Viterbi-)decoded states and state probabilities
Plot stationary state probabilities

Pre-process data streams and covariates

Calculate pseudo-residuals for momentuHMM models
Simulate data from a (multivariate) HMM

Simulate data from a (multivariate) hierarchical HMM
State probabilities for each time step

Most likely state sequence (using the Viterbi algorithm)

bmcclintock/momentuHMM/issues). This article describes momentuHMM version 1.5.7.

2 momentuHMM overview

Before delving into some of the finer details, we will first provide an overview of the

main features and functions of momentuHMM (pronounced “momentum”). While space is

limited in this tutorial, further details on implementation can be found in the package’s

documentation and vignette.

The workhorse functions of momentuHMM are listed in

Table 1. Usage of several of these functions (e.g. fitHMM, prepData, simData) is

deliberately very similar to equivalent functions in moveHMM (Michelot et al. 2016) , but

the momentuHMM arguments for these functions have been generalized and expanded to

accommodate a more flexible framework for data pre-processing, model specification,

parameterization, and simulation. R users already familiar with moveHMM will therefore

likely find it easy to immediately begin using momentuHMM.

https://github.com/bmcclintock/momentuHMM/issues
https://github.com/bmcclintock/momentuHMM/issues

One of the key features of momentuHMM is the ability to include an unlimited number
of HMM data streams (e.g. step length, turning angle, dive activity, heart rate) arising
from a broad range of commonly used probability distributions (e.g. beta, categorical,
gamma, normal, multivariate normal, Poisson, von Mises, Weibull), including (multi-
variate) normal random walks (section 2.6) that can be particularly useful for modeling
positions directly (instead of step lengths and turning angles). Any of the parameters of
the probability distributions used for the observed data can be modelled as a function of
environmental and individual covariates using link functions (Tables 2 and 3). For any
given “natural scale” (or “real scale”) probability distribution parameter €, all of the
link functions (g) in momentuHMM are of the general form ¢(8) = Xy3y, where Xy is the
T x K design matrix (composed of K covariates) and (3, is the correponding K-vector
of “working scale” (or “beta scale”) parameters for 6. For example, suppose step length
is assumed to have a gamma distribution, [; | S; = s ~ gamma(us, 0s). In momentuHMM,
the natural scale parameters for the gamma distribution are the (state-dependent) step
length mean (ps > 0) and standard deviation (o5 > 0). Because both of these pa-
rameters must be positive, the log link function is a natural choice for modelling these
parameters as a function of covariates, e.g., log(u) = X8, and log(o) = X,03,.

The state transition probabilities (I'®) and initial distribution (§”)) can also be
modelled as functions of covariates, using a multinomial logit link, as described e.g. by
Michelot et al. (2016). Permissable R classes for covariates include numeric, integer,
or factor. Factors can be particularly useful for specifying models with individual-
or group-level (e.g. sex or age class) effects on state transition and probability dis-
tribution parameters. Spatio-temporal covariates can also be of classes rasterLayer,
rasterStack, or rasterBrick (Hijmans 2016b), in which case momentuHMM automati-
cally extracts the appropriate covariate values from the raster based on the time and

location of each observation (see example in section 3.3).

2.1 Data preparation and visualization

For temporally-regular location data with negligible measurement error, the prepData
function is used to create a momentuHMMData object that can be used for data visual-

ization and further analysis. The arguments for prepData include:

e data A data frame with 7"+ 1 rows including optionally a field ‘ID’ (identifiers

for different individuals), coordinates from which step length (‘step’) and turning

10

Table 2. Univariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). If circular-circular regression is specified for the mean of angular distributions
(“vm” and “wrpcauchy”), then a link function based on Rivest et al. (2016) is used. Users
seeking additional univariate probability distributions are encouraged to contact the authors.

Distribution Support Parameters Link function!
Bernoulli (“bern”) 2 € 40,1} prob € (0,1) logit
Beta (“beta”) z € (0,1) shapel > 0 log
shape2 > 0 log
zero-mass € (0,1) logit
one-mass € (0,1) logit
Categorical (“cat”) z€{1,...,k} prob,,...,prob, , € (0,1) mlogit
Exponential (“exp”) 2z >0 rate > 0 log
zero-mass € (0,1) logit
Gamma (“gamma”) 2 >0 mean > (log
sd >0 log
zero-mass € (0,1) logit
Log normal (“lnorm”) 2z >0 location € IR identity
scale > 0 log
zero-mass € (0,1) logit
Logistic (“logis”) z € R location € R identity
scale > (log
Negative binomial (“negbinom”) 2z € {0,1,...} mu>0 log
size >0 log
Normal (“norm”) z €R mean € R identity
sd >0 log
Normal random walk (“rw_norm”) 2z, € R mean € R identity
sd >0 log
Poisson (“pois”) 2z €{0,1,...} lambda >0 log
Non-central t (“t”) 7z €R df >0 log
ncp € R identity
Von Mises (“vm”) 2 € (—m, 7] mean € (—m, 7] tan(mean/2)
concentration > 0 log
Von Mises (“vmConsensus”) 2 € (—m, 7] mean € (—, 7] Rivest et al.
kappa > 0 log
Weibull (“weibull”) 2 >0 shape > 0 log
scale > 0 log
zero-mass € (0,1) logit
Wrapped Cauchy (“wrpcauchy”) 2z € (—m, 7] mean € (—m, 7] tan(mean/2)
concentration € (0, 1) logit

!Link functions (g) relate natural scale parameters (6) to a T' x K design matrix (X) and K —vector
of working scale parameters (3 € RX) such that g(8) = X2.

11

Table 3. Maultivariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). Users seeking additional multivariate probability distributions are encouraged

to contact the authors.

Distribution Support Parameters Link function!
Bivariate normal (“mvnorm2”) 7z, € R> mean.x € R identity
mean.y € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.y >0 log
Bivariate normal random walk (“rw_mvnorm2”) z, € IR* mean.x € IR identity
mean.y € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.y >0 log
Trivariate normal (“mvnorm3”) z; €IR® mean.x € R identity
mean.y € R identity
mean.z € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.xz € IR identity
sigma.y >0 log
sigma.yz € IR identity
sigma.z > 0 log
Trivariate normal random walk (“rw_mvnorm3”) z, € R® mean.x € R identity
mean.y € R identity
mean.z € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.xz € IR identity
sigma.y >0 log
sigma.yz € IR identity
sigma.z > 0 log

!Link functions (g) relate natural scale parameters (6) to a T' x K design matrix (X) and K —vector

of working scale parameters (3 € R¥) such that g(8) = X23.

12

angle (‘angle’) data streams are to be calculated, any additional data streams,
and any covariates identified in the covNames and angleCovs arguments. Alter-

vatively, data can be a crwData object returned by crawlWrap.
type Coordinate type; ‘UTM’ if easting-northing or ‘LL’ if longitude-latitude.

coordNames Names of the two coordinate columns in data. If coordNames=NULL
then step lengths, turning angles, and any location-based covariates (i.e., those
specified by spatialCovs, centers, centroids, and angleCovs) are not calcu-

lated.

covNames Character vector indicating the names of any covariates in data. Any
variables in data (other than “ID”) that are not identified in covNames or angleCovs

are assumed to be data streams.

spatialCovs List of Raster-class objects (Hijmans 2016b) containing spatio-
temporally referenced covariates. Covariates specified by spatialCovs are ex-
tracted from the raster layer(s) based on the location data. Raster stacks may
also be included, in which case the appropriate z values (e.g. time, date) must

also be included in data.

centers 2-column matrix providing the coordinates for any activity centers (e.g.,
potential centers of attraction or repulsion) from which distance and angle covari-
ates will be calculated based on the location data and returned in the momentuHMMData

object.

centroids List where each element is a data frame containing the x-coordinates
(’x’), y-coordinates ('y’), and times for a centroid (i.e., a dynamic activity center
for which the coordinates can change over time) from which distance and an-
gle covariates will be calculated based on the location data and returned in the

momentuHMMData object.

angleCovs Character vector indicating the names of any circular-circular regres-
sion angular covariates in data or spatialCovs that need conversion from stan-
dard direction (in radians relative to the x-axis) to turning angle (relative to

previous movement direction).

13

Summary plots of the momentuHMMData object returned by prepData can be created
for any data stream or covariate using the generic plot function.

If location data are temporally-irregular or subject to measurement error, then they
are not suitable for prepData. In this case, momentuHMM can be used to perform a
2-stage multiple imputation approach (McClintock 2017). We discuss this pragmatic
approach to incorporating uncertainty attributable to observation error and temporal

irreglarity into multivariate HMM analyses in section 2.8.

2.2 HMM specification and fitting

Once a momentuHMMData object has been created using prepData, then the data are
ready to be passed to the generalized multivariate HMM-fitting function £itHMM. There
are many different options for specifying HMMs using fitHMM, so here we will only
focus on several of the most important and useful features (further details of all £itHMM
arguments are in the package documentation). The bare essentials of fitHMM include

the arguments:
e data A momentuHMMData object
e nbStates Number of latent states (V)
e dist A named list indicating the probability distributions of the data streams.

e estAngleMean An optional named list indicating whether or not to estimate the
angle mean for data streams with angular distributions (e.g. turning angle). If

not estimated (the default), the angle mean is fixed to 0.
e formula Regression formula for the transition probability covariates

e stationary Logical indicating whether or not the initial distribution is considered
equal to the stationary distribution (must be FALSE if formula includes time-

varying covariates)

e Par0 A named list containing vectors of starting values for the state-dependent

probability distribution parameters of each data stream

These seven arguments are all that are needed in order to fit the HMMs currently

supported in moveHMM (Michelot et al. 2016). For example, here is how the analysis of

14

15 “wild haggis” tracks described in Michelot et al. (2016) would be implemented using

momentuHMM:

library (momentuHMM)
rawHaggis<-read.csv("rawHaggises.csv")

processedHaggis<-prepData(data=rawHaggis,covNames=c("slope","temp"))

stepPar0 <- ¢(1,5,0.5,3)

anglePar0O <- ¢(0,0,1,8)
fitHaggis <- fitHMM(data

processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),
Par0 = list(step = stepPar0, angle = anglePar0),
formula = ~ slope + I(slope~2),

estAngleMean = list(angle=TRUE))

Note that many of the arguments in fitHMM are lists, with each element of the
list corresponding to a data stream. The list names provided in dist, Par0O, and
estAngleMean (e.g. ‘step’ and ‘angle’) must therefore have a corresponding column in
data with the same name. Additional data streams can be included in a multivariate
HMM by simply adding the additional elements to these list arguments (see examples
in sections 3.2, 3.8, and 3.9). State-dependent probability distributions with positive
support (e.g. gamma, Weibull; see Table 2) can be zero-inflated (with additional zero-
mass parameters), while the beta distribution can be zero- and/or one-inflated (with
additional one-mass parameters).

As seen above, the formula argument can include many of the functions and op-
erators commonly used to construct terms in R linear model formulas (e.g. a*b, a:b,
cos(a)). The formulaDelta argument can be similarly used to specify covariate models
for the initial distribution. The formula argument can also be used to specify transition
probability matrix models that incorporate cyclical patterns (using the cosinor spe-
cial function; see example in section 3.1), splines for explaining other more complicated
patterns (e.g., bs and ns functions in the R base package splines), and factor variables

(e.g., formula="1ID for individual-level effects). By default the formula argument ap-

15

plies to all state transition probabilities, but the special functions state, toState, and
betaCol allow for state- and parameter-specific formulas to be specified (see examples
in sections 3.4 and 3.8). While betaCol allows a formula to be specified for a specific
transition (e.g. state 3 — 1), state and toState allow a formula to be specified for all
transitions from (e.g. 3 — 1, 3 — 2) and to (e.g. state 1 — 3, 2 — 3) specific states,
respectively. The betaCons argument allows for equality constraints among any of the
transition probability parameters (e.g. 7?2) = 75?; see example in section 3.8). Specific
state transition probabilities can also be fixed to zero (or any other value) using the
fixPar argument, which can be useful for incorporating more behavioral realism. For
example, fixPar can be used to prohibit or enforce switching from one particular state
to another (possibly as a function of spatio-temporal covariates).

Similar to the formula argument for state transition probability modelling, it is
through the DM argument of fitHMM that models are specified for the state-dependent
probability distribution parameters for each data stream. DM is a list argument contain-
ing an element for each data stream, but each element itself is also a list specifying the
design matrix formulas for each parameter. For example, the following fits the exact
same wild haggis model as above, but employs a user-specified (intercept-only) design

matrix for the step length data stream:

stepDM <- list(mean = "1, sd = ~1)

fitHaggisDM <- fitHMM(data = processedHaggis, nbStates = 2,
dist = list(step = "gamma", angle = "vm"),
DM = list(step = stepDM),
Par0 = list(step = log(stepPar0), angle = anglePar0),
formula = ~ slope + I(slope~2),
estAngleMean = list(angle=TRUE))

Note that when DM is specified for a data stream, the initial parameter values (Par0)
for that data stream now correspond to columns of the resulting design matrix and must
be on the working scale instead of the natural scale. In this case, because the log link is
used for the natural parameters of the gamma distribution, Par0O$step was specified on
the log scale. The functions getPar, getPar0, checkPar0, and getParDM are designed
to assist users in the specification of design matrices and corresponding initial values on

the working scale for any given model (see package documentation for further details).

16

DM formulas are just as flexible as the formula argument and, in addition to common
linear model formula functions and operators, can also include cyclical cosinor models
(see section 3.1), splines, factor variables, and state-specific probability distribution
parameter formulas (see examples in sections 3.3 and 3.4). As with the state transition
probabilities, working parameters for probability distributions can also be fixed to user-
specified values using the fixPar argument.

Specification of design matrices using DM is not limited to formulas. Alternatively,
“pseudo-design” matrices can be specified, using an R matrix with rows corresponding
to the natural parameters and columns corresponding to the working parameters. The
elements in the matrix may be numeric or character strings containing model formula
terms (see examples in sections 3.4, 3.7, and 3.8). Using a pseudo-design matrix for
step length, the following is yet another way to implement the exact same wild haggis

model:

stepDMp <- matrix(c(1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1),4,4,byrow=TRUE)
rownames (stepDMp) <- c("mean_1","mean_2","sd_1","sd_2")
colnames(stepDMp) <- c("mean_1:(Intercept)","mean_2:(Intercept)",
"sd_1:(Intercept)","sd_2:(Intercept)")

fitHaggisDMp <- fitHMM(data = processedHaggis, nbStates = 2,
dist = list(step = "gamma", angle = "vm"),
DM = list(step = stepDMp),
Par0 = list(step = log(stepPar0), angle = anglePar0),
formula = ~ slope + I(slope~2),
estAngleMean = list(angle=TRUE))

(note that column and row names for pseudo-design matrices are not required but can be
useful). Pseudo-design matrices allow for the sharing of common working parameters
(such as intercept terms) among natural scale parameters, and this can be used to
constrain natural scale parameters (e.g., p1 < p2) when used in tandem with the
workBounds argument (see sections 3.2, 3.7, and 3.8). This is particularly useful for
preventing state label switching when repeatedly fitting the same HMM using multiple

imputation methods (see section 2.8).

17

2.3 Circular-circular regression model for the angle mean

Another noteworthy fitHMM argument, circularAngleMean, is a list argument that
enables users to specify circular-circular regression models for the mean (u) parameter
of angular distributions, such as the wrapped Cauchy and von Mises, instead of circular-
linear models based on the tangent link function (Table 2). When circularAngleMean
is specified as TRUE for any given angular data stream (e.g. turning angle), then a

special link function based on Rivest et al. (2016) is used:
i = atan2(sin(X,)8,, 1 + cos(X,)8,),)

where X, is a T'x K matrix composed of the turning angles between K angular covari-
ates (e.g., wind direction, sea surface current direction) and the bearing of movement

during the previous time step; that is, each element
T = atan2(sin(ry g — be—1), cos(rer — br—1)) (3)

for angular covariate r, and k = 1,..., K (note that prepData and MIfitHMM calcu-
late X, based on the angleCovs, centers, or centroids arguments so users need not
bother). Because this link function is designed for turning angles, a turning angle of 0
is provided as the reference angle (hence the “14+” preceeding the cosine term in Eq.
2). Thus as a trade-off between biased and correlated movements, the working param-
eters (3,) for the expected turning angle at time ¢ weight the attractive (or repulsive)
strengths of the angular covariates relative to directional persistence. When all 8, = 0,
the model reduces to a correlated random walk, but an increasingly biased random walk
results as 3, gets larger (or smaller). Alternatively, circularAngleMean can be speci-
fied as a numeric scalar, where the value specifies the coefficient for the reference angle
(i.e., directional persistence) term in Eq. 2. For example, setting circularAngleMean
to 0 specifies a circular-circular regression model with no directional persistence term
(thus specifying a biased random walk instead of a biased correlated random walk; see
examples in sections 3.4, 3.5.2, and 3.6). Setting circularAngleMean to 1 is equivalent
to setting it to TRUE, i.e., a circular-circular regression model with a coefficient of 1 for
the directional persistence reference angle. Many interesting hypotheses about animal
movmement can be addressed using circular-circular regression on movement direction,

including the effects of wind, sea surface currents (see example in section 3.3), centers of

18

attraction or repulsion (see examples in sections 3.4, 3.5, and 3.8), group dynamic mod-
els (see example in section 3.6), and dynamic activity centers (see example in section
3.8.

The special function angleFormula can be included in DM formulas or pseudo-design
matrices in order to model the circular-circular regression angle mean as a function of

the relative strength (or importance) of angular covariates (Rivest et al. 2016):

p = atan2((Z, osin(X,,))B,, 1 + (Z, o cos(X,,))B,,), (4)

where Z, is a T' x K matrix of positive real covariates (e.g. wind speed, sea surface
current speed) and o is the Hadamard (i.e. element-wise) product. The special function
angleFormula can also be used to specify group- or individual-level effects on the
circular-circular regression angle mean coefficients (3,,).

Also based on Rivest et al. (2016), the von Mises consensus distribution is a special
von Mises circular-circular regression model where the concentration parameter (p)
depends on the level of agreement among short-term directional persistence (i.e. moving

forward) and the angular covariates:

2

p= ﬁ\/[(ZH o sin(Xu))Bu]2 + [14(Z, 0 cos(X,.))B,]" (5)

Note that the von Mises consensus distribution is parameterized in terms of p and &
(see Table 2), but momentuHMM returns and plots real parameter estimates in terms of
p and p. When all 8, are non-negative, then the minimum and maximum values for
p are k|1 —min(Z,8,)| and [1 + maX(ZNBM)], respectively. In the consensus model,
k can be interpreted as the concentration towards a turning angle of zero (i.e. moving
forward) when the angular covariate components perfectly cancel out. See section 3.3
for example code using angleFormula and the von Mises consensus (“vmConsensus”)

distribution.

2.4 Individual-level random effects

HMM applications often assume the initial distribution and state transition probabil-
ity matrix is the same for all individuals (i.e. “complete pooling” of the individuals’
time series). But in reality, individuals often do not exhibit the same state-switching

dynamics and there is individual-level variation. Individual heterogeneity can often be

19

well explained by covariates (e.g., sex, age class) and included in formula, but it is not
always possible to identify (and/or measure) all of the important covariates that drive
this variation. One option is to include separate state-switching dynamics for each indi-
vidual (i.e. “no pooling”) by specifying formulaDelta = ~ID and formula = ~ID, but
this “fixed” effect approach can result in many additional parameters to estimate (it
also doesn’t explain very much about potential factors driving individual heterogene-
ity). Alternatively, generic individual heterogeneity in state-switching dynamics can be
modeled as a “random” effect (e.g. McClintock 2021).

2.4.1 Discrete-valued random effects

While continuous-valued individual-level random effects can be computationally de-
manding, discrete-valued random effects are more computationally feasible and can be
effective in “mopping up” individual heterogeneity in the initial distribution and state
transition probabilities that is not explained by measurable covariates. Discrete-valued
random effects have recently been used in HMMs of animal movement (e.g. McKellar
et al. 2014; Towner et al. 2016; DeRuiter et al. 2017; Isojunno et al. 2017), and these
“mixed” HMMs can be fitted with fitHMM (or MIfitHMM) through the mixtures and
formulaPi arguments. The mixtures argument specifies the number of mixtures (K)
in the model, where each mixture represents a possible initial distribution and tran-
sition probability matrix, and each individual time series is assumed to be driven by
exactly one of these mixtures. For K mixtures, the mixture weight (my;k =1,..., K)
is the probability that the kth mixture underlies the state-switching dynamics for a
given individual, and a model formula for 7= can be specified using the formulaPi ar-
gument. For example, Towner et al. (2016) found support for K = 3 mixtures and
a sex covariate on 7 in their HMM for white shark movement, indicating that each
of the three possible state-switching dynamics were exhibited differently for males and
females; the random effects component of their model would be specified in £itHMM (or
MIfitHMM) by simply setting mixtures = 3 and formulaPi = “sex. Note that because
Zszl m, = 1, momentuHMM uses a multinomial logit link function for 7« when covariates
are included in formulaPi. We demonstrate how to fit discrete-valued individual-level
random effects on the initial distribution and state transition probabilities using the

long-finned pilot whale example from Isojunno et al. (2017) in section 3.9.

20

2.4.2 Continuous-valued random effects

For continuous individual-level random effects on state transition probabilities, the
randomEffects function can be used to implement the approximate approach of Burn-
ham & White (2002). In essence, this is a 2-stage approach where in the first stage the
fixed effects model is fitted with £itHMM (i.e. with formula=~0+ID) and in the second
stage the random effects model is fitted with randomEffects based on the output of
the fixed effects model. See ?randomEffects and McClintock (2021) for further details.

2.5 Hierarchical hidden Markov models

Hierarchical hidden Markov models (HHMMs; see Leos-Barajas et al. 2017; Adam et al.
2019) can also be fitted in momentuHMM. HMMs with hierarchical structures allow for
data streams and/or state transitions to occur at multiple regular time scales. For ex-
ample, biotelemetry data are often collected at different time scales (e.g. 1-hr intervals
for one data stream and 1-min intervals for another data stream) or state transitions
can be governed by both larger- and finer-scale behavioral processes. HHMMs are inte-
grated into the workhorse functions of momentuHMM and are specified via hierarchically-
structured arguments for the data stream probability distributions (hierDist), be-
havioral states (hierStates), state transition probabilities (hierFormula, hierBeta),
and initial distributions (hierFormulaDelta, hierDelta) using the data.tree pack-
age (Glur 2018). We demonstrate how the HHMM harbor porpoise and garter snake
examples from Leos-Barajas et al. (2017) and the Atlantic cod and horn shark examples

from Adam et al. (2019) can be fitted using momentuHMM in section 3.10.

2.6 Random walk probability distributions

momentuHMM includes several normal random walk probability distributions that can
be specified in the dist argument (see Tables 2 and 3), including univariate (e.g. for
modeling depths), bivariate (e.g. for modeling 2-D positions), and trivariate (e.g. for
modeling 3-D positions) normal random walks. These can be particularly useful for
modeling movement on positions directly instead of steps and turns. A random walk
model assumes position at time t is a function of the position at time ¢t — 1; in its
simplest form without any covariates, we have x; ~ N(x;_1,0?) for the univariate case.

Multivariate normal distributions require some additonal book-keeping when prepar-

21

ing the data; the altCoordNames argument in prepData and MIfitHMM and the mvnCoords
argument in fitHMM and MIfitHMM are designed to help properly format and identify
multivariate coordinate data streams. For example, if a bivariate normal data stream
name is “loc” (e.g. dist=list(loc="mvnorm2")), then the data must include columns
“loc.x” and "loc.y” for the x- and y- coordinates, respectively. When using a multi-
variate normal random walk distribution, the previous position can be referenced in DM
formulas or pseudo-design matrices. For example, for a bivariate normal random walk
data stream named “mu” (e.g. dist=list(mu="rw_mvnorm2")), the previous position
can be refereced in DM as “mu.x_tm1” and “mu.y_tm1”. This allows for persistence in
velocity to be included via the special formula function crw(x_tml,lag), where argu-
ment x_tml is the previous position (e.g. “mu.x_tml” or “mu.y_tml”) and argument
lag specifies the time lag for the persistence.

We demonstrate use of the bivariate normal random walk model for loggerhead turtle
movements relative to ocean surface currents in section 3.3 and for African buffalo
recharge dynamics in section 3.11. We also demonstrate how to simulate movement
subject to barriers or other constraints (e.g. land for marine animals) using a bivariate

normal random walk in section 3.12.

2.7 Recharge dynamics

Hooten et al. (2019) describe a novel way of modeling animal movement behavior based
on an aggregated physiological process associated with decision making and movement
in heterogeneous environments. In essence, their “recharge” model allows state switch-
ing to be a function of this process (i.e. the recharge function). For example, we
can think of the recharge function as the gas tank of our car. When the gas tank
is full, we are more-or-less free to drive wherever we want. However, when the tank
gets low, we must eventually return to the same gas station (or find a new one) to
refill our tank. In its simplest form, the recharge model associates “good” habitat
with recharging (i.e. filling the tank) and less-suitable habitat with discharging (i.e.
emptying the tank). The recharge function thus increases and decreases over time de-
pending on the decision-making process of the individual, the resulting behavior, and
the habitat conditions it encounters. By simply imbedding a recharge function into state
transition probabilities, we can therefore begin to investigate models with an explicit,

mechanistic connection to physiological dynamics! Hooten et al. (2019) formulated

22

their recharge model in continuous time, but its discrete-time analogue can be imple-
mented in momentuHMM. This is accomplished by including the recharge (g0, theta)
special function in the transition probability matrix formula, where the arguments g0
and theta are formulas for the initial recharge function at time ¢ = 0 (go) and the
recharge function coefficients (@), respectively. For example, if one were to specify
formula = “recharge(g0 = ~1, theta = “covi+cov2) for a 2-state (e.g., state 1 =
“charged” and state 2 = “discharged”) model, the recharge function at time ¢ (g;) would
be:

t

gt = go+ Z o + covl;0; + cov2;bs,
j=1

where covl; and cov2; are the corresponding habitat covariate values for the individual’s
location at time j. We demonstrate how to fit a discrete-time version of the African

buffalo example from Hooten et al. (2019) in section 3.11.

2.8 Multiple imputation

When location data are temporally-irregular or subject to measurement error, then
they are not suitable for standard maximum-likelihood HMM analyses based on the
forward algorithm (Eq. 1). In this case, momentuHMM can be used to perform the 2-
stage multiple imputation approach of McClintock (2017). The basic concept is to
first employ a single-state (i.e., N = 1) movement model that is relatively easy to fit
but can accommodate location measurement error and temporally-irregular or missing
observations (e.g. Johnson et al. 2008). The second stage involves repeatedly fitting the
desired HMM to m temporally-regular realizations of the position process drawn from
the model output of the first stage. Data streams or covariates that are dependent
on location (e.g., step length, turning angle, habitat type, snow depth, sea surface
temperature) will of course vary among the m realizations of the position process, and
the pooled inferences across the HMM analyses therefore reflect location uncertainty.
There are three primary functions (MIfitHMM, MIpool, and crawlWrap) for per-
forming multiple imputation HMM analyses in momentuHMM, and all rely on parallel
processing to speed up computations. crawlWrap is a wrapper function for fitting the
continuous-time correlated random walk (CTCRW) model of Johnson et al. (2008) to
one or more tracks (subject to location measurement error and/or temporal irregular-

ity) and then predicting temporally-regular tracks of the user’s choosing (e.g. 15 min,

23

hourly, daily) based on the CTCRW model output. crawlWrap returns a crwData ob-
ject that can be used to draw m realization of the position process within the MIfitHMM
function. MIfitHMM is essentially a wrapper function for fitHMM that repeatedly fits
the same user-specified HMM to m imputed data sets and stores the output from each
of the m model fits. If a crwData object is provided, then MIfitHMM will first draw
m imputations based on the crwData output and then fit the specified HMM to each
imputed data set. If users wish to use a movement model other than the CTCRW to
account for measurement error and temporal irregularity (e.g. Calabrese et al. 2016;
Gurarie et al. 2017), or if other observation error processes (e.g. missing data) are to
be accounted for in the imputation step, MIfitHMM can also be used for analysis of a list
of m momentuHMMData objects that were imputed by the user. Based on the m model
fits, the MIpool function calculates pooled estimates, standard errors, and confidence
intervals for the working scale parameters, natural scale parameters (based on trans-
formations of the pooled working parameters and mean or user-specified values for any
covariates), state sequences, state probabilities, and activity budgets (i.e. the propor-
tion of the T times step assigned to each state) using standard multiple imputation
formulae (Rubin & Schenker 1986; McClintock 2017). MIpool can be called separately
or within MIfitHMM (using the poolEstimates argument), and the function returns a
miSum object containing the pooled output across all imputatons. See sections 3.2, 3.3,
3.4, and 3.7 for example HMM analyses that use multiple imputation to account for

location measurement error and temporally irregularity.

2.9 Model visualization and diagnostics

The generic plot functions for momentuHMM models (plot .momentuHMM and plot .miSum)
plot the data stream histograms along with their corresponding estimated probability
distributions, the estimated natural parameters and state transition probabilities as
a function of any covariates included in the model, and the tracks of all individuals
(color-coded by the most likely state sequence). By default, the probability distribu-
tions are plotted based on the means of any covariate values, but user-specified covari-
ate values for the plots can be provided using the covs argument. When the argument
plotCI=TRUE, then confidence intervals for the natural parameters and state transition
probabilities are also plotted. Confidence intervals are calculated from the working

parameter estimates based on the delta method and finite-difference approximations of

24

the first derivative for the transformation using the numDeriv: : grad function (Gilbert
& Varadhan 2016). For multiple imputation analyses (plot.miSum), all plots are based
on the pooled parameter estimates and the means of any covariates (if not provided
by the covs argument) across each imputation. Using the argument errorEllipse,
plot.miSum will include estimated location error ellipses in the plots of individual
tracks. The functions plotSat, plotSpatialCov, and plotStates (Table 1) provide
further methods for visualizing model results.

