
Package ‘socialranking’
July 23, 2025

Title Social Ranking Solutions for Power Relations on Coalitions

Version 1.2.0

Maintainer Felix Fritz <felix.fritz@dauphine.eu>

Description The notion of power index has been widely used in literature to evaluate the influ-
ence of individual players (e.g., voters, political parties, nations, stockholders, etc.) in-
volved in a collective decision situation like an electoral system, a parliament, a council, a man-
agement board, etc., where players may form coalitions. Traditionally this ranking is deter-
mined through numerical evaluation. More often than not however only ordinal data be-
tween coalitions is known. The package 'socialranking' offers a set of solutions to rank play-
ers based on a transitive ranking between coalitions, including through CP-Majority, ordi-
nal Banzhaf or lexicographic excellence solution summarized by Tahar Allouche, Bruno Es-
coffier, Stefano Moretti and Meltem Öztürk (2020, <doi:10.24963/ijcai.2020/3>).

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

RdMacros Rdpack

Suggests clipr (>= 0.8), testthat (>= 3.1.2), xfun (>= 0.30.0), knitr
(>= 1.40), rmarkdown (>= 2.17), covr (>= 3.6.1), partitions (>=
1.10.7)

Imports relations (>= 0.6.13), rlang (>= 1.0.6), Rdpack (>= 2.4)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/jassler/socialranking

BugReports https://github.com/jassler/socialranking/issues

NeedsCompilation no

Author Felix Fritz [aut, cre],
Jochen Staudacher [aut, cph, ths],
Moretti Stefano [aut, cph, ths]

Repository CRAN

Date/Publication 2024-05-16 14:10:02 UTC

1

https://doi.org/10.24963/ijcai.2020/3
https://github.com/jassler/socialranking
https://github.com/jassler/socialranking/issues

2 appendMissingCoalitions

Contents

appendMissingCoalitions . 2
as.PowerRelation . 4
coalitionsAreIndifferent . 5
copelandScores . 6
cpMajorityComparison . 8
createPowerset . 11
cumulativeScores . 12
dominates . 14
doRanking . 15
elementLookup . 17
equivalenceClassIndex . 18
kramerSimpsonScores . 19
L1Scores . 21
L2Scores . 23
lexcelScores . 26
LPScores . 28
LPSScores . 31
makePowerRelationMonotonic . 33
newPowerRelation . 35
newPowerRelationFromString . 35
ordinalBanzhafScores . 36
PowerRelation . 37
powerRelationGenerator . 41
powerRelationMatrix . 44
SocialRanking . 46
testRelation . 48
transitiveClosure . 51

Index 53

appendMissingCoalitions

Append missing coalitions

Description

Append an equivalence class to a power relation with all coalitions of elements that do not appear
in the power relation.

Usage

appendMissingCoalitions(powerRelation, includeEmptySet = TRUE)

appendMissingCoalitions 3

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

includeEmptySet

If TRUE, include the empty set in the last equivalence class if it is missing from
the power relation.

Details

For a given set of elements N = {1, ..., n}, a PowerRelation object describes a total preorder of
its subsets, or coalitions, P ⊆ 2N , where 2N is the superset of elements.

If P ≠ 2N , that means that there are some coalitions S ∈ 2N , S /∈ P , such that we cannot compare
S ≿ T or T ≿ S for every T ∈ P .

This may be caused by 2N having too many coalitions to consider. In certain cases, it may be more
interesting to only consider the top ranking coalitions and "shoving" all remaining coalitions into
the back.

For this use-case, appendMissingCoalitions() takes the set 2N \ P and attaches it in form of an
equivalence class to the back of the power relation.

I.e., take as an example 12 ≻ 13 ≻ (1 ∼ 2). Here, we have

2N = {123, 12, 13, 23, 1, 2, 3, ∅}
P = {12, 13, 1, 2}

2N \ P = {123, 23, 3, ∅}.

Adding the missing coalitions to the power relation then gives us 12 ≻ 13 ≻ (1 ∼ 2) ≻ (123 ∼
23 ∼ 3 ∼ ∅).

Value

PowerRelation object containing the following values:

• $elements: vector of elements

• $eqs: equivalence classes. Nested list of lists, each containing vectors representing groups of
elements in the same equivalence class

• $coalitionLookup: function(v) taking a coalition vector v and returning the equivalence
class it belongs to. See coalitionLookup() for more.

• $elementLookup: function(e) taking an element e and returning a list of 2-sized tuples.
See elementLookup() for more.

See Also

Other helper functions for transforming power relations: makePowerRelationMonotonic()

4 as.PowerRelation

Examples

pr <- as.PowerRelation(list(c(1,2), 3))
12 > 3

appendMissingCoalitions(pr)
12 > 3 > (123 ~ 13 ~ 23 ~ 1 ~ 2 ~ {})

appendMissingCoalitions(pr, includeEmptySet = FALSE)
12 > 3 > (123 ~ 13 ~ 23 ~ 1 ~ 2)

as.PowerRelation Create PowerRelation object

Description

Alternative ways of creating PowerRelation objects.

Usage

as.PowerRelation(x, ...)

S3 method for class 'character'
as.PowerRelation(x, ...)

S3 method for class 'list'
as.PowerRelation(x, ..., comparators = c(">"))

Arguments

x An object

... Optional additional parameters

comparators Vector of ">" or "~" characters

Using a character string

The same way a power relation ≿ may be represented in literature (or printed by an PowerRelation
object), a simple string containing letters, numbers, > or ~ can be used to input a new power relation.

Every special character is ignored, with the exception of ≿ ("\u227B") and ∼ ("\u223C").

Every letter or number is assumed to be an individual element. "abc > ac" therefore would repre-
sent two coalitions, the first one of size 3 with the elements a, b, and c. This method does not allow
for elements to be entered that are supposed to be multiple characters long.

