Package ‘readNSx’

October 24, 2025
Title Read 'Blackrock-Microsystems' Files (NEV', 'NSx")
Version 0.0.6

Description Loads 'Blackrock' <https://blackrockneurotech.com> neural signal
data files into the memory, provides utility tools to extract the data into
common formats such as plain-text 'tsv' and '"HDF5'.

License MPL-2.0 | file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.2

Imports data.table, fastmap, hdf5r, jsonlite, R6

LinkingTo cppll

Suggests bit64, tools, testthat (>= 3.0.0), knitr, rmarkdown, spelling
SystemRequirements HDF5 (>= 1.8.13), little-endian platform
NeedsCompilation yes

Copyright For the readNSx package: Zhengjia Wang.
URL http://dipterix.org/readNSx/

BugReports https://github.com/dipterix/readNSx/issues
Config/testthat/edition 3

VignetteBuilder knitr

Author Zhengjia Wang [aut, cre]

Maintainer Zhengjia Wang <dipterix.wang@gmail.com>
Repository CRAN

Date/Publication 2025-10-24 05:20:02 UTC

https://blackrockneurotech.com
http://dipterix.org/readNSx/
https://github.com/dipterix/readNSx/issues

2 get_channel

Contents
get_channel 2
GEL EVENL e e e e e e e e e e e e 3
get_file_type 4
GELLNEY . . o v i e e e e e e e e e e e e 4
GEELNSP .« o o e e e e e 5
GELLNSX v v v e e e e e e e e e e e e e e e e e 5
get_specification e 6
IMPOTE_NSP . v v v v o e 7
read_bci2000 e 9

Index 10

get_channel Get channel data
Description

Obtain channel information and data from given prefix and channel ID.

Usage

get_channel(x, channel_id)

Arguments
X path prefix specified in import_nsp, or 'nev/nsx' object
channel_id integer channel number. Please be aware that channel number, channel ID, elec-
trode ID refer to the same concept in ’Blackrock’ "NEV’ specifications. Elec-
trodes are not physical metals, they refer to channels for historical reasons.
Value

A list containing channel data and meta information, along with the enclosing "NSx’ information;
for invalid channel ID, this function returns NULL

get_event 3

get_event Get event data packets from "NEV’

Description

Get event data packets from "NEV’

Usage

get_event(x, event_type, ...)

Arguments

X path prefix (see import_nsp), or 'nev/nsx"' object
event_type event type to load, common event types are

’digital_inputs’ packet identifier O
"spike’ packet identifier 1 to 10000 as of version 3.0

"recording’ packet identifier 65529 as of version 3.0, available after version
3.0

’configuration’ packet identifier 65530 as of version 3.0, available after ver-
sion 3.0

"log’ packet identifier 65531 as of version 3.0, available after version 3.0

"button_trigger’ packet identifier 65532 as of version 3.0, available after
version 3.0

"tracking’ packet identifier 65533 as of version 3.0, available after version
3.0

’video_sync’ packet identifier 65534 as of version 3.0, available after version
3.0

’comment’ packet identifier 65535 as of version 3.0, available after version 2.3

pass to other methods

Value

A data frame of corresponding event type, or NULL if event is not found or invalid

4 get_nev

get_file_type Get ’Blackrock’ file type

Description

Reads the first 10 bytes containing file type and version information.

Usage

get_file_type(path)

Arguments

path path to the *Blackrock’ ' .nev' or '.nsx' file, or a binary connection.

Value

A list containing file information, including file type, version information, and normalized absolute
path.

get_nev Load *NEV’ information from path prefix

Description

Load "NEV’ information from path prefix

Usage
get_nev(x, ...)
Arguments
X path prefix specified in import_nsp, or 'nev/nsx' object
reserved for future use
Value

’NEV’ header information if x is valid, otherwise NULL. See Section ""NEV’ Data" in get_specification

get_nsp 5

get_nsp Get a collection list containing "NEV’ and 'NSx’ headers

Description

Get a collection list containing '"NEV’ and "NSx’ headers

Usage

get_nsp(x)

Arguments

X path prefix specified in import_nsp, or 'nev/nsx' object

Value

A list containing 'nev' and imported 'nsx' headers, see import_nsp for details

get_nsx Load NSx’ information from path prefix

Description

Load *NSx’ information from path prefix

Usage
get_nsx(x, which, ...)
Arguments
X path prefix specified in import_nsp, or 'nev/nsx"' object
which which *"NSx’ to load, for example, which=3 loads 'ns3' headers
reserved for future use
Value

’NSx’ header information if data is found, otherwise returns NULL. See Section ""NSx’ Data" in
get_specification

6 get_specification

get_specification Get ’.nev’ or 'nsx’ specification

Description

Get ".nev’ or 'nsx’ specification

Usage
get_specification(version, type = c("nev", "nsx"))
Arguments
version either character string or a vector of two integers; for example, "2.2", "2.3",
c(3, 0). Currently only these three versions are supported since I was unable to
find any other versions. Please file an issue ticket if others versions are desired.
type file type; choices are 'nev' or 'nsx'
Value

The file specification as a list. The specification usually contains three sections: basic header (fixed
length), extended header (dictionary-style), and data packets (data stream). The specification is
used to parse the data files.

’NEV’ Data

A *NEV’ object consists of three sections:

Section 1 contains basic information such as the time-origin of all the time-stamps, the time-stamp
sampling frequency, data packets sizes.