Diagnostic tools include the calculation and plotting of pseudo-residuals (Zucchini
et al. 2016) using the pseudoRes and plotPR functions, respectively. For discrete
distributions (e.g. Bernoulli, Poisson), a continuity adjustment is used for calculating
pseudo-residuals. Akaike’s Information Criterion can be calculated for one or more

models using the AIC.momentuHMM function.

2.10 Simulation

The functions simData (and simHierData) can be used to simulate multivariate HMM
(or HHMM) data from scratch or based on the estimated parameters of existing momentuHMM
or miSum models. The simData and simHierData arguments are very similar to those
used for model specification in fitHMM (e.g., dist, hierDist, DM) and data prepara-
tion in prepData (e.g., spatialCovs, centers), but they include additonal arguments,
lambda and errorEllipse, for simulating location data subject to temporal irregularity
and measurement error, respectively. The spatialCovs argument allows for rasters of
spatio-temporal covariate values to be utilized in simulation models, while the centers
argument allows activity centers to be incorporated. Thus simData and simHierData
can be used to simulate more ecologically-realistic tracks (potentially subject to obser-
vation error) that can be useful for study design, power analyses, and assessing model
performance. Goodness-of-fit can also be investigated by drawing simulated data sets
from a fitted model and comparing them to observed properties of the data (Morales
et al. 2004). While simData and simHierData can be used for simulating tracks from
fitted models, we note that it assumes the location data are Cartesian coordinates; the
simData and simHierData functions are therefore not appropriate for simulating tracks

from models that were fitted to unprojected (latitude and longitude) data.

25

3 Examples

We will now demonstrate some of the capabilities of momentuHMM using real teleme-
try data. These examples are intended for demonstration purposes only, and we do not
claim these example analyses represent improvements relative to previous or alternative
analyses for these data sets. While only some of the key workflow elements are included
here, complete R code and further details for these analyses are available in the “vi-
gnettes/examples” source directory and GitHub (https://github.com/bmcclintock/

momentuHMM/tree/master/vignettes/examples).

3.1 African elephant

As our first example, we use an African elephant (Lozodonta africana) bull track de-
scribed in Wall et al. (2014) and publicly available from the movebank.org data repos-
itory.

We can load the data from the URL (this requires an Internet connection):

URL <- "https://datarepository.movebank.org/server/api/core/bitstreams/77e38af2-b5fc-4
rawData <- readr::read_csv(url(URL))

Rows: 23494 Columns: 17

—— Column specification ————————————————————————— -~ ——————————
Delimiter: ","

chr (6): sensor-type, individual-tazon-canonical-name, individual-local-ide...
dbl (8): event-id, location-long, location-lat, external-temperature,

heigh. ..

lgl (1): wistble

dttm (2): timestamp, study-local-timestamp

##

1 Use ‘spec()‘ to retrieve the full column specification for this data.

1 Specify the column types or set ‘show_col_types = FALSE‘ to quiet this

message.

The data set contains two tracks; for this analysis, we only consider the first one.
In addition to hourly locations, the tag also collected external temperature data. We

subset the data frame to keep only the relevant rows and columns:

26

https://github.com/bmcclintock/momentuHMM/tree/master/vignettes/examples
https://github.com/bmcclintock/momentuHMM/tree/master/vignettes/examples

select and rename relevant columns
rawData <- rawDatal,c(11,3,4,5,6)]

colnames(rawData) <- c("ID","time","lon","lat","temp")

only keep fairst track
rawData <- subset(rawData,ID==unique(ID) [1])

head (rawData)

A tibble: 6

#Ht
##
##
#it
#it
#Ht
##
##

ber 2010 are missing. Instead of simply ignoring these missing data, we can employ

crawlWrap to predict the missing locations based on the CTCRW model of Johnson

O O WN -

ID

<chr>
Salif
Salif
Salif
Salif
Salif
Salif

Keita
Keita
Keita
Keita
Keita
Keita

x 5

time
<dttm>
2008-03-22
2008-03-22
2008-03-22
2008-03-22
2008-03-22
2008-03-22

17:
18:
19:
20:

21

22:

00:
00:
00:
00:
:00:
00:

The data now has the following columns:

00
00
00
00
00
00

lon
<dbl>
-2.16
-2.16
-2.16
-2.16
-2.16
-2.16

lat
<dbl>

15.
15.
15.
15.
15,
15.

et al. (2008) prior to conducting our HMM analysis.

locations to UTM coordinates:

convert times from factors to POSIX

rawData$time <- as.P0SIXct(rawData$time,tz="GMT")

project to UTM coordinates using package rgdal

library(rgdal)
llcoord <- SpatialPoints(rawDatal,3:4],

add UTM locations to data frame

proj4string=CRS("+proj=longlat +datum=WGS84"))
utmcoord <- spTransform(llcoord,CRS("+proj=utm +zone=30 ellps=WGS84"))

rawData$x <- attr(utmcoord,"coords") [,1]

27

~N NN NN N

temp
<dbl>
38

35

32

30

29

28

Location measurement error is negligible for these terrestrial GPS data, although
about 1% of the hourly observations collected between 22 March 2008 and 30 Septem-

To use crawlWrap, we convert times from factors to POSIX, and project the observed

rawData$y <- attr(utmcoord,"coords") [,2]

Then, we call crawlWrap to fit a CTCRW model and predict hourly locations:

crwOut <- crawlWrap(obsData=rawData, timeStep="hour",
theta=c(6.855, -0.007), fixPar=c(NA,NA))

Here the desired time step is specified by the timeStep argument, and theta and
fixPar arguments are the same as for crawl: :crwMLE (Johnson 2017). For the choice
of initial parameters in crawlWrap, we refer the reader to the documentation of the
package crawl, in particular crawl: :crwMLE and crawl: :crwPredict. We now have a
complete set of temporally-regular location data.

Autocorrelation function (ACF) estimates suggest there are 24-hour cycles in the
step length data, and this presents an opportunity to demonstrate the use of the
cosinor function for incorporating cyclical behavior in model parameters using momentuHMM.

We create a momentuHMMData object, and the 24-hour cosinor model covariate:

elephantData <- prepData(data=crwOut, covNames="temp")

elephantData$hour <- as.integer(strftime(elephantData$time, format = "JH", tz="GMT"))

As seen here, the function prepData can also be used for pre-processing the best
predicted track data from crawlWrap output. The 24-hour cosinor covariate (“hour”)
is simply a set of integers (0, 1,...,23) indicating the hour of day for each observation.

The ACF plot of the step lengths, shown in Figure 1, was obtained with:
acf (elephantData$step[!is.na(elephantData$step)],lag.max=300)

Our aim is to fit a 2-state HMM to the elephant track that includes temperature
effects on the turning angle concentration parameters and cycling temperature effects
(with a 24-hour periodicity) on the step length and state transition probability pa-
rameters. Complex models such as this can require many parameters, and it can be

challenging to choose good starting parameter values for the optimization. Here, we

28

take an incremental approach, starting from a simpler model with no covariates. In
momentuHMM, the function getPar0 extracts initial parameters from a fitted (nested)
HMM, given arguments for the more complex model.

For the covariate-free 2-state model, six initial parameters need to be chosen: for
each state, the mean and standard deviation of the gamma distribution of step lengths,
and the concentration of the wrapped Cauchy distribution of turning angles. Look-
ing at the histograms of the step lengths and the turning angles (e.g. output by

plot(elephantData)) is often useful to choose good starting parameter values.

label states

stateNames <- c("encamped",'"exploratory")

distributions for observation processes

dist = list(step = "gamma", angle = "wrpcauchy")

inittal parameters
Par0_ml <- list(step=c(100,500,100,200) ,angle=c(0.3,0.7))

fit model
ml <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = ParO_ml,
estAngleMean = list(angle=FALSE), stateNames = stateNames)

To ensure convergence, we could also use the argument retryFits to specify the
number of attempts to minimize the negative log-likelihood based on random pertur-

bations of the parameter estimates at the current minimum.

We can build on complexity, by including the temperature and time of day as
covariates in the state transition probabilities. We use the function getPar0 to extract

the new starting parameter values.

formula for transition probabilities
formula <- ~ temp * cosinor(hour, period = 24)

initial parameters (obtained from mested model ml1)
Par0_m2 <- getParO(model=ml1, formula=formula)

fit model

m2 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = ParO_m2$Par,
betaO=Par0_m2$beta, stateNames = stateNames, formula=formula)

29

The special function cosinor(hour, period = 24) internally creates the cosinor
model covariates, cos(2m x hour /period) and sin(27 x hour /period), and includes both

terms (plus interactions with “temp”) in the fitted model.

Finally, we can fit the more complex model, including the effect of temperature and

time of day on the parameters of the state-dependent distributions of steps and angles.

DM <- list(step = list(mean = ~ temp * cosinor(hour, period = 24),
sd = ~ temp * cosinor(hour, period = 24)),
angle = list(concentration = ~ temp))

Par0_m3 <- getParO(model=m2, formula=formula, DM=DM)

m3 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = ParO_m3$Par,
beta0 = ParO_m3$beta, DM = DM, stateNames = stateNames,
formula = formula)

The above model m3 identifed a state of slow undirected movement (“encamped”),
and a state of faster and more directed movement (“exploratory”) (Figure 1). For a

fitted model, the function viterbi computes the most likely state sequence:

states <- viterbi(m3)

table(states)/nrow(elephantData)

Here, about 74% of the steps were attributed to the “encamped” state, and 26%
were attributed to the “exploratory” state.

We can use AIC(m1,m2,m3) to compare the three fitted models in terms of AIC;
here, m3 is overwhelmingly supported by the AIC when compared to alternative models
with fewer covariates.

The model can be visualized with the generic function plot, which was used for the

plots shown in Figure 2, and the decoded track in Figure 1.

30

plot(m3, plotCI = TRUE, covs = data.frame(hour=12))

Interestingly, this model suggests step lengths and directional persistence for the
“encamped” state decreased as temperature increased, step lengths for both states
tended to decrease in the late evening and early morning, and transition probabilities
from the “encamped” to “exploratory” state decreased as temperature increased (Figure
2).

Model fit can be assessed using the pseudo-residuals, with the functions pseudoRes

and plotPR. The residual ACF plot shown in Figure 1 was produced by:

pr <- pseudoRes(m3)

acf (pr$stepRes[!is.na(pr$stepRes)],lag.max = 300)

Autocorrelation function plots of the pseudo-residuals indicate this model explained
much of the periodicity in step length, although there does still appear to be some room

for improvement.

3.2 Northern fur seal

In our second example, we use the northern fur seal (Callorhinus ursinus) example from
McClintock et al. (2014) to demonstrate the use of additional data streams for distin-
guishing behaviors with similar horizontal trajectories in a multivariate HMM. The data
consist of 241 temporally-irregular Fastloc GPS locations obtained during a foraging trip
of a nursing female near the Pribilof Islands of Alaska, USA, from 10-17 October 2007.
The tag included time-depth recording capabilities, and the dive activity data were
summarized as the number of foraging dives over T' = 228 temporally-regular 1 hr time
steps. To fit the N = 3 state (1="“resting”, 2="“foraging”, 3="“transit”) of McClintock
et al. (2014) using momentuHMM, we first used crawlWrap to predict temporally-regular
locations at 1 hr time steps assuming a bivariate normal measurement error model and
merged the results with the foraging dive data using the crawlMerge function. Then
multiple imputation was used to account for location measurement error by repeatedly

fitting the HMM to nSims realizations of the position process using MIfitHMM:

31

06 08 1.0
I 1

ACF

04

T T T T T T T
0 50 100 150 200 250 300

-3 2 -1 Lag (hours)

lon

1D Salif Keita

1.0

I
ACF
06 08
1 1

04

0z
I

¥
1600000 1650000 1700000 1750000

T T T T T T T T T T T T
500000 550000 600000 650000 700000 0 50 100 150 200 250 300

x Lag (hours)

Figure 1. Plot of the elephant track produced using the ‘plotSat’ function (top-left panel),
autocorrelation function (ACF) plot of the corresponding step length data (top-right panel),
plot of the Viterbi-decoded state sequence for the 2-state (“encamped” and “exploratory”)
model generated using the generic ‘plot’ function (bottom-left panel), and the step length
pseudo-residual ACF plot for this model using the ‘plotPR’ function (bottom-right panel).

32

I1D Salif Keita: temp = 29,68, hour = 12 ID Salif Keita: temp = 29.68

wo_
~— encamped = ~—— encamped
= ~—— exploratory ~—— exploratory
— Total - - — Total
g S
3
=]
Lt
=] = @
B K
= =
& o & o |
= o
k=3
=
N |\ P
Al
g 3 |
= =
= r T T T T T 1 T T T T 1
0 1000 2000 3000 4000 5000 6000 -n -nf2 0 nj2 n
step angle (radians)
encamped: hour =12 encamped: temp = 29.68
- 2 1 |||||
5 « |
= « P
2 &
o o o
E 9 - £ = |
g ° g8
: 8- s
g §
E E ﬁ -
§ &1 g
w w
3 =
- S ;
Iyl
= I
S i
T T T T T T T T T T
10 20 30 40 50 0 5 10 15 20
temp hour
Transition probabilities: hour = 12
: S B
s ° boe] P
3 L3 U
g . .
o - -
z ﬁ 1 E T T T T E T T T T
5 0 20 30 40 = 0 20 3 40 =
g tamp temp
&
g 3
8
@ 4 .
® o | = |
5 g . o _H
< Poe - e
o =3 N =
I U 1 T U = : =t :
e T T T T =T T T T
10 20 30 40 50
0 20 30 40 = 0 20 3 40 =
lemp tamp tamp

Figure 2. Selected plots for the 2-state (“encamped” and “exploratory”) African elephant
example generated using the generic 'plot’ function. Top panels present histograms of the step
length (top-left) and turning angle (top-right) data along with the estimated state-dependent
probability distributions based on the mean temperature (temp = 29.7 degrees celsius) at
12:00 GMT (hour = 12). Middle panels present estimates (and 95% confidence intervals)
for the step length mean parameter of the “encamped” state as a function of temperature
and hour of day. Bottom-left panel presents estimates for the turning angle concentration
parameter of the “encamped” state as a function of temperature. Bottom-right panel presents
estimated state transition probabilities (1 = “encamped”, 2 = “exploratory”) as a function
of temperature at 12:00 GMT.

33

nbStates <- 3
stateNames <- c("resting", "foraging", "transit")
dist <- list(step = "gamma", angle = "wrpcauchy", dive = "pois")
Par0 <- getParDM(nbStates = nbStates, dist = dist,
Par = Par, DM = DM, workBounds = workBounds,
estAngleMean = list(angle = FALSE))
Fixpar <- list(dive = c(-100, NA, NA))
nfsFits <- MIfitHMM(crwOut, nSims = 100, nbStates = nbStates, dist = dist,
ParO = ParO, DM = DM, workBounds = workBounds,
estAngleMean = list(angle = FALSE),
fixPar = fixPar, retryFits = 30,
stateNames=stateNames)
plot (nfsFits)

Here we specified a gamma distribution for step length (‘step’), wrapped Cauchy dis-
tribution for turning angle (‘angle’), and Poisson distribution for the number of foraging
dives (‘dive’). The function getParDM was used to organize the starting values for the
data stream working parameters (Par0) in the correct format based on DM, workBounds,
and estimates of the natural parameters (Par) from McClintock et al. (2014). The DM
and workBounds arguments were specified to avoid label switching among the nSims
imputed data model fits and enforce similar state-dependent probability distribution
constraints as McClintock et al. (2014); for example, constraining the Poisson rate pa-
rameters such that the “foraging” state tends to have higher numbers of foraging dives
than the “transit” state (Ao > A3; see Eq. 11 in section 3.7 for more details on parameter
constraints using DM in conjunction with the userBounds and workBounds arguments).
To prohibit foraging dives for the “resting” state, we used the fixPar argument to
effectively fix the Poisson rate parameter to zero on the natural scale (i.e. A\; = 0). To
help deal with the problem of convergence to local maxima, the retryFits argument
allows users to specify the number of times to attempt to re-fit each model using random
perturbations of the parameter estimates as the starting values for optimization.

The results are very similar to those of the discrete-time model of McClintock et al.
(2014), with periods of foraging often followed by resting (Figure 3). The “activ-
ity budgets” (i.e. the proportion of time steps allocated to each state) calculated by
MIpool based on the estimated state sequences for each imputation were 0.31 (95% CI:
0.25—0.37) for “resting”, 0.28 (95% CI: 0.23—0.35) for “foraging”, and 0.41 (95% CI:
0.33—0.5) for “transit”.

34

1D NFSFO907 1D NFSFO907

= resting resting
foraging =2 foraging
= — transit - — transit
g | — Total — Total
= @
L= = |
Z 7 Z @
£ g @
8 2 a
2 - =+
= -
o L=
4 o
L=
=
g =
g - 3-
S ! T T 1 ! T T T 1
0 5000 10000 15000 - -2 0 mf2 n
slep angle (radians)
1D NFSFO907 1D NFSFO907
24 resting . e} resting
faraging \ - "-‘_ foraging
— transit § w —— transit
-+ — -
g Total 2 ‘9.‘“.1‘~
z 37 2 \
: ~ 2 \,
&)
o - H
))
- o i
[=] =
g -
)
= ..
=1 o -
T T T 1 T T T T T T T
[i] 5 10 15 =250000 150000 =50000 O 50000
dive X

Figure 3. Plots of the northern fur seal example results generated using the generic ‘plot’
function. The estimated probability distributions for step length (top-left panel), turning
angle (top-right panel), and number of foraging dives (bottom-left panel) for the 3-state
(“resting”, “foraging”, and “transit”) model are plotted along with histograms of these data
streams. The temporally-regular predicted locations (and 95% ellipsoidal confidence bands)
and estimated states are plotted in the bottom-right panel. All estimates are pooled across
multiple imputations of the position process and thus reflect uncertainty attributable to lo-
cation measurement error and temporally-irregular observations.

35

3.3 Loggerhead turtle

For our third example, we demonstrate how to model movement direction and step
length as a function of angular covariates using hitherto unpublished loggerhead turtle
(Caretta caretta) data for a captive-raised juvenile released in 2012 on the coast of North
Carolina, USA. The data consist of 165 temporally-irregular Argos locations subject
to measurement error and rasters of daily ocean surface currents collected between 20
November and 19 December 2012. Assuming a gamma distribution for step length (I;)
and a wrapped Cauchy distribution for turning angle (¢;), we model the mean step
length parameter (u!) as a function of ocean surface current speed (w;) and direction

(r;) relative to the bearing of movement (b;):

py = exp(By + Brwy cos(by — 1v)), (6)

and the turning angle mean parameter (,uf) as a trade-off between short-term directional
persistence and bias in the direction of ocean surface currents using the circular-circular

regression link function:
1 = atan2(sin(d,) 5%, 1 + cos(d;)3%), (7)

where d; = atan2(sin(r; — b;_1), cos(ry — by_1)).

We wish to fit a 2-state HMM to the turtle data, with a “foraging” state unaffected
by currents and a “transit” state potentially influenced by ocean surface currents as in
Egs. 6 and 7. We used crawlWrap to predict 7" = 350 temporally-regular locations at 2
hr time steps assuming a bivariate normal measurement error model that accounts for
the Argos location quality class (i.e. 3,2,1,0,A,B) of each observation. We then again
used multiple imputation to account for location uncertainty by repeatedly fitting the
HMM to nSims realizations of the position process using MIfitHMM. We first draw nSims
realizations of the position process and extract the corresponding spatial covariates
from the raster bricks for ocean surface current speed (“speedBrick”) and direction
(“dirBrick”) using MIfitHMM with fit=FALSE:

miTurtleData <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,
spatialCovs = list(w = speedBrick, d = dirBrick, r = dirBrick),
angleCovs = "d")

36

When the fit argument is FALSE, MIfitHMM returns a list of length nSims composed
of momentuHMMData objects (miData). For convenience and ease of interpretation, we
manually added an additional covariate (angle_osc = cos(b; — 1)) to each of the im-
puted data sets and fitted the 2-state HMM using Eqs. 6 and 7 for state 2 (“transit”):

nbStates<-2

dist <- list(step = "gamma", angle = "wrpcauchy")
DM <- list(step = list(mean = “state2(w:angle_osc), sd = "1),
angle = list(mean = “state2(d), concentration= ~1))

turtleFits <- MIfitHMM(miTurtleData$miData, nbStates = nbStates, dist = dist,
Par0 = ParO, DM = DM,
estAngleMean = list(angle = TRUE),
circularAngleMean = list(angle = TRUE))
plot(turtleFits, plotCI = TRUE, covs = data.frame(angle_osc = cos(0)))

Note that the state2 special function in DM indicates the covariate formulas are
specific to state 2 (“transit”) and the circularAngleMean argument indicates that
circular-circular regression link function is to be used on the mean turning angle pa-
rameter as in Eq. 7.

For the “transit” state, pooled parameter estimates indicated step lengths increased
with ocean surface current speed and as the bearing of movement aligned with ocean sur-
face current direction (8] = 0.4,95% CI: 0.09 — 0.7; Figure 4). The estimated wrapped
Cauchy distribution for turning angle had mean angles (,uf) biased towards the direc-
tion of ocean surface currents for each time step (3% = 0.26,95% CI: 0.04 — 0.48), with
concentration parameter pg = 0.86 (95% CI: 0.82—0.9) indicating turning angles were
concentrated at ,uf. Thus movement during the “transit” state appears to strongly fol-
low ocean surface currents (mean angle_osc = 0.88,SD = 0.22), while movement during
the “foraging” state exhibited shorter step lengths (u! = 3001m, 95% CI: 2439 — 3563)
perpendicular to ocean surface currents (mean angle_osc = 0.07,SD = 0.27), with some
directional persistence (p? = 0.49,95% CI: 0.37—0.61). The turtle spent 0.56 (95% CI:
0.46—0.66) of the 2 hr time steps in the “foraging” state and 0.44 (95% CI: 0.34—0.54)
of time steps in the “transit” state as it travelled northeast along a predominant current
until it (presumably) found an attractive foraging patch (Figure 4).

It may often make more sense to weight angular covariates (such as ocean sur-

face current direction) by their relative strength or importance. For example, weak

37

state 2: angle_osc = 1 state 2: w =0.46 state 2

10000

14000
I
9000

12000
L
8000

slep mean parameter
10000
L

step mean parameter
7000
angle mean parameter

8000
I
5000
L

6000
I

T T T T T T T T T T T T T T T T
02 04 06 08 1.0 1.2 14 -1.0 -05 0.0 05 10 -2 -1 0 1

w angle_osc d

4400
|

speed (mis)
% | 1.4
. = 1.2
£ - 1.0
= = = 0.8
£ — .
£ § — (.6
2
= 0.4
% N - 02
iR —— 0.0
= ettt e -
‘:] L] rEEFt bt Enner k44
!

| | I | | | I
200 400 600 800 1000 1200 1400

easting (km)

Figure 4. Selected results from the loggerhead turtle example. Top panels include esti-
mates and 95% confidence intervals for the mean step length parameter as a function of
ocean surface current speed (w) when ocean surface current direction (r;) is the same as
the bearing (b;) of movement (i.e. angle_osc = cos(by — ry) = 1; top-left panel), mean
step length parameter as a function of angle_osc at the mean ocean surface current speed
(w = 0.46 m/s; top-middle panel), and mean turning angle parameter as a function of
d; = atan2(sin(ry — by—1), cos(ry — bi_1)) (top-right panel). Bottom panel plots the pooled
track, 95% error ellipse confidence bands, and state (orange = “foraging”, blue = “transit”)
estimates based on multiple imputations of the position process relative to ocean surface cur-
rent speed (m/s) and direction on 2 December 2012.

38

ocean surface currents may be less likely to influence movement direction than strong
ocean surface currents. This could easily be included in our turtle model using the
angleFormula(cov, strength, by) special function in DM, where cov is an angle co-
variate (e.g. wind direction), strength is an optional positive real covariate (e.g. wind
speed), and by is an optional factor variable for individual- or group-level effects (e.g.
ID, sex):

DM$angle = list(mean = “state2(angleFormula(d, strength = w)),
concentration= "1)

which would yield the following model for the “transit” state mean angle parameter:
1l = atan2(w, sin(d,) 3%, 1 + w; cos(dy) 5%). (8)

Still another option would be to use the von Mises consensus model, where the
concentration parameter would now depend on the level of agreement between short-

term directional persistence (i.e. going forward) and ocean surface currents:

dist$angle = "vmConsensus"
DM$angle = list(mean = “state2(angleFormula(d, strength = w)),
kappa = 1)

which would yield the following model for the “transit” state concentration parameter:

p? = rn/Twysin(dy) 5912 4 [1 + wy cos(dy) 5]2. 9)

If there were multiple turtles in this dataset, then individual-level effects could be
included on p? by simply specifying angleFormula(d, strength = w, by = ID) or
angleFormula(d, by = ID) (with no strength effects).

One disadvantage of modeling steps and turns as above is that the fitted model can-
not be properly simulated using simData. This is because simData is unable to calculate
new realizations of the constructed covariate (angle_osc = cos(b; — r)). However, we
can implement a very similar model on the positions directly using a bivariate normal
random walk. While arguably more intuitive, modeling the positions directly also has
the added benefit that the fitted model can be properly simulated using simData. Sim-

ilar to the continuous-time potential function approach of Brillinger et al. (2012) and

39

Hooten et al. (2019), we can model the positions g = (p4, ft,,) as a bivariate normal
random walk where the position at time ¢ is a function of the position at time t — 1 and
the ocean surface current velocity vectors V' (p,_ ;) = (us—1,v:—1), where u is easting

and v is northing:

po | Se=s~N (lJ’tfl + (g = p—2) B + V(1) ol (s = 2), 031) g (10)

where I() is the indicator function and I is a 2 x 2 identity matrix. This is analogous to
our model for steps and turns, where (u,_; — p,_,) accounts for persistence in velocity.
Thus when in state 1 (i.e., S; = 1) the movement model is a correlated random walk,
but when in state 2 (i.e., Sy = 2) the movement model includes a potential function
surface based on ocean surface currents.

Recall that multivariate normal distributions require some additonal book-keeping
when preparing the data; the altCoordNames argument in prepData and MIfitHMM
and the mvnCoords argument in fitHMM and MIfitHMM are designed to help properly
format and identify multivariate coordinate data streams. For example, if a bivariate
normal data stream name is “loc” (e.g. dist=list(loc="mvnorm2")), then the data
must include columns “loc.x” and ”loc.y” for the x- and y- coordinates, respectively.
When using a multivariate normal random walk distribution, the previous position can
be referenced in DM formulas or pseudo-design matrices. For example, for a bivariate
normal random walk data stream named “mu” (e.g. dist=1list(mu="rw_mvnorm2")),
the previous position can be refereced in DM as “mu.x_tm1” and “mu.y_tm1”. This allows
for persistence in velocity to be included as in Eq. 10 via the special formula function
crw(x_tml,lag), where argument x_tml is the previous position (e.g. “mu.x_tml” or
“mu.y_tml1”) and argument lag specifies the time lag for the persistence (lag=1 in
this example, but higher order lags could also be included). A complete demonstration
of how to implement this bivariate normal random walk model can be found in the
“turtleExample_rw_mvnorm2.R” script in the momentuHMM “vignettes” source directory

(or at https://github.com/bmcclintock/momentutMM).

