Package ‘ohun’

October 23, 2025

Title Optimizing Acoustic Signal Detection
Version 1.0.4
Maintainer Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>

Description Facilitates the automatic detection of acoustic signals,
providing functions to diagnose and optimize the performance of detection
routines. Detections from other software can also be explored and optimized.
This package has been peer-reviewed by rOpenSci.
Araya-Salas et al. (2022) <doi:10.1101/2022.12.13.520253>.

License GPL (>=2)
Encoding UTF-8

URL https://docs.ropensci.org/ohun/, https://github.com/ropensci/ohun/

BugReports https://github.com/ropensci/ohun/issues/
VignetteBuilder knitr

RoxygenNote 7.3.2

Language en-US

Imports tuneR, warbleR (>= 1.1.32), cli, methods, stats, utils,
seewave (>= 2.0.1), fftw, rlang, sf, igraph, checkmate, ggplot2

Depends R (>=3.2.1)
Suggests knitr, rmarkdown, testthat, viridis, Sim.DiffProc, vdiffr
NeedsCompilation no

Author Marcelo Araya-Salas [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3594-619X>),
Alec L. Robitaille [rev] (ORCID:
<https://orcid.org/0000-0002-4706-1762>),
Sam Lapp [rev] (ORCID: <https://orcid.org/0000-0003-1637-6822>)

Repository CRAN
Date/Publication 2025-10-22 23:20:08 UTC

https://doi.org/10.1101/2022.12.13.520253
https://docs.ropensci.org/ohun/
https://github.com/ropensci/ohun/
https://github.com/ropensci/ohun/issues/
https://orcid.org/0000-0003-3594-619X
https://orcid.org/0000-0002-4706-1762
https://orcid.org/0000-0003-1637-6822

2 consensus_detection

Contents
consensus_detection e e e e e 2
diagnose_detectionl L e e e e 4
energy_detector L. 8
get_envelopes L e e e 12
get_templates e 15
label detection e e 17
label_spectro L e 19
Ibhl . . . e 22
Ibh2 . . . e 22
Ibh_reference 23
merge_overlaps e 24
optimize_energy_detector e e 25
optimize_template_detector 30
plot_detection e e e e e 33
reassemble_detection L. oL e 35
split_acoustic_data L. e 37
summarize_acoustic_datao e e e 39
summarize_diagnostic L. e e e e e e e e 40
summarize_reference L. Lo e e 43
template_correlator L e 45
template_detector e e e e 48

Index 51

consensus_detection Remove ambiguous detections
Description
consensus_detection removes ambiguous detections
Usage

consensus_detection(

detection,
by = "overlap”,
filter = "max”,
cores = 1,
pb = TRUE

consensus_detection 3

Arguments
detection Data frame or selection table (using the warbleR package’s format, see selection_table)
with the output of 1abel_detection containing the start and end of the signals.
Must contained at least the following columns: "sound.files", "selec", "start",
"end" and "detection.class" (the last one is generated by label_detection). It
must also contained the column indicated in the by’ argument (which is "over-
lap’ by default).
by Character vector of length 1 indicating a column in ’detection’ that will be used
to filter detections. Must refer to a numeric column. Default is *overlap’, which
is return by label_detection.
filter Character vector of length 1 indicating the criterium used to filter the column
refer to by the by’ argument. Current options are *'max’ (maximum) and *min’
(minimum). Default is *max’.
cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).
pb Logical argument to control progress bar. Default is TRUE.
Details

This function removes ambiguous detections keeping only the one that maximizes a criterium given
by ’filter’. By default it keeps the detection with the highest overlap to the reference signal. It works
on the output of label_detection. Mostly useful when several detections match the same refer-
ence as in the case of template detection with multiple templates (see template_detector). Keep
in mind that the argument ’solve.ambiguous’ most be FALSE to keep those ambiguous detections.

Value

A data frame or selection table (if detection’ was also a selection table, warbleR package’s format,
see selection_table) as in *X’ but removing ambiguous detections (split and merged positives).

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

label_detection, template_detector

4 diagnose_detection

Examples

{
load example data

data(”1lbh1"”, "lbh_reference")

save sound files
tuneR: :writeWave(lbhl, file.path(tempdir(), "lbh1l.wav"))

template for the first sound file in 'lbh_reference'
templ1 <- 1bh_reference[lbh_reference$sound.files == "1bh1.wav" & lbh_reference$selec == 11,]

generate template correlations

tc <- template_correlator(
templates = templl, path = tempdir(),
files = "1bh1.wav"

)

template detection
td <- template_detector(template.correlations = tc, threshold = 0.35)

this detection generates 2 split positives
diagnose_detection(
reference = lbh_reference[lbh_reference == "lbhl.wav", 1,
detection = td,
solve.ambiguous = FALSE

label detection
1td <- label_detection(
reference = lbh_reference[lbh_reference == "lbh1.wav", 1,
detection = td,
solve.ambiguous = FALSE

)

now they can be filter to keep the detection with the highest score for each split
ftd <- consensus_detection(ltd, by = "scores")

splits must be @
diagnose_detection(
reference = lbh_reference[lbh_reference == "lbhl.wav", 1,
detection = ftd,
solve.ambiguous = FALSE
)
3

diagnose_detection Evaluate the performance of a sound event detection procedure

diagnose_detection

Description

diagnose_detection evaluates the performance of a sound event detection procedure comparing
the output selection table to a reference selection table

Usage

diagnose_detection(

reference,
detection,

by.sound.file

= FALSE,

time.diagnostics = FALSE,

cores = 1,
pb = TRUE,

path = NULL,

by = NULL,

macro.average = FALSE,

min.overlap

= 0.5,

solve.ambiguous = TRUE

Arguments

reference

detection

by.sound.file

Data frame or ’selection.table’ (following the warbleR package format) with
the reference selections (start and end of the sound events) that will be used
to evaluate the performance of the detection, represented by those selections
in ’detection’. Must contained at least the following columns: "sound.files",
"selec", "start" and "end". It must contain the reference selections that will
be used for detection optimization.

Data frame or ’selection.table’ with the detections (start and end of the sound
events) that will be compared against the ’reference’ selections. Must contained
at least the following columns: "sound.files", "selec", "start" and "end". It can
contain data for additional sound files not found in 'references’. In this case the
routine assumes that no sound events are found in those files, so detection from

those files are all false positives.

Logical argument to control whether performance diagnostics are summarized
across sound files (when by. sound. file = FALSE, when more than 1 sound file
is included in ’reference’) or shown separated by sound file. Default is FALSE.

time.diagnostics

cores

pb
path

Logical argument to control if diagnostics related to the duration of the sound

non "non

events ("mean.duration.true.positives", "mean.duration.false.positives", "mean.duration.false.negatives"

and "proportional.duration.true.positives") are returned (if TRUE). Default is FALSE.

Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

Logical argument to control progress bar. Default is TRUE.

Character string containing the directory path where the sound files are located.
If supplied then duty cycle (fraction of a sound file in which sounds were de-

6 diagnose_detection

tected)is also returned. This feature is more helpful for tuning an energy-based
detection. Default is NULL.

by Character vector with the name of a column in ’reference’ for splitting diagnos-
tics. Diagnostics will be returned separated for each level in by’. Default is
NULL.

macro.average Logical argument to control if diagnostics are first calculated for each sound
file and then averaged across sound files, which can minimize the effect of un-
balanced sample sizes between sound files. If FALSE (default) diagnostics are
based on aggregated statistics irrespective of sound files. The following indices
can be estimated by macro-averaging: overlap, mean.duration.true.positives,
mean.duration.false.positives, mean.duration.false.positives, mean.duration.false.negatives,
proportional.duration.true.positives, recall and precision (f.score is always de-
rived from recall and precision). Note that when applying macro-averaging,
recall and precision are not derived from the true positive, false positive and
false negative values returned by the function.

min.overlap Numeric. Controls the minimum amount of overlap required for a detection and
a reference sound for it to be counted as true positive. Default is 0.5. Overlap is
measured as intersection over union. Only used if solve.ambiguous = TRUE.
solve.ambiguous
Logical argument to control whether ambiguous detections (i.e. split and merged
positives) are solved using maximum bipartite graph matching. Default is TRUE.
If FALSE ambiguous detections are not solved.

Details

The function evaluates the performance of a sound event detection procedure by comparing its
output selection table to a reference selection table in which all sound events of interest have been
selected. The function takes any overlap between detected sound events and target sound events
as true positives. Note that all sound files located in the supplied ’path’ will be analyzed even
if not all of them are listed in ’reference’. When several possible matching pairs of sound event
and detections are found, the optimal set of matching pairs is found through maximum bipartite
matching (using the R package igraph). Priority for assigning a detection to a reference is given by
the amount of time overlap. ’splits’ and merge.positives’ are also counted (i.e. counted twice) as
“true.positives’. Therefore "true.positives + false.positives = detections".

Value
A data frame including the following detection performance diagnostics:

e detections: total number of detections

* true.positives: number of sound events in 'reference’ that correspond to any detection.
Matching is defined as some degree of overlap in time. In a perfect detection routine it should
be equal to the number of rows in 'reference’.