An empty coalitions can be simply left blank (i.e., "abc > ~ ac"), though it is often clearer if curly
braces are used to indicate such (i.e., "abc > {} ~ ac").

coalitionsAreIndifferent 5

Using a list

Create a PowerRelation object with an unnested list of coalition vectors.

By default, a linear order is assumed on the coalitions. I.e., if it is given list(c(1,2),1,2), these
three coalitions are put into their own equivalence class, producing 12 > 1 > 2.

The comparators in-between can be adjusted to indicate whether the relation between two coalitions
is that of strict preference > or indifference ~.

Examples

Using character strings
as.PowerRelation("abc > ab > ({} ~ c) > (a ~ b ~ ac) > bc")
abc > ab > ({} ~ c) > (a ~ b ~ ac) > bc

using createPowerset(), then shifting coalitions up and down using Alt+Up and Alt+Down
if(interactive()) {

createPowerset(1:2, result = "copy")
}
as.PowerRelation("

12
> 1
~ {}
> 2

")

Using lists
as.PowerRelation(list(c(1,2), 2, c(), 1))
12 > 2 > {} > 1

as.PowerRelation(list(c(1,2), 2, c(), 1), comparators = c("~", ">", ">"))
(12 ~ 2) > {} > 1

the length of comparators doesn't necessarily matter.
If comparators are missing, the existing ones are simply repeated...
as.PowerRelation(list(c(1,2), 2, c(), 1), comparators = "~")
(12 ~ 2 ~ {} ~ 1)

as.PowerRelation(list(c(1,2), 2, c(), 1), comparators = c("~", ">"))
(12 ~ 2) > ({} ~ 1)

... or the rest is cut off
as.PowerRelation(list(c(1,2), 2, c(), 1), comparators = c("~", ">", "~", "~", ">"))
(12 ~ 2) > ({} ~ 1)

coalitionsAreIndifferent

Are coalitions indifferent

6 copelandScores

Description

Check if coalitions are indifferent to one another, or, in other words, if they appear in the same
equivalence class.

Usage

coalitionsAreIndifferent(powerRelation, c1, c2)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

c1 Coalition vector

c2 Coalition vector

Value

Logical value TRUE if c1 and c2 are in the same equivalence class, else FALSE.

See Also

Other lookup functions: elementLookup(), equivalenceClassIndex()

Examples

pr <- PowerRelation(list(list(c(1,2)), list(1, 2)))

stopifnot(coalitionsAreIndifferent(pr, c(1,2), c(1)) == FALSE)
stopifnot(coalitionsAreIndifferent(pr, 2, 1) == TRUE)

Note that it doesn't fail with non-existing power relations
stopifnot(coalitionsAreIndifferent(pr, 1, c()) == FALSE)
stopifnot(coalitionsAreIndifferent(pr, 3, c(1,2,3)) == TRUE)

copelandScores Copeland-like method

Description

Based on cpMajorityComparison(), add or subtract scores based on how an element fares against
the others.

copelandRanking() returns the corresponding ranking.

Usage

copelandScores(powerRelation, elements = powerRelation$elements)

copelandRanking(powerRelation)

copelandScores 7

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

Strongly inspired by the Copeland score of social choice theory (Copeland 1951), the Copeland-like
solution is based on the net flow of the CP-majority graph (Allouche et al. 2020).

Individuals are ordered according to the number of pairwise winning comparisons, minus the num-
ber of pairwise losing comparisons, over the set of all CP-comparisons.

More formally, in a given PowerRelation pr with element i, count the number of elements j ∈ N \
{i} where cpMajorityComparison(pr, i, j) >= 0 and subtract those where cpMajorityComparison(pr, i, j) <= 0.

Value

Score function returns a list of type CopelandScores and length of powerRelation$elements
(unless parameter elements is specified). Each element is a vector of 2 numbers, the number of
pairwise winning comparisons and the number of pairwise losing comparisons. Those two numbers
summed together gives us the actual ordinal Copeland score.

Ranking function returns corresponding SocialRanking object.

References

Allouche T, Escoffier B, Moretti S, Öztürk M (2020). “Social Ranking Manipulability for the
CP-Majority, Banzhaf and Lexicographic Excellence Solutions.” In Bessiere C (ed.), Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 17–23.
doi:10.24963/ijcai.2020/3, Main track.

Copeland AH (1951). “A reasonable social welfare function.” mimeo, 1951. University of Michi-
gan.

See Also

Other CP-majority based functions: cpMajorityComparison(), kramerSimpsonScores()

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), LPScores(), cumulativeScores(),
kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

(123 ~ 12 ~ 3 ~ 1) > (2 ~ 23) > 13
pr <- PowerRelation(list(

list(c(1,2,3), c(1,2), 3, 1),
list(c(2,3), 2),
list(c(1,3))

))

copelandScores(pr)
`1` = c(2, -1)

https://doi.org/10.24963/ijcai.2020/3

8 cpMajorityComparison

`2` = c(2, -2)
`3` = c(1, -2)

only calculate results for two elements
copelandScores(pr, c(1,3))
`1` = c(2, -1)
`3` = c(1, -2)

or just one element
copelandScores(pr, 2)
`2` = c(2, -2)

1 > 2 > 3
copelandRanking(pr)

cpMajorityComparison CP-Majority relation

Description

The Ceteris Paribus-majority relation compares the relative success between two players joining a
coalition.

cpMajorityComparisonScore() only returns two numbers, a positive number of coalitions where
e1 beats e2, and a negative number of coalitions where e1 is beaten by e2.