3.4 Grey seal

For our next example, we perform a similar analysis of a grey seal (Halichoerus grypus)
track that was originally conducted by McClintock et al. (2012) using Bayesian methods

and (computationally-intensive) Markov chain Monte Carlo. The data consist of 1045

40

https://github.com/bmcclintock/momentuHMM

temporally-irregular Fastloc GPS locations collected in the North Sea between 9 April
and 11 August 2008. Because the seal repeatedly visited the same haul-out and foraging
locations, it provides a nice example for demonstrating how to implement biased move-
ments relative to activity centers using momentuHMM. McClintock et al. (2012) fitted a
b-state model to these data that included three center of attraction states, with move-
ment biased towards two haul-out sites (“Abertay” and “Farne Islands”) and a foraging
area (“Dogger Bank”), and two “exploratory” states ("low speed”, "high speed”) that
were unassociated with an activity center. After using crawlWrap to predict 7' = 1515
temporally-regular locations at 2 hr time steps including a bivariate normal measure-
ment error model, we can perform a very similar analysis to McClintock et al. (2012) in
momentuHMM by using the centers argument and state-specific functions for the prob-
ability distribution parameters. A cluster analysis on the observed locations using the
R package dtwclust (Sarda-Espinosa 2017) identified three centroids with coordinates
that were nearly identical to the three activity centers (“Abertay”, “Farne Islands”,
and “Dogger Bank”) identified by McClintock et al. (2012). We use these coordinates
to derive covariates relative to the activity centers when drawing nSims realizations of

the position process:

crwSim <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,
center = centers)

Specifying the centers argument results in the calculation of two covariates for
each activity center: the distance (with ‘.dist’ suffix) and angle (with ‘.angle’ suffix)
from each location at time ¢. These covariates can then be used to model parameters

as a function of the distance and angle to activity centers for each time step:

dist <- list(step = "weibull", angle = "wrpcauchy")

distFormula <- “statel(I(Abertay.dist>2500)) + state2(I(Farne.dist>2500))
+ state3(I(Dogger.dist>15000))

angleFormula <- “statel(Abertay.angle) + state2(Farne.angle)
+ state3(Dogger.angle)

stepDM <- list(shape = distFormula, scale = distFormula)

angleDM <- list(mean = angleFormula, concentration = distFormula)

DM <- list(step = stepDM, angle = angleDM)

Similar to McClintock et al. (2012), we assume a Weibull distribution for step length

where both the shape and scale parameter depend on the distance from the location at

41

time ¢ to each activity center. For the activity centers on land (“Abertay” and “Farne”),
we allow the (state-dependent) step length parameters to change when the seal is beyond
2500m of the haulout. For the “Dogger” activity center, we allow the parameters to
change when the seal is beyond 15000m of this (presumably) foraging area. We thus
allow the movement behavior to change within these activity center states upon entering
or leaving the vicinity of these sites. We assume a wrapped Cauchy distribution for
turning angle with (state-dependent) mean angle derived from the direction to each
activity center at time ¢, and the concentration parameter is modeled similarly to the
step length parameters. For the two “exploratory” states, we assumed they are simple
random walks unaffected by proximity to activity centers. To complete our model
specification, we use the knownStates argument to assign the seal to the corresponding
activity center state whenever it was within the 2500m (haul-out area) or 15000m

(foraging area) thresholds for each imputed data set:

greySealFits <- MIfitHMM(miDat, nSims = 400,
nbStates = 5, dist dist,
Par0 = ParO, beta0 = betal, fixPar = fixPar,
formula = distFormula,
estAngleMean = list(angle=TRUE),
circularAngleMean = list(angle=0),
DM = DM, knownStates = knownStates)
plot(greySealFits, plotCI = TRUE)

As with the step length and turning angle concentration parameters, the state tran-
sition probabilities are also allowed to change as a function of distance to activity centers
(as specified by the formula argument). The starting values (Par0 and beta0) for each
imputation were extracted from a single HMM fitted to the best predicted locations
from crawlWrap, and circularAngleMean=1ist(angle=0) was used to remove short-
term directional persistence (and thus formulate the model as a mixture of biased and
simple random walks).

Estimated activity budgets for the 5 states of this multiple imputation HMM were
0.28 (0.27 — 0.3) for the “Abertay” haul-out state, 0.12 (0.11 — 0.13) for the “Farne
Islands” haul-out state, 0.37 (0.35 — 0.38) for the “Dogger Bank” foraging state, 0.11
(0.05—0.2) for a low-speed “exploratory” state, and 0.12 (0.07 — 0.21) for a high-speed

Y

“exploratory” state. All three activity center states exhibited shorter step lengths and

42

less biased movements when within the vicinity of these targets (Figure 5). Results
from this analysis were thus very similar to those of McClintock et al. (2012), but
this implementation required far less computation time and no custom model-fitting
algorithms.

The simData function can be used to simulate tracks from a fitted model:

greySealSim<-simData(model = greySealFits, centers = centers,
initialPosition = centers([1,],
obsPerAnimal = 1515)

A simulated track is presented along with the fitted track in Figure 6. While po-
tentially useful for study design, power analysis, and prediction, the simData function
can also be helpful in assessing goodness of fit by repeatedly drawing simulated data
sets from a fitted model and comparing them to observed properties of the data (e.g.
Morales et al. 2004).

3.5 Southern elephant seals

Here, we analyse the southern elephant seal (Mirounga leonina) data from Michelot
et al. (2017) using momentuHMM. The data set consists of 15 tracks, each encompassing
(at most) one foraging trip, starting from Kerguelen Island. We want to fit the model

described by Michelot et al. (2017), with the four following states:
1. outbound trip from the colony to the ice;
2. searching;
3. foraging;
4. inbound trip from the ice to the colony.

The data set has three columns: “ID” (track ID), “x” (longitude), and “y” (latitude):

head (tracks)

ID X y
1 1 70.60946 -49.60737
2 1 70.82908 -50.08287
3 1 70.90029 -50.32835

43

Abertay Abertay

=
o
3
e
=
=3 -
g 3
. £
g g
E a
g =
g -% = 7|
@ o .‘é
3 g1 8
«©
5y 8
s H
=
g oy
i
b=
f=.
&
= |
T T T T T = T T T T T
0 100000 200000 300000 400000 L] 100000 200000 300000 400000
Abertay.dist Abertay.dist
Dogger Dogger
@ _|
k=]
= ~
g1 51
5
. £
2 R
£ 2
B g £
S S 4 g w |
g 2 £ <
: :
% o ¥
? =
&
=
8 A @ _|
= o
o
H{ o

T T T T T T T T
0 100000 200000 300000] 100000 200000 300000

Dogger.dist Doggerdist

Figure 5. Selected results from the grey seal example. Panels include estimates and 95%
confidence intervals for the “Abertay” haul-out state step length scale parameter as a function
of distance in meters (‘Abertay.dist’; top-left panel), “Abertay” haul-out state turning angle
concentration parameter as a function of distance (top-right panel), “Dogger Bank” foraging
state step length scale parameter as a function of distance (‘Dogger.dist’; bottom-left panel),
and the “Dogger Bank” foraging state turning angle concentration parameter as a function
of distance (bottom-right panel).

44

* Abertay haul-out state

* Farne Islands haul-out state

* Dogger Bank foraging state
Low-speed exploratory state

* High-speed exploratory state

Latitude

-2 0 2

Longitude

* Abertay haul-out state

* Farne Islands haul-out state
* Dogger Bank foraging state
Low-speed exploratory state
High-speed exploratory state

56
|

Latitude

55
1

-2 0 2

Longitude

Figure 6. Fitted and simulated tracks from the grey seal example. This seal tended to
move in a clockwise fashion between two haul-out locations (“Abertay” and “Farne Islands”)
and a foraging area (“Dogger Bank”) in the North Sea. Top panel plots the pooled track,
95% error ellipse confidence bands, and state estimates based on the 5-state HMM fitted to
multiple imputations of the position process. Red points indicate the locations of the three
activity centers. Black points indicate the (temporally-irregular) observed locations. Bottom
panel presents the locations and states for a track simulated from the fitted model using the

‘simData’ function.

45

4 1 70.85766 -50.54746
5 1 70.63792 -50.90529
6 1 70.48480 -50.99666

From the locations, we use prepData to derive the step lengths and turning angles,
as well as the distance and bearing (relative to previous movement direction as in Eq.

3) to the Kerguelen Island colony (with coordinates 70° longitude and -49° latitude):

center <- matrix(c(70,-49) ,nrow=1,dimnames=1ist("colony"))
data <- prepData(data=tracks, type="LL", centers=center)

Note that distances are in kilometers and angles are based on initial bearings (us-
ing geosphere::bearing; Hijmans 2016a) when calculated from longitude and latitude

coordinates.

3.5.1 Model 1: no covariates

We start by fitting a covariate-free 4-state correlated random walk model, which we
will use to extract starting parameter values for more complex models. We use the
argument fixPar to fix some transition probabilities to zero, following Michelot et al.
(2017). We set to NA the columns of unconstrained transition probabilities, and we fix
the intercept of the other columns to a large negative number (here —100) to set the
corresponding transition probabilities to be virtually zero (i.e. impossible transition).
As in Michelot et al. (2017), we set transition probabilities from outbound to forage,
outbound to inbound, search to outbound, forage to outbound, forage to inbound,

inbound to outbound, inbound to search, and inbound to forage to be effectively zero.

stateNames <- c("outbound",'"search","forage","inbound")

stepPar0 <- c(25,5,1,25,10,5,3,10)
anglePar0 <- c¢(15,5,2,15)

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100),
nrow=1)

46

ml <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),
ParO=1ist (step=stepPar0, angle=anglePar0),
fixPar=1list(beta=fixbeta), stateNames = stateNames)

3.5.2 Model 2

This model mimics the formulation of Michelot et al. (2017). We model the effect of
the distance to colony on the transition probability from outbound to search, and of

the time since departure on the transition probability from search to inbound.

time spent since left colony
time <- NULL
for(id in unique(data$ID)) {
nbSub0bs <- length(which(data$ID==id))

approxzimately in months for interval = 9.6h
time <- c(time, (1:nbSub0bs)/75)

}

data$time <- time

compute time since departure and include wn formula below
formula <- 7 colony.dist + time

As before, we constrain the transition probability matrix to prevent some of the
transitions (e.g. from forage to inbound, etc.). We define a 3 x 12 matrix for the beta
parameters, in which each column corresponds to a transition (1 — 2,1 — 3,1 - 4,2 —
1,...), and each row corresponds to a covariate (intercept, distance to center, time since
departure). We set to NA the columns of unconstrained transition probabilities, and we
again fix the intercept of the other columns to a large negative number (here —100)
to set the corresponding transition probabilities to be virtually zero (i.e. impossible

transition).

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,
NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, O,NA, 0, 0, 0, 0, 0, 0),

nrow=3,byrow=TRUE)

47

Biased random walks are used to model the movement in states 1 and 4, with
repulsion away from the colony in the outbound trip, and attraction towards the colony
in the inbound trip. For that purpose, we include ‘colony.angle’ as a covariate on the

angle mean of the von Mises distributions for turning angles in states 1 and 4.

angleFormula <- ~ statel(colony.angle) + state4(colony.angle)

To specify the direction of the bias (away from or towards the colony), we fix the
parameters linking the mean turning angle to the direction of the colony. Because we
will remove the correlated random walk component of Eq. 2 for states 1 and 4 (by
setting circularAngleMean=1ist (angle=0); see section 2.3), we fix the coefficient to
—1 for state 1 (so that the mean direction is away from the colony), and we fix the
coefficient to +1 for state 4 (so that the mean direction is towards the colony). Note
that with only a single angular covariate, the magnitude of these fixed coefficients is
not important; only the sign is important (i.e. positive for attraction, negative for
repulsion). The four other parameters correspond to the angle concentrations and
should be estimated (NAs in fixPar).

fixPar <- list(angle=c(-1,1,NA,NA,NA,NA),beta=fixbeta)

Because no covariates are specified for the mean angle of state 2 (searching) and
state 3 (foraging), these states are reduced to correlated random walks with a mean
turning angle of zero (i.e. atan2(0,0) = 0; see Eq. 2).

We can now fit the second model with starting parameter values extracted from the
simpler model using getPar0. In fitHMM, we use the arguments estAngleMean and
circularAngleMean to indicate that the angle mean is to be estimated using circular-
circular regression (with short-term directional persistence removed for states 1 and
4).

Par0 <- getParO(model=ml, nbStates=4,
DM=list (angle=1list(mean=angleFormula, concentration="1)),
estAngleMean=1ist (angle=TRUE),
circularAngleMean=1ist (angle=0), formula=formula)

m2 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),
ParO=1ist (step=ParOParstep, angle=ParOParangle),

48

betaO0=ParO$beta, fixPar=fixPar, formula=formula,
DM=1ist(angle=list (mean=angleFormula, concentration="1)),
estAngleMean=1ist (angle=TRUE), circularAngleMean=1ist(angle=0),
stateNames = stateNames)

Instead of relying entirely on fixPar for parameter constraints, an equivalent model
for the transition probabilities could be specified using the special function betaCol in

formula:

formula <- ~ betaColl(colony.dist) + betaCol6(time)

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,
rep(NA,12),
rep(NA,12)),
nrow=3,byrow=TRUE)

fixPar <- list(angle=c(-1,1,NA,NA,NA,NA),beta=fixbeta)

Here betaColl(colony.dist) specifies an effect of distance to colony only on the
transition from state 1 to state 2 (which corresponds to the first column of the beta
matrix) and betaCol6(time) specifies an effect of time since departure only on the
transition from state 2 to state 4 (which corresponds to the sixth column of the beta
matrix). When the special function betaCol is used, then fitHMM automatically fixes
the appropriate elements in the second (‘colony.dist’) and third (‘time’) rows of the beta
matrix to zero (without the user needing to do so manually using fixPar). However,
note that the first row (corresponding to the intercept terms) must still be manually

fixed to achieve the desired constraints on the transition probability matrix.

3.5.3 Model 3

In addition to the covariates included in model 2, we add the effect of distance to colony
on the step length and turning angle concentration parameters for states 1 and 4. We

specify the following formulas:

distFormula <- ~ statel(colony.dist) + state4(colony.dist)
stepDM <- list(mean=distFormula, sd=distFormula)
angleDM <- list(mean=angleFormula, concentration=distFormula)

49

The initial parameters are extracted from model 2, again using the function getParO.
Instead of fixing the mean direction of movement like in model 2, we estimate it here as
a trade-off between short-term directional persistence and bias toward (or away) from

the colony (i.e. a biased correlated random walk as in Eq. 2).

remove fized angle parameters
fixPar <- list(beta=fixbeta)

get starting parameters from m2

Par0 <- getPar0O(model=m2, nbStates=4,
DM = list(step=stepDM, angle=angleDM),
estAngleMean=1ist (angle=TRUE),
circularAngleMean=1ist (angle=TRUE),
formula=formula)

the bias ts estimated rather than fized
ParOParangle[c("mean_1:(colony.angle)","mean_4: (colony.angle)")] <- 0

m3 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),
Par0=1ist (step=ParOParstep, angle=ParOParangle),
betaO0=ParO$beta, fixPar=fixPar, formula=formula,
DM = list(step=stepDM, angle=angleDM),
estAngleMean=1ist (angle=TRUE),
circularAngleMean=1list (angle=TRUE),
stateNames = stateNames)

The three fitted model can be compared with AIC(m1,m2,m3), which overwhelm-
ingly supports model 3. The most likely state sequence is obtained with viterbi(m3).
Figure 7 shows a map of the state-decoded track. The estimated circular-circular re-
gression coefficients for the angle means of state 1 (outbound) and state 4 (inbound)
were —0.66 (95% CI: —0.82 — —0.5) and 0.4 (95% CI: 0.32 — 0.49), respectively, thus
indicating biased correlated random walks with repulsion away from the colony during
outbound movements and attraction towards the colony during inbound movements.
The estimated regression coefficients for the step length mean and turning angle concen-
tration parameters for states 1 and 4 suggest that step lengths decreased and turning

angles became more concentrated at the mean angle as distance to colony increased
(Figure 8)

20

outbound
search

508

—— forage
— inbound
o
o -
© 4
2
E it
E e
= w» T N8
g g KAl p
= i
.
0
iy =
w
“w
e - . PN -
P~

longitude

Figure 7. The 15 elephant seal tracks, colored by the most likely state sequence.

3.6 Group dynamic animal movement

Here we demonstrate how momentuHMM can be used to simulate and fit the group dy-
namic animal movement model of Langrock et al. (2014). In group dynamic models,
groups (e.g., herds, packs, schools) are allowed to influence the movement of social
individuals. One way to accomplish this is to model individual movements as being
attracted to a group “centroid”. Depending on the system, the centroid could simply
be the location of the group center (e.g., the mathematical centroid of the group) or
group leader (e.g., alpha wolf) at times ¢ = 1,...,T. In this sense, the centroid can
be considered a dynamic activity center that changes position over time, and these
models are not necessarily limited to groups. For example, the centroid could instead
refer to predators, competitors, or human activity (in which case the centroid might be
repulsive rather than attractive!).

Dynamic activity centers can be simulated in simData using the centroids argu-
ment. Following simulation scenario A of Langrock et al. (2014), we first simulate a
group centroid as a single-state (i.e. N = 1) biased correlated random walk relative to

the origin:

o1

outbound inbound

W
<
g —
o
=t
=
=+
o
=
2 2
£ £
bl o
B # o
o a w |
5 I -
E E
c 5 | H
3 4
8 -
a —
8 1 9 q
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
colony.dist colony.dist
outbound inbound
@
© 4
5 &
@ @
E £
<] il
8 g
& =4 §
g 7 B
€ k=
g g
8 8
= s
c o £
o - o
o
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
colony dist colony.dist

Figure 8. Selected results from the elephant seal example. Panels include estimates and
95% confidence intervals for the “outbound” mean step length parameter (top-left panel),
“inbound” mean step length parameter (top-right panel), “outbound” turning angle concen-
tration parameter (bottom-left panel), and “inbound” turning angle concentration parameter
(bottom-right panel) as a function of distance to colony (‘colony.dist’). Distance to colony
has been standardized based on a mean of 2539 km (SD = 1021.3).

02

dist <- list(step="gamma", angle="vm"
nbObs <- 250

Parc <- list(step = c(15,10),
angle = c(0.15,10g(1)))

DMc <- list(angle=list(mean = “centerl.angle,
concentration="1))

centroidData <- simData(nbStates=1, dist=dist, Par=Parc, DM=DMc,
circularAngleMean = list(angle = TRUE),
centers = matrix(0,1,2),
obsPerAnimal = nbObs)

Now we can use the simulated centroid track (Fig. 9) as a dynamic activity center
and simulate the movement of a group of 20 individuals as a 2-state mixture of a biased
random walk (relative to the centroid) and a correlated random walk (independent of

the centroid):

nbAnimals <- 20
nbStates <- 2
stateNames <- c("group","solitary")

Par <- list(step = c(30,50,15,25),
angle = c(1,lo0g(2.5),1l0g(5)))

beta <- matrix(c(-2.944439,-1.734601),1,nbStates)

DM <- list(angle=list(mean = “statel(centroid.angle),
concentration = “1))

calculate stationary distribution

gamma <- diag(nbStates)

gamma [! gamma] <- exp(beta)

gamma <- t(gamma)

gamma <- gamma/apply(gamma,l,sum)

delta <- solve(diag(nbStates) - t(gamma) + 1, rep(l, nbStates))

draw random initial locations for each individual

initialPositions <- vector("list")
for (i in 1:nbAnimals) {

23

1D eentroid

500

-100

-500

200
1

-1000

400

200

—200

-400

A
-200

-600
1
-~
\

-200 0 200 400 600 0 200 400 600

Figure 9. Selected results from the group dynamic animal movement example. Panels include
the simulated centroid path (top-left panel), the simulated paths of 20 individuals where state
1 (“group”) includes biased movements towards the centroid and state 2 (“solitary”) is a
correlated random walk independent of the group centroid (top-right panel), and two fitted
tracks that are colored by the most likely state sequence (bottom panels).

o4

initialPositions[[i]] <- runif(2, -10, 10)

}

cD <- data.frame(x = centroidData$x, y = centroidData$y)

groupData <- simData(nbAnimals=nbAnimals, nbStates=nbStates, dist=dist,
Par = Par, beta = beta, delta = delta, DM = DM,
circularAngleMean = list(angle = 0),
centroids = list(centroid = cD),
obsPerAnimal = nbObs,
initialPosition = initialPositions,
states = TRUE, stateNames = stateNames)

Here state 1 (“group”) has biased movements toward the centroid and state 2 (“soli-
tary”) is simply a correlated random walk independent of the group centroid (Fig.
9). Note that despite this being a 2-state HMM, the working scale parameters for
turning angle (Par$angle) only includes 3 parameters (1 for the angle mean and 2
for the concentration parameters). This is because under the circular-circular regres-
sion model, no working parameter is specified! for the reference turning angle of zero
(i.e., the component for short-term directional persistence; see Eq. 2) and no an-
gular covariates were specified in the model for state 2 (“solitary”). Thus the first
parameter corresponds to the working scale parameter of the centroid.angle co-
variate for state 1 (“group”), while the second and third parameters are the working
scale parameters for the concentration parameters for states 1 and 2, respectively. In
this case, we remove the correlated random walk component for state 1 by setting
circularAngleMean = list(angle = 0), and the angle mean parameter for state 1
was set at a positive value (41) to enforce a biased random walk with attraction towards
the group centriod. As there is only a single angular covariate here, the magnitude of
this value is not important; only the sign matters (i.e. positive for attraction, negative
for repulsion).

Finally, we can fit the group dynamic model using fitHMM:

More accurately, the working parameter for the reference angle is automatically fixed to 8y = 1
(or whatever scalar is provided by the circularAngleMean argument).

95

Par0 <- list(step = c(30,50,15,25),
angle = c(1,1l0g(2.5),1log(5)))

fixPar <- list(angle=c(1,NA,NA))

groupFit <- fitHMM(groupData, nbStates=nbStates, dist=dist, Par=ParO,
DM = DM, stationary = TRUE,
estAngleMean = list(angle = TRUE),
circularAngleMean = list(angle = 0), fixPar = fixPar,
stateNames = stateNames)

3.7 Harbour seals

Here we demonstrate how more complicated parameter constraints can be implemented
using the userBounds and workBounds arguments in fitHMM and MIfitHMM. This exam-
ple is based on the harbour seal analysis of McClintock et al. (2013). Using individual-
level random effects on probability distribution parameters, McClintock et al. (2013)
performed a Bayesian analysis of population-level activity budgets for 3-states (“rest-
ing”, “foraging”, and “transit”). While momentuHMM cannot be used to replicate this
analysis exactly, we can perform a similar analysis in the absence of individual-level
random effects. Here we will focus on several specific parameter constraints, but the
full example code can be found in the “vignettes” source directory.

The harbour seal data consist of 17 individuals (10 male, 7 female) and, as in the
northern fur example in section 3.2, both location and dive activity data. The location
data were obtained at temporally-irregular intervals, while the dive activity data were
obtained at regular 2-hour time steps. We therefore first used crawlWrap to fit and
predict locations for all 17 tracks at 2-hour time steps and then used crawlMerge to
merge the predicted locations with the dive activity data. We then fitted several differ-
ent models assuming: 1) no individual- or sex-level effects on all parameters (i.e., the
“null” model); 2) sex-level effects on all parameters; and 3) individual-level effects on
all parameters. Based on fitHMM fits for the best predicted tracks, AIC overwhelmingly
supported the model including individual-level effects on all parameters, but for sim-
plicity we will use the model including no individual- or sex-level effects to demonstrate
how the constraints of McClintock et al. (2013) can be implemented in momentuHMM. In

addition to the lack of individual-level random effects in our example, we also depart

o6

from McClintock et al. (2013) in our use of zero-inflation parameters to account for
steps of length zero (i.e., [; = 0) and time steps with no dive activity (i.e., w; = 0).
Unlike McClintock et al. (2013), note that our model 3 also includes individual-level
fixed effects on the state transition probabilities.

McClintock et al. (2013) fit their 3-state model using more complicated constraints
on the probability distribution parameters than any of our previous vignette exam-

ples. In addition to relational constraints among the °

‘resting”, “foraging”, and “tran-
sit” states similar to those used in the northern fur seal example (section 3.2), these
constraints included upper bounds for the shape and scale parameters of the Weibull
distribution for step length, a minimum value for the “transit” concentration param-
eter of the wrapped Cauchy distribution for turning angle, and bounds on the shape
parameters of the beta distribution for dive activity specifically chosen to prevent any
“bathtub” shaped distributions for the proportion of each time step spent diving below
1.5m.

Before we demonstrate how to implement these constraints, we should first provide
more detail on exactly how the DM, userBounds, and workBounds arguments work
together in fitHMM (and MIfitHMM). While the DM argument should now be familiar, we
have thus far spent little time discussing the latter two arguments. The userBounds
argument specifies the lower and upper bounds for the natural scale parameters as a
2-column matrix. By default all working scale parameters (3,) are bounded on the
real line, but the workBounds argument can be used to specify the lower and upper

bounds for the working scale parameters as a 2-column matrix. Specifically, momentuHMM

calculates natural scale parameters with finite bounds as
6 = (Up—Ly)g " (XoBy) + Lo,

where Ly is the lower bound on the natural scale and Uy is the upper bound on the
natural scale. Note that 3; = B, under the default values for workBounds. For natural

scale parameters with finite lower bounds and infinite upper bounds, we have
0= gi1 (XQ,BZ) + Ly.
When workBounds is specified, then additional link functions are used on the work-

ing scale parameters. For example, for working scale parameters with finite bounds, we

27

have

ﬁ; = (Uﬁe - Lﬁe) logitil (/60> + Lﬁo?

where Lg, is the lower bound on the working scale and Ug, is the upper bound on the
working scale. When constraining working parameters with finite lower bounds (e.g.

zero) and infinite upper bounds, we have

By = exp (By) + L,

When constraining working parameters with infinite lower bounds and finite upper

bounds (e.g. zero), we have

By = — (exp (=By) — Ug,) .

Although optimization within fitHMM and MIfitHMM is always performed on 3,, note
that B, (and a delta method approximation for the variance of this transformation) is
returned by CIbeta, MIpool, and print function calls.

For the Weibull distribution parameters for step length, McClintock et al. (2013)
constrained the shape parameter as < 5 (to prevent too “peaked” distributions) and the
scale parameter less than the maximum distance a harbour seal could travel in 2 hours
at 2 m/s (i.e., by < 14400m) for s € {1 = “resting”,2 = “foraging”,3 = “transit”}.
They also constrained b3 > by > by. This is easily accomplished in momentuHMM using

the DM, userBounds, and workBounds arguments:

nbStates <- 3
stateNames <- c("resting", "foraging", "transit")
dist <- list(step = "weibull", angle = "wrpcauchy", dive = "beta")

stepDM<-matrix(c(1,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,
0,0,0,1,1,0,0,0,0,
0,0,0,1,1,1,0,0,0,
0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1) ,nrow=3*nbStates,byrow=TRUE,
dimnames=1list (c(pasteO("shape_",1:nbStates),

o8

pasteO("scale_",1:nbStates),
pasteO("zeromass_",1:nbStates)),
c(pasteO("shape_",1:nbStates,": (Intercept)"),
"scale: (Intercept)","scale_2","scale_3",
paste0("zeromass_",1:nbStates,": (Intercept)"))))
stepworkBounds<-matrix(c(rep(-Inf,4),0,0,rep(-Inf,3),
rep(Inf,ncol(stepDM))) ,ncol(stepDM),2,
dimnames=1list (colnames (stepDM),c("lower","upper")))
stepBounds<-matrix(c(0,5,
0,5,
0,5,
0,14400,
0,14400,
0,14400,
0,1,
0,1,
0,1) ,nrow=3*nbStates,byrow=TRUE,
dimnames=1list (rownames (stepDM),c("lower","upper")))

When included in workBounds and userBounds for the step length data stream,
‘stepworkBounds’ and ‘stepBounds’ above constrain the parameters 55 > 0 and g > 0
such that 14400 > b3 > by > by > O:

by = (14400 — 0)logit™" (B14) + 0
by = (14400 — 0)logit™" (B4 + exp(Bis5) +0) + 0
by = (14400 — 0)logit™ (B4 + exp(Bis) + 0 + exp(Bis) + 0) + 0.

In order to force the “transit” state to have strong directional persistence, McClin-
tock et al. (2013) constrained the concentration parameter ps > 0.75. In the absence
of relational constraints, userBounds could be used to constrain p3; > 0.75. However,
because we also wish to constrain ps < p3, we must make use of the workBounds ar-
gument. We can constrain ps > 0.75, py < p3, and p; < 0.95 (s € {1,2,3}) using the

following combination of DM, userBounds, and workBounds arguments:

angleDM <- matrix(c(1,0,0,
0,1,1,
0,1,0) ,nrow=nbStates,byrow=TRUE,
dimnames=1ist (paste0("concentration_",1:nbStates),
c("concentration_1: (Intercept)",

29

"concentration_23: (Intercept)",
"concentration_2")))
angleBounds <- matrix(c(0,0.95,
0,0.95,
0,0.95) ,nrow=nbStates, byrow=TRUE,
dimnames=1list (rownames (angleDM),c("lower", "upper")))
transitcons <- stats::qlogis((0.75 - angleBounds[3,1])
/ (angleBounds[3,2] - angleBounds[3,1]))
angleworkBounds <- matrix(c(-Inf,transitcons,-Inf,
rep(Inf,2),0),ncol(angleDM),2,
dimnames=1list (colnames (angleDM),c("lower","upper")))

When ‘angleworkBounds’ and ‘angleBounds’ are respectively included in workBounds

and userBounds for the turning angle data stream, this yields

p1 = (0.95—0)logit™" (Bs1) +0
p2 = (0.95—0)logit™" (exp(By2) + 1.32 — (exp(—Py3) — 0)) +0
p3 = (0.95—0)logit™" (exp(Bs2) + 1.32) + 0.

Here we constrained ps < 0.95 to avoid numerical convergence issues that can arise with
sparse data sets as ps — 1. Also note that when using workBounds to enforce a specific
constraint on the natural scale, userBounds should not also include the corresponding
natural parameter constraint(s). For example, because we are constraining ps > 0.75
with the workBounds argument, we did not also include a 0.75 lower bound for ps3 in
‘angleBounds’ above.