» false.positives: number of detections that don’t match (i.e. don’t overlap with) any of the
sound events in ‘reference’. In a perfect detection routine it should be 0.

e false.negatives: number of sound events in ’reference’ that were not detected (not found
in ’detection’. In a perfect detection routine it should be 0.

diagnose_detection 7

splits: number of detections overlapping reference sounds that also overlap with other de-
tections. In a perfect detection routine it should be 0.

merges: number of detections that overlap with two or more reference sounds. In a perfect
detection routine it should be 0.

mean.duration.true.positives: mean duration of true positives (in ms). Only included
when time.diagnostics = TRUE.

mean.duration.false.positives: mean duration of false positives (in ms). Only included
when time.diagnostics = TRUE.

mean.duration.false.negatives: mean duration of false negatives (in ms). Only included
when time.diagnostics = TRUE.

overlap: mean intersection over union overlap of true positives.

proportional.duration.true.positives: ratio of duration of true positives to the duration
of sound events in ’reference’. In a perfect detection routine it should be 1. Based only on true
positives that were not split or merged.

duty.cycle: proportion of a sound file in which sounds were detected. Only included when
time.diagnostics = TRUE and path is supplied. Useful when conducting energy-based de-
tection as a perfect detection can be obtained with a very low amplitude threshold, which will
detect everything, but will produce a duty cycle close to 1.

recall: Proportion of sound events in 'reference’ that were detected. In a perfect detection
routine it should be 1.

precision: Proportion of detections that correspond to sound events in 'reference’. In a
perfect detection routine it should be 1.

f.score: Combines recall and precision as the harmonic mean of these two. Provides a single
value for evaluating performance. In a perfect detection routine it should be 1.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

optimize_energy_detector, optimize_template_detector

Examples

{

load data
data("lbh_reference")

perfect detection

8 energy_detector

diagnose_detection(reference = lbh_reference, detection = lbh_reference)

missing one in detection
diagnose_detection(reference = lbh_reference, detection = lbh_reference[-1, 1)

an extra one in detection
diagnose_detection(reference = lbh_reference[-1,], detection = lbh_reference)

with time diagnostics
diagnose_detection(
reference = lbh_reference[-1, 1],
detection = 1lbh_reference, time.diagnostics = TRUE

)

and extra sound file in reference
diagnose_detection(
reference = lbh_reference,
detection =
1bh_reference[lbh_reference$sound.files != "1bh1",]

)

and extra sound file in detection
diagnose_detection(
reference =
1bh_reference[lbh_reference$sound.files != "1bh1", 1,
detection = 1lbh_reference

)

and extra sound file in detection by sound file
dd <- diagnose_detection(
reference =
1lbh_reference[lbh_reference$sound.files != "1bh1", 1,
detection = lbh_reference, time.diagnostics = TRUE, by.sound.file = TRUE
)

get summary
summarize_diagnostic(dd)

energy_detector Detects the start and end of sound events

Description

energy_detector detects the start and end of sound events based on energy and time attributes

Usage

energy_detector(
files = NULL,

energy_detector

envelopes = NULL,
path = ".",
hop.size =
wl = NULL,
thinning = 1,

bp = NULL,

smooth = 5,
threshold = 5,
peak.amplitude =
hold.time = 0,
min.duration = 0,
max.duration =

11.6,

cores = 1,
pb = TRUE

Arguments

files

envelopes

path

hop.size

wl

thinning

bp

Character vector indicating the sound files that will be analyzed. Optional. If
"files” and ’envelopes’ are not supplied then the function will work on all sup-
ported format sound files in the working directory. Supported file formats:’.wav’,
*.mp3’, ’.flac’ and *.wac’. If not supplied the function will work on all sound
files (in the supported format) in ’path’.

An object of class ’envelopes’ (generated by get_envelopes) containing the
amplitude envelopes of the sound files to be analyzed. If *files’ and ’envelopes’
are not supplied then the function will work on all supported format sound files
in the working directory.

Character string containing the directory path where the sound files are located.
The current working directory is used as default.

A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 wl for a 44.1 kHz sampling rate.
Ignored if *wl’ is supplied.

A numeric vector of length 1 specifying the window length of the spectrogram.
Default is NULL. If supplied, "hop.size’ is ignored. Used internally for bandpass
filtering (so only applied when ’bp’ is supplied).

Numeric vector of length 1 in the range O~1 indicating the proportional reduc-
tion of the number of samples used to represent amplitude envelopes (i.e. the
thinning of the envelopes). Usually amplitude envelopes have many more sam-
ples than those needed to accurately represent amplitude variation in time, which
affects the size of the output (usually very large R objects / files). Default is 1
(no thinning). Higher sampling rates can afford higher size reduction (e.g. lower
thinning values). Reduction is conducted by interpolation using approx. Note
that thinning may decrease time precision, and the higher the thinning the less
precise the time detection. This argument is used internally by get_envelopes.
Not used if ’envelopes’ are supplied.

Numeric vector of length 2 giving the lower and upper limits of a frequency
bandpass filter (in kHz). Default is NULL. This argument is used internally by

10

smooth

threshold

peak.amplitude

hold.time

min.duration

max.duration

cores

pb

Details

energy_detector

get_envelopes. Not used if ’envelopes’ are supplied. Bandpass is done using
the function ffilter, which applies a short-term Fourier transformation to first
create a spectrogram in which the target frequencies are filtered and then is back
transformed into a wave object using a reverse Fourier transformation.

A numeric vector of length 1 to smooth the amplitude envelope with a sum
smooth function. It controls the time 'neighborhood’ (in ms) in which amplitude
samples are smoothed (i.e. averaged with neighboring samples). Default is
5. 0 means no smoothing is applied. Note that smoothing is applied before
thinning (see ’thinning’ argument). The function envelope is used internally
which is analogous to sum smoothing in env. This argument is used internally
by get_envelopes. Not used if ’envelopes’ are supplied.

Numeric vector of length 1 with a value between 0 and 100 specifying the ampli-
tude threshold for detecting sound event occurrences. Amplitude is represented
as a percentage so 0 and 100 represent the lowest amplitude and highest ampli-
tude respectively. Default is 5.

Numeric vector of length 1 with the minimum peak amplitude value. Detections
below that value are excluded. Peak amplitude is the maximum sound pressure
level (in decibels) across the sound event (see sound_pressure_level). This
can be useful when expecting higher peak amplitude in the target sound events
compared to non-target sound events or when keeping only the best examples of
the target sound events. Default is O.

Numeric vector of length 1. Specifies the time range (in ms) at which selec-
tions will be merged (i.e. if 2 selections are separated by less than the specified
“hold.time’ they will be merged in to a single selection). Default is @ (no hold
time applied).

Numeric vector of length 1 giving the shortest duration (in ms) of the sound
events to be detected. It removes sound events below that threshold. If *hold.time
is supplied sound events are first merged and then filtered by duration. Default
is 0 (i.e. no filtering based on minimum duration).

bl

Numeric vector of length 1 giving the longest duration (in ms) of the sound
events to be detected. It removes sound events above that threshold. If "hold.time’
is supplied sound events are first merged and then filtered by duration. Default
is Inf (i.e. no filtering based on maximum duration).

Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

Logical argument to control progress bar. Default is TRUE.

This function detects the time position of target sound events based on energy and time thresholds.
It first detect all sound above a given energy threshold (argument ’energy’). If "hold.time’ is sup-
plied then detected sounds are merged if necessary. Then the sounds detected are filtered based on
duration attributes ('min.duration’ and *max.duration’). If *peak.amplitude’ is higher than O then
only those sound events with higher peak amplitude are kept. Band pass filtering ("bp’), thinning
(’thinning’) and envelope smoothing (’smooth’) are applied (if supplied) before threshold detection.

energy_detector 11

Value

The function returns a ’selection_table’ (warbleR package’s formats, see selection_table) or data
frame (if sound files can’t be found) containing the start and end of each sound event by sound file.
If no sound event was detected for a sound file it is not included in the output data frame.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

optimize_energy_detector

Examples

{

Save example files into temporary working directory
data("1lbh1", "1bh2", "lbh_reference")

tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

using smoothing and minimum duration

detec <- energy_detector(files = c("lbh1.wav"”, "lbh2.wav"),
path = tempdir(), threshold = 6, smooth = 6.8,

bp = ¢c(2, 9), hop.size = 3, min.duration = 0.05)

diagnose detection
diagnose_detection(reference = lbh_reference,
detection = detec)

without declaring 'files'
detec <- energy_detector(path = tempdir(), threshold = 6@, smooth = 6.8,
bp = c(2, 9), hop.size = 6.8, min.duration = 90)

diagnose detection
diagnose_detection(reference = lbh_reference,
detection = detec)

using hold time
detec <- energy_detector(threshold = 10, hold.time = 150,
bp = c(2, 9), hop.size = 6.8, path = tempdir())

diagnose detection
diagnose_detection(reference = 1lbh_reference, detection = detec)

12 get_envelopes

calculate envelopes first
envs <- get_envelopes(bp = c(2, 9), hop.size = 6.8, path = tempdir())

then run detection providing 'envelopes' (but no 'files')
detec <- energy_detector(envelopes = envs, threshold = 19, hold.time = 150, min.duration = 50)

diagnose detection
diagnose_detection(reference = lbh_reference, detection = detec, time.diagnostics = TRUE)

Not run:

USING OTHER SOUND FILE FORMAT (flac program must be installed)
fisrt convert files to flac

warbleR: :wav_2_flac(path = tempdir())

change sound file extension to flac
flac_reference <- lbh_reference
flac_reference$sound.files <- gsub(”.wav", ".flac"”, flac_reference$sound.files)

run detection
detec <- energy_detector(files = c("1bh1.flac"”, "1bh2.flac"), path = tempdir(), threshold = 60,
smooth = 6.8, bp = c(2, 9), hop.size = 6.8, min.duration = 90)

diagnose detection
diagnose_detection(reference = flac_reference, detection = detec)

End(Not run)
}

get_envelopes Extract absolute amplitude envelopes

Description

get_envelopes extracts absolute amplitude envelopes to speed up energy detection

Usage

get_envelopes(
path = ".",
files = NULL,
bp = NULL,
hop.size = 11.6,
wl = NULL,
cores = 1,
thinning = 1,
pb = TRUE,
smooth = 5,
normalize = TRUE

get_envelopes

Arguments

path

files

bp

hop.size

wl

cores

thinning

pb
smooth

normalize

Details

13

Character string containing the directory path where the sound files are located.
The current working directory is used as default.

character vector or indicating the sound files that will be analyzed. Supported
file formats:’.wav’, >.mp3’, ’.flac’ and *.wac’. If not supplied the function will
work on all sound files (in the supported format) in *path’.

