| Type: | Package |
| Title: | Sample Generation by Replacement |
| Version: | 1.3.1 |
| Date: | 2022-04-14 |
| Author: | Massimiliano Pastore & Luigi Lombardi |
| Depends: | MASS |
| Suggests: | polycor |
| Maintainer: | Massimiliano Pastore <massimiliano.pastore@unipd.it> |
| Description: | Sample Generation by Replacement simulations (SGR; Lombardi & Pastore, 2014; Pastore & Lombardi, 2014). The package can be used to perform fake data analysis according to the sample generation by replacement approach. It includes functions for making simple inferences about discrete/ordinal fake data. The package allows to study the implications of fake data for empirical results. |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| NeedsCompilation: | no |
| Packaged: | 2022-04-14 14:03:31 UTC; bayes |
| Repository: | CRAN |
| Date/Publication: | 2022-04-14 14:30:02 UTC |
Average root mean square error
Description
Average root mean square error (AMSE).
Usage
amse(Bpar, B0)
Arguments
Bpar |
Matrix with dimension |
B0 |
Vector of true parameter values. |
Details
Let \hat{\theta}_{ij} be the estimated parameter value for the jth
parameter in the ith sample (replicate), i = 1, 2, \ldots B, j = 1, 2, \ldots P,
and let \theta_{j} be the corresponding true parameter value, the Average root mean square error is defined as follows:
AMSE=\frac{1}{B}\sum_{i}\sqrt{\frac{1}{P} \sum_{j} \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right]^2}
Value
Gives the AMSE value.
Note
If \theta_{j} = 0, the ratio \left[ \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right] is modified as follows: \left[ \frac{\hat{\theta}_{ij}-0}{1} \right]
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.
See Also
Average relative bias
Description
Average relative bias (ARB).
Usage
arb(Bpar, B0)
Arguments
Bpar |
Matrix with dimension |
B0 |
Vector of true parameter values. |
Details
Let \hat{\theta}_{ij} be the estimated parameter value for the jth
parameter in the ith sample (replicate), i = 1, 2, \ldots B, j = 1, 2, \ldots P,
and let \theta_{j} be the corresponding true parameter value, the Average relative bias is defined as follows:
ARB=\frac{100}{B}\sum_{i}\frac{1}{P} \sum_{j} \left( \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right)
Value
Gives the ARB value.
Note
If \theta_{j} = 0, the ratio \left( \frac{\hat{\theta}_{ij}-\theta_{j}}{\theta_{j}} \right) is modified as follows: \left( \frac{\hat{\theta}_{ij}-0}{1} \right)
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, Structural Equation Modeling: A Multidisciplinary Journal, 17, 392-423.
See Also
Generalized Beta Distribution.
Description
The generalized beta distribution extends the classical beta distribution beyond the [0,1] range (Whitby, 1971).
Usage
dgBeta(x, a = min(x), b = max(x), gam = 1, del = 1)
Arguments
x |
Vector of quantilies. |
a |
Minimum of range of r.v. |
b |
Maximum of range of r.v. |
gam |
Gamma parameter. |
del |
Delta parameter. |
Details
The Generalized Beta Distribution is defined as follows:
G(x;a,b,\gamma,\delta) = \frac{1}{B(\gamma,\delta)(b-a)^{\gamma+\delta-1}}
(x-a)^{\gamma-1}(b-x)^{\delta-1}
where B(\gamma,\delta) is the beta function. The parameters a \in R and
b \in R (with a < b) are the left and right end points, respectively. The parameters \gamma > 0 and \delta > 0 are the governing shape parameters for a and b respectively. For all the values of
the r.v. X that fall outside the interval [a, b], G simply takes value 0. The
generalized beta distribution reduces to the beta distribution when a = 0 and
b = 1.
Value
Gives the density.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Whitby, O. (1971). Estimation of parameters in the generalized beta distribution (Technical Report NO. 29). Department of Statistics: Standford University.