For the beta distribution of the dive activity data, McClintock et al. (2013) con-

strained the shapel (vs) and shape2 (d,) parameters as follows:

where v = v3 and d3 = d3. These constraints can be imposed using the following

combination of DM, userBounds, and workBounds arguments:

omegaDM <- matrix(c(1,0,0,0,0,0,
0,0,1,1,0,0,
0,0,1,1,0,0

b J

60

b 2

b

1,1,0,0,0,0
0,0,1,0,0,0
0,0,1,0,0,0,
0,0,0,0,1,0
0,0,0,0,0,1

3
3 3

b 3 b

0,0,0,0,0,1) ,nrow=nbStates*3,byrow=TRUE,
dimnames=1list(c(paste0("shapel_",1:nbStates),
pasteO("shape2_",1:nbStates),
pasteO("zeromass_",1:nbStates)),
c("shape_1: (Intercept)","shape2_1",
"shape_2: (Intercept)","shapel 2",
"zeromass_1: (Intercept)",
"zeromass_23: (Intercept)")))
omegaworkBounds <- matrix(c(-Inf,0,-Inf,0,-Inf,-Inf,
rep(Inf,ncol (omegaDM))) ,ncol (omegaDM),2,
dimnames=1ist (colnames (omegaDM),c("lower","upper")))
omegaBounds <- matrix(c(1,10,
1,10,
1,10,
1,10,
1,10,
1,10,
0,1,
0,1,
0,1) ,nrow=nbStates*3,byrow=TRUE,
dimnames=1ist (rownames (omegaDM) ,c("lower", "upper")))

Lastly, we wish to impose some biologically-meaningful constraints on the zero-
inflation parameters using the fixPar argument. Because we would never expect a
harbour seal in the “transit” state to exhibit a step length of zero, it makes sense to
constrain the zero-mass step length parameter for the “transit” state to (effectively)
zero. Similarly, we would not expect a harbour seal in the “foraging” or “transit” states
to exhibit no dive activity, and it therefore also makes sense to constrain the zero-mass
dive activity parameters for these states to zero. We can accomplish this using the

following fixPar argument:

fixPar <- list(step=c(rep(NA,nbStates*2),NA,NA,stats::qlogis(1.e-100)),
omega=c(rep(NA,4) ,NA,stats::qlogis(1.e-100)))

61

Putting it all together, we can fit our constrained model assuming no individual- or

sex-level effects using MIfitHMM:

DM <- list(step = stepDM, angle = angleDM, omega = omegaDM)
userBounds <- list(step = stepBounds,
angle = angleBounds,
omega = omegaBounds)
workBounds <- list(step = stepworkBounds,
angle = angleworkBounds,
omega = omegaworkBounds)
hsFits <- MIfitHMM(crwOut, nSims = 30,
nbStates = nbStates, dist = dist, Par0O = Paro0,
DM = DM, workBounds = workBounds,
userBounds = userBounds, workBounds = workBounds,
fixPar = fixPar, stateNames = stateNames)

As was mentioned earlier, we found overwhelming AIC support for the individual-
level effects model relative to the sex-level effects models and the null model above.
While our best supported momentuHMM model included individual-level fixed effects,
the estimated tracks (Fig. 10) and inferences about population-level activity budgets
were similar to the individual-level random effects model of McClintock et al. (2013).
Estimated activity budgets for the males were 0.36 (95% CI: 0.35 — 0.37) for “resting”,
0.53 (95% CI: 0.52 — 0.55) for “foraging”, and 0.11 (95% CI: 0.1 — 0.12) for “transit”.
Activity budgets for females were 0.3 (95% CI: 0.29 — 0.3) for “resting”, 0.61 (95%
CIL: 0.6 — 0.62) for “foraging”, and 0.09 (95% CI: 0.09 — 0.1) for “transit”. We found
considerable individual variation in the state transition probabilities (Fig. 11), and
when comparing the estimated activity budgets of our analysis with those of McClintock
et al. (2013), we suspect the more noticeable differences between the time spent in
the “resting” and “foraging” states for males is attributable to our having included

individual-level effects on the state transition probabilities.

3.8 Northern fulmars

Using Bayesian analysis methods, Pirotta et al. (2018) fit a 6-state biased random walk
model to northern fulmar (Fulmarus glacialis) tracks in northern Scotland, UK. These
states included biased movements relative to a colony in Eynhallow (59.12° N, 3.1° W)

and fishing vessels that frequently work in the area. Pirotta et al. (2018) framed their

62

latitude

574
|

* rasting
= foraging
- - * fransit
$' [:5 — * observed
w g
< G
[
£
2 24
[e 1]
i
[F]
G
=
w
[
1 —
G
b}
B I I I I I
-28 -2§ 2.4 2.2 20 18 -6.0 5.8 5.8 57 -5.6
longitude lengitude

Figure 10. Two harbour seal tracks, colored by the most likely state sequence.

63

Transition probabilities

24 24 24
Lk 'I'ﬁ-}{.;"i @ = S
. '}-E a at o T o @
a j*t. j*t-
[l L=l i =
o o -};} i o ;;
= g - g-i;l— ;i;.i.-"-
TTTTTT T T T T T T TN] TTTTTT T T T T T T T 0] EEREEEERRRRERERERIE
13 58 7 49 12 1a& 13 8 7 9 12 1a 13 585 7 9 12 15
D I0 0
a a a
- - - -
3 - E-'*.}H&i-“i‘; s =
- = o @ * s 3 w |
) = » = J.l =
N % o o
L=} * L=} =
o & o o o
= = o = = l -
-:e_.‘ - e a q_.i;*. ;i“i"l =® I
2 O TTTI T T T I T IO T F TTT T T T I T S R EEEEEEEEEER
1 3 & 7 9 12 1& 1 3 8§ 7T 9 12 1& 13 85 7 89 12 1&
D 10 1]
a o —= a — —
o o | ﬂq_f -l--[-
[l L=l =
- = o @ o @ {&{'
;2 : ° " : ° - 7
ikl AR (T e
IR I Gl ||
L= - = 4 . = - - '™ L
S v N N EEEEEEEEEEEEER S R EEREEEEERRE R
1 3 & 7 9 12 1& 1 3 8§ 7T 9 12 1& 13 85 7 89 12 1&
ID I0 D

Figure 11. Estimated individual-level state transition probabilities for the harbour seal
example.

64

model as having two latent state process. Under the first state process, the direction
of movement could be biased away from the colony (“sea”), towards the nearest fishing
vessel (“boat”), or towards the colony (“colony”). Under the second state process, the
movement mode could either be fast and directionally-persistent (“transit”) or area-
restricted search (“ARS”). Thus the six states are “sea ARS”, “sea transit”, “boat
ARS”, “boat transit”, “colony ARS” and “colony transit”. Pirotta et al. (2018) also
allowed the distance to the nearest fishing vessel and time since leaving the colony to
affect state transitions to the “boat” and “colony” states. Here we demonstrate how a
very similar (but not identical) model can be implemented in momentuHMM.

The data are provided in a Dryad repository, but these will require some additional
formatting and preparation. We first load the raw data, create the required “ID” column
based on individual trips, convert time stamps to class POSIXct, and project the north-
ern fulmar (“Longitude”, “Latitude”) and nearest fishing vessel (“Boat_Longitude”,

“Boat_Latitude”) locations using the sp package:

library(sp)

fulmarURL <- "https://datadryad.org/stash/downloads/file_stream/45899"
raw_data <- read.csv(url(fulmarURL),
stringsAsFactors = FALSE)

raw_data$ID <- raw_data$tripID
raw_data$Date <- as.P0SIXct(raw_data$Date,tz="UTC",
format="%d/%m/%Y %H:%M")

0ldProj <- CRS("+proj=longlat +datum=WGS84")

newProj <- CRS("+init=epsg:27700")

coordinates(raw_data) <- c("Longitude","Latitude")
proj4string(raw_data) <- 0ldProj

raw_data <- as.data.frame(spTransform(raw_data, newProj))

coordinates(raw_data) <- c("Boat_Longitude","Boat_Latitude")
proj4string(raw_data) <- o0ldProj

raw_data <- as.data.frame(spTransform(raw_data, newProj))

For movements away from the colony (“sea ARS” and “sea transit”), Pirotta et al.

(2018) included bias in the direction of the farthest location from the colony for a

65

given trip. We can use the centers argument of prepData to identify these locations
(“max_dist”) and then calculate the expected angle for the “sea” states (“sea.angle”)

using momentuHMM: : :distAngle:

use prepData to calculate colony distance covariate (’sea.angle’)

colony <- data.frame(x = -3.1, y = 59.12)

coordinates(colony) <- c("x", "y")

proj4string(colony) <- oldProj

colony <- as.matrix(as.data.frame(spTransform(colony, newProj)))

rownames (colony) <- "colony"

colony_dist <- prepData(raw_data, coordNames = c("Longitude","Latitude"),
centers = colony)

calculate "sea'" mean angle covariate

sea.angle <- NULL

for(id in unique(colony_dist$ID)) {
idat <- subset(colony_dist,ID==id)
nbSubObs <- length(which(colony_dist$ID==id))
max_dist <- as.numeric(idat[which.max(idat$colony.dist),c("x","y")])
max_angle <- momentuHMM:::distAngle(colony,colony,max_dist) [2]
sea.angle <- c(sea.angle, rep(max_angle,nbSubQbs))

}

raw_data$sea.angle <- sea.angle
Next we calculate the time since leaving colony covariate (“time”):

calculate time since left colony covariate (’time’)
time <- alnd <- NULL
for(id in unique(raw_data$ID)) {

idInd <- which(raw_data$ID==id)

aInd <- c(alnd,idInd[1])

nbSubObs <- length(idInd)

time <- c(time, (1:nbSub0bs)/nbSublbs)

}

raw_data$time <- time

To complete our data preparation, we convert the nearest fishing vessel data to the
centriods argument format and use prepData to calculate step lengths, turn angles,

and our “sea”, “boat”, and “colony” covariates:

66

get boat data into centroids argument format

boat_data <- list(boat=data.frame(Date = raw_data$Date,
x = raw_data$Boat_Longitude,
y = raw_data$Boat_Latitude))

format and merge all data and covariates for analysts
fulmar_data <- prepData(raw_data, coordNames = c("Longitude","Latitude"),
centers = colony,
centroids = boat_data,
covNames = "time",
angleCovs = "sea.angle")

momentuHMM doesn’t like data streams and covariates to have same name,
so create identical data column with different name
fulmar_data$d <- fulmar_data$boat.dist

standarize boat.dist covariate
fulmar_data$boat.dist <- scale(fulmar_data$boat.dist)

Note that we use the centers argument for the colony (because its location is
static) and the centroids argument for the nearest fishing vessel (because its location
is dynamic).

Now that we’ve formatted the data, we’re ready to specify the 6-state HMM. Using
10 min time steps, Pirotta et al. (2018) included three data streams in their model: step
length (“step”), turn angle (“angle”), and distance to nearest boat (“d”). These were

respectively modelled using Weibull, wrapped Cauchy, and log-normal distributions:

nbStates <- 6

stateNames <- c("seaARS", "seaTr",
"boatARS", "boatTr",
"colonyARS", "colonyTr")

dist <- list(step = "weibull",
angle = "wrpcauchy",
d = "lnorm")

Similar to the harbour seal example (section 3.7), Pirotta et al. (2018) used rela-
tional parameter constraints that can be specified in momentuHMM using pseudo-design

matrices:

67

spectfy data stream probability distribution parameter consiraints
stepDM <- matrix(c(1,0,0,0,

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-

_ P P, P, P2 OO OO O
O, O, OO OO OO Oo

-
-

-
-

-
-
-
-

-
-
-
-

-
-
-
-

O O O O OO O O
O O O OO+ O O -

-
-
-
-

0,0,1,1),2*nbStates,4,byrow=TRUE,
dimnames=1list (c(pasteO("shape_",1:nbStates),
pasteO("scale_",1:nbStates)),
c("shape:ARS","shape:Tr",
"scale: (Intercept)","scale:Tr")))

constrain scale parameters such that Tr > ARS
stepworkBounds <- matrix(c(-Inf,Inf,
—Inf,Inf,
—-Inf,Inf,
0,Inf) ,ncol(stepDM),2,byrow=TRUE,
dimnames=1list (colnames (stepDM),c("lower","upper")))

include trip-level effects on angle mean concentration parameter

nbTrips <- length(unique(fulmar_data$ID))

angleDM <- matrix(c("sea.angle",0,0,0,0,rep(0,2*nbTrips),
"sea.angle",0,0,0,0,rep(0,2*nbTrips),
0,"boat.angle",0,0,0,rep(0,2*nbTrips),
0,"boat.angle",0,0,0,rep(0,2*nbTrips),
0,0,"colony.angle",0,0,rep(0,2*nbTrips),
0,0,"colony.angle",0,0,rep(0,2*nbTrips),

0,0,0,1,0,paste0("ID",1:nbTrips) ,rep(0,nbTrips),
0,0,0,1,1,paste0("ID",1:nbTrips) ,paste0("ID",1:nbTrips),
0,0,0,1,0,rep(0,2*nbTrips),

0,0,0,1,1,rep(0,2*nbTrips),

0,0,0,1,0,rep(0,2*nbTrips),

0,0,0,1,1,rep(0,2*nbTrips)) ,2*nbStates,3+2+2*nbTrips, byrow=TRUE,

dimnames=1list (c(pasteO("mean_",1:nbStates),
pasteO("concentration_",1:nbStates)),
c("mean:sea","mean:boat","mean:colony",

68

"concentration: (Intercept)","concentration:Tr",
pasteO("concentration:ID",1:nbTrips,": (Intercept)"),
pasteO("concentration:ID",1:nbTrips,":Tr"))))

constrain concentration parameters such that Tr > ARS
angleworkBounds <- matrix(c(-Inf,Inf,
—-Inf,Inf,
—Inf,Inf,
—Inf,Inf,
0,Inf,
rep(c(-Inf,Inf) ,nbTrips),
rep(c(0,Inf) ,nbTrips)) ,ncol(angleDM),2,byrow=TRUE,
dimnames=1list (colnames (angleDM),c("lower", "upper")))

dDM <- matrix(c(l,

3

-
-

b b

-
-

3 b

-

_ O O, kP OO OO O O

-

b b

-
-

3 3

-

3 3

1,1
1,1
1,0
1,0
1,1
1,1
0,0,
0,0
0,0
0,0
0,0

-
-

> b

-
-

> b

-
-

b 3

-
-

= P, P, 20O 00O OO

3 3

-
-

0,0,1,1),2*xnbStates,4,byrow=TRUE,
dimnames=1list(c(pasteO("location_",1:nbStates),
pasteO("scale_",1:nbStates)),
c("location: (Intercept)","location:noboat",
"scale: (Intercept)","scale:noboat")))

constrain location and scale parameters such that sea and colony > boat
dworkBounds <- matrix(c(-Inf,Inf,
0,Inf,
—-Inf,Inf,
0,Inf) ,ncol(dDM),2,byrow=TRUE,
dimnames=1list (colnames(dDM),c("lower","upper")))

DM <- list(step = stepDM, angle = angleDM, d = dDM)

workBounds <- list(step = stepworkBounds,
angle = angleworkBounds,

69

d = dworkBounds)

To complete our model specification, we use the toState special function to model
transitions to the “boat” and “colony” states as a function of distance to nearest fishing
vessel (“boat.dist”) and time since leaving colony (“time”), respectively. Following
Pirotta et al. (2018), we will use the knownStates argument to fix the initial state to
“sea transit”. We will also use the fixPar argument to fix the initial state probabilities
(because we are assuming these are known) and, as in section 3.6, constrain the model
to a biased random walk by fixing the mean angle working scale parameters to a large

positive value:

formula <- ~ toState3(boat.dist) + toState4(boat.dist) +
toStateb5(time) + toStateb(time)

knownStates <- rep(NA,nrow(fulmar_data))
knownStates[aInd] <- 2

fixPar <- list(delta=c(100,rep(0,nbStates-2)))
fixPar$delta <- exp(c(0,fixPar$delta))/sum(exp(c(0,fixPar$delta)))

fixPar$angle <- c(rep(l.e+7, 3), rep(NA, 2+2*nbTrips))

Lastly, we used the betaCons argument to impose similar constraints as Pirotta et al.
(2018) for the transition probability parameters. We accomplish this by using betaCons
to set the transition probability working parameter intercept terms equal among the
three “ARS” states and the three “transit” states. We also use betaCons to constrain
the effects of ‘boat.dist” and ‘time’ to be identical for each of the two movement modes
(“ARS” and “transit”) within each of the three biased movement states (“sea”, “boat”,
and “colony”). betaCons must be a matrix of the same dimension as beta0 and be
composed of integers, where each beta working parameter is sequentially indexed in a
column-wise fashion. Equality constraints can then be incorporated by having param-

eters share the same index. In this example we have:

70

betaCons

##
##
##
##
#H#
##
#H#
##
##
##
##
##
##
##
##
##

(Intercept)
boat.dist
time

(Intercept)
boat.dist
time

(Intercept)
boat.dist
time

(Intercept)
boat.dist
time

1->21->31->41->51->62->12->32->42->5
1 4 1 4 1 16 16 22 16
2 5 5 11 14 17 5 5 26
3 6 9 12 12 18 21 24 12
2->63->13->23->43->53->64->14->24->3
22 4 1 1 4 1 16 22 16
29 32 35 38 41 44 47 50 38
12 33 36 39 42 42 48 51 54
4 >54 ->65->15->25->35->45->66->16 ->2
16 22 4 1 4 1 1 16 22
56 59 62 65 68 68 74 77 80
42 42 63 66 69 72 75 78 81
6 >36 ->46->5
16 22 16
68 68 89
84 87 75

Again, betaCons constrains any of the transition probability matrix working parameters

with the same index to be equal to one another. For example, all of the intercept terms
indexed by a ‘1’ (1 - 2,1 -4, 1 —-56,3 52,3 —>43—>6,5—2 5— 4,

and 5 — 6) are equal, and these terms correspond to the transitions from the “ARS”

movement mode (states 1, 3, and 5) to the “transit” movement mode (states 2, 4, and

6). Similarly, all of the intercept terms indexed by a ‘16’ are equal and correspond to

the transitions from the “transit” movement mode to the “ARS” movement mode. For

further details on the betaCons argument, see the £itHMM help file and the northern

fulmar example code in the “vignettes” source directory.

Now we are

ready to fit our 6-state HMM:

m2 <- fitHMM(fulmar_data, nbStates, dist,

Par0 = ParO$Par, betaO = ParO$betal,
formula formula,

estAngleMean = list(angle = TRUE),
circularAngleMean = list(angle = TRUE),
DM = DM, workBounds
fixPar = fixPar, knownStates = knownStates,
stateNames)

stateNames

workBounds, betaCons =

betaCons,

With decent starting values, this model required about 2 min to fit on a standard
desktop computer (macOS El Capitan, 2.8 GHz Intel Core i7, 16 GB RAM). For com-

71

parison, Pirotta et al. (2018) required about 18 hr to fit their Bayesian model using
MCMC (2.9 GHz Intel Core i7, 16 GB RAM).
We can compare the estimated activity budgets with those of Pirotta et al. (2018)

using the timeInStates function:

timeInStates (m2)

it seaARS sealTr boatARS boatTr colonyARS colonyTr
1 0.2582469 0.1687088 0.1705938 0.06503299 0.1677663 0.1696513

Pirotta et al. (2018) estimated 0.28 (“seaARS”), 0.20 (“seaTr”), 0.18 (“boatARS”), 0.06
(“boatTr”), 0.12 (“colonyARS”), and 0.16 (“colonyTr”). While these are very similar,
there a handful of state assignments that differ between the analyses. These differences
could be attributable to several factors, including: 1) the use of informative priors in the
Bayesian analysis of Pirotta et al. (2018); 2) our use of fixed trip-level effects on the “sea”
state turn angle concentration parameters; and 3) Pirotta et al. (2018) assumed the state
transition probability covariates (“boat.dist” and “time”) only affected the movement
direction states (“sea”, “boat”, “colony”), but in our momentuHMM implementation the
covariates can affect state transitions for both the movement direction (“sea”, “boat”,
“colony”) and the movement mode (“ARS”, “transit”).

We can also examine activity budgets by individual bird (which are indexed in the
raw data “birdID” column), where it is clear that the first 3 individuals tended to spend

a larger proportion of their foraging trips in the “boat” states:

timeInStates(m2, by = "birdID")

birdID seaARS sealr boatARS boatTr colonyARS colonyTr
1 1 0.35564854 0.117154812 0.22594142 0.11297071 0.09623431 0.09205021
2 2 0.14102564 0.134615385 0.28205128 0.10256410 0.25641026 0.08333333
3 3 0.08333333 0.269607843 0.35294118 0.06862745 0.04411765 0.18137255
4 4 0.49019608 0.196078431 0.00000000 0.04575163 0.05882353 0.20915033
5 5 0.61475410 0.008196721 0.00000000 0.00000000 0.30327869 0.07377049
6 6 0.00000000 0.235294118 0.05882353 0.02673797 0.32085561 0.35828877

Finally, we can create

function (Figure 12):

a plot similar

to Pirotta et al. (2018) using the plotSat

72

plotSat(m2, zoom = 7, shape = c(17,1,17,1,17,1), size = 2,
col = rep(c("#E69F00", "#56B4EQ", "#009E73"), each = 2),
stateNames = c("sea ARS", "sea Transit",
"boat ARS", "boat Transit",
"colony ARS", "colony Transit"),
projargs = newProj, ask = FALSE)

slate
4~ sea ARS

~=— sea Transit

lat

—%— boat ARS
boat Transit
colony ARS

caolony Transit

-4 -2 0
lon

Figure 12. Seven northern fulmar tracks, colored by the most likely state sequence.

3.9 Pilot whales

Here we demonstrate how to include individual heterogeneity in state-switching dynam-
ics via discrete-valued random effects by fitting the 4-state (“exploratory”, “foraging”,
“crowded”; “directed”) mixed HMM for long-finned pilot whales described in Isojunno
et al. (2017). The pilot whale data consist of 11 data streams collected from 15 indi-
viduals, and, as usual, we must first prepare the data for £itHMM using prepData. Let’s

summarize our prepared data using the summary function:

73

summary(pilotData, dataNames=names(pilotData) [-1])

#it
#it
#Ht
#
##
#it
#it
#it
#t
##
#it
#it
#it
#t
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
#
##
#it
#it
#it
#Ht
##
#it
#it
#it
#Ht
##
##
#i#t
#it
#it
##

HMM data for 15 individuals:

gm08_150c -- 156 observations
gm08_154d -- 142 observations
gm08_159a -- 192 observations
gm09_137b —-- 152 observations
gm09_138a -- 223 observations
gm09_156b -- 254 observations
gm10_000a -- 119 observations
gm10_143a -- 146 observations
gm10_152b -- 50 observations
gml10_157b —-- 130 observations
gm10_158d -- 148 observations
gm13_137a -- 144 observations
gm13_149a -- 88 observations
gml13_169a -- 190 observations
gml4_180a -- 180 observations
Data summaries:

dive.dur dive.depth
Min. : 0.14 Min. 0.
1st Qu.: 0.64 1st Qu.: 5.
Median : 0.81 Median : 7.
Mean :1.40 Mean : 26.
3rd Qu.: 1.41 3rd Qu.: 11.
Max . :13.75 Max. :617.
breath.headchange GR.size
Min. :-3.1259 Min. : 0
1st Qu.:-0.1909 1st Qu.: 6
Median : 0.0007 Median : 9
Mean :—-0.0041 Mean 111
3rd Qu.: 0.1890 3rd Qu.:13
Max . : 3.0542 Max. 179
NA’s 1261 NA’s 166

presurf postsurf
Min. :0.00 Min. :0.00
1st Qu.:0.00 1st Qu.:0.00
Median :1.00 Median :1.00

86
36
08
36

37

5

GR.speed?2
Min. :0.025
1st Qu.:0.838
Median :1.272
Mean :1.367
3rd Qu.:1.732
Max. :8.824
NA’s :892

GR.tight

Min. :0.00
1st Qu.:1.00
Median :1.00
Mean :0.82
3rd Qu.:1.00
Max . :1.00
NA’s 1128

74

dive.pitchvar?2

Min.
1st Qu

0
Median :0
:0.
0
0

Mean
3rd Qu
Max.

NA’s

dive.CS
Min. :
1st Qu.:
Median :
Mean
3rd Qu.:
Max.
NA’s

|—~|—~O|—kOO
O O OO O O

:0.
.042
.070

010

100

121
.673

1142

.pres

.0

:905

dive.SS
Min. :
1st Qu.:
Median :
Mean
3rd Qu.:
Max.
NA’s

_ =~ O, O O

.pres
.00
.00
.00
.56
.00
.00

:905

Mean :0.74 Mean :0.74
3rd Qu.:1.00 3rd Qu.:1.00
Max. :1.00 Max. :1.00
NA’s 115 NA’s :15

After specifying the data stream probability distributions and starting values for
the parameters (based on those reported by Isojunno et al. 2017), let’s first fit the null
model with no discrete-valued individual-level random effects on the state-switching

dynamics:

11 data streams

dist <- list(dive.dur = "weibull",
dive.depth = "gamma",
GR.speed2 = "gamma",
dive.pitchvar2 = "beta",

breath.headchange = "vm",
GR.size = "pois",
GR.tight = "bern",
dive.CS.pres = "bern",
dive.SS.pres = "bern",
presurf = "bern",
postsurf = "bern")

inittral values
Par0 <- list(dive.dur

c(1.9, 2.72, 1.64, 4.21,
1.3, 8.14, 1.53, 0.79),
dive.depth = c(10.23, 315.91, 10.74, 5.51,
4.93, 233.12, 6.32, 1.91),
GR.speed2 = c(1.15, 1.32, 1.36, 1.57,
0.66, 0.51, 0.77, 0.76),
dive.pitchvar2 = c(2.21, 2.88, 1.82, 3.18,
17.94, 6.04, 16.06, 55.36),
breath.headchange = c(3.07, 5.65, 2.64, 18.02),
GR.size = c(6, 7.39, 20.39, 9.52),
GR.tight = c(0.89, 0.66, 0.76, 0.81),
dive.CS.pres = c(0.76, 0.99, 0.41, 0.47),
dive.SS.pres = c(0.72, 0.98, 0.39, 0.41),
presurf = c(0.76, 0.99, 0.71, 0.71),
postsurf = c(0.81, 0.96, 0.72, 0.66))

betal0 <- matrix(c(-2.38, -3.86, -1.22,

5

0.21, -1.6, -0.47,
-3.56, -4.15, -2.29,
-1.17, -3.05, -2.54) ,nrow=1)

stateNames <- c("exploratory","foraging","crowded","directed")

Isojunno et al. (2017) found that model selection criteria favored models that assume

the initial distribution is the stationary distribution, so we’ll set stationary=TRUE:

fit model with single mixzture on TPM

fitmixl <- fitHMM(pilotData, nbStates=4, dist=dist,
Par0O=Par0O, betaO=betal,
stationary=TRUE,
stateNames=stateNames,
nlmPar=1ist (hessian=FALSE))

fitmix1

Value of the maximum log-likelihood: -18510.4

##

##

dive.dur parameters:

-

#it exploratory foraging crowded directed

shape 1.895687 2.719570 1.640040 4.2099390
scale 1.301088 8.142114 1.529318 0.7911992

Hit

dive.depth parameters:

-

Hit exploratory foraging crowded directed
mean 10.221159 315.7408 10.752753 5.507151
sd 4.920867 233.2394 6.325075 1.908221
#Hit

GR.speed2 parameters:
-

it exploratory foraging crowded directed
mean 1.1469499 1.3170625 1.36225 1.5706933
sd 0.6602282 0.5121064 0.77157 0.7628831
#it

dive.pitchvar2 parameters:

-

76

#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it

exploratory foraging crowded directed
shapel 2.205733 2.876755 1.823291 3.186465
shape2 17.948930 6.036487 16.067474 55.491769

breath.headchange parameters:

exploratory foraging crowded directed
mean 0.000000 0.000000 0.000000 ©0.00000
concentration 3.068759 5.653926 2.644184 18.04806

GR.size parameters:

exploratory foraging crowded directed
lambda 5.996763 7.392536 20.38838 9.522725

GR.tight parameters:

exploratory foraging crowded directed
prob 0.8885557 0.6629627 0.7609689 0.8072405

dive.CS.pres parameters:

exploratory foraging crowded directed
prob 0.7630851 0.9892991 0.4077435 0.4703789
dive.SS.pres parameters:

exploratory foraging <crowded directed
prob 0.7167555 0.9789121 0.3955766 0.4115657
presurf parameters:

exploratory foraging crowded directed
prob 0.76011 0.9924097 0.70787 0.7068425
postsurf parameters:

exploratory foraging crowded directed
prob 0.8081057 0.9619604 0.7164094 0.6568226

Regression coeffs for the transition probabilities:

7

H 1 ->2 1= & 1 ->4 2 > 1 2 =2 & 2 > 4
(Intercept) -2.3725 -3.871793 -1.230078 0.2005482 -1.623498 -0.4895434
#it 3 >1 3 > 2 3 >4 4 > 1 4 -> 2 4 -> 3
(Intercept) -3.543939 -4.120499 -2.272679 -1.163733 -3.035013 -2.539986
#it

Transition probability matrix:

-

#it exploratory foraging crowded directed
exploratory 0.71106663 0.06630503 0.01480512 0.20782321
foraging 0.40303342 0.32979502 0.06503813 0.20213342
crowded 0.02516983 0.01414110 0.87095004 0.08973904
directed 0.21699916 0.03340193 0.05479726 0.69480165
#i#

Initial distribution:

—————-

exploratory foraging crowded directed

0.36640726 0.05854032 0.22161529 0.35343713

(note that we’ve set the nlmPar option hessian=FALSE simply to speed up the compile
time for this vignette).

Now we’ll fit a model with K = 2 mixtures of discrete-valued individual-level random
effects by setting mixtures=2, but first we’ll set some starting values based on the null

model (using getPar0) and check our model specification (using checkPar0):

Par0_mix2 <- getParO(fitmix1l, mixtures=2)
ParO_mix2$beta$betall,] <- c(-2.26, -3.93, -0.58,
0.03, -2.25, -0.26,
-3.38, -4.79, -2.82,
-1.06, -3.3, -3.43)
ParO_mix2$beta$betal2,] <- c(-2.51, -3.32, -2.63,
0.03, -1.26, -0.12,
-96.8, -3.62, -1.75,
-1.76, -2.14, -1.38)
Par0_mix2$beta$pi <- c(0.73, 0.27)

Note that because mixtures is > 1, the starting values for beta0 must now be speci-
fied as a list with elements named beta (containing the starting values for the t.p.m.
parameters) and/or pi (containing the starting values for the mixture probability pa-

rameters).