Numeric vector of length 2 giving the lower and upper limits of a frequency
bandpass filter (in kHz). Default is NULL. Bandpass is done using the func-
tion ffilter, which applies a short-term Fourier transformation to first create a
spectrogram in which the target frequencies are filtered and then is back trans-
formed into a wave object using a reverse Fourier transformation.

A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 wl for a 44.1 kHz sampling rate.
Ignored if *wl’ is supplied.

A numeric vector of length 1 specifying the window length of the spectrogram.
Default is NULL. If supplied, "hop.size’ is ignored. Used internally for bandpass
filtering (so only applied when ’bp’ is supplied).

Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

Numeric vector of length 1 in the range O~1 indicating the proportional reduc-
tion of the number of samples used to represent amplitude envelopes (i.e. the
thinning of the envelopes). Usually amplitude envelopes have many more sam-
ples than those needed to accurately represent amplitude variation in time, which
affects the size of the output (usually very large R objects / files). Default is 1
(no thinning). Higher sampling rates can afford higher size reduction (e.g. lower
thinning values). Reduction is conducted by linear interpolation using approx.
Note that thinning may decrease time precision and that the higher the thinning
the less precise the time detection. It’s generally not advised if no smoothing
(’smooth’ argument) is applied.

Logical argument to control progress bar. Default is TRUE.

A numeric vector of length 1 to smooth the amplitude envelope with a sum
smooth function. It controls the time 'neighborhood’ (in ms) in which amplitude
samples are smoothed (i.e. averaged with neighboring samples). Default is
5. 0 means no smoothing is applied. Note that smoothing is applied before
thinning (see ’thinning’ argument). The function envelope is used internally
which is analogous to sum smoothing in env. This argument is used internally
by get_envelopes.

Logical argument to control if envelopes are normalized to a 0-1 range.

This function extracts the absolute amplitude envelopes of sound files. Can be used to manipulate
envelopes before running energy_detector.

Value

An object of class “envelopes’.

14 get_envelopes

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

energy_detector

Examples

{
Save to temporary working directory
data(list = c("1bh1"”, "1bh2"))
tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbhl.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

get raw absolute amplitude envelopes
envs <- get_envelopes(path = tempdir())

extract segment for the first sound event in the first sound file
x <- envs[[1]]$envelope

and plot it
plot(x[(length(x) / 9):(length(x) / 4)1, type = "1", xlab = "samples”, ylab = "amplitude")

smoothing envelopes

envs <- get_envelopes(path = tempdir(), smooth = 6.8)

x <- envs[[1]]$envelope

plot(x[(length(x) / 9):(length(x) / 4)]1, type = "1", xlab = "samples”, ylab = "amplitude")

smoothing and thinning

envs <- get_envelopes(path = tempdir(), thinning = 1 / 10, smooth = 6.8)

x <- envs[[1]]$envelope

plot(x[(length(x) / 9):(length(x) / 4)]1, type = "1", xlab = "samples”, ylab = "amplitude")

no normalization
envs <- get_envelopes(path = tempdir(), thinning = 1 / 10, smooth = 6.8)
x <- envs[[1]]$envelope
plot(x[(length(x) / 9):(length(x) / 4)1,
type = "1", xlab = "samples”, ylab = "amplitude”,
normalize = FALSE

get_templates

15

get_templates

Find templates representative of the structural variation of sound
events

Description

get_templates find the sound events that are closer to the acoustic space centroid (i.e. close to the
average acoustic structure) in a reference table.

Usage

get_templates(
reference,

acoustic.space = NULL,

n on

path = ".",
n.sub.spaces
plot = TRUE,

:‘],

color = "#21908C4D",

Arguments

reference

acoustic.space

path

n.sub.spaces

plot

color

Selection table (using the warbleR package’s format, see selection_table) or
data frame with columns for sound file name (sound.files), selection number
(selec), and start and end time of sound event (start and end).

Numeric matrix or data frame with the two dimensions of a custom acoustic
space to be used for finding templates. if not supplied the acoustic space is
calculated internally (default). Optional. Note that the function assumes that
‘reference’ and ’acoustic.space’ refer to the same sound events and similarly
ordered.

Character string containing the directory path where the sound files are located.
The current working directory is used as default.

Integer vector of length 1 with the number of sub-spaces to split the total acous-
tic space. If n.sub.spaces =1, only the sound event closer to the centroid
is returned. If n.sub.spaces > 1 the function returns additional sound events,
corresponding to those closer to the centroids of the sub-spaces. To do this,
the function defines sub-spaces as equal-size slices of a circle centered at the
centroid of the acoustic space.

Logical to control if the plot is created. Default is TRUE.
Character string with the point color. Default is "#21908C4D’.

Additional arguments to be passed to spectro_analysis for further customiza-
tion when measuring parameters to calculate the acoustic space.

16 get_templates

Details

This function finds sound events (from a reference table) that are representative of the acoustic
structure variation of all sound events. This is done by finding the events closer to the centroid of
the acoustic space. If the acoustic space is not supplied (’acoustic.space’ argument) then the func-
tion will estimate it by measuring several acoustic features using the function spectro_analysis
(features related to energy distribution in the frequency and time domain as well as features of
the dominant frequency contours, see spectro_analysis for more details) and summarizing it
with Principal Component Analysis (after z-transforming parameters) using the function prcomp.
Acoustic features with missing values are removed before estimating Principal Component Analy-
sis. The rationale is that a sound event close to the average structure is more likely to share structural
features with most events across the acoustic space than a sound event in the periphery of the space.
If only 1 template is required the function returns the sound event closest to the acoustic space
centroid. If more than 1 template is required additional sound events are returned that are repre-
sentative of the acoustic space. To do this, the function defines sub-spaces as equal-size slices of a
circle centered at the centroid of the acoustic space. A column 'template’ is included in the output
selection table that identifies each template. Custom acoustic spaces can be supplied with argument
*acoustic.space’. Notice that the function aims to partition spaces in which sounds are somehow
homogeneously distributed. When clear clusters are found in the distribution of the acoustic space
thus clusters might not match the sub-spaces defined by the function.

Value
The function returns a ’selection_table’ (warbleR package’s formats, see selection_table) or data
frame (if sound files can’t be found) containing the start and end of each sound event by sound file.
Author(s)
Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>). Implements a modified version of the timer
function from seewave.

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

template_detector

Examples

{
Save example files into temporary working directory
data(”1lbh1"”, "1bh2", "lbh_reference"”)
tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

get a single mean template

label_detection 17

template <- get_templates(reference = lbh_reference, path = tempdir())

get 3 templates
template <- get_templates(reference = lbh_reference, n.sub.spaces = 3, path = tempdir())

}

label_detection Label detections from a sound event detection procedure

Description

label_detection labels the performance of a sound event detection procedure comparing the out-
put selection table to a reference selection table

Usage
label_detection(
reference,
detection,
cores =1,
pb = TRUE,
min.overlap = 0.5,
by = NULL,
solve.ambiguous = TRUE
)
Arguments
reference Data frame or ’selection.table’ (following the warbleR package format) with
the reference selections (start and end of the sound events) that will be used
to evaluate the performance of the detection, represented by those selections
in ’detection’. Must contained at least the following columns: "sound.files",
"selec", "start" and "end". It must contain the reference selections that will
be used for detection optimization.
detection Data frame or ’selection.table’ with the detections (start and end of the sound
events) that will be compared against the ’reference’ selections. Must contained
at least the following columns: "sound.files", "selec", "start" and "end". It can
contain data for additional sound files not found in 'references’. In this case the
routine assumes that no sound events are found in those files, so detection from
those files are all false positives.
cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).
pb Logical argument to control progress bar. Default is TRUE.
min.overlap Numeric. Controls the minimum amount of overlap required for a detection and

a reference sound for it to be counted as true positive. Default is 0.5. Overlap is
measured as intersection over union. Only used if solve.ambiguous = TRUE.

18 label_detection

by Character vector with the name of a categorical column in ‘reference’ for run-
ning a stratified. Labels will be returned separated for each level in *by’. Default
is NULL.

solve.ambiguous
Logical argument to control whether ambiguous detections (i.e. split and merged
positives) are solved using maximum bipartite graph matching. Default is TRUE.
If FALSE ambiguous detections are not solved.

Details

The function identifies the rows in the output of a detection routine as true or false positives. This
is achieved by comparing the data frame to a reference selection table in which all sound events of
interest have been selected.