See Also
Examples
curve(dgBeta(x))
curve(dgBeta(x,gam=3,del=3))
curve(dgBeta(x,gam=1.5,del=2.5))
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
plot(x,dgBeta(x,gam=GA[j],del=DE[j]),type="h",
panel.first=points(x,dgBeta(x,gam=GA[j],del=DE[j]),pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.6),
ylab="dgBeta(x)")
}
Generalized Beta distribution for discrete variables
Description
Generalized Beta distribution for discrete variables.
Usage
dgBetaD(x, a = min(x), b = max(x), gam = 1, del = 1, ct = 1)
Arguments
x |
Vector of quantilies. |
a |
Minimum of range of r.v. |
b |
Maximum of range of r.v. |
gam |
Gamma parameter. |
del |
Delta parameter. |
ct |
Correction term, default value: 1. |
Details
Let X be a discrete r. v. with range
R_X=\{a,a+1,a+2,\ldots, a+t-1,a+t = b \}
and where a \in \mathrm{N} \cup \{0 \} and t \in \mathrm{N}. The Generalized Discrete Beta Distribution for the r.v. X is defined as follows:
DG(x;a,b,\gamma,\delta)=
\left\{
\begin{array}{cl}
\frac{G^*(x;a,b,\gamma,\delta)}{\sum_{x' \in R_X} G^*(x';a,b,\gamma,\delta)} & x \in R_X\\
0 & x \notin R_X
\end{array}
\right.
where G^* is a modified version of the generalized beta distribution dgBeta defined as
G^*(x;a,b,\gamma,\delta)=\frac{1}{B(\gamma,\delta)(b-a+2c)^{\gamma+\delta-1}}
(x-a+c)^{\gamma-1}(b-x+c)^{\delta-1}
Value
Gives the density.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. The R Journal, 6, 164-177.
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
See Also
Examples
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
plot(x,dgBetaD(x,gam=GA[j],del=DE[j]),type="h",
panel.first=points(x,dgBetaD(x,gam=GA[j],del=DE[j]),pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.6),
ylab="dgBetaD(x)")
}
Internal function.
Description
Set different instances of the conditional replacement distribution.
Usage
model.fake.par(fake.model = c("uninformative", "average", "slight", "extreme"))
Arguments
fake.model |
A character string
indicating the model for the conditional replacement distribution.
The options are: |
Value
Gives a list with \gamma and \delta parameters.
Author(s)
Massimiliano Pastore
References
Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. The R Journal, 6, 164-177.
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
Examples
model.fake.par() # default
model.fake.par("average")
Internal function.
Description
This function allows to set different replacement distributions for different subsets of cells in the data matrix.
Usage
partition.replacement(Dx, PM, Q = NULL, Pparm = NULL,
fake.model = NULL,p = NULL)
Arguments
Dx |
Data frame or matrix to be replaced. |
PM |
Partition matrix with size |
Q |
Max value in the discrete r.v. range: |
Pparm |
List of replacement parameters for each class in the replacement partition. See details. |
fake.model |
A character string indicating the model for the conditional replacement distribution, see |
p |
Overall probability of replacement. Must be a matrix with |
Details
PM has size dim(Dx) and contains a
numeric code for each distinct class in the partition.
If a cell of the partition matrix PM contains
0, then the corresponding Dx cell value is not modified (no replacements condition class).
Pparm is a list containing three elements. Each element is a P\times 2 matrix where P is the total number of classes in the partition (see examples for further details).
p: Overall probability of replacement: p[,1] indicates the faking good probability, p[,2] indicates the faking bad probability.
gam: Gamma parameter: gam[,1] and gam[,2]
indicate the faking good and the faking bad parameters for the
lower bound a.
del: Delta parameter: del[,1] and del[,2]
indicate the faking good and the faking bad parameters for the
upper bound b.
Note that it is possible to define a faking model using the fake.model assignment. In such cases the user must specify also the overall probability of replacement using parameter p.
Value
Returns the fake data matrix.
