multibias 1.7.2
- Added multibias_plot()to visualize sensitivity
analysis results
- When using validation data in multibias_adjust()the
function now incorporates uncertainty of the effect estimates from the
validation data by sampling from each estimate’s mean and SE. Now, when
using validation data, the confidence intervals from multibias
bootstrapped results will represent two sources of uncertainty: random
error and systematic error.
- Added FAQ documentation
multibias 1.7.1
- Updated code with dynamic formula construction so that there is no
limit to the number of known confounders one can include when using
bias_paramsas an input formultibias_adjust()
- multibias_adjust()now has built in bootstrapping
- Added summary()method todata_observed
multibias 1.7
- Created bias_paramsclass to handle bias parameter
inputs tomultibias_adjust()
- Replaced the various adjust()functions with a singlemultibias_adjust()function. Users now specify the biases
they want to adjust for in thedata_observedobject. Bias
adjustment formulas are now found in thebias_paramsdocumentation.
- The user now specifies biases for adjustment in the
biasinput ofdata_observed
- Removed evansdata; now only used in vignette
multibias 1.6.3
- Created a pkgdownweb page:
www.paulbrendel.com/multibias
- Refined the vignette, including a new NHANES analysis
multibias 1.6.2
- The following functions now accept data_validationas
an input for bias adjustment:
- adjust_om_sel.R
- adjust_uc_sel.R
- adjust_uc_em.R
- adjust_uc_om.R
- adjust_uc_em_sel.R
- adjust_uc_om_sel.R
 
multibias 1.6.1
- The following functions now accept data_validationas
an input for bias adjustment:
- adjust_em_om.R
- adjust_em_sel.R
 
- Bug fixes for validation data input in adjust_em.Randadjust_om.R
- Bug fixes for data and printing in data_observedanddata_validation
multibias 1.6
- Created new class data_observedto represent observed
causal data
- All adjustfunctions now takedata_observedas input
- Created new class data_validationto represent causal
data that can be used as validaiton data for bias adjustment
- The following functions now accept data_validationas
an input for bias adjustment:
- adjust_uc.R
- adjust_em.R
- adjust_om.R
- adjust_sel.R
 
multibias 1.5.3
- All exposure misclassificaiton naming changed from emcchanged toem
- All outcome misclassificaiton naming changed from omcchanged toom
- Added lifecycle badges for above function renames
- Merged adjust_multinom_uc_em_selintoadjust_uc_em_sel
- Merged adjust_multinom_uc_om_selintoadjust_uc_om_sel
- The following functions now support more flexible combinations of
continuous and binary exposure-outcome variables:
- adjust_uc_em_sel.R
- adjust_uc_om_sel.R
 
multibias 1.5.2
- Merged adjust_multinom_emc_omcintoadjust_emc_omc
- Merged adjust_multinom_uc_emcintoadjust_uc_emc
- Merged adjust_multinom_uc_omcintoadjust_uc_omc
- The following functions now support more flexible combinations of
continuous and binary exposure-outcome variables:
- adjust_emc_sel(exposure must be binary)
- adjust_omc_sel(outcome must be binary)
- adjust_uc_emc(exposure must be binary)
- adjust_uc_omc(outcome must be binary)
- adjust_multinom_uc_emc(exposure must be binary)
- adjust_multinom_uc_omc(outcome must be binary)
 
- Expanded the number of known confounders in dataframes:
- df_omc_sel
- df_omc_sel_source
 
multibias 1.5.1
- The following functions now support more flexible combinations of
continuous and binary exposure-outcome variables:
- adjust_uc
- adjust_emc(exposure must be binary)
- adjust_omc(outcome must be binary)
- adjust_sel
- adjust_uc_sel
 
- Expanded the number of known confounders in dataframes:
- df_uc_omc
- df_uc_omc_source
- df_uc_emc
- df_uc_emc_source
 
- Dataframes df_ucanddf_uc_sourcenow both
have continuous and binary exposures and outcomes.
multibias 1.5.0
New features
- Added two functions for simultaneous adjustment of uncontrolled
confounding, outcome misclassification, and selection bias:
adjust_uc_omc_sel&adjust_multinom_uc_omc_sel.
- Added dataframes with uncontrolled confounding, outcome
misclassification, and selection bias: df_uc_omc_selanddf_uc_omc_sel_source.
- Expanded the number of known confounders in dataframes:
- df_uc_sel
- df_uc_sel_source
 
multibias 1.4.0
New features
- Added two functions for simultaneous adjustment of exposure
misclassification and outcome misclassification:
adjust_emc_omc&adjust_multinom_emc_omc.
- Added dataframes with exposure misclassification and outcome
misclassification: df_emc_omcanddf_emc_omc_source.
- Expanded the number of known confounders in dataframes:
- df_emc_sel
- df_emc_sel_source
 
Bug fixes
- Improved some of the documentation of equations.
multibias 1.3.0
New features
- Added a function for simultaneous adjustment of outcome
misclassification and selection bias: adjust_omc_sel.
- Added dataframes with outcome misclassification and selection bias:
df_omc_selanddf_omc_sel_source.
- Expanded the number of known confounders in dataframes:
- df_uc
- df_uc_source
- df_emc
- df_emc_source
- df_omc
- df_omc_source
- df_sel
- df_sel_source
 
Bug fixes
- Fixed bug in adjust_omcthat appears when using three
confounders
multibias 1.2.1
- Moved examples from README to vignette.
multibias 1.2.0
New features
- Added two functions for simultaneous adjustment of uncontrolled
confounding and outcome misclassification: adjust_uc_omcandadjust_multinom_uc_omc.
- Added dataframes with uncontrolled confounding and outcome
misclassification: df_uc_omcanddf_uc_omc_source.
Bug fixes
multibias 1.1.0
New features
- Created new function to adjust for outcome misclassification:
adjust_omc.
- Added dataframes for all single bias scenarios:
- df_emc
- df_emc_source
- df_omc
- df_omc_source
- df_sel
- df_sel_source
- df_uc
- df_uc_source
 
Bug fixes
- adjust_selhad been weighing with the probability of
selection instead of the inverse probability of
selection.
multibias 1.0.0