Value

A data frame or selection table (if ’detection’ was also a selection table, warbleR package’s for-

mat, see selection_table) including three additional columns, ’detection.class’, which indicates

the class of each detection, 'reference’ which identifies the event in the "reference’ table that was de-
tected and *overlap’ which refers to the amount overlap to the reference sound. See diagnose_detection
for a description of the labels used in ’detection.class’. The output data frame also contains an ad-
ditional data frame with the overlap for each pair of overlapping detection/reference. Overlap is
measured as intersection over union.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

diagnose_detection, summarize_diagnostic

Examples

{
load data
data("lbh_reference"”)

an extra one in detection (1 false positive)
label_detection(reference = lbh_reference[-1,], detection = lbh_reference)

missing one in detection (all true positives)
label_detection(reference = lbh_reference, detection = lbh_reference[-1, 1)

label_spectro

perfect detection (all true positives)
label_detection(reference = lbh_reference, detection = lbh_reference)

and extra sound file in reference (all true positives)
label_detection(
reference = lbh_reference, detection =
1lbh_reference[lbh_reference$sound.files != "lbh1.wav"”,]

)

and extra sound file in detection (some false positives)
label_detection(

reference =
1lbh_reference[lbh_reference$sound.files != "1lbh1.wav", 17,
detection = lbh_reference

)

duplicate 1 detection row (to get 2 splits)
detec <- lbh_referencelc(1, seq_len(nrow(lbh_reference))), 1
detec$selec[1] <- 1.2
label_detection(
reference = lbh_reference,
detection = detec

)

merge 2 detections (to get split and merge)

Y <- lbh_reference

Y$end[1] <- 1.2

label_detection(reference = lbh_reference, detection = Y)

remove split to get only merge

Y <- Y[-2,]
label_detection(reference = lbh_reference, detection = Y)
3
label_spectro Plot a labeled spectrogram
Description

label_spectro plot a spectrogram along with amplitude envelopes or cross-correlation scores

Usage
label_spectro(
wave,
reference = NULL,
detection = NULL,

envelope = FALSE,
threshold = NULL,
smooth = 5,

20

collevels

palette

label_spectro

seq(-100, 0, 5),
viridis::viridis,

template.correlation = NULL,
line.x.position = 2,
hop.size = NULL,

Arguments

wave

reference

detection

envelope
threshold

smooth

collevels

palette

A ’wave’ class object.

Data frame or ’selection.table’ (following the warbleR package format) with the
reference selections (start and end of the sound events). Must contained at least

non

the following columns: "sound.files", "selec", "start" and "end".

Data frame or ’selection.table’ with the detection (start and end of the sound

events) Must contained at least the following columns: "sound.files", "selec",
"start" and "end".

Logical to control whether the amplitude envelope is plotted. Default is FALSE.

A numeric vector on length 1 indicated the amplitude or correlation threshold
to plot on the envelope or correlation scores respectively. Default is NULL. Note
that for amplitude the range of valid values is 0-1, while for correlations the
range is 0-100.

A numeric vector of length 1 to smooth the amplitude envelope with a sum
smooth function. It controls the time range (in ms) in which amplitude samples
are smoothed (i.e. averaged with neighboring samples). Default is 5. 0 means
no smoothing is applied.

Numeric sequence of negative numbers to control color partitioning and ampli-
tude values that are shown (as in spectro).

Function with the color palette to be used on the spectrogram (as in spectro)

template.correlation

line.x.position

hop.size

Details

List extracted from the output of template_correlator containing the corre-
lation scores and metadata for an specific sound file/template dyad. For instance
"correlations[[1]]” where ’correlations’ is the output of a template_correlator
call. If supplied the correlation is also plotted. Default is NULL.

Numeric vector of length 1 with the position in the frequency axis (so in kHz)
of the lines highlighting sound events. Default is 2.

A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 *wl’ for a 44.1 kHz sampling rate.

Additional arguments to be passed to spectro for further spectrogram cus-
tomization.

This function plots spectrograms annotated with the position of sound events. Created for graphs
included in the vignette, and probably only useful for that or for very short recordings. Only
works on a single "wave’ object at the time.

label_spectro 21

Value
A spectrogram along with lines highlighting the position of sound events in ’reference’ and/or ’de-

tection’. If supplied it will also plot the amplitude envelope or corelation scores below the spectro-
gram.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

energy_detector, template_correlator, template_detector

Examples

{

load example data
data(list = "lbh1", "lbh_reference")

adding labels
label_spectro(

wave = lbh1,
reference = lbh_reference[lbh_reference$sound.files == "1bh1.wav", 1,
wl = 200, ovlp = 50, flim = c(1, 10)

)

adding envelope
label_spectro(

wave = 1lbh1,
detection = 1lbh_reference[lbh_reference$sound.files == "1bh1l.wav", 1,
wl = 200, ovlp = 50, flim = c(1, 10)

)

see the package vignette for more examples

22 Ibh2

1bh1 Long-billed hermit recording

Description

1bh1 a wave object with long-billed hermit (Phaethornis longirostris) songs extracted from xeno-
canto’s 154138’ recording.

Usage
data(lbh1)

Format

An object of class Wave of length 110250.

Source

Marcelo Araya-Salas

1bh2 Long-billed hermit recording

Description

1bh2 a wave object with long-billed hermit (Phaethornis longirostris) songs extracted from xeno-
canto’s 154129’ recording.

Usage
data(lbh2)

Format

An object of class Wave of length 110250.

Source

Marcelo Araya-Salas

Ibh_reterence 23

1bh_reference Example data frame of a selection table including all sound events of
interests

Description

lbh_reference is a data frame containing the start, end, bottom and top frequency of all songs in
’Ibh_1.wav’ and ’lbh_2.wav’ recordings.

Usage

data(lbh_reference)

Format

A data frame with 19 rows and 6 variables:

sound.files recording names

selec selection numbers within recording
start start times of selected sound event
end end times of selected sound event
bottom.freq lower limit of frequency range

top.freq upper limit of frequency range

Details

A data frame containing the start, end, low and high frequency of Phaethornis longirostris (Long-
billed Hermit) songs from the 2 example sound files included in this package (’Ibh_1" and ’1bh_2").
These two files are clips extracted from the xeno-canto’s *154138” and 154129’ recordings respec-
tively.

Source

Marcelo Araya-Salas, ohun

24 merge_overlaps

merge_overlaps Merge overlapping selections

Description

merge_overlaps merges several overlapping selections into a single selection

Usage

merge_overlaps(X, pb = TRUE, cores = 1)

Arguments
X Data frame or ’selection.table’ (following the warbleR package format) with se-
lections (start and end of the sound events). Must contained at least the following
columns: "sound.files", "selec", "start" and "end".
pb Logical argument to control progress bar. Default is TRUE.
cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).
Details

The function finds time-overlapping selection in reference tables and collapses them into a single
selection. It can be useful to prepare reference tables to be used in an energy detection routine. In
such cases overlapping selections are expected to be detected as a single sound. Therefore, merging
them can be useful to prepare references in a format representing a more realistic expectation of
how a perfect energy detection routine would look like.

Value
If any time-overlapping selection is found it returns a data frame in which overlapping selections
are collapse into a single selection.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

summarize_diagnostic, label_detection

optimize_energy_detector

Examples

{
load data

data("lbh_reference")

nothing to merge

merge_overlaps(lbh_reference)

create artificial overlapping selections
1lbh_ref2 <- rbind(as.data.frame(lbh_reference[c(3, 10), 1), lbh_referencelc(3, 10), 1)

1bh_ref2$selec <- seq_len(nrow(lbh_ref2))

merge_overlaps(lbh_ref2)

25

optimize_energy_detector

Optimize energy-based sound event detection

Description

Optimize energy-based sound event detection under different correlation threshold values

Usage

optimize_energy_detector(

reference,

files = NULL,
threshold = 5,
peak.amplitude =
hop.size = 11.6,
wl = NULL,
smooth = 5,
hold.time = @
min.duration
max.duration
thinning = 1,
cores = 1,

pb = TRUE,

NULL,
NULL,

by.sound.file = FALSE,

bp = NULL,

path = ".",

previous.output = NULL,

envelopes = NULL,

macro.average = FALSE,

min.overlap = 0.5

26

Arguments

reference

files

threshold

peak.amplitude

hop.size

wl

smooth

hold. time

min.duration

max.duration

thinning

optimize_energy_detector

Selection table (using the warbleR package’s format, see selection_table) or
data frame with columns for sound file name (sound.files), selection number
(selec), and start and end time of sound event (start and end). It must contain
the reference selections that will be used for detection optimization.

Character vector indicating the sound files that will be analyzed. Optional. If not
supplied the function will work on the sound files in ’reference’. It can be used
to include sound files with no target sound events. Supported file formats:’.wav’,
*.mp3’, ’.flac’ and ’.wac’. If not supplied the function will work on all sound
files (in the supported format) in *path’.

A numeric vector specifying the amplitude threshold for detecting sound events
(in %). Default is 5. Several values can be supplied for optimization.

Numeric vector of length 1 with the minimum peak amplitude value. A detec-
tion below that value would be excluded. Peak amplitude is the maximum sound
pressure level (in decibels) across the sound event (see sound_pressure_level).
This can be useful when expecting higher peak amplitude in the target sound
events compared to non-target sound events or when keeping only the best ex-
amples of the target sound events (i.e. high precision and low recall). Default is
0. Several values can be supplied for optimization.

A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 wl for a 44.1 kHz sampling rate.
Ignored if *wl’ is supplied.

A numeric vector of length 1 specifying the window length of the spectrogram.
Default is NULL. If supplied, "hop.size’ is ignored. Used internally for bandpass
filtering (so only applied when "bp’ is supplied).

A numeric vector of length 1 to smooth the amplitude envelope with a sum
smooth function. It controls the time *neighborhood’ (in ms) in which amplitude
samples are smoothed (i.e. averaged with neighboring samples). Default is
5. 0 means no smoothing is applied. Note that smoothing is applied before
thinning (see ’thinning’ argument). The function envelope is used internally
which is analogous to sum smoothing in env. This argument is used internally
by get_envelopes. Several values can be supplied for optimization.

Numeric vector of length 1. Specifies the time range (in ms) at which selec-
tions will be merged (i.e. if 2 selections are separated by less than the specified
“hold.time’ they will be merged in to a single selection). Default is @ (no hold
time applied). Several values can be supplied for optimization.

Numeric vector giving the shortest duration (in ms) of the sound events to be
detected. It removes sound events below that threshold. Several values can be
supplied for optimization.

Numeric vector giving the longest duration (in ms) of the sound events to be
detected. It removes sound events above that threshold. Several values can be
supplied for optimization.