Section 2 is extended header containing the configurations of channels, digital signals, etc. For any
data packets in section 3, there should be at least one table in this section describing the settings.

section 3 is a collection of event packets such as digital signal inputs (most likely to be used at
version 2.2 or by 'Ripple’), spike waveform, comments (sometimes storing epoch information),
etc.

Please be aware that while most common entries can be found across different file versions, some
entries are version-specific. If you are making your script general, you need to be very careful
handling these differences. For more information, please search for the data specification manual
from the Blackrock-Microsystems’ website.

’NSx’ Data

A 'NSx’ file refers to the data files ending with 'ns1' through 'ns9'. Common types are 'ns2'
(sampling at 1000 Hz), 'ns3' (sampling at 2000 Hz), and 'ns5' (sampling at 30,000 Hz).

A ’NSx’ file also consists of three sections. Section 1 contains basic information such as the time-
origin of all the time-stamps, sampling frequencies, and channel counts within the file. Please be
careful that item time_resolution_timestamp is not the sampling frequency for signals. This item

import_nsp 7

is the sampling frequency for time-stamp. To obtain the signal sample rate, divided time_resolution_timestamp
by period. For example, 'ns3' usually has time-stamp resolution 30,000 and period=15, hence
the signal sample rate is 30000/15=2000Hz.

Section 2 usually contains one and only one channel table of which the number of rows should co-
incide with number of channels from section 1. Other information such as channel labels, physical
connectors, pins, units, filter settings, digital-to-analog conversion are also included. Since readNSx
always attempts to convert signals in ’volts’ or ’milli-volts’ to *micro-volts’, the 'units' column
might be different to what’s actual recorded in the "NSx’ file headers.

Section 3 contains partitions of continuous recording. When imported/loaded from readNSx, the
digital signals are always converted to analog signals with *micro-volts’ unit. Please use get_channel
to get the channel data.

Examples
get_specification(version = c(2,3), type = "nev")
get_specification(version = "3.0", type = "nsx")
import_nsp Import signal data from ’Blackrock-Microsystems’ data files
Description

Please use import_nsp to import 'NEV’ and *NSx’ files.

Usage

import_nsp(
path,
prefix = NULL,
exclude_events = "spike",
exclude_nsx = NULL,
verbose = TRUE,

partition_prefix = "/part”
)
Arguments
path path to ’NEV’ or '"NSx’ files
prefix path prefix to save data files into

exclude_events exclude one or more 'NEV’ data events, choices are 'spike', 'video_sync',
'digital_inputs', 'tracking', 'button_trigger"', 'comment', 'configuration’;
default is 'spike' since the spike data takes very long time to parse, and most
users might still use their own offline spike-sorting algorithms.

8 import_nsp

exclude_nsx excluded *"NSx’ types, integer vectors from 1 to 9; for example, exclude_nsx=c(1,2)
will prevent 'ns1' and 'ns2' from being imported

verbose logical or a progress object: when logical, verbose indicates whether to print
the progress as messages; when verbose is a progress object, this object must
have inc method; examples are Progress in the shiny package, progress?2
from dipsaus, or shiny_progress from shidashi

partition_prefix
additional prefix to the data partition; default is "/part”

Value

A list of configurations, see get_specification for what’s contained.

Examples

Please get your own sample data first. This package does not
provide sample data for privacy and license concerns :)

if(interactive() && file.exists("sampledata.nev")) {

library(readNSx)
---- Import for the first time ---------------------—-ooo——
import_nsp(

path = "sampledata.nev”,

prefix = file.path(
"~/BIDSRoot/MyDataSet/sub-YAB/ses-008/ieeg/",
"sub-YAB_ses-008_task-congruency_acq-NSP1_run-01"
) ’

exclude_events = "spike", partition_prefix = "/part”

---- Load header information ----------------—---——--————-——-
prefix <- "sub-YAB_ses-008_task-congruency_acq-NSP1_run-01"

nev <- get_nev(prefix)

ns3 <- get_nsx(prefix, which = 3)

get nev from nsx, or nsx from nev
get_nev(ns3)
get_nsx(nev, which = 5)

---- Load channel data

result <- get_channel(prefix, channel_id = 10)
channel_signal <- result$channel_detail$parti$data
channel_signall]

read_bci2000

read_bci2000 Read *BCI2000° recording data

Description

Read 'BCI2000' recording data

Usage
read_bci2000_header(file)

read_bci2000(file)

Arguments

file path to the recording data

Value

Parsed signal data

Examples

Package comes with sample data
file <- system.file("samples”, "bci2000_sample.dat”, package = "readNSx")
result <- read_bci2000(file)

print(result)
Notive: v1.0 and v1.1 are different, but all in ~Source” section
sample rate

result$parameters$Source$SamplingRate$value

Signal data 64 channels x 500 time-points
dim(result$signals)

Index

get_channel, 2,7
get_event, 3
get_file_type, 4

get_nev, 4

get_nsp, 5

get_nsx, 5
get_specification, 4, 5,6, 8

import_nsp, 2-5,7

read_bci2000, 9
read_bci2000_header (read_bci2000), 9

10

	get_channel
	get_event
	get_file_type
	get_nev
	get_nsp
	get_nsx
	get_specification
	import_nsp
	read_bci2000
	Index