Usage

cpMajorityComparison(
powerRelation,
e1,
e2,
strictly = FALSE,
includeEmptySet = TRUE

)

cpMajorityComparisonScore(
powerRelation,
e1,
e2,
strictly = FALSE,
includeEmptySet = TRUE

)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

e1, e2 Elements in powerRelation$elements

cpMajorityComparison 9

strictly Only include Dij(≻) and Dji(≻), i.e., coalitions S ∈ 2N\{i,j} where S∪{i} ≻
S ∪ {j} and vice versa.

includeEmptySet

If TRUE, check {i} ≿ {j} even if empty set is not part of the power relation.

Details

Given two elements i and j, go through each coalition S ∈ 2N\{i,j}. Dij(≿) then contains all
coalitions S where S ∪{i} ≿ S ∪{j} and Dji(≿) contains all coalitions where S ∪{j} ≿ S ∪{i}.

The cardinalities dij(≿) = |Dij | and dji(≿) = |Dji| represent the score of the two elements,
where i ≻ j if dij(≿) > dji(≿) and i ∼ j if dij(≿) == dji(≿).

cpMajorityComparison() tries to retain all that information. The list returned contains the follow-
ing information. Note that in this context the two elements i and j refer to element 1 and element 2
respectively.

• $e1: list of information about element 1
– $e1$name: name of element 1
– $e1$score: score dij(≿). dij(≻) if strictly == TRUE

– $e1$winningCoalitions: list of coalition vectors S ∈ Dij(≿). S ∈ Dij(≻) if
strictly == TRUE

• $e2: list of information about element 2
– $e2$name: name of element 2
– $e1$score: score dji(≿). dji(≻) if strictly == TRUE

– $e1$winningCoalitions: list of coalition vectors S ∈ Dji(≿). S ∈ Dji(≻) if
strictly == TRUE

• $winner: name of higher scoring element. NULL if they are indifferent.
• $loser: name of lower scoring element. NULL if they are indifferent.
• $tuples: a list of coalitions S ∈ 2N\{i,j} with:

– $tuples[[x]]$coalition: vector, the coalition S

– $tuples[[x]]$included: logical, TRUE if S ∪ {i} and S ∪ {j} are in the power relation
– $tuples[[x]]$winner: name of the winning element i where S ∪ {i} ≻ S ∪ {j}. It is
NULL if S ∪ {i} ∼ S ∪ {j}

– $tuples[[x]]$e1: index x1 at which S ∪ {i} ∈
∑

x1

– $tuples[[x]]$e2: index x2 at which S ∪ {j} ∈
∑

x2

The much more efficient cpMajorityComparisonScore() only calculates $e1$score.

Unlike Lexcel, Ordinal Banzhaf, etc., this power relation can introduce cycles. For this reason
the function cpMajorityComparison() and cpMajorityComparisonScore() only offers direct
comparisons between two elements and not a ranking of all players. See the other CP-majority
based functions that offer a way to rank all players.

Value

cpMajorityComparison() returns a list with elements described in the details.

cpMajorityComparisonScore() returns a vector of two numbers, a positive number of coalitions
where e1 beats e2 (dij(≿)), and a negative number of coalitions where e1 is beaten by e2 (−dji(≿
)).

10 cpMajorityComparison

References

Haret A, Khani H, Moretti S, Öztürk M (2018). “Ceteris paribus majority for social ranking.” In
27th International Joint Conference on Artificial Intelligence (IJCAI-ECAI-18), 303–309.

Fayard N, Escoffier MÖ (2018). “Ordinal Social ranking: simulation for CP-majority rule.” In
DA2PL’2018 (From Multiple Criteria Decision Aid to Preference Learning).

See Also

Other CP-majority based functions: copelandScores(), kramerSimpsonScores()

Examples

pr <- as.PowerRelation("ac > (a ~ b) > (c ~ bc)")

scores <- cpMajorityComparison(pr, "a", "b")
scores
a > b
D_ab = {c, {}}
D_ba = {{}}
Score of a = 2
Score of b = 1

stopifnot(scores$e1$name == "a")
stopifnot(scores$e2$name == "b")
stopifnot(scores$e1$score == 2)
stopifnot(scores$e2$score == 1)
stopifnot(scores$e1$score == length(scores$e1$winningCoalitions))
stopifnot(scores$e2$score == length(scores$e2$winningCoalitions))

get tuples with coalitions S in 2^(N - {i,j})
emptySetTuple <- Filter(function(x) identical(x$coalition, c()), scores$tuples)[[1]]
playerCTuple <- Filter(function(x) identical(x$coalition, "c"), scores$tuples)[[1]]

because {}u{a} ~ {}u{b}, there is no winner
stopifnot(is.null(emptySetTuple$winner))
stopifnot(emptySetTuple$e1 == emptySetTuple$e2)

because {c}u{a} > {c}u{b}, player "a" gets the score
stopifnot(playerCTuple$winner == "a")
stopifnot(playerCTuple$e1 < playerCTuple$e2)
stopifnot(playerCTuple$e1 == 1L)
stopifnot(playerCTuple$e2 == 3L)

cpMajorityComparisonScore(pr, "a", "b") # c(1,0)
cpMajorityComparisonScore(pr, "b", "a") # c(0,-1)

createPowerset 11

createPowerset Create powerset

Description

Given a vector of elements generate a power set.

Usage

createPowerset(
elements,
includeEmptySet = TRUE,
result = c("return", "print", "copy", "printCompact", "copyCompact")

)

Arguments

elements vector of elements
includeEmptySet

If TRUE, an empty vector is added at the end

result What to do with the result. Can be either:

• "return": return list object
• "print": create valid string to call PowerRelation() or as.PowerRelation()

and print it
• "copy": create valid string to call PowerRelation() or as.PowerRelation()

and copy it to clipboard
• "printCompact" and "copyCompact": same as "print" and "copy" but

without newlines

Value

List of power set vectors. If the parameter result is set to "print" or "copy", nothing is returned.
Instead, a character string is generated that can be used in R to call and create a new PowerRelation
object. This string is either printed or copied to clipboard (see argument result).