Numeric vector in the range 0~1 indicating the proportional reduction of the
number of samples used to represent amplitude envelopes (i.e. the thinning of
the envelopes). Usually amplitude envelopes have many more samples than

optimize_energy_detector 27

those needed to accurately represent amplitude variation in time, which affects
the size of the output (usually very large R objects / files). Default is 1 (no
thinning). Higher sampling rates may afford higher size reduction (e.g. lower
thinning values). Reduction is conducted by interpolation using approx. Note
that thinning may decrease time precision, and the higher the thinning the less
precise the time detection. Several values can be supplied for optimization.

cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

pb Logical argument to control progress bar and messages. Default is TRUE.

by.sound.file Logical argument to control whether performance diagnostics are summarized
across sound files (when by . sound. file = FALSE and more than 1 sound file is
included in ’reference’) or shown separated by sound file. Default is FALSE.

bp Numeric vector of length 2 giving the lower and upper limits of a frequency
bandpass filter (in kHz). Default is NULL. This argument is used internally by
get_envelopes. Not used if ’envelopes’ are supplied. Bandpass is done using
the function ffilter, which applies a short-term Fourier transformation to first
create a spectrogram in which the target frequencies are filtered and then is back
transformed into a wave object using a reverse Fourier transformation.

path Character string containing the directory path where the sound files are located.
The current working directory is used as default.

previous.output
Data frame with the output of a previous run of this function. This will be used
to include previous results in the new output and avoid recalculating detection
performance for parameter combinations previously evaluated.

envelopes An object of class ’envelopes’ (generated by get_envelopes) containing the
amplitude envelopes of the sound files to be analyzed. If *files’ and ’envelopes’
are not supplied then the function will work on all supported format sound files
in the working directory.

macro.average Logical argument to control if diagnostics are first calculated for each sound
file and then averaged across sound files, which can minimize the effect of un-
balanced sample sizes between sound files. If FALSE (default) diagnostics are
based on aggregated statistics irrespective of sound files. The following indices
can be estimated by macro-averaging: overlap, mean.duration.true.positives,
mean.duration.false.positives, mean.duration.false.positives, mean.duration.false.negatives,
proportional.duration.true.positives, recall and precision (f.score is always de-
rived from recall and precision). Note that when applying macro-averaging,
recall and precision are not derived from the true positive, false positive and
false negative values returned by the function.

min.overlap Numeric. Controls the minimum amount of overlap required for a detection and
a reference sound for it to be counted as true positive. Default is 0.5. Overlap is
measured as intersection over union.

Details

This function takes a selections data frame or ’selection_table’ (reference’) estimates the detection
performance of a energy detector under different detection parameter combinations. This is done

28

optimize_energy_detector

by comparing the position in time of the detection to those of the reference selections in ‘reference’.
The function returns several diagnostic metrics to allow user to determine which parameter values
provide a detection that more closely matches the selections in 'reference’. Those parameters can
be later used for performing a more efficient detection using energy_detector.

Value

A data frame in which each row shows the result of a detection job with a particular combination of
tuning parameters (including in the data frame). It also includes the following diagnostic metrics:

true.positives: number of sound events in 'reference’ that correspond to any detection.
Matching is defined as some degree of overlap in time. In a perfect detection routine it should
be equal to the number of rows in 'reference’.

false.positives: number of detections that don’t match any of the sound events in 'refer-
ence’. In a perfect detection routine it should be 0.

false.negatives: number of sound events in 'reference’ that were not detected (not found
in ’detection’. In a perfect detection routine it should be 0.

splits: number of detections overlapping reference sounds that also overlap with other de-
tections. In a perfect detection routine it should be 0.

merges: number of detections that overlap with two or more reference sounds. In a perfect
detection routine it should be 0.

mean.duration.true.positives: mean duration of true positives (in ms). Only included
when time.diagnostics = TRUE.

mean.duration.false.positives: mean duration of false positives (in ms). Only included
when time.diagnostics = TRUE.

mean.duration.false.negatives: mean duration of false negatives (in ms). Only included
when time.diagnostics = TRUE.

overlap: mean intersection over union overlap of true positives.

proportional.duration.true.positives: ratio of duration of true positives to th duration
of sound events in ’reference’. In a perfect detection routine it should be 1. Based only on true
positives that were not split or merged. Only included when time.diagnostics = TRUE.
duty.cycle: proportion of a sound file in which sounds were detected. Only included when
time.diagnostics = TRUE and path is supplied.

recall: Proportion of sound events in 'reference’ that were detected. In a perfect detection
routine it should be 1.

precision: Proportion of detections that correspond to sound events in 'reference’. In a
perfect detection routine it should be 1.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

optimize_energy_detector 29

Examples

Save example files into temporary working directory
data("1lbh1", "1bh2", "lbh_reference")

tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbhl.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

using smoothing and minimum duration

optimize_energy_detector(
reference = lbh_reference, path = tempdir(),
threshold = c(6, 10), smooth = 6.8, bp = c(2, 9), hop.size = 6.8,
min.duration = 90

with thinning and smoothing

optimize_energy_detector(
reference = lbh_reference, path = tempdir(),
threshold = c(6, 10, 15), smooth = c(7, 10), thinning = c(0.1, 0.01),
bp = c(2, 9), hop.size = 6.8, min.duration = 90

)

by sound file

(opt_ed <- optimize_energy_detector(
reference = lbh_reference,
path = tempdir(), threshold = c(6, 10, 15), smooth = 6.8, bp = c(2, 9),
hop.size = 6.8, min.duration = 90, by.sound.file = TRUE

))

summarize
summarize_diagnostic(opt_ed)

using hold time

(op_ed <- optimize_energy_detector(
reference = lbh_reference,
threshold = 10, hold.time = c(100, 150), bp = c(2, 9), hop.size = 6.8,
path = tempdir()

)

including previous output in new call
optimize_energy_detector(
reference = lbh_reference, threshold = 10,
hold.time = c(50, 200), previous.output = op_ed, smooth = 6.8,
bp = c(2, 9), hop.size = 7, path = tempdir()
)

having and extra file in files (simulating a file that should have no detetions)
sub_reference <- lbh_reference[lbh_reference$sound.files != "1lbh1.wav",]

optimize_energy_detector(
reference = sub_reference, files = unique(lbh_reference$sound.files),
threshold = 10, hold.time = c(1, 150), bp = c(2, 9), smooth = 6.8,
hop.size = 7, path = tempdir()

)

30

optimize_template_detector

optimize_template_detector

Optimize acoustic template detection

Description

optimize_template_detector optimizes acoustic template detection

Usage

optimize_template_detector(

template.correlations,
reference,

threshold,

cores = 1,

pb = TRUE,
by.sound.file = FALSE,
previous.output = NULL,
macro.average = FALSE,
min.overlap = 0.5

Arguments

template.correlations

reference

threshold

cores

pb

An object of class ‘template_correlations’ (generated by template_correlator)
in which to optimize detections. Must contain data for all sound files as in 'refer-

ence’. It can also contain data for additional sound files. In this case the routine

assumes that no sound events are found in those files, so detection from those

files are all false positives.

Data frame or ’selection.table’ (following the warbleR package format) with
the reference selections (start and end of the sound events) that will be used
to evaluate the performance of the detection, represented by those selections
in ’detection’. Must contained at least the following columns: "sound.files",
"selec", "start" and "end". It must contain the reference selections that will
be used for detection optimization.

Numeric vector of length > 1 with values between 0 and 1 specifying the corre-
lation threshold for detecting sound event occurrences (i.e. correlation peaks).
Must be supplied. Several values should be supplied for optimization.

Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

Logical argument to control progress bar and messages. Default is TRUE.

optimize_template_detector 31

by.sound.file Logical to control if diagnostics are calculated for each sound file independently
(TRUE) or for all sound files combined (FALSE, default).

previous.output
Data frame with the output of a previous run of this function. This will be used
to include previous results in the new output and avoid recalculating detection
performance for parameter combinations previously evaluated.

macro.average Logical argument to control if diagnostics are first calculated for each sound
file and then averaged across sound files, which can minimize the effect of un-
balanced sample sizes between sound files. If FALSE (default) diagnostics are
based on aggregated statistics irrespective of sound files. The following indices
can be estimated by macro-averaging: overlap, mean.duration.true.positives,
mean.duration.false.positives, mean.duration.false.positives, mean.duration.false.negatives,
proportional.duration.true.positives, recall and precision (f.score is always de-
rived from recall and precision). Note that when applying macro-averaging,
recall and precision are not derived from the true positive, false positive and
false negative values returned by the function.

min.overlap Numeric. Controls the minimum amount of overlap required for a detection and
a reference sound for it to be counted as true positive. Default is 0.5. Overlap is
measured as intersection over union.

Details

This function takes a a reference data frame or "selection_table’ (’X’) and the output of template_correlator
and estimates the detection performance for different detection parameter combinations. This is

done by comparing the position in time of the detection to those of the reference selections. The

function returns several diagnostic metrics to allow user to determine which parameter values pro-

vide a detection that more closely matches the selections in ’reference’. Those parameters can

be later used for performing a more efficient detection using template_detector. Supported file
formats:’.wav’, >.mp3’, ’.flac’ and ’.wac’.

Value

A data frame in which each row shows the result of a detection job for each cutoff value, including
the following diagnostic metrics:

* true.positives: number of sound events in ’reference’ that correspond to any detection.
Matching is defined as some degree of overlap in time. In a perfect detection routine it should
be equal to the number of rows in 'reference’.

* false.positives: number of detections that don’t match any of the sound events in 'refer-
ence’. In a perfect detection routine it should be 0.

e false.negatives: number of sound events in ’reference’ that were not detected (not found
in ’detection’. In a perfect detection routine it should be 0.

* splits: number of detections overlapping reference sounds that also overlap with other de-
tections. In a perfect detection routine it should be 0.

* merges: number of sound events in ’detection’ that overlap with more than one sound event
in ’reference’. In a perfect detection routine it should be O.