78

check model spectfication

checkPar0O(pilotData, nbStates=4, dist=dist,
ParO=Par0_mix2$Par, betaO=ParO_mix2$beta,
stationary=TRUE,
mixtures=2,
stateNames=stateNames)

#i#

dive.dur parameters:

—————————-

#Ht exploratory foraging crowded directed

shape 1.895587 2.719570 1.640040 4.2099390
scale 1.301088 8.142114 1.529318 0.7911992
##

dive.depth parameters:

-

it exploratory foraging crowded directed
mean 10.221159 315.7408 10.752753 5.507151
sd 4.920867 233.2394 6.325075 1.908221
it

GR.speed2 parameters:
W

#Hit exploratory foraging crowded directed
mean 1.1469499 1.3170625 1.36225 1.5706933
sd 0.6602282 0.5121064 0.77157 0.7628831
#it

dive.pitchvar2 parameters:

-

#it exploratory foraging crowded directed

shapel 2.205733 2.876755 1.823291 3.186465

shape2 17.948930 6.036487 16.067474 55.491769

HH#

breath.headchange parameters:

-

#it exploratory foraging crowded directed
concentration 3.068759 5.653926 2.644184 18.04806
##

GR.size parameters:

-

#it exploratory foraging crowded directed

lambda 5.996763 7.392536 20.38838 9.522725

##

GR.tight parameters:

79

##
##
#it
#Ht
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
##
#it
#Ht
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht

exploratory foraging
prob 0.8885557 0.6629627

dive.CS.pres parameters:

exploratory foraging
prob 0.7630851 0.9892991

dive.SS.pres parameters:

exploratory foraging
prob 0.7167555 0.9789121

presurf parameters:

exploratory foraging
prob 0.76011 0.9924097

postsurf parameters:

exploratory foraging
prob 0.8081057 0.9619604

Mixture probabilities (pi):

mixl mix2
0.73 0.27

crowded
0.7609689

crowded
0.4077435

crowded
0.3955766

directed
0.8072405

directed
0.4703789

directed
0.4115657

crowded directed

0.70787 O.

crowded
0.7164094

7068425

directed
0.6568226

Regression coeffs for the transition probabilities (beta):

1->21->31->42->12->32->43->13->23->4

(Intercept) _mixl -2.26 -3
(Intercept) _mix2 -2.51 -3

(Intercept) _mixl -1.06 -3
(Intercept) _mix2 -1.76 -2

.93 -0.58
.32 -2.63
4 > 14 ->24->3
.30 -3.43
.14 -1.38

0.03
0.03

-2.25
-1.26

-0.26 -3.38
-0.12 -96.80

-4.79
-3.62

We can see above that by setting mixtures=2 we now have K = 2 sets of state

transition probability matrix parameters, each suffixed by a mixture label (_mix1 or

_mix2). We also now have K = 2 mixture probability parameters (), where the first

(71) corresponds to parameters suffixed with _mix1 and the second (m3) corresponds to

80

-2.82
-1.75

parameters suffixed with _mix2. Now let’s fit the K = 2 mixture model from Isojunno
et al. (2017):

fitmix2 <- fitHMM(pilotData, nbStates=4, dist=dist,
ParO=ParO_mix2$Par, betaO=ParO_mix2$beta,
stationary=TRUE,
mixtures=2,
stateNames=stateNames,
nlmPar=1ist (hessian=FALSE))

Now let’s fit a model with K = 3 mixtures by setting some starting values with the

help of getParO:

Par0_mix3 <- getParO(fitmix2, mixtures=3)
ParO_mix3$beta$betall,] <- c(-2.15, -4.31, -1.09,
0.28, -1.88, -0.3,
-3.5, -4.71, -3.11,
-0.68, -2.49, -2.6)
ParO_mix3$beta$betal2,] <- c(-2.5, -2.47, 0.63,
-17.22, -13.18, 0.59,
-3.92, -13.96, -2.27,
-1.25, -3.57, -3.75)
ParO_mix3$beta$betal[3,] <- c(-2.71, -3.48, -3.01,
-0.35, -1.12, -0.1,
-96.8, -2.98, -1.53,
-2.29, -2.07, -1.55)
Par0_mix3$beta$pi <- c(0.4, 0.4, 0.2)

and then calling fitHMM with mixtures=3:

fitmix3 <- fitHMM(pilotData, nbStates=4, dist=dist,
Par0=Par0O_mix3$Par, betaO=Par0O_mix3$beta,
stationary=TRUE,
mixtures=3,
stateNames=stateNames,
nlmPar=1ist (hessian=FALSE))

===
Fitting HMM with 4 states and 11 data streams

dive.dur ~ weibull(shape="1, scale="1)

dive.depth ~ gamma(mean="1, sd="1)

GR.speed2 ~ gamma(mean="1, sd="1)

dive.pitchvar2 ~ beta(shapel="1, shape2="1)
breath.headchange ~ vm(concentration="1)
GR.size ~ pois(lambda="1)

GR.tight = bern(prob="1)

dive.CS.pres ~ bern(prob="1)

dive.SS.pres ~ bern(prob="1)

presurf ~ bern(prob="1)

postsurf ~ bern(prob="1)

##

Transition probability matrixz formula: ~1
##

Initial distribution formula: stationary
##

Number of miztures: 3

Mizture probability formula: 1

##

DONE
fitmix3

Value of the maximum log-likelihood: -18445.14
##

HH

dive.dur parameters:

-

#it exploratory foraging crowded directed

shape 1.975978 2.813776 1.648341 3.8522580
scale 1.422555 8.246565 1.520763 0.7864722
#i#

dive.depth parameters:

-

#it exploratory foraging crowded directed
mean 10.977415 322.5798 10.638125 5.769243
sd 5.427491 228.1005 6.314569 2.013745

82

#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht

GR.speed2 parameters:

exploratory foraging crowded directed
mean 1.1385507 1.3201513 1.3861439 1.5065078
sd 0.6663534 0.5203517 0.7776481 0.7581291

dive.pitchvar2 parameters:

exploratory foraging crowded directed
shapel 2.15122 3.028038 1.764795 2.524053
shape2 17.62926 6.225084 15.844942 37.637633

breath.headchange parameters:

exploratory foraging crowded directed
mean 0.000000 0.000000 0.000000 ©0.00000
concentration 2.768482 5.696489 2.629183 17.09466

GR.size parameters:

exploratory foraging crowded directed
lambda 5.672187 7.460572 20.48158 9.345636

GR.tight parameters:

exploratory foraging crowded directed
prob 0.9098293 0.6533947 0.7686185 0.7903651

dive.CS.pres parameters:

exploratory foraging crowded directed
prob 0.7618571 0.9892938 0.3923022 0.5248959

dive.SS.pres parameters:

exploratory foraging crowded directed
prob 0.7364702 0.9804547 0.3799649 0.4544787

presurf parameters:

exploratory foraging crowded directed

83

#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht

prob

postsurf parameters:

exploratory foraging
0.8213494 0.9624941 0.7156723 0.6705817

prob

0.748499 0.9922603 0.7107198 0.7227432

crowded directed

Regression coeffs for the transition probabilities:

(Intercept) _mix1
(Intercept) _mix2
(Intercept) _mix3

(Intercept) _mix1
(Intercept) _mix2
(Intercept) _mix3

(Intercept) _mix1
(Intercept) _mix2
(Intercept) _mix3

1 ->2 i1 => 3 1 >4 2 > 1
.152085 -4.306731 -1.0867497 0.2791947 -1
.498738 -2.469649 0.6277231 -17.2200002 -13.
.714484 -3.475361 -3.0076135 -0.3548059 -1.

2 > 4 3 >1 3 > 2 3 >4
.29671906 -3.501065 -4.714406 -3.111360 -0.
.58694161 -3.926036 -13.960064 -2.270529 -1
.09724842 -96.800000 -2.975692 -1.531841 -2.
4 -> 2 4 -> 3

.488782 -2.599644
.567966 -3.753564
.073131 -1.549459

Mixture probabilities:

mix1

mix?2

mix3

0.4018629 0.3980198 0.2001172

Transition probability matrix:

exploratory_mixl
foraging mix1
crowded_mix1
directed_mix1
exploratory_mix2
foraging mix2
crowded_mix2
directed_mix2
exploratory_mix3
foraging mix3
crowded_mix3
directed_mix3

e

xploratory

.816492e-01
.108636e-01
.783618e-02
.041933e-01
.289318e-01
.187207e-08
.756192e-02
.136992e-01
.721443e-01
.390740e-01
.202219e-43
.035018e-02

QO P> WO NN WN P> 0w

foraging

.923599e-02
.107742e-01
.272980e-03
.990848e-02
.703446e-02
.573367e-01
.706355e-07
.109457e-02
.777009e-02
.408966e-01
.025737e-02
.739041e-02

84

P N, N~ 00O NP OB oo

crowded

.186948e-03
.737849e-02
.227895e-01
.467117e-02
.783241e-02
.746335e-07
.904877e-01
.752130e-02
.699344e-02
.107235e-01
.891729e-01
.475339e-01

O O O O O OO OO o o o

directed

.22992783
.23098376
.04110136
.60122702
.61620128
.64266266
.09194960
. 74768494
.04309217
.30930588
.17056974
.69472552

2 > 3
.880898
180019
124543
4 > 1
6813091
.2524123
2900315

HH#

Initial distribution:

-

#it exploratory foraging crowded directed
mixl 0.3870062 0.06849400 0.2553623 0.2891375
mix2 0.2012576 0.02880544 0.1502894 0.6196476
mix3 0.3234760 0.08566424 0.2940851 0.2967747

Based on our fitted model, we can calculate the probability of each individual being in
a particular mixture using the mixtureProbs function and the t.p.m. for each mixture

using the getTrProbs function:

round (mixtureProbs (fitmix3) ,4)

H## mix1 mix2 mix3
ID:gm08_150c 0.0000 1.0000 0e+00
ID:gm08_154d 0.0000 1.0000 0e+00
ID:gm08_159a 0.0000 1.0000 0e+00
ID:gm09_137b 1.0000 0.0000 0e+00
ID:gm09_138a 0.0000 0.0000 1e+00
ID:gm09_156b 1.0000 0.0000 0e+00
ID:gm10_000a 0.0000 0.0000 1e+00
ID:gm10_143a 1.0000 0.0000 0e+00
ID:gm10_152b 0.0276 0.9724 0e+00
ID:gm10_157b 0.0000 0.0000 1e+00
ID:gm10_158d 0.0006 0.9994 0e+00
ID:gm13_137a 1.0000 0.0000 0e+00
ID:gm13_149a 1.0000 0.0000 0e+00
ID:gm13_169a 0.9991 0.0000 9e-04
ID:gml14_180a 0.0000 1.0000 0e+00

calculate state transition probabilities for each mizture
trProbs3 <- getTrProbs(fitmix3, covIndex=1)

mixzture 1
round (trProbs3[[1]1]1[,,1],2)

#it exploratory foraging crowded directed
exploratory 0.68 0.08 0.01 0.23
foraging 0.41 0.31 0.05 0.23
crowded 0.03 0.01 0.92 0.04
directed 0.30 0.05 0.04 0.60

85

mixzture 2
round (trProbs3[[2]]1[,,1]1,2)

#it exploratory foraging crowded directed
exploratory 0.33 0.03 0.03 0.62
foraging 0.00 0.36 0.00 0.64
crowded 0.02 0.00 0.89 0.09
directed 0.21 0.02 0.02 0.75

mixture 3
round (trProbs3[[3]]1[,,1],2)

#it exploratory foraging crowded directed
exploratory 0.87 0.06 0.03 0.04
foraging 0.24 0.34 0.11 0.31
crowded 0.00 0.04 0.79 0.17
directed 0.07 0.09 0.15 0.69

And let’s do the same with K = 4:

fitmix4 <- fitHMM(pilotData, nbStates=4, dist=dist,
Par0=ParO_mix4$Par, betaO=ParO_mix4$beta,
stationary=TRUE,
mixtures=4,
stateNames=stateNames,
nlmPar=1ist (hessian=FALSE))

For comparison to the null and random effects models, let’s also fit a model including

individual-level fixed effects:

ParO_fix <- getParO(fitmix4,formula=~0+ID,mixtures=1)

fitfix <- fitHMM(pilotData, nbStates=4, dist=dist,
formula = "0+ID, stationary=TRUE,
ParO=ParO_fix$Par, betaO=ParO_fix$beta,
stateNames=stateNames,
nlmPar=1ist (hessian=FALSE))

Based on AIC, we find overwhelming support for the discrete-valued individual-level

random effects model with K = 3 mixtures:

86

AIC(fitmix1l,fitmix2,fitmix3,fitmix4,fitfix)

#i# Model AIC
1 fitmix3 37086.29
2 fitmix4 37098.24
3 fitfix 37124.75
4 fitmix2 37132.58
5 fitmixl 37164.80

AICweights(fitmix1l,fitmix2,fitmix3,fitmix4,fitfix)

#it Model weight
1 fitmix3 9.974679e-01
2 fitmix4 2.532142e-03
3 fitfix 4.425936e-09
4 fitmix2 8.825442e-11
5 fitmixl 8.904782e-18

3.10 Hierarchical HMMs

As we already noted in section 2.5, HMMs with hierarchical structures allow for data
streams and/or state transitions to occur at multiple regular time scales. Leos-Barajas
et al. (2017) provide two examples where state transitions are allowed to occur at both
“coarse” and “fine” time scales, while Adam et al. (2019) provide two examples where
both data streams and state transitions occur at both “coarse” and “fine” time scales.
Here we demonstrate how all four of these examples can be fitted in momentuHMM.
The key to fitting (and simulating) hierarchical hidden Markov models (HHMMs) in
momentuHMM is specifying certain fitHMM (and simHierData) arguments hierarchically
using the data.tree package (Glur 2018). For HHMMs, instead of simply specifying
the number of states (nbStates), distributions (dist), and a single t.p.m. (formula) or
initial distribution (formulaDelta) formula, the hierStates argument specifies the hi-
erarchical nature of the states, the hierDist argument specifies the hierarchical nature
of the data streams, and the hierFormula or hierFormulaDelta arguments specify a
t.p.m. or initial distribution formula for each level of the hierarchy. All are specified as
Node objects from the data.tree package. In the examples below, we focus on how to
implement these HHMMs in momentuHMM and refer readers to Leos-Barajas et al. (2017)
and Adam et al. (2019) for specific details about the data sets and the particular models

87

being fitted.

3.10.1 Harbor porpoise

In order to replicate the harbor porpoise HHMM example from Leos-Barajas et al.
(2017) in momentuHMM, we must first use prepData to prepare our hierarchical data.
This requires an additional field named level to be included in data that identifies
the level of the hierarchy for each observation. These levels must be ordered from
the coarsest to finest time scales, and must also indicate the initial observations at
each level of the hierarchy (except for the coarsest level). For example, if there are
M = 3 time scales in the hierarchy (e.g. “coarse”, “medium”, and “fine” scales),
then the level field must include 2M — 1 = 5 ordered factors: “1” (corresponding to
coarse-scale observations), “2i” (initial medium-scale observations), “2” (medium-scale
observations), “31” (initial fine-scale observations), and “3” (fine-scale observations).
Regardless of the number of levels in the hierarchy, note that for each individual the
level field for the first observation must always be “1”, the second obervation must
always be “2i”, the third observation must always be “2”, and the last observation
must always be from level M. Also note that every “1” observation must be followed
by “2i”, every “2i” must be followed by one or more “2”, every “3i” must be preceded
by “2”7 and followed by one or more “3”, and, after the first observation, every “1”
must be preceded by an observation from level M.

In the harbor porpoise example from Leos-Barajas et al. (2017), there are only
M = 2 levels in the hierarchy so the 2M — 1 = 3 ordered level factors are “1” (coarse
level), “2i” (initial fine level), and “2” (fine level). After downloading the data, we can

manually add the level field to our data frame as follows:

load(url(pasteO("https://static-content.springer.com/esm/",
"art’%3A10.1007%2Fs13253-017-0282-9/Medialbjects/",
"13253_2017_282_MOESM2_ESM.rdata")))

data <- lapply(data,function(x)
{x$date_time <- as.POSIXct(x$date_time,tz="UTC"); x})

porpoiseData <- NULL
for(i in 1:length(data)){

88

coarselnd <- data.frame(date_time=as.P0SIXct(format(datal[[i]]$date_time[1],
format="%Y-%m-%d %H:%M"),
tz="UTC"),
level=c("1","2i"),
dive_duration=NA,
maximum_depth=NA,
dive_wiggliness=NA)
tmp <- rbind(coarseInd,data.frame(datal[[i]],level="2"))
porpoiseData <- rbind(porpoiseData,tmp)

}

head (porpoiseData)

#it date_time level dive_duration maximum_depth dive_wiggliness
1 2015-11-02 14:43:00 1 NA NA NA
2 2015-11-02 14:43:00 2i NA NA NA
3 2015-11-02 14:43:11 2 28 8.19 5.50
4 2015-11-02 14:44:08 2 18 8.19 3.00
5 2015-11-02 14:44:35 2 14 6.19 5.25
6 2015-11-02 14:44:58 2 17 7.44 2.50

By including the level field, we will be able to specify when the coarse-scale state
switching can occur (i.e., a coarse scale t.p.m. will be used when level=1), the start of
each fine-scale interval (i.e. a fine-scale initial distribution will be used when level=2i),
and when the fine-scale state switching can occur (i.e. a fine scale t.p.m. will be used
when level=2).

Now that we have labeled each observation in our data with a level factor, we can

prepare our HHMM data using prepData:

prepare hierarchical data
porpoiseData <- prepData(data = porpoiseData,
coordNames = NULL,
hierLevels = c("1", "2i", "2"))

summarize prepared data
summary (porpoiseData, dataNames = names(porpoiseData) [-1])

Hierarchical HMM data for 1 individual:
it

Animall -- 8135 observations

it

89

it
Data summaries:

#i#

#it date_time level dive_duration maximum_depth
Min. :2015-11-02 14:43:00 1 : 275 Min. 1 Min. 2.2
1st Qu.:2015-11-06 02:01:24 2i: 275 1st Qu.: 15 1st Qu.: 7.2
Median :2015-11-08 14:14:28 2 :7585 Median : 43 Median : 16.2
Mean :2015-11-08 11:59:48 Mean : 58 Mean 1 22.2
3rd Qu.:2015-11-11 04:43:07 3rd Qu.: 90 3rd Qu.: 30.2
Max. :2015-11-14 00:58:50 Max . 1248 Max . :169.4
#i# NA’s :550 NA’s :550
dive_wiggliness

Min. : 0.0

1st Qu.: 3.8

Median : 15.0

Mean : 23.4

3rd Qu.: 36.0

Max. s 258 . B

NA’s 1562

For HHMMs, we must use the hierLevels argument to identify the ordered factor levels
that prepData can expect to find in the level field. When hierLevels is specified,
prepData assumes the data are intended for a HHMM analysis and assigns the classes
hierarchical and momentuHierHMMData to the returned object (and corresponding
methods for these classes will hereafter be used when calling functions such as fitHMM).
Because prepData assumes the level field is a factor with levels ordered according to
hierLevels, an error is returned if the order of hierLevels is not consistent with the

level field (or vice versa):

prepData(data = porpoiseData,
coordNames = NULL,
hierLevels = c("1", "2", "2i"))

Error in prepData.hierarchical(data = porpoiseData, coordNames = NULL,
hierLevels must be ordered factors of the form:
’1’, 21, ’2°, ..., ’Mi’, ’M’ where M is the number of levels in

the hierarchy

Note that because there are no location data in this example, we have set coordNames

90

to NULL. Also note that in this example there are no data streams observed at the coarse
time scale (level=1), but these could be easily included (if available; see sections 3.10.3
and 3.10.4). By definition there are no data streams observed at the initial fine scale
(level=21i), but covariates (if available) could be included here for modeling the fine-
scale initial distributions or state transition probabilities.

Now that our hierarchical data are prepared, we are ready to specify the HHMM.
We will start with the hierarchical nature of the states, which is specified using the

hierStates argument in fitHMM:

library(data.tree)

define hierarchical HMM

states 1-3 = coarse state 1 (nonforaging)

states 4-6 = coarse state 2 (foraging)
hierStates <- data.tree::Node$new("harbor porpoise HHMM states")
hierStates$AddChild (name="nonforaging")
hierStates$nonforaging$AddChild(name="nf1", state=1)
hierStates$nonforaging$AddChild(name="nf2", state=2)
hierStates$nonforaging$AddChild (name="nf3", state=3)
hierStates$AddChild (name="foraging")
hierStates$foraging$AddChild (name="£f1", state=4)
hierStates$foraging$AddChild (name="£2", state=5)
hierStates$foraging$AddChild (name="£3", state=6)

plot(hierStates)

Here we can see that the coarse-scale ‘nonforaging” and “foraging” states are both
composed of three fine-scale states (Figure 13). Note that the Node attribute state
is required in hierStates and determines the index for each state in our HHMM.

Alternatively, we could specify the exact same Node as:

hierStates <- data.tree::as.Node(list(name="harbor porpoise HHMM states",
nonforaging=list(nfl=1list(state=1),
nf2=1ist(state=2),
nf3=list(state=3)),
foraging=list(f1=1list(state=4),
f2=1ist(state=b),
f3=list (state=6))))

91

@ porpoise HHMM@

Figure 13. Hierarchcial state structure in the harbor porpoise example.

The name for any of the “children” added to a node are user-specified and are akin
to the stateNames argument in fitHMM for a standard HMM. While these names are
arbitrary, the name and state attributes must be unique.

Next we will specify the hierarchical nature of the data streams for the hierDist

argument in f£itHMM:

hierDist <- data.tree::Node$new("harbor porpoise HHMM dist")
hierDist$AddChild (name="1evell")

hierDist$AddChild (name="1evel2")

hierDist$level2$AddChild (name="dive_duration", dist="gamma")
hierDist$level2$AddChild (name="maximum_depth", dist="gamma")
hierDist$level2$AddChild (name="dive_wiggliness", dist="gamma")

plot(hierDist)

The Node attribute dist is required in hierDist and specifies the probability dis-

tribution for each data stream at each level of the hierarchy (Figure 14. In this case,

92

harbor porpoise HH@

S

dive_wiggliness

Figure 14. Hierarchcial data stream structure in the harbor porpoise example.

levell (corresponding to coarse-scale observations with level=1) has no data streams,
and each of the data streams for level2 (corresponding to fine-scale observations with
level=2) is assigned a gamma distribution. The first level of the hierDist Node must
include a child for each level of the hierarchy, and the name for each child must be of
the form paste0("level",i) for i€ 1,2,..., M, where M is the number of levels in
the hierarchy; in this case, M = 2 and the names for each of the children at the first
level of the hierDist Node must be levell and level2. The children of these levels
must be “leaves” (i.e. they have no children), where the name attribute indicates the
data stream and the dist attribute indicates the probability distribution.
Leos-Barajas et al. (2017) did not include any covariates on the t.p.m. or initial
distribution for either level of the hierarchy, but, for demonstration purposes, here is
how we would use the hierFormula and hierFormulaDelta arguments to specify the

t.p.m. and initial distribution formula for each level of the hierarchy in fitHMM:

hierFormula <- data.tree::Node$new("harbor porpoise HHMM formula")
hierFormula$AddChild (name="1levell", formula="1)
hierFormula$AddChild (name="1level2", formula="~1)

93

define hierarchical initial distribution formula(s)

hierFormulaDelta <- data.tree::Node$new("harbor porpoise HHMM formulaDelta")
hierFormulaDelta$AddChild(name="1evell", formulaDelta="1)
hierFormulaDelta$AddChild (name="1evel2", formulaDelta="1)

The Node attribute formula (or formulaDelta) is required in hierFormula (or hierFormulaDelta)
and specifies the t.p.m. (or initial distribution) formula for each level of the hierarchy.
Each child in hierFormula or hierFormulaDelta must be a leaf with a name of the
form pasteO("level",i) for i€ 1,2,..., M, where M is the number of levels in the
hierarchy.
Leos-Barajas et al. (2017) assume the data stream probability distributions do not
depend on the coarse-scale state, so we can constrain the state-dependent parameters
for states 1 (“nfl”) and 4 (“f17), states 2 (“nf2”) and 5 (“f2”), and states 3 (“nf3”) and
6 (“f3”) to be equal using the DM argument:

defining starting values

dd.mu0 = rep(c(5,30,100) ,hierStates$count)
dd.sigma0O = rep(c(5,15,40) ,hierStates$count)
md.mu0 = rep(c(5,15,40) ,hierStates$count)
md.sigma0 = rep(c(2,5,20) ,hierStates$count)
dw.muO = rep(c(2,10,40) ,hierStates$count)
dw.sigmaO = rep(c(2,10,20) ,hierStates$count)
dw.piO = rep(c(0.2,0.01,0.01) ,hierStates$count)

Par0 <- list(dive_duration=c(dd.mu0,dd.sigma0),
maximum_depth=c(md.mu0,md.sigma0),
dive_wiggliness=c(dw.mu0,dw.sigma0,dw.pi0))

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain fine-scale data stream distributions to be same
dw_DM <- matrix(cbind(kronecker(c(1,1,0,0,0,0),diag(3)),
kronecker(c(0,0,1,1,0,0),diag(3)),
kronecker(c(0,0,0,0,1,1),diag(3))),
nrow=nbStates*3,
ncol=9,
dimnames=1list (c(pasteO("mean_",1:nbStates),
pasteO("sd_",1:nbStates),
pasteO("zeromass_",1:nbStates)),
pasteO(rep(c("mean","sd","zeromass") ,each=3),

94

c("_14: (Intercept)",
"_25:(Intercept)",
"_36: (Intercept)"))))

DM <- list(dive_duration=dw_DM[1: (2*nbStates),1:6],
maximum_depth=dw_DM[1: (2*nbStates),1:6],
dive_wiggliness=dw_DM)

get wnitial parameter wvalues for data stream probability distributions
Par <- getParDM(porpoiseData,hierStates=hierStates,hierDist=hierDist,
Par=Par0,DM=DM)

The (optional) last step for fitting this HHMM is specifying starting values for the
t.p.m. and initial distribution parameters for each level of the hierarchy. In this case,
we set them to “nudge” coarse state 1 (i.e., fine-scale states 1 — 3) to “nonforaging”

and coarse state 2 (i.e., fine-scale states 4 — 6) to “foraging”:

initial values (’beta’) for t.p.m. at each level of hierarchy

hierBeta <- data.tree::Node$new("harbor porpoise beta")

hierBeta$AddChild (name="1levell" ,beta=matrix(c(-1, -1),1))

hierBeta$AddChild (name="1evel2")
hierBeta$level2$AddChild (name="nonforaging" ,beta=matrix(c(0,-1,1,0,1,1),1))
hierBeta$level2$AddChild (name="foraging",beta=matrix(c(-1,1,1,2,0,3),1))

initial values (’delta’) for initial distribution at each level of hierarchy
hierDelta <- data.tree::Node$new("harbor porpoise delta")
hierDelta$AddChild(name="1evell",delta=matrix(0,1))

hierDelta$AddChild (name="1level2")

hierDelta$level2$AddChild (name="nonforaging",delta=matrix(c(30, 30),1))
hierDelta$level2$AddChild (name="foraging",delta=matrix(c(-6, 2),1))

The Node attribute beta (or delta) is required in hierBeta (or hierDelta) and spec-
ifies the starting values for the t.p.m. (or initial distribution) at each level of the
hierarchy. For each level of the hierarchy, these values are specified just as in beta0
(or delta0) for a standard HMM fitted with fitHMM. However, for HHMMs the start-
ing values in hierDelta must always be provided as a matrix on the working scale
(even if no covariates are included in hierFormulaDelta). Any additional arguments
pertaining to t.p.m. or initial distribution parameters (such as workBounds$beta,

betaCons, fixPar$beta, workBounds$delta, deltaCons, and fixPar$delta) must

95

also be specified as data.tree Nodes (with Node attributes workBounds, betaCons,
fixPar, workBounds, deltaCons, and fixPar, respectively).
Before fitting the HHMM, let’s first check that everything is in order using the

checkPar0 function:

check htierarchical model spectification and parameters

checkPar0(porpoiseData,hierStates=hierStates,hierDist=hierDist,ParO=Par,
hierFormula=hierFormula,hierFormulaDelta=hierFormulaDelta,
DM=DM,hierBeta=hierBeta,hierDelta=hierDelta)

##

Regression coeffs for dive_duration parameters:

-

mean_14: (Intercept) mean_25: (Intercept) mean_36: (Intercept)
[1,] 1.609438 3.401197 4.60517
sd_14: (Intercept) sd_25: (Intercept) sd_36:(Intercept)

[1,] 1.609438 2.70805 3.688879

#it

Regression coeffs for maximum_depth parameters:

-——7"——"———

mean_14: (Intercept) mean_25: (Intercept) mean_36: (Intercept)
[1,] 1.609438 2.70805 3.688879
#H sd_14: (Intercept) sd_25:(Intercept) sd_36:(Intercept)

[1,] 0.6931472 1.609438 2.995732

##

Regression coeffs for dive_wiggliness parameters:

-

mean_14: (Intercept) mean_25: (Intercept) mean_36: (Intercept)
[1,] 0.6931472 2.302585 3.688879
sd_14: (Intercept) sd_25: (Intercept) sd_36:(Intercept)

[1,] 0.6931472 2.302585 2.995732

zeromass_14: (Intercept) zeromass_25: (Intercept) zeromass_36:(Intercept)
[1,] -1.386294 -4.59512 -4.59512
#it

- ————

Regression coeffs for the transition probabilities (beta):
-

B Commoeoeoosossaooeosomaos LeWElil commomoocomcoooocooooes
H## 1 >44 > 1

I((level == "1") * 1) =il =il

#t

- 1EVEI2 sc——=cscscosesososososs

#Ht
##
##
#it
#Ht
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
##
#it
#Hit
#Ht

Note that for HHMMs, the reference states for the t.p.m. are determined by the lowest
index for each state at the coarsest level in the hierarchy; in this case, the reference states
are state 1 for “nonforaging” and state 4 for “foraging”. This differs from standard
HMMs fitted with fitHMM (where the reference states can be user-specified with the

1

3

1->21->32->22->33->23->3
I((level == "2") * 1) 0 -1 1 0 1

4 ->54->65->55->66->56->6
I((level == "2") * 1) =il 1 1 2 0
Regression coeffs for the initial distribution (delta)

———————————————————————— levell -
state 4
(Intercept) 0
———————————————————————— level2 --————-————----"—--""""-"-——-
state 2 state 3
I((level == "2i") * 1) 30 30
state 5 state 6
I((level == "2i") % 1) -6 2

betaRef argument).