Examples

normal return type is a list of vectors
createPowerset(c("Alice", "Bob"), includeEmptySet = FALSE)
[[1]]
[1] "Alice" "Bob"
##
[[2]]
[1] "Alice"
##
[[3]]
[1] "Bob"

12 cumulativeScores

instead of creating a list, print the power set such that it can be copy-pasted
and used to create a new PowerRelation object
createPowerset(letters[1:4], result = "print")
prints
as.PowerRelation("
abcd
> abc
> abd
> acd
> bcd
> ab
...
> {}
")

createPowerset(letters[1:3], includeEmptySet = FALSE, result = "printCompact")
as.PowerRelation("abc > ab > ac > bc > a > b > c")

create the same string as before, but now copy it to the clipboard instead
if(interactive()) {

createPowerset(1:3, result = "copyCompact")
}

Note that as.PowerRelation(character) only assumes single-char elements.
As such, the generated function call string with multi-character names
looks a little different.
createPowerset(c("Alice", "Bob"), result = "print")
PowerRelation(rlang::list2(
list(c("Alice", "Bob")),
list(c("Alice")),
list(c("Bob")),
list(c()),
))

cumulativeScores Cumulative scores

Description

Calculate cumulative score vectors for each element.

Usage

cumulativeScores(powerRelation, elements = powerRelation$elements)

cumulativelyDominates(powerRelation, e1, e2, strictly = FALSE)

cumulativeScores 13

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

e1, e2 Elements in powerRelation$elements

strictly If TRUE, check if p1 strictly dominates p2

Details

An element’s cumulative score vector is calculated by cumulatively adding up the amount of times
it appears in each equivalence class in the powerRelation. I.e., in a linear power relation with eight
coalitions, if element 1 appears in coalitions placed at 1, 3, and 6, its score vector is [1, 1, 2, 2, 2, 3,
3, 3].

Value

Score function returns a list of type CumulativeScores and length of powerRelation$elements
(unless parameter elements is specified). Each index contains a vector of length powerRelation$eqs,
cumulatively counting up the number of times the given element appears in each equivalence class.

cumulativelyDominates() returns TRUE if e1 cumulatively dominates e2, else FALSE.

Dominance

i dominates j if, for each index x,Score(i)x ≥ Score(j)x.

i strictly dominates j if there exists an x such that Score(i)x > Score(j)x.

References

Moretti S (2015). “An axiomatic approach to social ranking under coalitional power relations.”
Homo Oeconomicus, 32(2), 183–208.

Moretti S, Öztürk M (2017). “Some axiomatic and algorithmic perspectives on the social ranking
problem.” In International Conference on Algorithmic Decision Theory, 166–181. Springer.

See Also

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), LPScores(), copelandScores(),
kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("12 > 1 > 2")

`1`: c(1, 2, 2)
`2`: c(1, 1, 2)
cumulativeScores(pr)

calculate for selected number of elements
cumulativeScores(pr, c(2))

14 dominates

TRUE
d1 <- cumulativelyDominates(pr, 1, 2)

TRUE
d2 <- cumulativelyDominates(pr, 1, 1)

FALSE
d3 <- cumulativelyDominates(pr, 1, 1, strictly = TRUE)

stopifnot(all(d1, d2, !d3))

dominates Dominance

Description

Check if one element dominates the other.

Usage

dominates(powerRelation, e1, e2, strictly = FALSE, includeEmptySet = TRUE)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

e1, e2 Elements in powerRelation$elements

strictly If TRUE, check if p1 strictly dominates p2

includeEmptySet

If TRUE, check {i} ≿ {j} even if empty set is not part of the power relation.

Details

i is said to dominate j if S ∪ {i} ≿ S ∪ {j} for all S ∈ 2N\{i,j}.

i strictly dominates j if there also exists an S ∈ 2N\{i,j} such that S ∪ {i} ≻ S ∪ {j}.

Value

Logical value TRUE if e1 dominates e2, else FALSE.

doRanking 15

Examples

pr <- as.PowerRelation("12 > 1 > 2")

TRUE
d1 <- dominates(pr, 1, 2)

FALSE
d2 <- dominates(pr, 2, 1)

TRUE (because it's not strict dominance)
d3 <- dominates(pr, 1, 1)

FALSE
d4 <- dominates(pr, 1, 1, strictly = TRUE)

stopifnot(all(d1, !d2, d3, !d4))

doRanking Create a SocialRanking object

Description

Rank elements based on their scores.

Usage

doRanking(scores, compare = NULL, decreasing = TRUE)

Arguments

scores A vector or list representing each element’s score. If names(scores) is not
NULL, those will be used as element names. Else a number sequence corre-
sponding to the elements is generated.

compare Optional comparison function taking in two elements and returning a numerical
value based on the relation between these two elements. If set to NULL, the
default order() function is called. See details for more information.

decreasing If TRUE (default), elements with higher scores are ranked higher.

Details

All ranking solutions in the package are tied to the scores or score vectors of the elements. For these
kinds of solutions, doRanking() offers a simple way that turns a (named) vector or list of scores
for each element into a SocialRanking object. For example, doRanking(c(a=1,b=2)) produces
b > a (bP≿a), because b with a score of 2 should be placed higher than a with a score of 1.

Ranking solutions in the package include lexcelRanking(), ordinalBanzhafRanking() and L1Ranking(),
among others. These functions take a power relation, calculate the scores of each element and re-
turns a SocialRanking object.

16 doRanking

R natively supports sorting for vectors, but not for lists. If the use of lists is necessary, or if the
native sort method in vectors does not produce the desired results, there are two possible ways to
solve this:

1. by the introduction of custom S3 classes, or

2. by setting the compare parameter in doRanking().