32 optimize_template_detector

* recall: Proportion of sound events in ’reference’ that were detected. In a perfect detection
routine it should be 1.

* precision: Proportion of detections that correspond to sound events in 'reference’ that were
detected. In a perfect detection routine it should be 1.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

optimize_energy_detector, template_correlator, template_detector

Examples

{

Save sound files to temporary working directory
data(”1lbh1"”, "1bh2", "lbh_reference")

tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

template for the second sound file in 'lbh_reference'
templ <- 1bh_reference[11, 1]

generate template correlations
tc <- template_correlator(templates = templ, path = tempdir(),
files = "lbh2.wav")

using 2 threshold
optimize_template_detector(template.correlations = tc, reference =
1lbh_reference[lbh_reference$sound.files == "1bh2.wav", 1,
threshold = c(0.2, 0.5))

using several thresholds
optimize_template_detector(template.correlations = tc,

reference = lbh_reference[lbh_reference$sound.files == "1lbh2.wav", 1,
threshold = seq(@.5, 0.9, by = 0.05))

template for the first and second sound file in 'lbh_reference’
templ <- lbh_referencelc(1, 11), 1]

generate template correlations
tc <- template_correlator(templates = templ, path = tempdir(),
files = c("1lbh1.wav", "lbh2.wav"))

plot_detection 33

optimize_template_detector(template.correlations = tc, reference =
lbh_reference, threshold = seq(@0.5, 0.7, by = 0.1))

showing diagnostics by sound file
optimize_template_detector(template.correlations = tc, reference =
1bh_reference,

threshold = seq(@.5, 0.7, by = 0.1), by.sound.file = TRUE)

plot_detection Plot detection and reference annotations

Description

plot_detection evaluates the performance of a sound event detection procedure comparing the
output selection table to a reference selection table

Usage
plot_detection(
reference,
detection,
mid.point = FALSE,
size = 20,
positions = c(1, 2)
)
Arguments
reference Data frame or ’selection.table’ (following the warbleR package format) with
the reference selections (start and end of the sound events) that will be used
to evaluate the performance of the detection, represented by those selections
in ’detection’. Must contained at least the following columns: "sound.files",
"selec", "start" and "end". It must contain the reference selections that will
be used for detection optimization.
detection Data frame or ’selection.table’ with the detections (start and end of the sound
events) that will be compared against the ‘reference’ selections. Must contained
at least the following columns: "sound.files", "selec", "start" and "end". It can
contain data for additional sound files not found in 'references’. In this case the
routine assumes that no sound events are found in those files, so detection from
those files are all false positives.
mid.point Logical argument to control if each annotations is shown as a rectangle with fix

width center at the mid point of the time position (if TRUE) or the true time range
of the annotations is used (if FALSE, default). *'mid.point’ can be useful to make
visible annotations in very long sound files that would otherwise look to thin.

size Numeric. Controls the size of the rectangles if mid. point = TRUE. Default is 20.

34 plot_detection

positions Numeric. Controls the vertical position of the rectangles representing anota-
tions. Default is c(1, 2). This can be used to get reference and detection annota-
tions closer in the vertical axis. Note that the height of rectangles is 0.5.

Details

The function helps to visualize the match between reference and detection annotations by plotting
them next to each other as rectangles along the time axis. If the annotations contain data for several
sound files each sound file will be plotted in its own panel. The plot can be further modify by users
using regular ggplot syntax.

Value

A ggplot graph (i.e. an object of class "ggplot").

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

label_spectro, diagnose_detection

Examples

{
load data

data("lbh_reference")

mid point and regular size
plot_detection(

reference = lbh_reference[-14, 1,

detection = lbh_reference[-1,], mid.point = TRUE
)

mid point and larger size
plot_detection(

reference = lbh_reference[-14, 1,

detection = lbh_reference[-1,], mid.point = TRUE, size = 25
)

true time rectangles
plot_detection(
reference = lbh_reference[-14, 1,

reassemble_detection 35

detection = lbh_reference[-1,]

)

use position to make reference and anotations overlap vertically
plot_detection(

reference = lbh_reference[-14, 1,

detection = lbh_reference[-1,], positions = c(1, 1.4)

)

modified using ggplot
gg_pd <- plot_detection(
reference = lbh_reference[-14, 1,
detection = lbh_reference[-1,], positions = c(1, 1.4)

)

gg_pd + ggplot2::theme_classic(base_size = 25)

reassemble_detection Reassemble detections from clips

Description
reassemble_detection reassembles detections made on clips so they refer to the original sound
files

Usage

reassemble_detection(detection, Y, cores = 1, pb = TRUE)

Arguments
detection Data frame or selection table (using the warbleR package’s format, see selection_table)
containing the start and end of sound events. Must contained at least the follow-
ing columns: "sound.files", "selec", "start" and "end".
Y Data frame with the start and end of clips in the orignal sound files. Must contain
the column "original.sound.files", "sound.files" (clip files), "start" and "end".
cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).
pb Logical argument to control progress bar. Default is TRUE.
Details

When working with large sound files, splitting them into smaller clips (which can be done with
split_acoustic_data) can accelerate detection processing. However, this approach complicates
result interpretation since detections reference the clips rather than the original files. This function
reformats clip-based detections —specifically those created by split_acoustic_data()— to map them
back to their original unsplit sound files.

36 reassemble_detection

Value

A data frame with annotations refering to the position of the detections in the original sound files.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>).

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

label_detection, split_acoustic_data

Examples

{
load example data

data(”1bh1”, "1bh2", "lbh_reference")
tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbhl.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

if X is a data frame ##H#Hi#
df_ref <- as.data.frame(lbh_reference)

get split annotations

split_df_ref <- split_acoustic_data(X = df_ref,
only.sels = TRUE, sgmt.dur = 1.5,

path = tempdir(), pb = FALSE,

files = c("lbh1.wav"”, "lbh2.wav"))

get clip information
Y <- split_acoustic_data(sgmt.dur = 1.5,

path = tempdir(), pb = FALSE,

output.path = tempdir(), files = c("lbh1l.wav"”, "lbh2.wav"))

reassemble annotations
tc <- reassemble_detection(detection = split_df_ref,
Y = Y, pb = FALSE)

start and end are the same as in the original unsplit data
df_ref <- df_ref[order(df_ref$sound.files, df_ref$start),]
all(tc$end == df_ref$end)

all(tc$start == df_ref$start)

if X is a selection table
split annotations and files

split_acoustic_data 37

split_lbh_reference <- split_acoustic_data(X = lbh_reference,
sgmt.dur = 1.5, path = tempdir(),

output.path = tempdir(),

files = c("1lbh1.wav", "lbh2.wav"))

reassemble annotations
tc <- reassemble_detection(detection = split_lbh_reference,
Y = attributes(split_lbh_reference)$clip.info)

start and end are the same as in the original unsplit data

lbh_reference <- lbh_reference[order(lbh_reference$sound.files, lbh_reference$start), 1]
all(tc$end == lbh_reference$end)

all(tc$start == lbh_reference$start)

3

split_acoustic_data Splits sound files and associated annotations

Description

split_acoustic_data splits sound files (and corresponding selection tables) in shorter clips

Usage
split_acoustic_data(
path = ".",
sgmt.dur = 10,
sgmts = NULL,
files = NULL,
cores = 1,
pb = TRUE,

only.sels = FALSE,
output.path = file.path(path, "clips”),

X = NULL,
overwrite = FALSE
)
Arguments
path Directory path where sound files are found. The current working directory is
used as default.
sgmt.dur Numeric. Duration (in s) of segments in which sound files would be split. Sound
files shorter than *sgmt.dur’ won’t be split. Ignored if sgmts’ is supplied.
sgmts Numeric. Number of segments in which to split each sound file. If supplied

’sgmt.dur’ is ignored.

38 split_acoustic_data

files Character vector indicating the subset of files that will be split. Supported file
formats:’.wav’, >.mp3’, ’.flac’ and ’.wac’. If not supplied the function will work
on all sound files (in the supported format) in *path’.

cores Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

pb Logical argument to control progress bar. Default is TRUE. Only used when

only.sels Logical argument to control if only the data frame is returned (no wave files are
saved). Default is FALSE.

output.path Directory path where the output files will be saved. If not supplied then a sub-
folder called ’clips’ will be created within the supplied "path’.

X ’selection_table’ object or a data frame with columns for sound file name (sound.files),
selection number (selec), and start and end time of signal (start and end). If
supplied the data frame/selection table is modified to reflect the position of the
selections in the new sound files. Note that some selections could split between
2 segments. To deal with this, a ’split.sels’ column is added to the data frame in
which those selection are labeled as ’split’. Default is NULL.

overwrite Logical. If TRUE existing files in the output path with the same name as the
clips being created will be overwritten. Default is FALSE. This allows to avoid
re-creating clips that have already been created in previous function calls.

Details

This function aims to reduce the size of sound files in order to simplify some processes that are
limited by sound file size (big files can be manipulated, e.g. energy_detector).

Value

Wave files for each segment (e.g. clips) in the working directory (if only.sels = FALSE, named
as ’sound.file.name-#.wav’). Clips are saved in .wav format. If X’ is not supplied the function
returns a data frame in the containing the name of the original sound files (original.sound.files), the
name of the segments (sound.files) and the start and end of segments in the original files. If *X’ is
supplied then a data frame with the position of the selections in the newly created clips is returned
instead. However, if *X’ is a ’selection table’ and the clips have been saved, a data frame with the
information of the position of clips in the original sound files is also returned as an attribute in the
output selection table ("clip.info"). Output annotation data contains the position of the annotations
in the new clips, with an additional column, ’split.sels’, that inform users whether annotations have
been split into multiple clips (’split’) or not (NA). For split annotations the ’selec’ column will contain
the original ’selec’ id plus an additional index (selec-index) so users can still identify from which
annotation splits came from. Sound files in ’path’ that are not referenced in *X’ will stil be split.
The function may not work properly with very short segments (< 1 s).