Author(s)
Massimiliano Pastore
See Also
Examples
require(MASS)
set.seed(20130207)
R <- matrix(c(1,.3,.3,1),2,2)
Dx <- rdatagen(n=20,R=R,Q=5)$data
## partition matrix
PM <- matrix(0,nrow(Dx),ncol(Dx))
PM[3:10,2] <- 1
PM[3:10,1] <- 1
partition.replacement(Dx,PM) # warning! zero replacements
## using fake.model
partition.replacement(Dx,PM,fake.model="uninformative",p=matrix(c(.3,.2),ncol=2))
###
p <- c(.5,0)
gam <- c(1,1)
del <- c(1,1)
Pparm <- list(p=p,gam=gam,del=del)
partition.replacement(Dx,PM,Pparm=Pparm)
### another partition
PM[11:15,2] <- 2
(Pparm <- list(p=matrix(c(0,.5,.5,0),2,2),
gam=matrix(c(1,4,1,4),2,2),del=matrix(c(1,2,1,2),2,2)))
partition.replacement(Dx,PM,Pparm=Pparm)
Probability of faking.
Description
The function gives the conditional probability of replacement p(f=k|d=h,\theta_F) for discrete values in the range 1, \ldots, Q.
Usage
pfake(k, h = k, p = c(0,0), Q = 5, gam = c(1,1), del = c(1,1),
fake.model = c("uninformative", "average", "slight", "extreme"))
Arguments
k |
A fake value. |
h |
An observed original value. |
p |
Overall probability of replacement: |
Q |
Max value in the discrete r.v. range: |
gam |
Gamma parameter: |
del |
Delta parameter: |
fake.model |
A character string
indicating the model for the conditional replacement distribution. The options are: |
Value
Gives the conditional probability distribution based on the following equation
p(f=k|d=h,\theta_F)=
\left\{
\begin{array}{cl}
DG(k;h+1,Q,\gamma_{+},\delta_{+}) \pi_{+} & 1 \leq h < k \leq Q \\
DG(k;q,h-1,\gamma_{-},\delta_{-}) \pi_{-} & 1 \leq k < h \leq Q \\
1-(\pi_{+}+\pi{-}) & 1 < h=k < Q \\
1- \pi_{+} & k=h=1 \\
1- \pi_{-} & k=h=Q
\end{array}
\right.
with \theta_F and DG being the parameter vector (\gamma_{+},\gamma_{-},\delta_{+},\delta_{-},\pi_{+},\pi_{-}) and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a=h+1 (resp. a=1) and b=Q (resp b=h-1). The parameter \pi_{+} denotes the probability of faking good, \pi_{-} indicates the probability of faking bad.
Note that the faking probabilities must satisfy the following condition: \pi_{+}+\pi_{-} \leq 1.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. The R Journal, 6, 164-177.
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
Examples
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
### fake good
par(mfrow=c(2,2))
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfake(x[i],h=4,Q=7,
gam=c(GA[j],GA[j]),del=c(DE[j],DE[j]),p=c(.4,0)))
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7),
ylab="Replacement probability")
}
### fake bad
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfake(x[i],h=4,Q=7,
gam=c(GA[j],GA[j]),del=c(DE[j],DE[j]),p=c(0,.4)))
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7),
ylab="Replacement probability")
}
### fake good and fake bad
P = c(.4,.4)
par(mfrow=c(2,4))
for (j in x) {
y <- NULL
for (i in x) {
y <- c(y,pfake(x[i],h=x[j],Q=max(x),gam=c(GA[1],GA[1]),del=c(DE[1],DE[1]),p=P))
}
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste("h=",x[j],sep=""),ylim=c(0,1),
ylab="Replacement probability")
print(sum(y,na.rm=TRUE))
}
### using the fake.model argument
x <- 1:5
models <- c("uninformative","average","slight","extreme")
par(mfrow=c(2,2))
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfake(x[i],h=2,Q=max(x),
fake.model=models[j],p=c(.45,0))) # fake good
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste(models[j],"model"),ylim=c(0,1),
ylab="Replacement probability")
}
par(mfrow=c(2,2))
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfake(x[i],h=4,Q=max(x),
fake.model=models[j],p=c(0,.45))) # fake bad
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste(models[j],"model"),ylim=c(0,1),
ylab="Replacement probability")
}
Probability of faking bad.
Description
The function gives the conditional probability of replacement p(f=k|d=h,\theta_F) for discrete values in the range 1, \ldots, Q.