For S3 classes, the class for the score object has to be set and the == and > (and [for lists) op-
erators overloaded. I.e., lexcelScores() returns a list with the custom class LexcelScores that
implements ==.LexcelScores, >.LexcelScores, [.LexcelScores and is.na.LexcelScores.

In cases where we only want to experiment, introducing new S3 classes can be cumbersome. As
an alternative, the compare parameter can be assigned a function. This function must take two
parameters, i.e., function(a, b), where a and b are the scores of two arbitrary elements. The
function then must return one of the following:

• > 0 (positive value) if score a is ranked higher than score b,
• < 0 (negative value) if score a is ranked lower than score b, or
• = 0 if both scores a and b are considered equal.

In doRanking(c(a=3,b=2,c=2), compare = function(a,b) a - b), the compare function returns
a positive value of the first parameter is larger than the second. a has the highest value and will
there for be ranked highest, a > b ~ c.

Conversely, doRanking(c(a=3,b=2,c=2), compare = function(a,b) b - a) favors elements with
lower scores, resulting in the element ranking b ~ c > a.

Value

A list of type SocialRanking. Each element of the list contains a vector of elements in powerRelation$elements
that are indifferent to one another.

See Also

SocialRanking()

Examples

doRanking(c(a=1,b=2))
b > a

doRanking(c(a=2,b=2))
a ~ b

a custom ranking function. Here, we implement the following ranking solution:
disregard any big coalitions and only rank elements based on their individual performances
iRj if and only if {i} >= {j}
singletonRanking <- function(pr) {

scores <- sapply(pr$elements, equivalenceClassIndex, powerRelation = pr)
note that coalitions in higher indexed equivalence classes are less preferable
hence, scores should be sorted in an increasing order
doRanking(scores, decreasing = FALSE)

}

elementLookup 17

pr <- as.PowerRelation("abc > ab > ac > b ~ c ~ bc > a")
singletonRanking(pr)
b ~ c > a

a reverse lexcel ranking, where vectors are compared right to left
here, we introduce a compare function. It returns:
* 0, if a and b are identical
* a positive value, if a[i] > b[i] and every value after that is equal
* a negative value, if a[i] < b[i] and every value after that is equal
reverseLexcelCompare <- function(a, b) {

i <- which(a != b) |> rev()
if(length(i) == 0) 0
else a[i[1]] - b[i[1]]

}

scores <- unclass(cumulativeScores(pr))

R cannot natively sort a class. Instead:
Method 1 - utilize the compare parameter
doRanking(scores, compare = reverseLexcelCompare)

Method 2 - introduce S3 class
`[.RevLex` <- function(x, i, ...) structure(unclass(x)[i], class = "RevLex")
`==.RevLex` <- function(a, b) reverseLexcelCompare(a[[1]],b[[1]]) == 0
`>.RevLex` <- function(a, b) reverseLexcelCompare(a[[1]],b[[1]]) > 0
is.na.RevLex <- function(x) FALSE
doRanking(structure(scores, class = "RevLex"))

stopifnot(
doRanking(scores, compare = reverseLexcelCompare) ==
doRanking(structure(scores, class = "RevLex"))

)

elementLookup Element lookup

Description

List coalitions that an element appears in.

Usage

elementLookup(powerRelation, element)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()
element an element in powerRelation$elements

18 equivalenceClassIndex

Details

This function calls powerRelation$elementLookup(element). The returned list contains tuples
containing the index to find the corresponding coalitions in powerRelation$eqs.

If elementLookup(powerRelation, 2) returns list(c(1,1), c(1,2), c(3,1)), we can deter-
mine that the element 2 appears twice in equivalence class 1 and once in equivalence class 3. The
specific coalition then can be accessed with powerRelation$eqs[[i]][[j]], where i is the equiv-
alence class index and j is the coalition in that equivalence class containing the element.

Value

List of tuples, each of size 2. First value of a tuple indicates the equivalence class index, the second
value the index inside that equivalence class with the coalition containing the element. Returns
NULL if the element does not exist.

See Also

Other lookup functions: coalitionsAreIndifferent(), equivalenceClassIndex()

Examples

pr <- as.PowerRelation("12 > 2 ~ 1")

l <- elementLookup(pr, 1)
l
(1,1), (2,2)

sapply(l, function(tuple) 1 %in% pr$eqs[[tuple[1]]][[tuple[2]]]) |> all() |> stopifnot()

if element does not exist, it returns NULL
elementLookup(pr, 3) |> is.null() |> stopifnot()

equivalenceClassIndex Get index of equivalence class containing a coalition

Description

Given a coalition vector, return the equivalence class index it appears in.

Usage

equivalenceClassIndex(powerRelation, coalition)

coalitionLookup(powerRelation, coalition)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()
coalition a coalition vector or that is part of powerRelation

kramerSimpsonScores 19

Details

This function calls powerRelation$coalitionLookup(coalition).

equivalenceClassIndex() serves as an alias to coalitionLookup().

Value

Numeric value, equivalence class index containing coalition. NULL if the coalition does not exist.
If the powerRelation contains cycles, it is possible that multiple values are returned.

See Also

Other lookup functions: coalitionsAreIndifferent(), elementLookup()

Examples

pr <- as.PowerRelation("12 > 2 ~ 1")

(e1 <- equivalenceClassIndex(pr, c(1, 2)))
1

(e2 <- equivalenceClassIndex(pr, c(1)))
2

(e3 <- equivalenceClassIndex(pr, c(2)))
2

(e4 <- equivalenceClassIndex(pr, c()))
NULL <- empty set does not exist

stopifnot(all(c(e1,e2,e3,e4) == c(1,2,2)))

kramerSimpsonScores Kramer-Simpson-like method

Description

Calculate the Kramer-Simpson-like scores. Higher scores are better.

kramerSimpsonRanking() returns the corresponding ranking.