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>)

summarize_acoustic_data 39

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

cut_sels

Examples

{
load data and save to temporary working directory
data("lbh1"”, "1bh2")
tuneR: :writeWave(lbh1, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

split files in 1 s files
split_acoustic_data(sgmt.dur = 1, path = tempdir(),
files = c("1bh1.wav", "1lbh2.wav"))

Check this folder
tempdir ()

summarize_acoustic_data
Summarize information about file format in an acoustic data set

Description

summarize_acoustic_data summarizes information about file format in an acoustic data set

Usage
summarize_acoustic_data(path = ".", digits = 2)
Arguments
path Character string containing the directory path where the sound files are located.
Default is "." (current working directory).
digits Numeric vector of length 1 with the number of decimals to include. Default is

2.

40 summarize_diagnostic

Details

The function summarizes information about file format in an acoustic data set. It provides infor-
mation about the number of files, file formats, sampling rates, bit depts, channels, duration and file
size (in MB). For file format, sampling rate, bit depth and number of channels the function includes
information about the number of files for each format (e.g. ’44.1 kHz (2)’ means 2 files with a
sampling rate of 44.1 kHz).

Value

The function prints a summary of the format of the files in an acoustic data set.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

summarize_reference

Examples

{
load data and save example files into temporary working directory
data(”lbh1"”, "1lbh2", "lbh_reference")
tuneR: :writeWave(lbh1, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

summary across sound files
summarize_acoustic_data(path = tempdir())

summarize_diagnostic Summarize detection diagnostics

Description

summarize_diagnostic summarizes detection diagnostics

summarize_diagnostic 41

Usage

summarize_diagnostic(
diagnostic,
time.diagnostics = FALSE,
macro.average = FALSE

)

Arguments

diagnostic A data frame with the output of a detection optimization function (diagnose_detection,

optimize_energy_detector or optimize_template_detector)
time.diagnostics
Logical argument to control if diagnostics related to the duration of the sound

events ("mean.duration.true.positives", "mean.duration.false.positives", "mean.duration.false.negatives"
and "proportional.duration.true.positives") are returned (if TRUE). Default is FALSE.

macro.average Logical argument to control if diagnostics are first calculated for each sound
file and then averaged across sound files, which can minimize the effect of un-
balanced sample sizes between sound files. If FALSE (default) diagnostics are
based on aggregated statistics irrespective of sound files. The following indices
can be estimated by macro-averaging: overlap, mean.duration.true.positives,
mean.duration.false.positives, mean.duration.false.positives, mean.duration.false.negatives,
proportional.duration.true.positives, recall and precision (f.score is always de-
rived from recall and precision). Note that when applying macro-averaging,
recall and precision are not derived from the true positive, false positive and
false negative values returned by the function.

Details

The function summarizes a detection diagnostic data frame in which diagnostic parameters are
shown split by (typically) a categorical column, usually sound files. This function is used internally
by diagnose_detection. ’splits’ and 'merge.positives’ are also counted (i.e. counted twice) as
’true.positives’. Therefore "true.positives + false.positives = detections".

Value

A data frame, similar to the output of a detection optimization function (diagnose_detection,
optimize_energy_detector, optimize_template_detector) including the following detection
performance diagnostics:

e detections: total number of detections

* true.positives: number of sound events in ’reference’ that correspond to any detection.
Matching is defined as some degree of overlap in time. In a perfect detection routine it should
be equal to the number of rows in 'reference’.

» false.positives: number of detections that don’t match (i.e. don’t overlap with) any of the
sound events in reference’. In a perfect detection routine it should be 0.

e false.negatives: number of sound events in ’reference’ that were not detected (not found
in ’detection’. In a perfect detection routine it should be 0.

42

summarize_diagnostic

splits: number of detections overlapping reference sounds that also overlap with other de-
tections. In a perfect detection routine it should be 0.

merges: number of detections that overlap with two or more reference sounds. In a perfect
detection routine it should be 0.

mean.duration.true.positives: mean duration of true positives (in s). Only included
when time.diagnostics = TRUE.

mean.duration.false.positives: mean duration of false positives (in ms). Only included
when time.diagnostics = TRUE.

mean.duration.false.negatives: mean duration of false negatives (in ms). Only included
when time.diagnostics = TRUE.

overlap: mean intersection over union overlap of true positives.

proportional.duration.true.positives: ratio of duration of true positives to the duration
of sound events in ’reference’. In a perfect detection routine it should be 1. Based only on true
positives that were not split or merged.

duty.cycle: proportion of a sound file in which sounds were detected. Only included when
time.diagnostics = TRUE and path is supplied. Useful when conducting energy-based de-
tection as a perfect detection can be obtained with a very low amplitude threshold, which will
detect everything, but will produce a duty cycle close to 1.

recall: Proportion of sound events in 'reference’ that were detected. In a perfect detection
routine it should be 1.

precision: Proportion of detections that correspond to sound events in 'reference’. In a
perfect detection routine it should be 1.

f.score: Combines recall and precision as the harmonic mean of these two. Provides a single
value for evaluating performance. In a perfect detection routine it should be 1.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J., &
Rico-Guevara, A. 2022. ohun: an R package for diagnosing and optimizing automatic sound event
detection. BioRxiv, 2022.12.13.520253. Mesaros, A., Heittola, T., & Virtanen, T. (2016). Metrics
for polyphonic sound event detection. Applied Sciences, 6(6), 162.

See Also

diagnose_detection

Examples

{

load example selection tables

data("1lbh_reference"”)

summarize_reference 43

run diagnose_detection() by sound file
diag <- diagnose_detection(

reference = lbh_reference,

detection = lbh_reference[-1,], by.sound.file = TRUE
)

summarize
summarize_diagnostic(diagnostic = diag)

should be the same as this:
diagnose_detection(
reference = lbh_reference,
detection = lbh_reference[-1,], by.sound.file = FALSE

)
}
summarize_reference Summarize temporal and frequency dimensions of annotations and
gaps
Description

summarize_reference summarizes temporal and frequency dimensions of annotations and gaps

Usage
summarize_reference(
reference,
path = NULL,
by.sound.file = FALSE,
units = c¢("ms", "kHz"),
digits = 2
)
Arguments
reference Data frame or ’selection.table’ (following the warbleR package format) with
the reference selections (start and end of the sound events) that will be used to
evaluate the performance of the detection, represented by those selections in ’de-
tection’. Must contained at least the following columns: "sound.files", "selec",
"start" and "end". If frequency range columns are included ("bottom.freq" and
"top.freq") these are also used to characterize reference selections.
path Character string containing the directory path where the sound files are located.

If supplied then duty cycle and peak frequency features are returned. These
features are more helpful for tuning a energy-based detection. Default is NULL.

by.sound.file Logical argument to control whether features are summarized across sound files

(when by.sound. file = FALSE, and more than 1 sound file is included in ’ref-
erence’) or shown separated by sound file. Default is FALSE.

44 summarize_reference

units A character vector of length 2 with the units to be used for time and frequency
parameters, in that order. Default is c("ms", "kHz"). It can also take ’s’ and
"Hz’.
digits Numeric vector of length 1 with the number of decimals to include. Default is
2.
Details

The function extracts quantitative features from reference tables that can inform the range of values
to be used in a energy-based detection optimization routine. Features related to selection duration
can be used to set the 'max.duration’ and 'min.duration’ values, frequency related features can
inform bandpass values, gap related features inform hold time values and duty cycle can be used to
evaluate performance.

Value

The function returns the mean, minimum and maximum duration of selections and gaps (time in-
tervals between selections) and of the number of annotations by sound file. If frequency range
columns are included in the reference table (i.e. "bottom.freq" and "top.freq") the minimum bottom
frequency (’min.bottom.freq’) and the maximum top frequency (’max.top.freq’) are also estimated.
Finally, if the path to the sound files in ’reference’ is supplied the duty cycle (fraction of a sound
file corresponding to target sound events) and peak amplitude (highest amplitude in a detection) are
also returned. If ‘by.sound.file = FALSE® a matrix with features in rows is returned. Otherwise a
data frame is returned in which each row correspond to a sound file. By default, time features are
returned in 'ms’ while frequency features in "’kHz’ (but see ’units’ argument).

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

See Also

optimize_energy_detector, optimize_template_detector

Examples

{
load data and save example files into temporary working directory
data(”1lbh1"”, "1bh2", "lbh_reference")
tuneR: :writeWave(lbh1l, file.path(tempdir(), "lbhl.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

summary across sound files

template_correlator

45

summarize_reference(reference = lbh_reference, path = tempdir())

summary across sound files

summarize_reference(reference

}

1lbh_reference, by.sound.file = TRUE, path = tempdir())

template_correlator

Acoustic templates correlator using time-frequency cross-correlation

Description

template_correlator estimates templates cross-correlation across multiple sound files.

Usage
template_correlator(
templates,
files = NULL,
hop.size = 11.6,
wl = NULL,
ovlp = 0,
wn = "hanning",
cor.method = "pearson”,
cores = 1,
path = "."
pb = TRUE,
type = "fourier”,
fbtype = "mel”,
)
Arguments
templates “selection_table’, ’extended_selection_table’ (warbleR package’s formats, see
selection_table) or data frame with time and frequency information of the
sound event(s) to be used as templates (1 template per row). The object must
contain columns for sound files (sound.files), selection number (selec), and start
and end time of sound event (start and end). If frequency range columns are
included (’bottom.freq’ and ’top.freq’, in kHz) the correlation will be run on
those frequency ranges. All templates must have the same sampling rate and
both templates and files’ (in which to find templates) must also have the same
sampling rate.
files Character vector with name of the files in which to run the cross-correlation

with the supplied template(s). Supported file formats:’.wav’, >.mp3’, ’.flac’ and
*.wac’. If not supplied the function will work on all sound files (in the supported
formats) in "path’.