Usage
pfakebad(k, h = k, p = 0, Q = 5, gam = 1, del = 1)
Arguments
k |
A fake value. |
h |
An observed original value. |
p |
Overall probability of replacement. |
Q |
Max value in the discrete r.v. range: |
gam |
Gamma parameter. |
del |
Delta parameter. |
Value
Gives the conditional probability based on the following equation
p(f=k|d=h,\theta_F)=
\left\{
\begin{array}{cl}
1 & h=k=1 \\
GD(k;1,h-1,\gamma,\delta) \pi & 1 \leq k < h \leq Q \\
1-\pi & 1 < h=k \leq Q \\
0 & 1 \leq h < k \leq Q
\end{array}
\right.
with \theta_F and GD being the parameter vector (\gamma,\delta,\pi) and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a=h+1 and b=Q. The parameter \pi denotes the probability of faking bad.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
Examples
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfakebad(x[i],h=5,Q=7,gam=GA[j],del=DE[j],p=.4))
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7),
ylab="Replacement probability")
}
Probability of faking good.
Description
The function gives the conditional probability of replacement p(f=k|d=h,\theta_F) for discrete values in the range 1, \ldots, Q.
Usage
pfakegood(k, h = k, p = 0, Q = 5, gam = 1, del = 1)
Arguments
k |
A fake value. |
h |
An observed original value. |
p |
Overall probability of replacement. |
Q |
Max value in the discrete r.v. range: |
gam |
Gamma parameter. |
del |
Delta parameter. |
Value
Gives the conditional probability based on the following equation
p(f=k|d=h,\theta_F)=
\left\{
\begin{array}{cl}
1 & h=k=Q \\
GD(k;h+1,Q,\gamma,\delta) \pi & 1 \leq h < k \leq Q \\
1-\pi & 1 \leq k=h < Q \\
0 & 1 \leq k < h \leq Q
\end{array}
\right.
with \theta_F and GD being the parameter vector (\gamma,\delta,\pi) and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a=h+1 and b=Q. The parameter \pi denotes the probability of faking good.
Author(s)
Massimiliano Pastore & Luigi Lombardi
References
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
Examples
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
par(mfrow=c(2,2))
for (j in 1:4) {
y <- NULL
for (i in x) y <- c(y,pfakegood(x[i],h=3,Q=7,gam=GA[j],del=DE[j],p=.4))
plot(x,y,type="h",panel.first=points(x,y,pch=19),
main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7),
ylab="Replacement probability")
}
Data set
Description
The psydata data frame has 744 rows (observations) and 22 columns (variables).
Usage
data(psydata)
Format
This data frame contains the following variables:
-
nsogg: int, subject number. -
vers: Factor, questionnaire version:V1fake-motivating version,V3honest-motivating version eV4neutral version. -
sex: Factor, gender. -
eta: int, age. -
resid: Factor, residence. -
dipl: Factor, education. -
voto: int, high school's final score. -
votomax: int, maximum value forvoto. -
cdl: Factor, a character string indicating the type of undergraduate program. -
aep..: int, 12 items of the AEP/A scale. -
tot: int, total score.
Author(s)
Andrea Bobbio, Massimo Nucci, Massimiliano Pastore
Simulate discrete data.
Description
Simulate discrete data from either a correlation matrix or thresholds or probabilities.
Usage
rdatagen(n = 100, R = diag(1,2), Q = NULL, th = NULL, probs = NULL)
Arguments
n |
Number of observations. |
R |
Correlation matrix. |
Q |
Number of discrete values in the
random variables. It is a single value or a vector. If |
th |
List of thresholds; each element contains |
probs |
List of probabilities; each elements contains |
Value
Returns a list with four elements:
data |
The simulated data matrix. |
R |
Correlation matrix. |
thresholds |
The list of thresholds. |
probs |
The list of probabilities. |
Note
Defaults work like in the mvrnorm function of the MASS package.
Author(s)
Massimiliano Pastore, Luigi Lombardi & Marco Bressan
References
Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. The R Journal, 6, 164-177.
Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.