Since everything looks good, we’re now ready to fit our HHMM:

fit hierarchical HMM
hhmm <- fitHMM(data=porpoiseData,hierStates=hierStates,hierDist=hierDist,
hierFormula=hierFormula,hierFormulaDelta=hierFormulaDelta,

Fitting hierarchical HMM with 6 states and 3 data streams

ParO=Par,hierBeta=hierBeta,hierDelta=hierDelta,

DM=DM,nlmPar=1ist (hessian=FALSE))

dive_duration ~ gamma(mean: custom, sd: custom)

mazimum_depth ~ gamma(mean: custom, sd: custom)

dive_wiggliness ~ gamma(mean: custom, sd: custom, zeromass: custom)
##

Transition probadbility matriz formula: ~0 + I((level == "1") % 1) +
I((level == "2¢") * 1) + I((level == "2") * 1)

##

Initial distridbution formula: 1

##

DONE

Before examining the output for our fitted HHMM, it’s worth noting here that when
data is a momentuHierHMMData object, fitHMM “shoehorns” the HHMM into a standard

HMM by constraining the t.p.m. and initial distribution according to the hierarchical

structure defined by hierStates. This is why the printed t.p.m. formula above may

look a little strange at first. The initial distribution formula printed above pertains

only to the initial distribution at the coarsest level of the hierarchy, and the initial

distributions for all other levels are imbedded in the t.p.m. Let’s look a little deeper:

hhmm$conditions$fixPar$beta

##
##
#it
#Ht
#Ht
##
##
#it
#it
#Ht
##
##
##
#it
#Ht
#Ht

I((level
I((1level
I((1level

I((level
I((level
I((Qlevel

I((level
I((level
I((level

I((level
I((1level
I((level

1->21->31->41->51->62->22->32->4

"1") * 1) -1le+10
"2i") * 1) NA
"2") *x 1) NA

2 >5
"1") *x 1) -1le+10
"2i") x 1) -1le+10
"2") x 1) -1le+10

4 -> 2
"1") x 1) -1le+10
"2i") x 1) -1e+10
"2") x 1) -1le+10

5 ->6
"1") x 1) -1le+10
"2i") x 1) -1le+10
"2") x 1) NA

-1e+10
NA -1e+10
NA -1e+10
2 ->63->2
-1le+10 -1e+10
-1e+10 -1e+10

-1le+10 NA
4 >34 ->5
-1le+10 -1e+10
-1e+10 NA
-1e+10 NA
6 >16 > 2

NA -1e+10

-1le+10 -1e+10
-1le+10 -1e+10

98

NA -1e+10
-1e+10
-1e+10
3->33->43->5
-1e+10
-1e+10

4 -> 6 5
-1le+10

6 > 36
-1le+10
-1le+10
-1le+10 NA NA

-le+10 -1e+10
-1le+10 -1e+10
-1e+10 NA

NA -1e+10
-1le+10 -1e+10
NA -1e+10 -1e+10
-> 15 ->2

NA -1e+10
NA -1e+10 -1e+10
NA -1e+10 -1e+10
->56 ->6
-1le+10 -1e+10
-1le+10 -1e+10

-1e+10

NA

-1le+10 -1e+10
NA -1e+10
3->64->1

-1e+10

NA

-1le+10 -1e+10
-le+10 -1e+10
5->35->5
-1le+10 -1e+10
-1le+10 -1e+10

-le+10

NA

hhmm$conditions$betaCons

##
#it
#it
#Ht
##
##
##
#it
#Ht
#
##
##
#it
#Ht
#t
##

I((1level
I((1level
I((level

I((level
I((Qlevel
I((1level

I((level
I((level
I((level

I((1level
I((level
I((level

") 1)
"2i") * 1)
"2") * 1)
2 ->
") ok 1)
"2i") * 1)
"2m) % 1)
4 ->
) x 1)
"2i") *x 1)
"2M) % 1)
5 >
" k1)
"2i") *x 1)
") % 1)

hhmm$conditions$fixPar$delta

#it

(Intercept)

-le+10 -1e+10

hhmm$conditions$deltaCons

#t

(Intercept)

1 1

R P, OO, PPN, PR PO RN

75

1 ->
2 >
4 ->
6 ->

N

R B, B, R, WO, P, 0000 01, W

S
)

A

3

1 >
3 >
4 ->
6 ->

-le+

= = =N

state 2 state 3 state 4 state 5

10

1

1 >5
1

1

1

g => 8
1

1

36

4 -> 6
1

59

60

6 > 3
1

1

1
state 6
-1e+10

state 2 state 3 state 4 state 5 state 6

1

1 ->
3 >
B =2
6 ->

2 >
3 >
5 =>
6 —>

2 2 >
1

1

18

B 8§ ==
1

1

1

25 >
1

1

1

6

1

1
90

We can see that even though we did not explicitly specify fixPar$beta, betaCons,

fixPar$delta, or deltaCons, the working parameters for the t.p.m. and initial dis-

tribution for each level of the hierarchy are constrained accordingly by making certain

state transition and initial distribution probabilities equal and/or effectively zero. For

example, these constraints do not allow fine-scale state switches between “nonforaging”

(states 1 — 3) and “foraging” (states 4 — 6) when level=2. Similar to how the t.p.m.

reference states are defined, higher-level (i.e. “parent”) states are indexed based on the

lowest state index of their “children”. For example, “nonforaging” is indexed by state

1 and “foraging” is indexed by state 4, and only transitions to states 1 or 4 are permit-

ted when level=1. Likewise, because delta corresponds to the initial distribution at

the coarsest-scale, the initial distribution probabilities are effectively zero for all states

99

e e)

2 >
4 ->
5 >

except states 1 and 4.

Let’s now examine our fitted HHMM:

hhmm

Value of the maximum log-likelihood: -88242.08

#i#

#i#

dive_duration parameters:

-——————————-

nfl nf2 nf3 f1 f2 £3

mean 5.637657 32.18055 106.82953 5.637657 32.18055 106.82953

sd 4.372862 15.13963 38.41243 4.372862 15.13963 38.41243

Hit

maximum_depth parameters:

-————————————-

HH nfl nf2 nf3 f1 £2 £3

mean 3.740062 13.193110 39.61716 3.740062 13.193110 39.61716

sd 1.426280 5.288814 18.11188 1.426280 5.288814 18.11188

it

dive_wiggliness parameters:

-

nfl nf2 nf3 f1 £2 £3
mean 1.456622 11.297335129 4.582793e+01 1.456622 11.297335129 4.582793e+01
sd 1.205201 7.683430511 2.437341e+01 1.205201 7.683430511 2.437341e+01
zeromass 0.308981 0.007867713 2.882418e-04 0.308981 0.007867713 2.882418e-04
#it

#i#t

-

Regression coeffs for the transition probabilities:

--—-——————— =

--——————————- levell -

HH 1 >4 4 > 1

I((level == "1") x 1) -1.298904 -1.285288

Hit

- level2 -——————""""——————————-

#it 1->2 1->3 2 -> 2 2 >3 3 ->2

I((level == "2") % 1) 0.0746781 -1.01479 0.9090458 -0.4243101 0.6198212

#H# 3 >3

I((level == "2") x 1) 0.7822922

it

#it 4 > 5 4 > 6 5->5 b5->6 6->5 6->6
I((level == "2") % 1) -0.5796838 0.7135957 0.7069382 1.621067 0.425573 2.701078

100

#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht

———————————— levell -

nonforaging foraging

nonforaging
foraging

nfl
nfl 0.4098334
nf2 0.2417693
nf3 0.1982131

f1
£f1 0.27767031
£2 0.12366660
£3 0.05738472

0.7856504 0.2143496
0.2166514 0.7833486

———————————— level2 -
nf2 nf3

0.4416108 0.1485558

0.6000601 0.1581706

0.3683981 0.4333888

£2 3
0.15551631 0.5668134

0.25076781 0.6255656
0.08782542 0.8547899

state 4

(Intercept) -6.686899

—————— level2 --—--------—-—-—mmm-
state 2 state 3

I((level == "2i") * 1) 30.34133 29.65662

state 5 state 6

I((level == "2i") * 1) -6.011428 1.716169

Initial distribution:

101

levell --—-—--------—-
Hit nonforaging foraging

ID:Animall 0.9987544 0.001245591

##

W level2 - —
#i#t nfl nf?2 nf3

nonforaging 4.42191e-14 0.6647896 0.3352104

##

f1 f2 f3

foraging 0.1523085 0.0003732449 0.8473183

#H#

-

These estimates are nearly identical to those reported by Leos-Barajas et al. (2017). The
very slight differences are attributable to Leos-Barajas et al. (2017) assuming that the
initial distribution for each level of the hierarchy is equal to the stationary distribution.
However, because it constrains the t.p.m. based on level, this stationarity assumption
is not possible when fitting HHMMs in momentuHMM.

As in a standard HMM, we can decode the most likely state sequence using the

viterbi function:

states <- viterbi(hhmm)
length(states)

[1] 8135
head(states)

[1] 122222

but we can also obtain the most likely state sequences at each level of the hierarchy by

setting the argument hierarchical=TRUE

hStates <- viterbi(hhmm, hierarchical=TRUE)
lapply(hStates,length)

$levell

[1] 275
#i#

102

$level?2
[1] 7860

head (hStates$levell)

[1] "nonforaging" "nonforaging" "nonforaging" "foraging" "foraging"
[6] "foraging"

head (hStates$level?)

[1] |lnf2ll llnf2ll llnf2|l Ilnf2|l Ilnf2ll Ilnf2ll

We can plot the estimated state probabilities for each level of the hierarchy (Figures
15 and 16) using the plotStates function:

plotStates (hhmm)

We can also calculate the stationary probabilities of each state for each level of the

hierarchy:

stationary distributions
stats <- stationary(hhmm)

coarse scale
stats[[1]]$1levell[1,]

nonforaging foraging
0.5026703 0.4973297

fine scale
lapply(stats[[1]]$level2,function(x) x[1,])

$nonforaging

nfl nf2 nf3

0.2793790 0.5060952 0.2145258
H#t

$foraging

f1 £2 £3

0.08308744 0.11164068 0.80527188

Finally, we can simulate from our fitted HHMM using the simHierData function.

103

laraging =

nankraging -

PriSate-nankamagng)

PriStne-kraging)

10

0a

0.8

a4

0.2

an

10

0a

0.8

a4

a2

an

levell: 1D Animall

IO e EEm: el EE-Em O e e mmn: On @ e 3Rl o md e

=

11 _'['fr‘l 0 1 nn _'IM T 1
| l
|
| |
U T '[U U UL T L

a i) 100 150 2m 250

Obaryaion ndex

L) 0 W GO RCT T
I |!
|
w |
|
JL LW LUI_JW AR

a &0 100 160 20m 250

Obaryaion ndex

Figure 15. Coarse-scale state probabilities for the harbor porpoise example.

104

Pr| S ama=l1)] Pl 5 ata -ntd) PrSiata-ni2)] PriSiata=nl1]

PrS1ata -12]

P State=13)

level2: 1D Animall

13 - - - - . & T T A TEEE T . . L
2 L - 3 e - BEe-l] L -] o0 O ODER pE=g-- - Lo - OeD O L1
11 - a dkGih i a0 O L O O oD o OO O o T oo . -1]
"E- s . LR el

ni2 =

nil

AR R Q- e Cm Ol —_ - R SR -
L s k. N L N
D S Y - R - T e O EEEERTE U NS D NS
T T T
Q

Q 2000 4000 6000 8000

Observaion ndex

.
=]
i
2
a 2000 4000 5000 8100
Obsaryaion ndex
=
=l
o
=i
a 2000 4000 5000 8100
Dhsaryaion ndex
) - I
- |
= T T
a 2000 4000 000 8100
Chzarvation ndex
m: MMM“”M_M
=)
=]
=)
a 2000 4000 8000 8100

Obaryaion ndex

Figure 16. Fine-scale state probabilities for the harbor porpoise example.

105

This requires that we specify the number of observations for each level of the hierarchy

as a data.tree Node (with attribute obs) using the obsPerLevel argument:

obsPerLevel <- data.tree::Node$new("simHierData")

number of level 1 observations
obsPerLevel$AddChild("levell",obs=100)

number of level 2 observations that follow each level 1 observation
obsPerLevel$AddChild("level2",obs=25)

simHHMM <- simHierData(model=hhmm,
obsPerLevel = obsPerlLevel, states = TRUE)

head (simHHMM)

#Ht ID level dive_duration maximum_depth dive_wiggliness states

1 1 1 NA NA NA 1
2 1 21 NA NA NA 2
3 1 2 51.09772 11.460236 6.228333 2
4 1 2 42.80339 6.212072 25.306055 2
5 1 2 129.20750 31.672331 3.489497 3
6 1 2 112.85110 42.356573 89.357614 3

3.10.2 (Garter snakes

Next we’ll quickly demonstrate how to perform the HHMM analysis for the garter snake
movement data in Leos-Barajas et al. (2017) using momentuHMM. This is also a 2-level
HHMM, but now we include three coarse-scale states each composed of three fine-scale
states (for a total of N = 9 states). As before, we must first add the level field to
our data to indicate the level of the hierarchy for each observation and then create a

momentuHierHMMData object with prepData:

load garter snake data from Leos-Barajas et al

load(url(pasteO("https://static-content.springer.com/esm/",
"art%3A10.1007%2Fs13253-017-0282-9/Medialbjects/",
"13253_2017_282_MOESM1_ESM.rdata")))

106

W <- dim(dataAr) [3] # number of individuals
M <- dim(dataAr) [2] # number of time series per individual

add 2 extra rows for each time step where coarse scale behavior switches occur
level=1 1indicates when coarse-scale behavior switching can occur
level=21 indicates start of each fine-scale interval
level=2 1indicates when fine-scale behavior switching can occur
snakeData <- NULL
for(w in 1:W){
coarselnd <- data.frame(ID=w,level=c("1","2i"),step=NA)
for(m in 1:M){
tmp <- rbind(coarseInd,data.frame(ID=w,level="2" step=sqrt(dataAr[,m,w])))
snakeData <- rbind(snakeData,tmp)

}
}

prepare hterarchical data
snakeData <- prepData(snakeData,coordNames=NULL,hierLevels=c("1","2i","2"))

summarize prepared data
summary (snakeData)

Hierarchical HMM data for 19 individuals:

##

1 —-— 606 observations
2 -— 606 observations
3 ——- 606 observations
4 —- 606 observations
5 —- 606 observations
6 —-— 606 observations
7 —-— 606 observations
8 —— 606 observations
9 —- 606 observations

10 -- 606 observations
11 —-- 606 observations
12 —-—- 606 observations
13 -- 606 observations
14 -- 606 observations
15 -- 606 observations
16 —— 606 observations
17 —-- 606 observations
18 —-- 606 observations
19 -- 606 observations

107

#Ht

#it

Data summaries:

H##

#it step level

Min. :0.011 1 : 114
1st Qu.:0.333 2i: 114
Median :0.700 2 :11286
Mean 0.790

3rd Qu.:1.149

Max. :3.130

NA’s 11496

The sole data stream for this example is step length at the fine-scale level, and no coor-
dinates are provided (hence coordNames=NULL). As in section 3.10.1, this example has
no data streams observed at the coarse-scale level, but these could be easily included (if
available; see sections 3.10.3 and 3.10.4). Let’s now specify the probability distribution
for the fine-scale step length data stream via the hierDist data tree Node (Figure 17):

data stream distributions:

level 1 = coarse level (no data streams)

level 2 = fine level (step="gamma")

hierDist <- data.tree::Node$new("garter snake HHMM dist")
hierDist$AddChild (name="1evell")

hierDist$AddChild (name="1evel2")

hierDist$level2$AddChild (name="step", dist="gamma")

plot(hierDist)

Next we define our HHMM structure via the hierStates data tree Node (Figure
18):

define hierarchical HMM: states 1-3 = coarse state 1

#it# states 4-6 = coarse state 2

states 7-9 coarse state 3

hierStates <- data.tree::Node$new("garter snake HHMM states")
hierStates$AddChild(name="internalStatel")
hierStates$internalStatel$AddChild (name="mol", state=1) # motionless
hierStates$internalStatel$AddChild (name="ex1", state=2) # slow exploratory

108

garter snake HHM@

o

Figure 17. Hierarchcial data stream structure in the garter snake example.

hierStates$internalStatel$AddChild (name="esl", state=3) # rapid escape
hierStates$AddChild (name="internalState2")
hierStates$internalState2$AddChild (name="mo2", state=4) # motionless
hierStates$internalState2$AddChild (name="ex2", state=5) # slow ezploratory
hierStates$internalState2$AddChild (name="es2", state=6) # rapid escape
hierStates$AddChild(name="internalState3")
hierStates$internalState3$AddChild (name="mo3", state=7) # motionless
hierStates$internalState3$AddChild (name="ex3", state=8) # slow exploratory
hierStates$internalState3$AddChild (name="es3", state=9) # raptid escape

Or, equivalently:

hierStates <- data.tree::as.Node(list(name="garter snake HHMM states",
internalStatel=list(mol=1list(state=1),
exl=list(state=2),
esl=list(state=3)),
internalState2=1ist(mo2=1ist (state=4),
ex2=1ist (state=b),
es2=list(state=6)),
internalState3=1list (mo3=1list(state=7),
ex3=1list(state=8),

109

es3=list(state=9))))
plot(hierStates)

garter snake HHMM states
internalState2

internalStatel internalState 3

Figure 18. Hierarchcial state structure in the garter snake example.

As in the harbor porpoise example (section 3.10.1), we follow Leos-Barajas et al.

(2017) and assume the fine-scale data stream probability distribution does not depend

on coarse-scale state:

defining start wvalues for step data stream

mu0 <- c¢(0.121,0.678,1.375)

sd0 <- ¢(0.06,0.321,0.4875)

Par0 <- list(step=c(rep(mu0,hierStates$count) ,rep(sd0,hierStates$count)))

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain data stream distributions to be same for coarse-scale states
DM <- list(step=matrix(cbind(kronecker(c(1,1,1,0,0,0),diag(3)),
kronecker(c(0,0,0,1,1,1),diag(3))),
nrow=nbStates*2,
ncol=6,
dimnames=1list(c(pasteO("mean_",1:nbStates),

110

paste0("sd_",1:nbStates)),
pasteO(rep(c("mean","sd") ,each=3),
c("_147: (Intercept)",
"_258: (Intercept)",
"_369: (Intercept)")))))

inittal parameter values for data stream probability distributions
Par <- getParDM(snakeData,
hierStates=hierStates,hierDist=hierDist,
Par=Par0,DM=DM)

We do not include any covariates in hierFormula or hierFormulaDelta, so all
that’s left before fitting the model is the (optional) step of specifying starting values
for the t.p.m. and initial distribution at each level of the hierarchy (based on values

reported by Leos-Barajas et al. 2017):

hierBeta <- data.tree::Node$new("garter snake beta")
hierBeta$AddChild (name="1levell")

hierBeta$AddChild (name="1level2")
hierBeta$level2$AddChild (name="internalStatel")
hierBeta$level2$AddChild (name="internalState2")
hierBeta$level2$AddChild (name="internalState3")

hierDelta <- data.tree::Clone(hierBeta)
hierDelta$name <- "garter snake delta"

reference states for levell
levellstates <- hierStates$Get (function(x) data.tree::Aggregate(x,"state",min),
filterFun=function(x) x$level==2)

hierBeta$levell$beta <- matrix(c(1.24, 0.44, 1.1, -0.87, -1.40, -1.11),
nrow=1,
ncol=hierStates$count* (hierStates$count-1),
byrow=TRUE,
dimnames=1ist (" (Intercept)",
c(sapply(levellstates,function(x)
paste(
rep(x,each=hierStates$count-1),
ll_>l| s
levellstates[-which(levellstates==x)]1)))))

111

hierDelta$leveli$delta <- matrix(rep(c(-2.5,-3.5),hierStates$count-1),
nrow=1,
ncol=(hierStates$count-1),
byrow=TRUE,
dimnames=1ist (" (Intercept)",
paste("state",levellstates[-1])))

betal_level2 <- deltaO_level2 <- 1list()

betal_level2$internalStatel <- c(-2.99, -5.06, 3.93, 1.25, 34.84, 35.97)
betal_level2$internalState2 <- c(-1.72, -2.78, 3.54, 2.83, 34.72, 36.21)
betal_level2$internalState3 <- c(-5.10, -17.69, 5.76, -11.34, 33.39, 37.37)

deltaO_level2$internalStatel <- c(-1.39, 0.16)
deltaO_level2$internalState2 <- c(-1.27, 2.33)
deltaO_level2$internalState3d <- c(0.34, -0.26)

for(jj in 1l:hierStates$count){
j <= names(hierStates$children) [jj]

reference states for internalState j

ref <- hierStates[[j]1]1$Get (function(x)
data.tree: :Aggregate(x,"state",min),
filterFun=function(x) x$level==2)

states for internalState j
states <- hierStates[[j]]1$Get("state",filterFun = isLeaf)

dimNames <- list("(Intercept)",
pasteO(rep(states,each=hierStates[[j]]$count-1),
n _> n 5
states[-which(states==ref)]))

hierBeta$level2[[j]]$beta <- matrix(betal_level2[[j]],
nrow=1,
ncol=hierStates[[j]]$countx
(hierStates[[jl]$count-1),
byrow=TRUE,
dimnames=dimNames)

hierDelta$level2[[jl]$delta <- matrix(deltaO_level2[[j]],

nrow=1,
ncol=(hierStates[[j]l]$count-1),

112

byrow=TRUE,
dimnames=1list (" (Intercept)",
names (states) [-1]))

Let’s check our model specification:

checkPar0O(snakeData,hierStates=hierStates,hierDist=hierDist,
ParO=Par,DM=DM,
hierBeta=hierBeta,hierDelta=hierDelta)

#it

Regression coeffs for step parameters:

-———

mean_147: (Intercept) mean_258: (Intercept) mean_369: (Intercept)
[1,] -2.111965 -0.388608 0.3184537
#H sd_147: (Intercept) sd_258:(Intercept) sd_369: (Intercept)

[1,] -2.813411 -1.136314 -0.718465

##

-

T e 1eElll so————ee—eemesesesesees

#t 1 >41->74->14->77->17->4
I((level == "1") * 1) 1.24 0.44 1.1 -0.87 -1.4 -1.11
##

T I e IGEI2 cooooooooooooooooooooos

1->21->32->22->33->23->3
I((level == "2") *x 1) -2.99 -5.06 3.93 1.25 34.84 35.97
#it

#t 4 ->54->65->55->66->56->6
I((level == "2") x 1) -1.72 -2.78 3.54 2.83 34.72 36.21
H##

#t 7->87->98->88->99->89 ->9
I((level == "2") * 1) -5.1 -17.69 5.76 -11.34 33.39 37.37
#t

A e e e e e e e S OO omsoss

##

B S e S omms

113

state 4 state 7

(Intercept) -2.5 =5},

#t

T e o Ll comoooooooooooooooooooes
#t state 2 state 3

I((level == "2i") * 1) -1.39 0.16

#t

#i# state b state 6

##H I((level == "2i") * 1) =il , 2T 2.33

##

#i# state 8 state 9

I((level == "2i") * 1) 0.34 -0.26

#t

A e e e e e e e S OSSO oS

Again note that higher-level (i.e. “parent”) states are indexed based on the lowest
state index of their “children”. For example, “internalStatel” is indexed by state 1,
“internalState2” is indexed by state 4, and “internalState3” is indexed by state 7. We
can also examine the starting values for the t.p.m. on the real scale (“gamma”) at each

level of the hierarchy using the getTrProbs function:

iTrProbs <- getTrProbs(snakeData,hierStates=hierStates,
hierBeta=hierBeta,hierDist=hierDist)

t.p.m. at first time step for levell
iTrProbs$leveli$gammal, ,1]

#i# internalStatel internalState2 internalStated
internalStatel 0.1664359 0.5751380 0.25842616
internalState2 0.6791965 0.2260849 0.09471861
internalState3 0.1564547 0.2090903 0.63445500

t.p.m. at first time step for levelZ
lapply (iTrProbs$level2,function(x) x$gammal,,1])

$internalStatel

#it mol exl esl
mol 9.464024e-01 0.04759215 0.006005453
exl 1.805141e-02 0.91894296 0.063005628
esl 1.806578e-16 0.24416110 0.755838899
##

114

$internalState2

mo2 ex2 es2
mo2 8.057338e-01 0.1442797 0.04998652
ex2 1.907946e-02 0.6576103 0.32331027
es2 1.534365e-16 0.1839217 0.81607827

(@)

it
$internalState3
mo3 ex3 es3

mo3 9.939402e-01 0.006059801 2.063911e-08
ex3 3.141213e-03 0.996858749 3.734204e-08
es3 5.785955e-17 0.018342891 9.816571e-01

(@)

Now let’s fit our garter snake HHMM:

fit hierarchical HMM

hhmm <- fitHMM(snakeData,hierStates=hierStates,hierDist=hierDist,
ParO=Par,DM=DM,hierBeta=hierBeta,hierDelta=hierDelta,
nlmPar=1ist (hessian=FALSE))

hhmm

Value of the maximum log-likelihood: -2060.361

##

#t

step parameters:

I e

#i# mol exl esl mo2 ex?2 es?2 mo3

mean 0.12148244 0.6778585 1.3749445 0.12148244 0.6778585 1.3749445 0.12148244

sd 0.05906919 0.3217371 0.4876126 0.05906919 0.3217371 0.4876126 0.05906919

ex3 es3

mean 0.6778585 1.3749445

sd 0.3217371 0.4876126

##

##

-

Regression coeffs for the transition probabilities:

-

- levell --—————"""""""—————————-

1->4 1->7 4->1 4 > 7 7T ->1 7T =>4
I((level == "1") = 1) 1.245628 0.43092 1.102371 -0.8702138 -1.397626 -1.114395
##

115

##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it

—————————————————————————— level2 --——-----————————————————-
1 ->2 1->3 2->2 2->3 3->2
I((level == "2") *x 1) -2.993163 -5.064873 3.927789 1.246249 34.83411 35.96588
4 > 5 4->6 b65->5 b5->6 6->5
I((level == "2") * 1) -1.72118 -2.775671 3.540743 2.834411 34.70867 36.19199
7 ->38 7->9 8->8 8->9 9->8 9->9
I((level == "2") x 1) -5.098038 -17.69051 5.761082 -11.341 33.38975 37.3693
Transition probability matrix (based on mean covariate values):
—————————————————————————— levell --——---——----——————————-
internalStatel internalState2 internalState3

internalStatel 0.1662845 0.5778580 0.25585744
internalState2 0.6797266 0.2257256 0.09454786
internalStated 0.1569121 0.2082869 0.63480109
—————————————————————————— level2 --——----—————-———————————-

mol exl esl
mol 9.465723e-01 0.04745038 0.005977331
exl 1.809239e-02 0.91899540 0.062912207
esl 1.814821e-16 0.24383499 0.756165005

mo2 ex2 es2
mo2 8.056962e-01 0.1441028 0.05020102
ex2 1.904293e-02 0.6568393 0.32411779
es2 1.560327e-16 0.1849268 0.81507322

mo3 ex3 es3
mo3 9.939283e-01 0.00607163 2.062842e-08
ex3 3.137827e-03 0.99686214 3.726460e-08
es3 5.789933e-17 0.01835094 9.816491e-01
Regression coeffs for the initial distribution:

116

##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Hit
#Ht
##
#it
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it
#Ht
##
##
#it
#it

levell
state 7

-2.536666 -3.509149

level?2

state 2

state 5

state 6

"2i") * 1) -1.274263 2.327495

state 8
"2i") x 1) 0.3388003 -0.2605837

state 3
"2i") x 1) -1.387229 0.1583614

state 9

state 4

(Intercept)
I((level
I((level
I((level
Initial distribution

internalStatel
ID:1 0.9016709
ID:2 0.9016709
ID:3 0.9016709
ID:4 0.9016709
ID:5 0.9016709
ID:6 0.9016709
ID:7 0.9016709
ID:8 0.9016709
ID:9 0.9016709
ID:10 0.9016709
ID:11 0.9016709
ID:12 0.9016709
ID:13 0.9016709
ID: 14 0.9016709
ID:15 0.9016709
ID: 16 0.9016709
ID:17 0.9016709
ID: 18 0.9016709
ID:19 0.9016709

117

IeEllll soooomooooooooooooas
internalState2 internalStated
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
0.07134901 0.02698013
1eVEl? —e——————sesmemeseses

mol exl esl
internalStatel 0.4129917 0.1031515 0.4838568

#t

#i# mo2 ex?2 es?2

internalState2 0.08671622 0.02424906 0.8890347

#t

H#t mo3 ex3 es3

internalState3 0.3150733 0.4421307 0.242796

##t

I S

These estimates are virtually identical to Leos-Barajas et al. (2017); the only (very
slight) difference is in the estimates for the coarse-scale initial distribution (6©) be-
cause, unlike in Leos-Barajas et al. (2017), the forward algorithm in momentuHMM (Eq.
1) includes a state transition between time steps t = 0 and ¢ = 1.