Usage

kramerSimpsonScores(powerRelation, elements = powerRelation$elements)

kramerSimpsonRanking(powerRelation)

20 kramerSimpsonScores

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

Inspired by the Kramer-Simpson method of social choice theory (Simpson 1969) (Kramer 1975),
the Kramer-Simpson-like method compares each element against all other elements using the CP-
Majority rule.

For a given element i, calculate the cpMajorityComparisonScore() against all elements j, dji(≿)
(notice that i and j are in reverse order). −maxj∈N\{i}(dji(≿)) then determines the final score,
where higher scoring elements are ranked higher (notice the negative symbol in front of the max
statement).

The implementation slightly differs from the original definition in Allouche T, Escoffier B, Moretti
S, Öztürk M (2020). “Social Ranking Manipulability for the CP-Majority, Banzhaf and Lexico-
graphic Excellence Solutions.” In Bessiere C (ed.), Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, 17–23. doi:10.24963/ijcai.2020/3, Main
track.. While the ranking solution itself is the same, the scores for this package are intention-
ally multiplied by -1, as this significantly improves performance when sorting the elements, as well
as making simple comparisons between elements more logical to the user.

Value

Score function returns a vector of type KramerSimpsonScores and length of powerRelation$elements
(unless parameter elements is specified). Higher scoring elements are ranked higher.

Ranking function returns corresponding SocialRanking object.

References

Allouche T, Escoffier B, Moretti S, Öztürk M (2020). “Social Ranking Manipulability for the
CP-Majority, Banzhaf and Lexicographic Excellence Solutions.” In Bessiere C (ed.), Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 17–23.
doi:10.24963/ijcai.2020/3, Main track.

Simpson PB (1969). “On defining areas of voter choice: Professor Tullock on stable voting.” The
Quarterly Journal of Economics, 83(3), 478–490.

Kramer GH (1975). “A dynamical model of political equilibrium.” Journal of Economic Theory,
16(2), 310–334.

See Also

Other CP-majority based functions: copelandScores(), cpMajorityComparison()

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), LPScores(), copelandScores(),
cumulativeScores(), lexcelScores(), ordinalBanzhafScores()

https://doi.org/10.24963/ijcai.2020/3
https://doi.org/10.24963/ijcai.2020/3

L1Scores 21

Examples

2 > (1 ~ 3) > 12 > (13 ~ 23) > {} > 123
pr <- as.PowerRelation("2 > (1~3) > 12 > (13~23) > {} > 123")

get scores for all elements
cpMajorityComparisonScore(pr, 2, 1, strictly = TRUE)[1] = 1
cpMajorityComparisonScore(pr, 3, 1, strictly = TRUE)[1] = 0
therefore the Kramer-Simpson-Score for element
`1` = -max(0, 1) = -1
#
Score analogous for the other elements
`2` = 0
`3` = -2
kramerSimpsonScores(pr)

get scores for two elements
`1` = 1
`3` = 2
kramerSimpsonScores(pr, c(1,3))

or single element
result is still a list
kramerSimpsonScores(pr, 2)

2 > 1 > 3
kramerSimpsonRanking(pr)

L1Scores L1 Ranking

Description

Calculate the L(1) scores.

Usage

L1Scores(powerRelation, elements = powerRelation$elements)

L1Ranking(powerRelation)

lexcel1Scores(powerRelation, elements = powerRelation$elements)

lexcel1Ranking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()
elements Vector of elements of which to calculate their scores. By default, the scores of

all elements in powerRelation$elements are considered.

22 L1Scores

Details

Similar to lexcelRanking(), the number of times an element appears in each equivalence class is
counted. In addition, we now also consider the size of the coalitions.

Let N be a set of elements, ≿∈ T (P) a power relation, and Σ1 ≻ Σ2 ≻ · · · ≻ Σm its corresponding
quotient order.

For an element i ∈ N , construct a matrix M
≿
i with m columns and |N | rows. Whereas each column

q represents an equivalence class, each row p corresponds to the coalition size.

(M
≿
i)p,q = |{S ∈ Σq : |S| = p and i ∈ S}|

The L(1) rewards elements that appear in higher ranking coalitions as well as in smaller coalitions.
When comparing two matrices for a power relation, if M≿

i >L(1) M
≿
j , this suggests that there

exists a p0 ∈ {1, . . . , |N |} and q0 ∈ {1, . . . ,m} such that the following holds:

1. (M
≿
i)p0,q0 > (M

≿
j)p0,q0

2. (M
≿
i)p,q0 = (M

≿
j)p,q0 for all p < p0

3. (M
≿
i)p,q = (M

≿
j)p,q for all q < q0 and p ∈ {1, . . . , |N |}

Value

Score function returns a list of type L1Scores and length of powerRelation$elements (unless
parameter elements is specified). Each index contains a vector of length powerRelation$eqs, the
number of times the given element appears in each equivalence class.

Ranking function returns corresponding SocialRanking object.

Example

Let ≿: (123 ∼ 13 ∼ 2) ≻ (12 ∼ 1 ∼ 3) ≻ (23 ∼ {}). From this, we get the following three
matrices:

M
≿
1 =

0 1 0
1 1 0
1 0 0

M
≿
2 =

1 0 0
0 1 1
1 0 0

M
≿
3 =

0 1 0
1 0 1
1 0 0

From (M

≿
2)1,1 > (M

≿
1)1,1 and (M

≿
2)1,1 > (M

≿
3)1,1 it immediately follows that 2 is ranked above

1 and 3 according to L(1).