46

template_correlator

hop.size A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 wl for a 44.1 kHz sampling rate.
Ignored if w1’ is supplied.

wl A numeric vector of length 1 specifying the window length of the spectrogram.
Default is NULL. If supplied, "hop.size’ is ignored.

ovlp Numeric vector of length 1 specifying % of overlap between two consecutive
windows, as in spectro. Default is 0. High values of ovlp slow down the
function but may produce more accurate results.

wn A character vector of length 1 specifying the window name as in ftwindow.
cor.method A character vector of length 1 specifying the correlation method as in cor.
cores Numeric. Controls whether parallel computing is applied. It specifies the num-

ber of cores to be used. Default is 1 (i.e. no parallel computing).

path Character string containing the directory path where the sound files are located.
The current working directory is used as default.

pb Logical argument to control progress bar. Default is TRUE.

type A character vector of length 1 specifying the type of cross-correlation: "fourier"
(i.e. spectrographic cross-correlation using Fourier transform; internally using
spectro; default), "mfcc” (auditory scale coefficient matrix cross-correlation;
internally using melfcc) or "mel-auditory” (cross-correlation of auditory spec-
trum, i.e. spectrum after transformation to an auditory scale; internally using
melfcc). The argument 'fbtype’ controls the auditory scale to be used. Note
that the last 2 methods have not been widely used in this context so can be re-
garded as experimental.

fbtype Character vector indicating the auditory frequency scale to use: "mel", "bark",
"htkmel", "fcmel".

Additional arguments to be passed to melfcc for further customization when
using auditory scales.

Details

This function calculates the similarity of acoustic templates across sound files by means of time-
frequency cross-correlation. Fourier spectrograms or time-frequency representations from auditory
scales (including cepstral coefficients) can be used. Several templates can be run over several sound
files. Note that template-based detection is divided in two steps: template correlation (using this
function) and template detection (or peak detection as it infers detection based on peak correlation
scores, using the function template_detector). So the output of this function (and object of "tem-
plate_correlations’) must be input into template_detector for inferring sound event occurrences.
optimize_template_detector can be used to optimize template detection.

Value

The function returns an object of class ‘template_correlations’ which is a list with the correlation
scores for each combination of templates and files. ’template_correlations’ objects must be used
to infer sound event occurrences using template_detector or to graphically explore template
correlations across sound files using full_spectrograms.

template_correlator 47

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-
210X.14170

Khanna H., Gaunt S.L.L. & McCallum D.A. (1997). Digital spectrographic cross-correlation: tests
of recall. Bioacoustics 7(3): 209-234.

Lyon, R. H., & Ordubadi, A. (1982). Use of cepstra in acoustical signal analysis. Journal of
Mechanical Design, 104(2), 303-306.

See Also

energy_detector, template_detector, optimize_template_detector

Examples

{

load example data
data(”1lbh1"”, "1bh2", "lbh_reference")

save sound files
tuneR: :writeWave(lbhl, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

create template

templ <- lbh_referencel[4,]

templ2 <- warbleR::selection_table(templ,
extended = TRUE,
path = tempdir()

)

fourier spectrogram
(tc_fr <- template_correlator(templates = templ, path = tempdir(), type = "fourier"))

mel auditory spectrograms
(tc_ma <- template_correlator(templates = templ, path = tempdir(), type = "mel-auditory”))

mfcc spectrograms
(tc_mfcc <- template_correlator(templates = templ, path = tempdir(), type = "mfcc"))

similar results (but no exactly the same) are found with the 3 methods
these are the correlation of the correlation vectors
fourier vs mel-auditory
cor(
tc_fr$~1bh2.wav-4/1bh2.wav" $correlation.scores,
tc_ma$~ 1bh2.wav-4/1bh2.wav-$correlation.scores

48 template_detector

)

fourier vs mfcc

cor(
tc_fr$~1bh2.wav-4/1bh2.wav" $correlation.scores,
tc_mfcc$™ 1bh2.wav-4/1bh2.wav™ $correlation.scores

)

mel-auditory vs mfcc

cor(
tc_ma$~ 1bh2.wav-4/1bh2.wav" $correlation.scores,
tc_mfcc$™ 1bh2.wav-4/1bh2.wav™ $correlation.scores

)

using an extended selection table
templ_est <- warbleR::selection_table(templ,
extended = TRUE,
path = tempdir()
)

tc_fr_est <- template_correlator(templates = templ_est, path = tempdir(), type = "fourier™)

produces the same result as templates in a regular data frame
cor(
tc_fr$1bh2.wav-4/1bh2.wav” $correlation.scores,
tc_fr_est$ 1bh2.wav_4-1/1bh2.wav™ $correlation.scores
)
3

template_detector Acoustic template detection from time-frequency cross-correlations

Description

template_detector find sound event occurrences in cross-correlation vectors from template_correlator

Usage

template_detector(
template.correlations,
cores = 1,
threshold,
pb = TRUE,
verbose = TRUE

Arguments

template.correlations
object of class "template_correlations’ generated by template_correlator con-
taining the correlation score vectors.

template_detector

cores

threshold

pb

verbose

Details

49

Numeric. Controls whether parallel computing is applied. It specifies the num-
ber of cores to be used. Default is 1 (i.e. no parallel computing).

Numeric vector of length 1 with a value between 0 and 1 specifying the corre-
lation threshold for detecting sound event occurrences (i.e. correlation peaks).
Must be supplied. Correlation scores are forced to between 0 and 1 (by convert-
ing negative scores to 0). 0 and 1 represent the lowest and highest similarity to
the template respectively.

Logical argument to control progress bar. Default is TRUE.

Logical argument to control if some summary messages are printed to the con-
sole.

This function infers sound events occurrences from cross-correlation scores along sound files. Cor-
relation scores must be generated first using template_correlator. The output is a data frame (or
selection table if sound files are still found in the original path supplied to template_correlator,
using the warbleR package’s format, see selection_table) containing the start and end of the
detected sound events as well as the cross-correlation score (’scores’ column) for each detection.
Note that the detected sounds are assumed to have the same duration as the template, so their
start and end correspond to the correlation peak position +/- half the template duration.

Value

The function returns a ’selection_table’ (warbleR package’s formats, see selection_table) or data
frame (if sound files can’t be found) with the start and end and correlation score for the detected

sound events.

Author(s)

Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>)

References

Araya-Salas, M., Smith-Vidaurre, G., Chaverri, G., Brenes, J. C., Chirino, F., Elizondo-Calvo, J.,
& Rico-Guevara, A. (2023). ohun: An R package for diagnosing and optimizing automatic sound
event detection. Methods in Ecology and Evolution, 14, 2259-2271. https://doi.org/10.1111/2041-

210X.14170

See Also

energy_detector, template_correlator, optimize_template_detector

Examples

{

load example data
data("lbh1", "1bh2", "lbh_reference")

save sound files

template_detector

tuneR: :writeWave(lbh1, file.path(tempdir(), "lbh1l.wav"))
tuneR: :writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))

template for the first sound file in 'lbh_reference'
templl <- lbh_referencel1,]

generate template correlations
tc <- template_correlator(templates = templl, path = tempdir(), files = "lbhl.wav")

template detection
td <- template_detector(template.correlations = tc, threshold = 0.4)

diagnose detection
diagnose_detection(
reference =
1lbh_reference[lbh_reference$sound.files == "1lbh1.wav", 1,
detection = td
)

template for the second and third sound file in 'lbh_reference’
which have similar song types
templ2 <- lbh_referencel[4,]

generate template correlations

tc <- template_correlator(
templates = templ2, path = tempdir(),
files = c("1lbh1.wav", "lbh2.wav")

template detection
td <- template_detector(template.correlations = tc, threshold = 0.3)

diagnose detection
diagnose_detection(reference = lbh_reference, detection = td)

Index

* data manipulation
split_acoustic_data, 37
x datasets
1bh1, 22
1bh2, 22
1lbh_reference, 23

approx, 9, 13,27

consensus_detection, 2
cor, 46
cut_sels, 39

diagnose_detection, 4, 18, 34,41, 42

energy_detector, 8, 13, 14, 21, 28, 38, 47, 49
env, 10, 13, 26
envelope, 10, 13, 26

ffilter, 10, 13,27
ftwindow, 46
full_spectrograms, 46

get_envelopes, 9, 10, 12, 13, 26, 27
get_templates, 15

label_detection, 3, 17, 24, 36
label_spectro, 19, 34

1bh1, 22

1bh2, 22

1bh_reference, 23

melfcc, 46
merge_overlaps, 24

optimize_energy_detector, 7, 11, 25, 32,
41,44

optimize_template_detector, 7, 30, 30, 41,
44, 46, 47, 49

plot_detection, 33

51

prcomp, 16
reassemble_detection, 35

selection_table, 3, 11, 15, 16, 18, 26, 35,
45,49
sound_pressure_level, 10, 26
spectro, 20, 46
spectro_analysis, 15, 16
split_acoustic_data, 35, 36, 37
summarize_acoustic_data, 39
summarize_diagnostic, 18, 24, 40
summarize_reference, 40, 43

template_correlator, 20, 21, 30-32, 45, 48,
49

template_detector, 3, 16, 21, 31, 32, 46, 47,
48

	consensus_detection
	diagnose_detection
	energy_detector
	get_envelopes
	get_templates
	label_detection
	label_spectro
	lbh1
	lbh2
	lbh_reference
	merge_overlaps
	optimize_energy_detector
	optimize_template_detector
	plot_detection
	reassemble_detection
	split_acoustic_data
	summarize_acoustic_data
	summarize_diagnostic
	summarize_reference
	template_correlator
	template_detector
	Index