As usual, we can check pseudo-residuals using plotPR (Figure 19):

plotPR(hhmm)

D L
il = _
§ - i :
i - : 7
1 é L @
4 “ ¥
) “+
i - 1 S
o J ~
o o ! o
§7- S
Ly S
' = M
T T T T il e s e
O 4000 10004 a 1a X
ObEaryation index Thearefcal Quariles Lag

Figure 19. Pseudo-residual plot for the HHMM garter snake example.

and simulate from our fitted HHMM using simHierData:

118

obsPerLevel <- data.tree::Node$new("simHierData")

number of level 1 observations
obsPerLevel$AddChild("levell", obs=M)

number of level 2 observations that follow each level 1 observation
obsPerLevel$AddChild("level2",obs=dim(datalAr) [1])

simHHMM <- simHierData(nbAnimals=W,
model=hhmm,
obsPerLevel = obsPerlLevel, states = TRUE)

head (simHHMM)

#Ht ID level step X y states
1 1 1 NA NA NA 7
2 1 21 NA NA NA 7
3 1 2 0.08420142 0.00000000 O 7
4 1 2 0.17292406 0.08420142 O 7
5 1 2 0.08644914 0.25712548 O 7
6 1 2 0.31875088 0.34357462 0 7

3.10.3 Atlantic cod

Now we will demonstrate how HHMMs with data streams observed at multiple time
scales can be fitted using momentuHMM. In their Atlantic cod example, Adam et al. (2019)
fit a 9-state HHMM to coarse-scale horizontal (i.e., step length and turn angle) and fine-
scale vertical movement data. The coarse-scale states were “resting/foraging” (hereafter
“resForage”), “mobile/foraging” (hereafter “mobForage”), and “travelling/migrating”
(hereafter “transit”), each of which was composed of three fine-scale states. To begin

our analysis, we must first load and prepare the data (available for download from
Adam et al. 2019):

load the data from Adam et al
load("Atlantic_cod_data_set.RData")

coarse-scale data
data <- data.frame(level="1",

119

step=steps,
angle=angles,
vertical=NA,
time=0)

add extra rows for fine-scale data

level=1 <ndicates when coarse-scale behavior switching can occur

level=2t% indicates start of each fine-scale interval
level=2 1indicates when fine-scale behavior switching can occur

codData <- NULL

timeSeq <- seq(from=0,to=23+5/6,length=144) # time of day covariate

for(i in 1:nrow(data)){
fineInd <- data.frame(level="2",
step=NA,
angle=NA,
vertical=verticals[[i]],
time=timeSeq)
tmp <- rbind(datali,,drop=FALSE],
data.frame(level="2i",
step=NA,
angle=NA,
vertical=NA,
time=0),
fineInd)
codData <- rbind(codData,tmp)

}

prepare hterarchical data

codData <- prepData(codData, coordNames=NULL,
covNames="time",
hierLevels=c("1","2i" "2"))

head(codData)

data summary
summary (codData,dataNames=names (codData) [-1])

From sections 3.10.1 and 3.10.2, we should now be familiar with how to specify

HHMMs with state transitions at multiple time scales.

We will therefore focus on

how to accommodate data streams that are observed at multiple time scales here, but

complete details and code for fitting this model can be found in the “codExample.R”

120

script in the momentuHMM “vignettes” source directory (or at https://github.com/
bmcclintock/momentuHMM). First we specify the hierarchical nature of the states as a

data.tree Node (Figure 20):

define hierarchical HMM

states 1-3 = coarse state 1 (resident/foraging)

states 4-6 = coarse state 2 (mobile/foraging)

states 7-9 = coarse state 3 (travelling/migrating)
hierStates <- data.tree::Node$new("cod HHMM states")
hierStates$AddChild("resForage") # resident/foraging
hierStates$resForage$AddChild("rF1", state=1)
hierStates$resForage$AddChild("rF2", state=2)
hierStates$resForage$AddChild("rF3", state=3)
hierStates$AddChild("mobForage") # mobile/foraging
hierStates$mobForage$AddChild("mF1", state=4)
hierStates$mobForage$AddChild ("mF2", state=5)
hierStates$mobForage$AddChild("mF3", state=6)
hierStates$AddChild("transit") # travelling/migrating
hierStates$transit$AddChild("t1", state=7)
hierStates$transit$AddChild("t2", state=8)
hierStates$transit$AddChild("t3", state=9)

plot(hierStates)

Next we specify the hierarchical nature of the data streams as a data.tree Node
(Figure 21):

data stream distributions

level 1 = coarse level (step="gamma", angle="um")
level 2 = fine level (vertical="gamma")

hierDist <- data.tree::Node$new("cod HHMM dist")
hierDist$AddChild("levell")
hierDist$level1$AddChild("step", dist="gamma")
hierDist$levell$AddChild("angle", dist="vm")
hierDist$AddChild("level2")
hierDist$level2$AddChild("vertical", dist="gamma")

plot(hierDist)

We then constrain the fine-scale states within each coarse-scale state to have the

same parameters for the “step” and “angle” distributions using the DM argument:

121

https://github.com/bmcclintock/momentuHMM
https://github.com/bmcclintock/momentuHMM

cod HHMM states

\

A

mobForage

Figure 20. Hierarchical state structure in the cod example.

angle

Figure 21. Hierarchical data stream structure in the cod example.

122

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))

constrain coarse-scale parameters for fine-scale states
DM <- list(step=matrix(kronecker(diag(6),c(1,1,1)),
nrow=2*nbStates,

ncol=6,
dimnames=1list(pasteO(rep(c("mean_","sd_"),each=nbStates)
,1:nbStates),
c(pasteO(rep(c("mean_","sd_"),each=3),
1:length(hierStates$children),
": (Intercept)")))))
DM$angle <- DM$step
dimnames (DM$angle) <- list(pasteO(rep(c("mean_","concentration_"),each=nbStates)
,1:nbStates),
c(pasteO(rep(c("mean_","concentration_"),each=3),

1:1length(hierStates$children),
":(Intercept)")))

and obtain starting values on the working scale using getParDM:

defining start values based on those reported by Adam et al
hm.mu0 <- c(5.482, 6.786, 14.914)
hm.sigma0 <- c(4.27, 4.714, 11.242)

ha.mu0 <- c(0.011, -0.299, 0.044)
ha.kappa0 <- c(1.571, 1.426, 2.15)

vm.mu0 <- vm.sigmaO <- vm.piO <- list()
vm.muO[[1]] <- ¢(0.116, 0.303, 0.691)
vm.muO[[2]] <- c(0.109, 0.056, 0.351)
vm.muO[[3]] <- c(0.125, 0.514, 1.987)

vm.sigmaO[[1]] <- ¢(0.096, 0.261, 0.636)
vm.sigmaO[[2]] <- c(0.043, 0.047, 0.342)
vm.sigmaO[[3]] <- c(0.109, 0.462, 1.878)

vm.piO[[1]] <- c(0.014, 0.003, 1.050e-06)
vm.piO[[2]] <- c(1.791e-08, 0.035, 0.002)
vm.piO[[3]] <- c(0.012, 2.933e-04, 3.462e-09)

Par0 <- list(step=c(rep(hm.mu0,each=3),rep(hm.sigmal,each=3)),
angle=c(rep(ha.mu0,each=3) ,rep(ha.kappal,each=3)),

123

vertical=c(unlist(vm.mu0) ,unlist(vm.sigmaO) ,unlist(vm.pi0)))

starting values for data stream parameters on the working scale
Par <- getParDM(codData,

hierStates=hierStates,

hierDist=hierDist,

Par=Par0,

DM=DM,

estAngleMean = list(angle=TRUE))

Adam et al. (2019) included a periodic time-of-day covariate on the fine-scale state

transition probabilities, and we specify this via the hierFormula argument:

define hierarchical t.p.m. formula(s)

hierFormula <- data.tree::Node$new("cod HHMM formula")
hierFormula$AddChild("levell", formula="1)
hierFormula$AddChild("level2", formula="cosinor(time, period=24))

All that remains is (optionally) specifying starting values for the initial distribution
(hierDelta) and t.p.m. (hierBeta) parameters, which we’ll base on those reported by

Adam et al. (2019) to speed up the optimization:

hierBeta <- data.tree::Node$new("cod beta")
hierBeta$AddChild("levell",
beta=matrix(c(-18.585, -2.86, -2.551, -1.641, -2.169, -2.415),
nrow=1,
ncol=length(hierStates$children)
*(length(hierStates$children)-1)))
hierBeta$AddChild("level2")
hierBeta$level2$AddChild ("resForage",
beta=matrix(c(-2.562, -3.403, 2.765, -1.607, 2.273, 4.842,
-0.665, -0.26, -0.681, -0.149, -2.728, -2.798,
-0.027, 0.26, 0.191, 0.667, 0.123, -0.262),
nrow=3,
ncol=length(hierStates$resForage$children)
*(length(hierStates$resForage$children)-1),
byrow=TRUE))
hierBeta$level2$AddChild ("mobForage",
beta=matrix(c(-2.156, -3.662, 3.01, 0.597, -0.313, 2.897,
0.067, -1.22, -0.799, -0.797, 0.15, 0.379,

124

-0.112, -0.195, -0.269, -0.215, 1.539, 0.728),
nrow=3,
ncol=length(hierStates$mobForage$children)

*(length(hierStates$mobForage$children)-1),

byrow=TRUE))
hierBeta$level2$AddChild("transit",

beta=matrix(c(-2.53, -4.279, 2.507, -0.228, 10.803, 12.873,
-0.04, 1.221, -0.301, 0.284, -0.106, -0.077,
0.629, -0.226, -0.2563, -0.303, 0.011, 0.036),

nrow=3,

ncol=length(hierStates$transit$children)

*(length(hierStates$transit$children)-1),

byrow=TRUE))

hierDelta <- data.tree::Node$new("cod delta")
hierDelta$AddChild("levell" ,delta=matrix(c(15.776, 4.78),1))
hierDelta$AddChild("level2")

hierDelta$level2$AddChild("resForage" ,delta=matrix(c(-0.643, -2.416),1))
hierDelta$level2$AddChild ("mobForage" ,delta=matrix(c(1.181, 0.46),1))
hierDelta$level2$AddChild("transit",delta=matrix(c(-0.357, -0.624),1))

check hierarchical model specification and parameters
checkPar0(codData,

hierStates = hierStates,

hierDist = hierDist,

hierFormula = hierFormula,

ParO = Par, hierBeta = hierBeta, hierDelta = hierDelta,

DM = DM,
estAngleMean = list(angle=TRUE))

and we are now ready to fit the HHMM:

hhmm <- fitHMM(codData,
hierStates = hierStates,
hierDist = hierDist,
hierFormula = hierFormula,
Par0 = Par, hierBeta = hierBeta, hierDelta =
DM = DM,
estAngleMean = list(angle=TRUE))

plot (hhmm, plotCI=TRUE, ask=FALSE)

125

hierDelta,

plotStationary(hhmm, plotCI=TRUE)

The resulting estimates are virtually identical to Adam et al. (2019); the slight
differences are attributable to: 1) the forward algorithm in momentuHMM (Eq. 1) includes
a state transition between time steps t = 0 and ¢ = 1; and 2) momentuHMM uses the lowest
fine-scale state index for each coarse-scale state as the mlogit-link reference state for the
initial distribution and t.p.m.Nevertheless, we can see that the estimated coarse-scale
data stream probability distribution (Figure 22) and fine-scale stationary probabilities

as a function of time of day (Figure 23) are very similar.

ID Animald 1D Animali
N
= | resForage resForage
—— mobForage g - — maobForage
= . transit transit
= ‘f \ — Total — Tatal
L1
i @
RN S 7
! \
s 1 \ o
b §— I \ g - i \\
bt Il \\ & (=2 ," \
=t 1 £ 7 Al
g 1 L1 i’ '
i \ ’ Al
Y o ’ 5
L] 1 \ =] z 3
e | A ’]
< ! - . & \.'

[S -
g-r‘f'\-‘—__# o | mmmrt e T e e
< T 1 1 T T T 1 = | T 1 T 1

0 5 0 15 20 25 30 35 -n -nf2 0 mf2 n

step angle (radians)

Figure 22. Estimated state-dependent distributions of coarse-scale step lengths (left panel)
and turning angles (right panel) of an Atlantic cod.

3.10.4 Horn shark

For our final HHMM example, we’ll quickly demonstrate how the horn shark exam-
ple from Adam et al. (2019) can be fitted in momentuHMM. The data streams in this
example consist of coarse-scale categorical step lengths (stepCat) based on estimated
geopositions at 2 second intervals over 194 distinct segments and, within each 2 second
interval, fine-scale accelerometer data that were summarized as 50 sequential values of
overall dynamic body acceleration (odba). The analysis included 8 categories for step

length to construct a so-called histogram distribution of step lengths, where category

126

Stationary state probabilities for level2 resForage Slationary state probabilities for level2 mobForage

= =
- =7 — mFt
—— mF2
S £
g o g S
® & il |||uu
L E O u|||||||||IIIIII |||||||I||II||I||||| el
z S z g”!!”“,.l”"" |”"”"”""'i"”'“IH
5 y] (A s -||||||||||||I..
= o) | = o S |||||||||||||||||||" il
& © 7 I::I';:lmllhl 5 s Wi
11l
L= _ (=] _
= T T T T T = T T T T T
0 5 10 15 20 0 5 10 15 20
hour hour

Stalionary state probabilities for level2 transit

<o |
— 12
8 o | 13
£ ©
: % I
o
L ,|ml"hlﬂ||||||||||||||||||||||'|I||||-”I||| -
] il i
E 3 | "'"!f"'"'“"""'"l"||||Hllllll""'"""”' '||
5 = TIIHIIE
& S 7 I|I|III|I I||||I IIIHII"'“-
2 |
(=3
T T T T I
0 5 10 15 20
hour

Figure 23. Stationary distributions of the fine-scale state processes for an Atlantic cod as a
function of time of day for the coarse-scale states corresponding to “resting/foraging” (top-left
panel), “mobile/foraging” (top-right panel), and “travelling/migrating” (bottom panel).

127

1 indicates zero step lengths and categories 2 — 8 were defined by increasing cutoffs at
0.00075, 0.00125, 0.00175, 0.00225, 0.00275, 0.00325, and 0.00375 m, respectively. The
9-state HHMM included three coarse-scale states (“activity”, “resting”, and “transit”),
each composed of three fine-scale states.

First we load and prepare the data (available for download from Adam et al. 2019):

load the data from Adam et al
load ("horn_shark_data_set.RData")

coarse-scale data
data <- data.frame(ID=unlist(mapply(function(x) rep(pasteO("seg",x),
nrow(steps[[x]]1)-1),
1:length(steps))),

level="1",
steps=unlist (lapply(steps,function(x) x$steps[-nrow(x)])),
stepCat=unlist(lapply(steps,function(x) x$cats[-nrow(x)])),
odbas=NA)

data$stepCat [which(is.na(data$steps))] <- NA

add extra rows for fine-scale data
level=1 1indicates when coarse-scale behavior switching can occur
level=21 indicates start of each fine-scale interval
level=2 1indicates when fine-scale behavior switching can occur
odbas <- unlist(odbas)
sharkData <- NULL
for(i in 1:nrow(data)){
fineInd <- data.frame(ID=data$ID[i],
level="2",
steps=NA,
stepCat=NA,
odbas=odbas [(i-1)*50+1:50])
tmp <- rbind(datali,,drop=FALSE],
data.frame(ID=data$ID[i],
level="2i",
steps=NA,
stepCat=NA,
odbas=NA) ,
fineInd)
sharkData <- rbind(sharkData,tmp)

128

prepare hierarchical data
sharkData <- prepData(sharkData,coordNames=NULL,
hierLevels=c("1","2i","2"))

Note that because the 194 segments were observed irregularly in bouts of time over the
coarse of one night, Adam et al. (2019) essentially treated each segment as a different
track whereby the HHMM “resets” at the beginning of each segment; this can be

accomplished in momentuHMM by simply assigning each segment its own ID as was done

above:

head (sharkData)

#it ID level steps stepCat odbas

1 segl 1 0.001447295 4 NA

2 segl 2i NA NA NA

3 segl 2 NA NA 0.07733020

4 segl 2 NA NA 0.07424251

5 segl 2 NA NA 0.07866384

6 segl 2 NA NA 0.07899367

tail (sharkData)

#t ID level steps stepCat odbas
452682 seglod 2 NA NA 0.06118823
462682 segl9od 2 NA NA 0.08593020
472682 segl9od 2 NA NA 0.07211103
482682 seglod 2 NA NA 0.09512092
492682 seglod 2 NA NA 0.09484725
502681 seglod 2 NA NA 0.09834612

Next we define the hierarchical nature of the states and data streams (Figures ?7?):

define hierarchical HMM

states 1-3 = coarse state 1 (high activity)

states 4-6 = coarse state 2 (resting)

states 7-9 = coarse state 3 (travelling)

hierStates <- data.tree::Node$new("shark HHMM states")
hierStates$AddChild("activity") # zero distance travelled, high activity
hierStates$activity$AddChild("al", state=1)

129

hierStates$activity$AddChild("a2", state=2)
hierStates$activity$AddChild("a3", state=3)
hierStates$AddChild("resting") # zero distance travelled, low activity
hierStates$resting$AddChild("ri", state=4)
hierStates$resting$AddChild("r2", state=5)
hierStates$resting$AddChild("r3", state=6)
hierStates$AddChild("transit") # travelling
hierStates$transit$AddChild("t1", state=T7)
hierStates$transit$AddChild("t2", state=8)
hierStates$transit$AddChild("t3", state=9)

plot(hierStates)

nbStates <- length(hierStates$Get("state",filterFun=data.tree::isLeaf))
nCat <- 8 # number of stepCat categories

data stream distributions

level 1 = coarse level (stepCat="cat8")

level 2 = fine level (odbas="gamma")

hierDist <- data.tree::Node$new("shark HHMM dist")
hierDist$AddChild("levell")
hierDist$level1$AddChild("stepCat", dist=pasteO("cat",nCat))
hierDist$AddChild("level2")
hierDist$level2$AddChild("odbas", dist="gamma")

plot(hierDist)

This is the first example in the vignette that uses a categorical data stream probabil-
ity distribution, so it is perhaps worth describing this in a little more detail. When
specifying categorical distributions, the number of categories must be indicated. In this
case, there are 8 stepCat categories, so we specify this as cat8. Generally, categorical
distributions are specified as paste0("cat",nCat), where nCat is an integer greater
than 2 (note that a categorical distribution with only 2 categories is simply a Bernoulli
distribution). The categorical distribution parameters are nCat probabilities that sum
to 1, so the mlogit link is used and only nCat —1 working parameters are estimated in
order to obtain the nCat categorical probabilities on the real scale.

Both the “activity” and “resting” coarse-scale states were assumed to have zero
distance travelled (i.e., stepCat = 1), while the “transit” state was assumed to have

> 0 distance travelled (i.e., stepCat € 2,...,8). We therefore need to constrain the

130

shark HHMM states

Figure 24. Hierarchical state structure in the horn shark example.

shark HHMM dist

Figure 25. Hierarchical data stream structure in the horn shark example.

131

categorical step length probabilities for each fine-scale state within each coarse-scale

state accordingly:

starting values based on Adam et al

mu0 <- c(0.191, 0.323, 0.721, 0.084, 0.15, 0.228, 0.094, 0.191, 0.39)
sd0 <- c(0.047, 0.051, 0.248, 0.021, 0.025, 0.033, 0.026, 0.039, 0.159)
probs0 <- c(le+10, -1e+10, 0.958, 5.064, 3.261, 4.021, 0.473, 2.568)

constrain coarse-scale parameters for fine-scale states
DM <- list(stepCat=matrix(cbind(c(rep(c(1,1,1),2),
rep(0, (nCat-1)*nbStates-6)),
kronecker(diag(nCat-1),
c(0,0,0,0,0,0,1,1,1))),
nrow=(nCat-1) *nbStates,

ncol=8,

dimnames=1list (paste0(rep(paste0("prob",
1:(nCat-1),
n_u)’

each=nbStates),
1:nbStates),
c(pasteO(c("probl_12",

pasteO("prob",
1: (nCat-1),

"_3")),
": (Intercept)")))))

head (DM$stepCat ,nbStates)

probl_12: (Intercept) probl_3:(Intercept) prob2_3:(Intercept)
probl_1 1 0 0
probl_2 1 0 0
probl_3 1 0 0
probl_4 1 0 0
probl_5 1 0 0
probl_6 1 0 0
probl_7 0 1 0
probl_8 0 1 0
probl_9 0 1 0
prob3_3: (Intercept) prob4_3:(Intercept) prob5_3:(Intercept)
probl_1 0 0 0
probl_2 0 0 0
probl_3 0 0 0
probl_4 0 0 0
probl_5 0 0 0

132

#Ht
##
##
#it
#Ht
#Ht
##
##
#it
#it
#Ht
##
##
#it

probl_6
probl_7
probl_8
probl_9

probl_1
probl_2
probl_3
probl_4
probl_5
probl_6
probl_7
probl_8
probl_9

prob6_3: (Intercept

O O O OO OO OO ~wOoO o oo

Par0 <- list(stepCat = probsO,
odbas = c(mu0,sd0))

fixPar <- list(stepCat=c(l.e+10,-1.e+10,rep(NA,6)))

prob7_3: (Intercept

O O O OO O OO O ~wO o o Oo

S O O O

By fixing the working parameter corresponding to the probability of observing step

length category 1 (prob1) for coarse-scale state 1 (fine-scale states 1 —3) and coarse-scale

state 2 (fine-scale states 4 —6) to a very large positive number, we have effectively fixed

probl = 1 for these states. Likewise, by fixing the working parameter corresponding to

probl for coarse-scale state 3 (fine-scale states 7 —9) to a very large negative number,

we have effectively fixed probl = 0 for this state.

All that remains is (optionally) specifying starting values for the initial distribution

(hierDelta) and t.p.m. (hierBeta) parameters, and let’s check our model specification

before fitting using checkPar0:

t.p.m. starting values based on Adam et al
hierBeta <- data.tree::Node$new("shark beta")
hierBeta$AddChild("levell",

beta=matrix(c(-0.651, -0.169, -1.884, -0.369, -1.596, -0.737),

ncol=length(hierStates$children)

*(length(hierStates$children)-1)))

hierBeta$AddChild("level2")
hierBeta$level2$AddChild ("activity",

beta=matrix(c(-2.902, -14.032, 3.059, -1.37, 8.098, 11.66),
ncol=length(hierStates$activity$children)

133

*(length(hierStates$activity$children)-1)))
hierBeta$level2$AddChild("resting",
beta=matrix(c(-3.264, -14.279, 3.107, 0.252, 13.861, 16.468),
ncol=length(hierStates$resting$children)
*(length(hierStates$resting$children)-1)))
hierBeta$level2$AddChild("transit",
beta=matrix(c(-3.21, -21.32, 3.463, -0.598, 14.636, 17.811),
ncol=length(hierStates$transit$children)
*x(length(hierStates$transit$children)-1)))

initial distridbution starting values based on Adam et al
hierDelta <- data.tree::Node$new("shark delta")
hierDelta$AddChild("levell",
delta=matrix(c(0.582, 2.894),
ncol=length(hierStates$children)-1))
hierDelta$AddChild("level2")
hierDelta$level2$AddChild("activity",
delta=matrix(c(-0.001, -1.1),
ncol=length(hierStates$activity$children)-1))
hierDelta$level2$AddChild("resting",
delta=matrix(c(-0.103, -0.105),
ncol=length(hierStates$resting$children)-1))
hierDelta$level2$AddChild("transit",
delta=matrix(c(0.24, -0.777),
ncol=length(hierStates$transit$children)-1))

check hierarchical model spectification and parameters
checkPar0(sharkData,

hierStates=hierStates,

hierDist=hierDist,

Par0=Par0,

DM=DM,

hierBeta=hierBeta,

hierDelta=hierDelta,

fixPar=fixPar)

Everything checks out, so let’s now fit the horn shark HHMM:

hhmm <- fitHMM(sharkData,
hierStates=hierStates,
hierDist=hierDist,
Par0O=ParO,

134

hierBeta=hierBeta,
hierDelta=hierDelta,
DM=DM,
fixPar=fixPar)

transition probabilities for levell and levelZ
trProbs12 <- getTrProbs(hhmm, covIndex=c(1,3))

stationary distributions for levell and levelZ
statsl2 <- stationary(hhmm, covIndex=c(1,3))

The resulting estimates are again very similar to Adam et al. (2019), with the slight
differences attributable to Adam et al. (2019) assuming the initial distributions for each
level of the hierarchy are equal to the stationary distributions. Nevertheless, we can

see that the estimated t.p.m. and stationary distributions are very similar:

coarse scale HHAHHHAHAAAARARBBBBBBBBBBBBHBBBHBHHHHLH
t.p.m.
round (trProbs12$levell$gammal,,1],3)

#Hit activity resting transit
activity 0.423 0.221 0.357
resting 0.082 0.543 0.375
transit 0.121 0.285 0.594

stationary distribution
round(stats12[[1]]$levell[1,],3)

activity resting transit
#H# 0.153 0.371 0.477

HAARARRAR AU R AR RHRAR BB AR R RR AR R AR ARRAR AR AR R AR RAR AR AR R AR H

fine scale HHAAHAANBAAHHANHAARBRARHAARBAARRARBHARHA
t.p.m.
lapply (trProbsi2$level2, function(x) round(x$gammal,,1],3))

$activity

#i# al a2 a3
al 0.948 0.052 0.000
a2 0.044 0.944 0.011
a3 0.000 0.028 0.972

135

##

$resting

H## rl r2 r3
r1 0.963 0.037 0.000
r2 0.041 0.907 0.052
r3 0.000 0.069 0.931
##

$transit

#it t1 t2 t3
t1 0.961 0.039 0.000
t2 0.030 0.954 0.016
t3 0.000 0.040 0.960

o
o

o
o

lapply(stats12[[1]]$level2,function(x) round(x[1,],3))

$activity

#t al a2 a3
0.377 0.443 0.181
##

$resting

rl r2 r3
0.385 0.349 0.265
##

$transit

Bil t2 7S
0.353 0.459 0.188

3.11 African buffalo recharge dynamics

Here we demonstrate how to fit a discrete-time version of the African buffalo recharge
dynamics model from Hooten et al. (2019) based only on surface water covariates.
It is believed that water resources can strongly influence African buffalo space use,
and surface water was therefore included in both the movement model (as distance to
nearest surface water d) and the recharge function (as an indicator for being < 0.5
km to nearest surface water w). The model includes N = 2 states, where state 1
is the “recharged” state and state 2 is the “discharged” state. Conditional on the

state S; € {1,2}, the discrete-time analogue to the continuous-time model of Hooten

136

et al. (2019) has the following bivariate normal random walk movement model for the

locations (pt = (fts, fty)) at time ¢:
py | Sp=s~N (Nt—l + D(py_1)B" (s = 2)7‘731))

where I() is the indicator function, I is a 2 x 2 identity matrix, and D(u,) is the negative
gradient of d evaluated at location p,. Thus when the animal is in the charged state
(i.e. S; = 1), the movement model is a simple random walk. When the animal is in
the discharged state (i.e. S; = 2), the movement model includes a potential function
surface based on distance to nearest surface water (for more on potential functions see
Brillinger et al. 2012; Hooten et al. 2017, 2019, and sections 3.3 and 3.12). In terms of

I'®, the model for the state-switching dynamics is simply:

1 exp(—gt)
T® — | (+exp(=g:)) (1+exp(—gt)) (11)
1 exp(—gt) |’

(14+exp(—gt)) (1+exp(—gt))

with recharge function t
gt = go + 290 +w;0,
j=1

where w; is the distance to nearest water indicator covariate at location p;. Thus the
probability of being in the “discharged” state decreases as the recharge function (g;)
increases. Note that there are no t.p.m. working parameter coefficients in Eq. 11 and,
because v11 = Y91 and Y19 = 720, the state switching in this model is not Markov (i.e.,
the state at time ¢ does not depend on the state at time ¢ — 1).