Comparing 1 against 3 we can set p0 = 2 and q0 = 2. Following the constraints from the defi-
nition above, we can verify that the entire column 1 is identical. In column 2, we determine that
(M

≿
1)1,q0 = (M

≿
3)1,q0 , whereas (M≿

1)p0,q0 > (M
≿
3)p0,q0 , indicating that 1 is ranked higher than

3, hence 2 ≻ 1 ≻ 3 according to L(1).

Aliases

For better discoverability, lexcel1Scores() and lexcel1Ranking() serve as aliases for L1Scores()
and L1Ranking(), respectively.

L2Scores 23

References

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.”
Social Choice and Welfare, 57(4), 1–33.

See Also

Other ranking solution functions: L2Scores(), LPSScores(), LPScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("(123 ~ 13 ~ 2) > (12 ~ 1 ~ 3) > (23 ~ {})")
scores <- L1Scores(pr)
scores$`1`
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 1 0
[3,] 1 0 0

L1Ranking(pr)
2 > 1 > 3

L2Scores L2 Ranking

Description

Calculate the L(2) scores.

Usage

L2Scores(powerRelation, elements = powerRelation$elements)

L2Ranking(powerRelation)

lexcel2Scores(powerRelation, elements = powerRelation$elements)

lexcel2Ranking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

24 L2Scores

Details

Let N be a set of elements, ≿∈ T (P) a power relation, and Σ1 ≻ Σ2 ≻ · · · ≻ Σm its corresponding
quotient order.

For an element i ∈ N , construct a matrix M
≿
i with m columns and |N | rows. Whereas each column

q represents an equivalence class, each row p corresponds to the coalition size.

(M
≿
i)p,q = |{S ∈ Σq : |S| = p and i ∈ S}|

Given two elements i, j ∈ N , L(2) then ranks i strictly above j if there is some row p0 ∈
{1, . . . , |N |} and column q0 ∈ {1, . . . ,m} such that

1.
∑|N |

p=1(M
≿
i)p,q =

∑|N |
p=1(M

≿
j)p,q for all q < q0,

2.

(i) either
∑|N |

p=1(M
≿
i)p,q0 >

∑|N |
p=1(M

≿
j)p,q0

(ii) or (M
≿
i)p0,q0 > (M

≿
j)p0,q0 and (M

≿
i)p,q0 = (M

≿
j)p,q0 for all p < p0

Note that the conditions are very similar to L1Ranking(), with the difference that condition 3.(i)
also ranks an element over another if they simply appear more often in an equivalence class, regard-
less of coalition size. This implies that a row p0 for condition 3.(ii) to be satisfied may not have to
exist.

Value

Score function returns a list of type L2Scores and length of powerRelation$elements (unless pa-
rameter elements is specified). Each index contains a matrix with length(powerRelation$eqs)
columns and 1 + length(powerRelation$elements) rows.

Ranking function returns corresponding SocialRanking object.

Example

Let N = {1, 2, 3, 4} and ≿: (123 ∼ 12 ∼ 13 ∼ 14 ∼ 2 ∼ 4) ≻ S, where S is every other coalition
not present in the first equivalence class. From this, we get the following four matrices:

M
≿
1 =

0 1
3 0
1 2
0 1

M
≿
2 =

1 0
1 2
1 2
0 1

M
≿
3 =

0 1
1 2
1 2
0 1

M
≿
4 =

1 0
1 2
0 3
0 1

For the sums in column 1, we get

4∑
p=1

(M
≿
1)p,1 = 4,

4∑
p=1

(M
≿
2)p,1 = 3,

4∑
p=1

(M
≿
3)p,1 =

4∑
p=1

(M
≿
4)p,1 = 2

.

L2Scores 25

This immediately puts 1 above all other elements and 2 above 3 and 4 according to the L(2). L(1)

would in this case prefer 2 over 1, simply because 2 appears once in a coalition of size 1 and 1
doesn’t.

Since the column sum for 3 and 4 is the same, we can next evaluate if the individual row values are
also the same. Here, since (M

≿
4)1,1 > (M

≿
3)1,1, this gives an edge of element 4 over 3.

Note that, if the column was identical for 3 and 4, we would go to the next column and repeat
the process. Elements are only then considered indifferent from each other, if the entire matrix is
identical between the two.

Alterations

The matrices as described above and in Béal S, Rémila E, Solal P (2022). “Lexicographic solutions
for coalitional rankings based on individual and collective performances.” Journal of Mathematical
Economics, 102, 102738. can be investigated with the L1Scores() function.

For less complexity, another row is prepended to the matrix showing the sum of each column.
Through this, a simple L(1) comparison can be applied.

Aliases

For better discoverability, lexcel2Scores() and lexcel2Ranking() serve as aliases for L2Scores()
and L2Ranking(), respectively.

References

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.”
Social Choice and Welfare, 57(4), 1–33.

See Also

Other ranking solution functions: L1Scores(), LPSScores(), LPScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("123 ~ 12 ~ 13 ~ 14 ~ 2 ~ 4")
pr <- appendMissingCoalitions(pr)
scores <- L2Scores(pr)
scores$`1`
[,1] [,2]
[1,] 0 1
[2,] 3 0
[3,] 1 2
[3,] 0 1

L2Ranking(pr)
1 > 2 > 4 > 3

L1Ranking(pr)
2 > 4 > 1 > 3

26 lexcelScores

lexcelScores Lexicographical Excellence

Description

Calculate the Lexicographical Excellence (or Lexcel) score.

lexcelRanking() returns the corresponding ranking.

dualLexcelRanking() uses the same score vectors but instead of rewarding participation, it pun-
ishes mediocrity.

Usage

lexcelScores(powerRelation, elements = powerRelation$elements)

lexcelRanking(powerRelation)

dualLexcelRanking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

An equivalence class
∑

i contains coalitions that are indifferent to one another. In a given power
relation created with PowerRelation() or as.PowerRelation(), the equivalence classes are saved
in $eqs.