Examples
require(MASS)
## only default
rdatagen()
## set correlations only
R <- matrix(c(1,.4,.4,1),2,2)
Dx <- rdatagen(n=10000,R=R)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) hist(Dx[,j])
## set correlations and Q
Dx <- rdatagen(n=10000,R=R,Q=2)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and thresholds
th <- list(c(-Inf,qchisq(pbinom(0:3,4,.5),1),Inf),
c(-Inf,qnorm(pbinom(0:2,3,.5)),Inf))
Dx <- rdatagen(n=10000,R=R,th=th)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and probabilities [1]
probs <- list(c(.125,.375,.375,.125),c(.125,.375,.375,.125))
Dx <- rdatagen(n=10000,R=R,probs=probs)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and probabilities [2]
probs <- c(.125,.375,.375,.125)
Dx <- rdatagen(n=10000,R=R,probs=probs)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set different values for Q
Dx <- rdatagen(n=1000,Q=c(2,4),R=R)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
Random replacements of data.
Description
Replaces data in the original data matrix using a specified replacement matrix.
Usage
rdatarepl(Dx, RM, printfp = TRUE)
Arguments
Dx |
Data frame or matrix to be replaced. |
RM |
Replacement matrix. |
printfp |
Logical, if |
Details
Replacement matrices can be obtained from the replacement.matrix function.
Value
Returns a list with two elements:
Fx |
The replaced (fake) data matrix. |
Fperc |
Percentage of replaced data. |
Author(s)
Massimiliano Pastore
See Also
Examples
require(MASS)
set.seed(20130207)
Dx <- rdatagen(R=matrix(c(1,.3,.3,1),2,2),Q=5)$data
RM <- replacement.matrix(p=c(.6,0))
Fx <- rdatarepl(Dx,RM)$Fx
par(mfrow=c(2,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j]),main="original data")
for (j in 1:ncol(Fx)) barplot(table(Fx[,j]),main="replaced data")
Replacement matrix.
Description
Builds the replacement matrix.
Usage
replacement.matrix(Q = 5, p = c(0,0), gam = c(1,1), del = c(1,1),
fake.model = c("uninformative", "average", "slight", "extreme"))
Arguments
Q |
Max value in the discrete r.v. range: |
p |
Overall probability of replacement: |
gam |
Gamma parameter: |
del |
Delta parameter: |
fake.model |
A character string
indicating the model for the conditional replacement distribution. The options are: |
Value
Gives a Q \times Q matrix with replacement probabilities. Each row r (1 \leq r \leq Q) in the matrix indicates the conditional probability distribution
p(k=r|h=c,\pi), \qquad h=1,\ldots,Q
\pi (p) denotes the overall replacement probability.
Author(s)
Massimiliano Pastore
See Also
dgBetaD, pfake, pfakegood, pfakebad
Examples
## no replacements
replacement.matrix(Q=7)
## faking good
replacement.matrix(Q=7,p=c(.5,0))
replacement.matrix(Q=7,p=c(.5,0),gam=8,del=2.5)
## faking bad
replacement.matrix(Q=7,p=c(0,.5))
replacement.matrix(Q=7,p=c(0,.5),gam=8,del=2.5)
## faking good and faking bad
replacement.matrix(Q=7,p=c(.3,.5),gam=c(8,8),del=c(2.5,2.5))
## using the fake.model argument
replacement.matrix(Q=7,p=c(0,.4),fake.model="extreme")
replacement.matrix(Q=7,p=c(.4,0),fake.model="extreme")
replacement.matrix(Q=7,p=c(.4,.4),fake.model="slight")
Data set
Description
Data about smoking and drug consumption among young people.
Usage
data(smokers)
Format
This data frame contains the following columns:
-
age: int, 1 = adults, 2 = minors. -
smoking: int, 1 = yes, 2 = no. -
drug: int, drug addiction, 1 = yes, 2 = no. -
druguse: int, drug consumption, 1 = never, 2 = once, 3 = some times, 4 = often.
Source
Pastore, M., Lombardi, L., Mereu, F. (2007). Effects of malingering in self-report measures: A scenario analysis approach; in C. H. Skiadas (Ed.), Recent Advances in Stochastic Modeling and Data Analysis, pp. 483-491, World Scientific Publishing.