In order to fit this model, we must first load the data and format the covariate

rasters:

library(raster)

load(url(pasteO("https://github.com/henryrscharf/",
"Hooten_et_al_EL_2018/raw/master/",
"data/buffalo/buffalo_Cilla.RData")))

load(url(pasteO("https://github.com/henryrscharf/",
"Hooten_et_al_EL_2018/raw/master/",

137

"data/buffalo/dist2sabie.RData")))

Store the original data
original_values <- values(dist2sabie)
original_extent <- extent(dist2sabie)
original_res <- res(dist2sabie)

Create new raster with proper CRS using the correct syntazx
dist2sabie <- raster(original_extent,
resolution = original_res,
crs = CRS("+proj=utm +zone=36 +south +datum=WGS84 +units=m +no_de

Set values and name
values(dist2sabie) <- original_values
names (dist2sabie) <- "dist2sabie"

standardize dist2sabie based on slope of gradient
dist2sabie_scaled <- dist2sabie / mean(values(terrain(dist2sabie,
opt = "slope")),
na.rm = T)

calculate gradient
D_scaled <- ctmcmove::rast.grad(dist2sabie_scaled)

W (recharge function covartiates)

near_sabie = indicator for <5600m from water

intercept <- raster(dist2sabie)

values(intercept) <- 1

W <- stack(list("intercept" = intercept,
"near_sabie" = dist2sabie < 0.5e3))

W_names <- names (W)

orthogonalize W based on locations ———-

W_ortho <- W

W_path <- extract(x = W, y = matrix(buffalo_proj@coords, ncol = 2))
obstimes <- as.numeric(buffalo_proj$P0OSIX) / 3600 # numeric hours
W_tilde <- apply(W_path * c(0, diff(obstimes)), 2, cumsum)
W_tilde_svd <- svd(W_tilde)

W_tilde_proj_mat <- W_tilde_svd$v %*% diag(W_tilde_svd$d~(-1))
W_mat <- as.matrix(W)

W_mat_proj <- W_mat %x% W_tilde_proj_mat

for(layer in 1:ncol(W_mat)){

138

values(W_ortho[[layer]]) <- W_mat_proj[, layer]
names (W_ortho[[layer]]) <- pasteO("svd", layer)

}

Note that to (presumably) help with numerical stability, Hooten et al. (2019) orthog-
onalized the recharge function covariates as above; the resulting recharge function is
now gy = go + 22:1 w; ;01 + w3 ;05, where wi ; and wj ; are the transformed intercept
and distance indicator covariates, respectively.

The buffalo track data were collected from a GPS collar, but the roughly hourly
observations were not perfectly regular.We will therefore use crawlWrap to predict the
track at regular 15 min intervals (the average interval used by Hooten et al. 2019) and

assume a conservative 50 m isotropic error ellipse for the measurement error model.

1nError <- crawl::argosDiag2Cov(50,50,0) # 50m isotropic error ellipse
buffaloData <- data.frame(ID = 1,

time = obstimes,

x = buffalo_proj@coords[, 1],

y = buffalo_proj@coords[, 2],

In.sd.x = 1nError$ln.sd.x,

In.sd.y = lnError$ln.sd.y,

error.corr = 1lnError$error.corr)

crwOut <- crawlWrap(buffaloData,
theta = c(6.5,-.1),
fixPar = c(1,1,NA,NA),

err.model = list(x = "1ln.sd.x-1,

y = "ln.sd.y-1,

rho = “error.corr),
timeStep = 0.25, # predict at 15 min time steps
attempts = 10)

Now we’re ready to specify the recharge model. We'll first fit the model to the best
predicted track from crawlWrap and then use this model fit to specify starting values

for a multiple imputation analysis:

spatialCovs <- list(W_intercept = W_ortho$svdl,
W_near_sabie = W_ortho$svd2,
dist2sabie = dist2sabie,

139

D.x
D.y

D_scaled$rast.grad.x,
D_scaled$rast.grad.y)

best predicted track data
hmmData <- prepData(crwOut,
spatialCovs =
altCoordNames = "mu"
head (hmmDatal[,c("ID","time", "mu.x", "mu.y",

spatialCovs,

"W_intercept","W_near_sabie","dist2sabie",

W_intercept W_near_sabie dist2sabie

"D.X",”D.y")])
#Hit ID time mu.Xx mu.y
1 1 313344.4 384560.8 -2770752 -0.0001873081
2 1 313344.7 384560.3 -2770751 -0.0001873081
3 1 313344.9 384559.8 -2770749 -0.0001873081
4 1 313345.2 384559.3 -2770747 -0.0001873081
5 1 313345.4 384559.1 -2770744 -0.0001873081
6 1 313345.7 384559.1 -2770742 -0.0001873081
D.y
1 0.3635682
2 0.3635682
3 0.3635682
4 0.3635682
5 0.3635682
6 0.3635682
nbStates <- 2
stateNames <- c("charged", "discharged")

dist <- list(mu

"rw_mvnorm2") # bivariate mormal random walk

pseudo-design matrixz for mu
DM <- list(mu=matrix(c("mu.x_tml",

"mu.x_tml",

0,"mu.y_tml","D.y"

0,

3
b
b

3

O O O O O

3

b*nbStates,
6 ,byrow=TRUE,

140

0,

-

O "D.X”
0,"mu.y_tml",

0,

3
b
b

3

O O O O O

3

o

O, OO O Fr OO OO

-

- -

-

-

-

O O O O O O

-

.003616337
.003616337
.003616337
.003616337
.003616337
.003616337

-
-
-

-
-
-

-
-
-

-
-
-

-
-

-
-
-

-
-
-

-
-

H O OO kFr OO O O O
OO P, Pk OO OO O o
N ©

1323.
1323.
1323.
1323.
1323.
1323.

424
424
424
424
424
424

D.x

.229027
.229027
.229027
.229027
.229027
.229027

dimnames=1ist(c(paste0("mean.",
rep(c("x_","y_"),
each=nbStates),
1:nbStates),
pasteO("sigma.",
rep(c("x_","xy_","y_"),
each=nbStates),
1:nbStates)),
c("x:x_tml",
"yry_tml",
"xy:D",
"sigma_1:(Intercept)",
"sigma_2: (Intercept)",
"sigma_12: (Intercept)"))))

starting values

ParO=list(mu=c(1, 1, 0, log(85872.66), log(37753.53), 0))
g0 <- 0 # recharge function at time 0

theta <- c(0,0,0) # recharge function parameters

specify recharge formula
note that theta formula requires an ’intercept’ term
formula <- ~ recharge(gd = "1,

theta = "W_intercept+W_near_sabie)

remove Markov property
betaRef <- c(1,1) # make state 1 the reference state
betaCons <- matrix(c(1,2),2,2) #1 -> 1 =2 ->1and 1 -> 2 =2 -> 2

set fized parameters
fixPar <- list(mu = c(ParO$mu[1:2],NA,NA,NA,ParO$mul6]),
beta = matrix(c(0,-1,0,-1),2,2),
delta = c(0.5,0.5),
theta = c(0,NA,NA)) # fiz extra ’intercept’ term to zero

check recharge model spectfication
checkPar(O(hmmData, nbStates = nbStates, dist = dist,
formula = formula, Par0O = ParoO,
beta0 = list(beta = fixPar$beta,

g0 = g0,
theta = theta),
delta0 = fixPar$delta, fixPar = fixPar,

141

#
##
#it
#it
#it
#t
##
#it
#it
#it
#Ht
##
##
#it
#it
#Hit
##
##
#it
#it
#Ht
##
##
#it
#it
#it
#Ht
##

DM = DM, betaRef = betaRef, betaCons = betaCons,
stateNames = stateNames)

Regression coeffs for mu parameters:

x:x_tml y:y_tml xy:D sigma_1:(Intercept) sigma_2:(Intercept)
[1,] 1 1 0 11.36062 10.53883
sigma_12: (Intercept)
[1,] 0
Regression coeffs for the transition probabilities (beta):

1 ->22->2
(Intercept) 0 0
recharge -1 -1
Initial distribution:

charged discharged
0.5 0.5

Initial recharge parameter (gO):
(Intercept)
0

Recharge function parameters (theta):

(Intercept) W_intercept W_near_sabie
0 0 0

fit to best predicted path
buffaloFit <- fitHMM(hmmData, nbStates = nbStates, dist = dist,

formula = formula, Par0O = ParO,
beta0 = list(g0=g0,
theta=theta),
fixPar = fixPar,
DM = DM, betaRef = betaRef, betaCons = betaCons,
stateNames = stateNames,
mvnCoords = "mu",
optMethod = "Nelder-Mead",
control = list(maxit=1000))

142

##
Fitting HMM with 2 states and 1 data stream

mu T rw.mvnorm2(mean.xz: custom, mean.y: custom, sigma.z: custom,
sigma.zy: custom, sigma.y: custom)

##

Transition probability matriz formula: “recharge(g0 = “1, theta =

+ W.near_sabie)

“W_intercept

##

Initial distridbution formula: ~1
##

DONE

bestPar <- getPar(buffaloFit)

There are several things worth noting in the code above. When specifying normal
random walk models using a pseudo-design matrix, we must include terms for the
previous location in mean.x and mean.y (in this case “mu.x_tm1” and “mu.y_tml”,
respectively), and we’ll typically fix the corresponding coeffcients to 1 using fixPar.
As in Hooten et al. (2019), we assume that the coefficients for the negative gradi-
ent (D) are equal in the x- and y-directions (i.e., 84 = fI; this constraint is spec-
ified in the third column of DM above) and that the state-dependent sigma.x and
sigma.y are equal. Similar to random effects models (section 3.9), note that for
recharge models beta0 must now be specified as a list (consisting of objects named
beta, g0, and/or theta). Hooten et al. (2019) assumed state transitions were non-
Markov (Eq. 11), and we can accomplish this by setting the reference states for the
t.p.m. working scale parameters to state 1 (i.e., betaRef <- c(1,1)) and setting the
columns within each row to be equal (i.e., betaCons <- matrix(c(1,2),2,2)). With
formula <- ~ recharge(g0 = "1, theta = “W_intercept+W_near_sabie), the re-

sulting state transition probability matrix at time ¢ is:

1 exp(Bo+g:b1)
0 — | (+exp(Bo+g:61)) (1+exp(Bo+gefr))
1 exp(Bo+g:51) ’
(14-exp(Bo+gt81)) (1+exp(Bo+g:51))

143

where

t
gt = go + Z 0o + W_intercept,;0; + W _near sabie;0s.
j=1

Using fixPar, we fixed y = 0 and ; = —1. Thus we have removed the Markov
property from the state-switching dynamics and ensured that the probability of being
in the “discharged” state (state 2) decreases as the recharge function (g;) increases as
in Eq. 11. We also fix 8y = 0 because we do not need the required intercept term in this
particular case (an orthogonalized intercept term “W_intercept” is already included as
a covariate). Because we have removed the Markov property from the state-switching
dynamics, the initial distribution has no effect on the likelihood; we therefore fixed it
(arbitrarily) to delta=c(0.5,0.5).

Now that we have our starting values (“bestPar”), let’s fit 28 imputations of the

position process using MIfitHMM:

buffaloFits <- MIfitHMM(crwOut, nSims=28,

spatialCovs = spatialCovs,

mvnCoords="mu", altCoordNames = "mu",

nbStates=nbStates, dist=dist, formula=formula,

ParO=bestPar$Par, betalO=bestPar$beta,

fixPar=fixPar, DM=DM,

betaRef=betaRef, betaCons=betaCons,

stateNames = stateNames,

retryFits = 3, retrySD=list(mu=c(0,0,3,0,0,0),
g0=1,
theta=c(0,1,1)),

optMethod = "Nelder-Mead",

control = list(maxit=100000))

plot(buffaloFits,plotCI=TRUE, ask=FALSE)
plotSpatialCov(buffaloFits,dist2sabie)

plot estimates and CIs for Pr(discharged) at each time step
trProbs <- getTrProbs(buffaloFits, getCI=TRUE)
plot (trProbs$est[1,2,],type="1", ylim=c(0,1),
ylab="Pr(discharged)", xlab="t",
col=c("#EBG9F00", "#56B4E9") [buffaloFits$miSum$Par$states])
arrows (1:dim(trProbs$est) [3],
trProbs$lower([1,2,],
1:dim(trProbs$est) [3],

144

trProbs$upper(1,2,],
length=0.025, angle=90, code=3,
col=c("#EBG9F00", "#56B4E9") [buffaloFits$miSum$ParPstates],
lwd=1.3)
abline(h=0.5,1ty=2)

As in Hooten et al. (2019), we found that the buffalo spent a majority of time steps in
the discharged state (73%, 95% CI: 70 — 76%) and thus needed to recharge regularly
near water resources. With estimated go = —0.27 (95% CI: —0.75 — 0.2), 6; = 1.43
(95% CI: —0.62 — 3.48), and 6, = 2.52 (95% CI: 1.47 — 3.57), the estimated recharge
function and transition probabilities (Figure 26) look very similar to those reported
by Hooten et al. (2019). However, Hooten et al. (2019) found some evidence that the
buffalo orients toward surface water when in the discharged state, but our discrete-
time formulation did not find evidence of such biased movement (5* = 0.65, 95% CI:
—2.25 — 3.55). This difference could be attributable to several factors, including our
formulation being in discrete time (instead of continuous time), our use of a 2-stage
multiple imputation approach based on the CTCRW (instead of a single-stage model),
and the absence of prior distributions in our non-Bayesian model. Nevertheless, infer-
ences about recharge and state-switching dynamics are essentially the same between

our discrete-time formulation and the continuous-time model of Hooten et al. (2019).

3.12 Simulating constrained movement

In section 3.3 we briefly demonstrated how potential functions can be used within a
bivariate normal random walk to model loggerhead turtle movements relative to ocean
surface currents. Here we’ll show how this approach can be used in simData to simulate
movement data subject to barriers or other constraints (e.g. land for marine animals).
To accomplish this, we’ll rely on the forest raster that is automatically loaded with
momentuHMM. We'll start by pretending that forest cells with values > 0 are “land”
and all others are “water”. Then we’ll create a new raster named boundary containing

the shortest distance from land to water using raster: :distance:

boundary <- forest

boundary [boundary>0] <- NA

boundary <- raster::distance(boundary)
names (boundary) <- "boundary"

145

dist2sabie
12500
le il
T500
5000
2500

=2TE0000 1

=
=27 T

state
+ charged
—— diacharged

=2T80000 1

0000 385000 300000 305000 400000
X

ID 1 recharge function

0.0

alt)
-1.0

=20
]

0 200 400 600 800 1000 1200 1400

08

0.4

Pr{discharged)

0.0
|

Figure 26. African buffalo estimated states (top), recharge function (middle), and (non-
Markov) transition probability to the discharged state (bottom) at each time step (t).

146

Next we’ll calculate the gradients of the potential function surface in the x- and

y-directions using ctmcmove: :rast.grad:

boundary needs to have a CRS for ctmcmove::rast.grad
proj4string(boundary) <- sp::CRS("+init=epsg:4326")

compute gradients in z- and y- directions
grad <- ctmcmove::rast.grad(boundary)

grad.x <- grad$rast.grad.x

grad.y <- grad$rast.grad.y

Now we’re ready to simulate our bivariate normal random walk model including the

gradients as covariates:

dist <- list(mu="rw_mvnorm2") # bivariate normal random walk
DM <- list(mu=list(mean.x="mu.x_tml+crw(mu.x_tml,lag=1)+grad.x,
mean.y="mu.y_tml+crw(mu.y_tml,lag=1)+grad.y,
sigma.x="1,
sigma.xy="1,
sigma.y="1))

spectfy parameters on working parameter scale

Par <- list(mu=c(1,0.75,-750000,1,0.75,-1500,10g(100000),0,10g(100000)))

names (Par$mu) <- c("mu.x_tml","crw(mu.x_tml,lag=1)","grad.x",
"mu.y_tml","crw(mu.y_tml,lag=1)","grad.y",
"sigma.x","sigma.xy","sigma.y")

simulate and plot
simBound <- simData(nbStates=1, obsPerAnimal = 10000, dist=dist, Par=Par,
DM=DM, spatialCovs=list(grad.x = grad.x,
grad.y = grad.y),
mvnCoords="mu", initialPosition=c(25000,75000))
plot(simBound,dataNames=c("mu.x","mu.y") ,ask=FALSE)
plot (boundary$boundary)
points(simBound$mu.x,simBound$mu.y,type="1")

The model specified in DM is identical to Eq. 10, except we have replaced the ocean
surface current velocities with the gradients for shortest distance to water in the x- and
y-directions (grad.x and grad.y, respectively). As we can see in Figure 27, the track

is repelled from “land” and tends to stay in the “water”. This strong attraction to

147

=3
[
=
= ‘ Distance to water
vl 60000
=3
=3
ﬂ pu—
i 50000
— 40000
=3
— 30000
20000
=3
[
[
B — 10000
0
=
[
[
S _
E. I I
-100000 -50000 0 50000 100000

Figure 27. Simulated track from a bivariate normal random walk model with movements
repulsed from “land” using a potential function.

148

water owes to the large negative values for the coefficients corresponding to grad.x and

grad.y.

4 Discussion

Here we have introduced version 1.5.7 of the R package momentuHMM and demonstrated
some of its capabilities for conducting multivariate HMM analyses with animal loca-
tion, auxiliary biotelemetry, and environmental data. The package allows for fitting
(and simulating from) a suite of biased and correlated random walk movement pro-
cess models (e.g. McClintock et al. 2012), can be used for an unlimited number of
data streams and latent behavior states, includes multiple imputation methods to ac-
count for measurement error, temporal irregularity, and other forms of missing data
that would otherwise be prohibitive to maximum likelihood analysis, and integrates
seamlessly with rasters to facilitate spatio-temporal covariate modelling. Because the
package incorporates biased random walks, it can also be used to implement group
dynamic models (e.g. Langrock et al. 2014). The package therefore greatly expands on
available software and facilitates the incorporation of more ecological and behavioral
realism for hypothesis-driven analyses of animal movement that account for many of
the challenges commonly associated with telemetry data. While many of the features
of momentuHMM were motivated by animal movement data, we note that the package
is not limited to location data and can be used for analyzing any type of data that is
amenable to (multivariate) HMMs.

Model fitting in momentuHMM is relatively fast because the forward algorithm (Eq.
1) is coded in C++. Because multiple imputations are completely parallelizable, with
sufficient processing power computation times for analyses that account for measure-
ment error, temporal irregularity, or other forms of missing data need not be longer
than that required to fit a single HMM. However, computation times will necessarily be
longer as the number of states and/or parameters increase. For example, momentuHMM
required about 1 hr to fit a single HMM with N = 6 states, seven data streams, and
T = 7414 time steps (McClintock 2017).

As in any maximum likelihood analysis based on numerical optimization, compu-
tation times will also depend on the starting values (ParO and beta0O). Specifying

“good” starting values is arguably the most challenging aspect of model fitting in

149

momentuHMM, particularly for the working scale coefficients when using covariates. The
getPar, getPar0, getParDM, and checkPar0O functions are designed to help with the
specification of starting values, and the retryFits argument in crawlWrap, fitHMM,
and MIfitHMM will re-optimize based on random perturbations of the parameters to help
explore the likelihood surface and diagnose convergence to local maxima. Optimization
for the circular-linear regression link function (tan(mean/2); see Table 2) in particular
can be prone to local minima, so users are encouraged to explore a range of starting
values when fitting these models.

While momentuHMM includes functions for drawing realizations of the position pro-
cess based on the CTCRW model of Johnson et al. (2008), this is but one of many
methods for performing the first stage of multiple imputation. Realizations of the po-
sition process from any movement model that accounts for measurement error and/or
temporal irregularity (e.g. Calabrese et al. 2016; Gurarie et al. 2017) could be passed to
MIfitHMM for HMM-type analyses in the second stage. Multiple imputation methods
also need not be limited to these telemetry error scenarios. For example, conventional
missing data could also be imputed using standard techniques (Rubin & Schenker 1986),
thereby allowing the investigation of non-random mechanisms for missingness that can
be problematic if left unaccounted for in HMMs.

There remain many potential avenues for refining and extending the capabilities of
momentuHMM. Computation times could likely be improved by further optimizing the
R and C++ code for speed. Notable extensions include hidden semi-Markov models
and random effects on data stream probability distribution parameters (Zucchini et al.
2016). We would also like to incorporate additional parameters for change-point thresh-
olds and the locations of activity centers instead of requiring that they be pre-specified
(and potentially compared using AIC or other model selection criteria) as in grey seal
example. Lastly, it is relatively straightforward to add additional probability distribu-
tions, and we are pleased to do so upon request. Practitioners interested in additional

features for momentuHMM are encouraged to contact the authors.

Acknowledgments

We are grateful to R. Scott, B. Godley, M. Godfrey, J. Sudre, and North Carolina

Aquariums for providing the data used in our turtle example. We are also grateful to

150

the many authors who made their data publicly available for use in our examples (Wall
et al. 2014; Pirotta et al. 2018; Isojunno et al. 2017; Leos-Barajas et al. 2017; Adam
et al. 2019). The findings and conclusions in this vignette are those of the author(s)
and do not necessarily represent the views of the National Marine Fisheries Service,
NOAA. Any use of trade, product, or firm names does not imply an endorsement by
the US Government.

References

Adam, T., Griffiths, C.A., Leos-Barajas, V., Meese, E.N., Lowe, C.G., Blackwell, P.G.,
Righton, D. & Langrock, R. (2019) Joint modelling of multi-scale animal movement

data using hierarchical hidden markov models. Methods in Ecology and FEvolution.

Beyer, H.L., Morales, J.M., Murray, D. & Fortin, M.J. (2013) The effectiveness of
Bayesian state-space models for estimating behavioural states from movement paths.
Methods in Ecology and Evolution, 4, 433-441.

Brillinger, D.R., Preisler, H.K., Ager, A.A. & Kie, J. (2012) The use of potential
functions in modelling animal movement. Selected Works of David Brillinger, pp.
385-409. Springer.

Burnham, K.P. & White, G.C. (2002) Evaluation of some random effects methodology
applicable to bird ringing data. Journal of Applied Statistics, 29, 245-264.

Calabrese, J.M., Fleming, C.H. & Gurarie, E. (2016) ctmm: an R package for analyzing
animal relocation data as a continuous-time stochastic process. Methods in Ecology
and Evolution, 7, 1124-1132.

Cornelissen, G. (2014) Cosinor-based rhythmometry. Theoretical Biology and Medical
Modelling, 11, 16.

Costa, D.P., Robinson, P.W.,; Arnould, J.P., Harrison, A.L., Simmons, S.E., Hassrick,
J.L., Hoskins, A.J., Kirkman, S.P., Oosthuizen, H., Villegas-Amtmann, S. et al.

(2010) Accuracy of argos locations of pinnipeds at-sea estimated using fastloc gps.
PloS one, 5, e8677.

151

DeRuiter, S.L., Langrock, R., Skirbutas, T., Goldbogen, J.A., Calambokidis, J., Fried-
laender, A.S. & Southall, B.L. (2017) A multivariate mixed hidden Markov model to
analyze blue whale diving behaviour during controlled sound exposures. The Annals
of Applied Statistics, 11, 362-392.

Gilbert, P. & Varadhan, R. (2016) numDeriv: Accurate Numerical Derivatives. R
package version 2016.8-1.

Glur, C. (2018) data.tree: General Purpose Hierarchical Data Structure. R package

version 0.7.8.

Gurarie, E., Fleming, C.H., Fagan, W.F., Laidre, K.L., Hernandez-Pliego, J. &
Ovaskainen, O. (2017) Correlated velocity models as a fundamental unit of animal

movement: synthesis and applications. Movement Ecology, 5, 13.
Hijmans, R.J. (2016a) geosphere: Spherical Trigonometry. R package version 1.5-5.

Hijmans, R.J. (2016b) raster: Geographic Data Analysis and Modeling. R package

version 2.5-8.

Hooten, M.B., Johnson, D.S.,; McClintock, B.T. & Morales, J.M. (2017) Animal Move-
ment: Statistical Models for Telemetry Data. CRC Press.

Hooten, M.B., Scharf, H.R. & Morales, J.M. (2019) Running on empty: recharge dy-

namics from animal movement data. Ecology letters, 22, 377-389.

Isojunno, S., Sadykova, D., DeRuiter, S., CurA@, C., Visser, F., Thomas, L., Miller,
P.J.O. & Harris, C.M. (2017) Individual, ecological, and anthropogenic influences on
activity budgets of long-finned pilot whales. Ecosphere, 8, e02044.

Johnson, D.S. (2017) crawl: Fit Continuous-Time Correlated Random Walk Models to

Animal Movement Data. R package version 2.1.1.

Johnson, D.S., London, J.M., Lea, M.A. & Durban, J.W. (2008) Continuous-time cor-
related random walk model for animal telemetry data. Ecology, 89, 1208-1215.

Jonsen, 1.D.; Flemming, J.M. & Myers, R.A. (2005) Robust state-space modeling of
animal movement data. Ecology, 86, 2874-2880.

152

Langrock, R., Hopcraft, G., Blackwell, P., Goodall, V., King, R., Niu, M., Patterson,
T., Pedersen, M., Skarin, A. & Schick, R. (2014) Modelling group dynamic animal
movement. Methods in Ecology and Evolution, 5, 190-199.

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. & Morales, J.M.
(2012) Flexible and practical modeling of animal telemetry data: hidden Markov
models and extensions. Ecology, 93, 2336-2342.

Leos-Barajas, V., Gangloff, E.J., Adam, T., Langrock, R., Van Beest, F.M., Nabe-
Nielsen, J. & Morales, J.M. (2017) Multi-scale modeling of animal movement and
general behavior data using hidden markov models with hierarchical structures. Jour-

nal of Agricultural, Biological and Environmental Statistics, 22, 232-248.

McClintock, B.T. (2017) Incorporating telemetry error into hidden markov models of
animal movement using multiple imputation. Journal of Agricultural, Biological, and
Environmental Statistics, 22, 249-269.

McClintock, B.T. (2021) Worth the effort? A practical examination of random effects in
hidden Markov models for animal telemetry data. Methods in Ecology and Evolution,
https://doi.org/10.1111/2041-210X.13619.

McClintock, B.T., Johnson, D.S., Hooten, M.B., Ver Hoef, J.M. & Morales, J.M. (2014)
When to be discrete: the importance of time formulation in understanding animal

movement. Movement Ecology, 2, 21.

McClintock, B.T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B.J. &
Morales, J.M. (2012) A general discrete-time modeling framework for animal move-

ment using multistate random walks. Fcological Monographs, 82, 335-349.

McClintock, B.T., London, J.M., Cameron, M.F. & Boveng, P.L. (2017) Bridging the
gaps in animal movement: hidden behaviors and ecological relationships revealed by

integrated data streams. Fcosphere, 8, e01751.

McClintock, B.T. & Michelot, T. (2018) momentuHMM: R package for generalized
hidden Markov models of animal movement. Methods in Ecology and Evolution, 9,
1518-1530.

153

https://doi.org/10.1111/2041-210X.13619

McClintock, B.T., Russell, D.J., Matthiopoulos, J. & King, R. (2013) Combining indi-
vidual animal movement and ancillary biotelemetry data to investigate population-
level activity budgets. Ecology, 94, 838-849.

McKellar, A.E., Langrock, R., Walters, J.R. & Kesler, D.C. (2014) Using mixed hid-
den Markov models to examine behavioral states in a cooperatively breeding bird.
Behavioral Ecology, 26, 148-157.

Michelot, T., Langrock, R., Bestley, S., Jonsen, I.D., Photopoulou, T. & Patterson, T.A.
(2017) Estimation and simulation of foraging trips in land-based marine predators.
Ecology, 98, 1932-1944.

Michelot, T., Langrock, R. & Patterson, T.A. (2016) moveHMM: An R package for the
statistical modelling of animal movement data using hidden Markov models. Methods
in FEcology and Fvolution, 7, 1308-1315.

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E. & Fryxell, J.M. (2004) Extract-
ing more out of relocation data: building movement models as mixtures of random
walks. Ecology, 85, 2436-2445.

Pirotta, E., Edwards, E.-W.J., New, L. & Thompson, P.M. (2018) Central place foragers
and moving stimuli: A hidden-state model to discriminate the processes affecting
movement. Journal of Animal Ecology, 87, 1116-1125.

R Core Team (2017) R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rivest, L.P., Duchesne, T., Nicosia, A. & Fortin, D. (2016) A general angular regression
model for the analysis of data on animal movement in ecology. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 65, 445-463.

Rubin, D.B. & Schenker, N. (1986) Multiple imputation for interval estimation from
simple random samples with ignorable nonresponse. Journal of the American Statis-
tical Association, 81, 366-374.

Sarda-Espinosa, A. (2017) dtwclust: Time Series Clustering Along with Optimizations
for the Dynamic Time Warping Distance. R package version 3.1.2.

154

Towner, A.V., Leos-Barajas, V., Langrock, R., Schick, R.S., Smale, M.J., Kaschke, T,
Jewell, O.J.D. & Papastamatiou, Y.P. (2016) Sex-specific and individual preferences
for hunting strategies in white sharks. Functional Ecology, 30, 1397-1407.

Wall, J., Wittemyer, G., LeMay, V., Douglas-Hamilton, I. & Klinkenberg, B. (2014)
Elliptical time-density model to estimate wildlife utilization distributions. Methods
i Ecology and Evolution, 5, 780-790.

Whoriskey, K., Auger-Méthé, M., Albertsen, C.M., Whoriskey, F.G., Binder, T.R.,
Krueger, C.C. & Mills Flemming, J. (2017) A hidden markov movement model for

rapidly identifying behavioral states from animal tracks. Ecology and Evolution, 7,
2112-2121.

Zucchini, W., MacDonald, [.L. & Langrock, R. (2016) Hidden Markov Models for Time
Series: An Introduction Using R. CRC Press.

155

	Introduction
	momentuHMM overview
	Data preparation and visualization
	HMM specification and fitting
	Circular-circular regression model for the angle mean
	Individual-level random effects
	Discrete-valued random effects
	Continuous-valued random effects

	Hierarchical hidden Markov models
	Random walk probability distributions
	Recharge dynamics
	Multiple imputation
	Model visualization and diagnostics
	Simulation

	Examples
	African elephant
	Northern fur seal
	Loggerhead turtle
	Grey seal
	Southern elephant seals
	Model 1: no covariates
	Model 2
	Model 3

	Group dynamic animal movement
	Harbour seals
	Northern fulmars
	Pilot whales
	Hierarchical HMMs
	Harbor porpoise
	Garter snakes
	Atlantic cod
	Horn shark

	African buffalo recharge dynamics
	Simulating constrained movement

	Discussion