As an example, consider the power relation ≿: 123 ≻ (12 ∼ 13 ∼ 1 ∼ ∅) ≻ (23 ∼ 1 ∼ 2). The
corresponding equivalence classes are:∑

1

= {123},
∑
2

= {12, 13, 1, ∅},
∑
3

= {23, 1, 2}.

The lexcel score of an element is a vector wherein each index indicates the number of times that
element appears in the equivalence class. From our example, we would get

lexcel(1) = [1, 3, 1], lexcel(2) = [1, 1, 2], lexcel(3) = [1, 1, 1].

Value

Score function returns a list of type LexcelScores and length of powerRelation$elements (unless
parameter elements is specified). Each index contains a vector of length powerRelation$eqs, the
number of times the given element appears in each equivalence class.

Ranking function returns corresponding SocialRanking object.

lexcelScores 27

Lexcel Ranking

The most "excellent contribution" of an element determines its ranking against the other elements.
Given two Lexcel score vectors Score(i) and Score(j), the first index x where Score(i)x ̸= Score(j)x
determines which element should be ranked higher.

From the previous example this would be 1 > 2 > 3, because:

Score(1)2 = 3 > Score(2)2 = Score(3)2 = 1, Score(2)3 = 2 > Score(3)3 = 1.

Dual Lexcel Ranking

The dual lexcel works in reverse order and, instead of rewarding high scores, punishes mediocrity.
In that case we get 3 > 1 > 2 because:

Score(3)3 < Score(2)3 and Score(3)2 < Score(1)2, Score(1)3 < Score(2)3.

References

Bernardi G, Lucchetti R, Moretti S (2019). “Ranking objects from a preference relation over their
subsets.” Social Choice and Welfare, 52(4), 589–606.

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.”
Social Choice and Welfare, 57(4), 1–33.

Serramia M, López-Sánchez M, Moretti S, Rodríguez-Aguilar JA (2021). “On the dominant set
selection problem and its application to value alignment.” Autonomous Agents and Multi-Agent
Systems, 35(2), 1–38.

See Also

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), LPScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), ordinalBanzhafScores()

Examples

note that the coalition {1} appears twice
123 > 12 ~ 13 ~ 1 ~ {} > 23 ~ 1 ~ 2
E = {123} > {12, 13, 1, {}} > {23, 1, 2}
pr <- suppressWarnings(as.PowerRelation(

"123 > (12 ~ 13 ~ 1 ~ {}) > (23 ~ 1 ~ 2)"
))

lexcel scores for all elements
`1` = c(1, 3, 1)
`2` = c(1, 1, 2)
`3` = c(1, 1, 1)
lexcelScores(pr)

lexcel scores for a subset of all elements
lexcelScores(pr, c(1, 3))
lexcelScores(pr, 2)

1 > 2 > 3
lexcelRanking(pr)

28 LPScores

3 > 1 > 2
dualLexcelRanking(pr)

LPScores LP Ranking

Description

Calculate the Lp scores.

Usage

LPScores(powerRelation, elements = powerRelation$elements)

LPRanking(powerRelation)

lexcelPScores(powerRelation, elements = powerRelation$elements)

lexcelPRanking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

Let N be a set of elements, ≿∈ T (P) a power relation, and Σ1 ≻ Σ2 ≻ · · · ≻ Σm its corresponding
quotient order.

For an element i ∈ N , construct a matrix M
≿
i with m columns and |N | rows. Whereas each column

q represents an equivalence class, each row p corresponds to the coalition size.

(M
≿
i)p,q = |{S ∈ Σq : |S| = p and i ∈ S}|

For i, j ∈ N , the social ranking solution Lp then ranks i strictly above j if one of the following
conditions hold:

1. {i} ≻ {j};

2. {i}, {j} ∈ Σk and there exists a row p0 ∈ {2, . . . , |N |} such that:∑
q<k

(M
≿
i)p,q =

∑
q<k

(M
≿
j)p,q ∀p < p0, and

∑
q<k

(M
≿
i)p0,q >

∑
q<k

(M
≿
j)p0,q.

LPScores 29

In R, given two matrices M_i and M_j, this comparison could be expressed as

function that returns TRUE if i should be ranked strictly above j
k_i <- which(M_i[1,] == 1)
k_j <- which(M_j[1,] == 1)
if(k_i != k_j) return(k_i < k_j)
if(k_i == 1) return(FALSE)
get sum for each row
removing the first row implies that we start in row 2
sums_i <- apply(M_i[-1,seq(k_i-1)], 1, sum)
sums_j <- apply(M_j[-1,seq(k_j-1)], 1, sum)
apply lexcel comparison
i <- which(a != b)
return(length(i) > 0 && a[i[1]] > b[i[1]])

Value

Score function returns a list of type LPScores and length of powerRelation$elements (unless pa-
rameter elements is specified). Each index contains a vector of length length(powerRelation$elements).

Ranking function returns corresponding SocialRanking object.

Example

Let ≿: (123 ∼ 12 ∼ 2) ≻ (13 ∼ 23) ≻ (1 ∼ 3 ∼ {}). From this, we get the following three
matrices:

M
≿
1 =

0 0 1
1 1 0
1 0 0

M
≿
2 =

1 0 0
1 0 1
1 0 0

M
≿
3 =

0 0 1
0 2 0
1 0 0

(M

≿
2)2,3 in this context refers to the value in the second row and third column of element 2, in this

case 1.

In the example, 2 will be immediately put above 1 and 3 because {2} ≻ {1} and {2} ≻ {3}. Since
{1} ∼ {3}, we next consider the coalitions of size 2. Here, it turns out that (M≿

1)2,1 + (M
≿
1)2,2 =

1 + 1 is equal to (M
≿
3)2,1 + (M

≿
3)2,2 = 0 + 2. For obvious reasons the grand coalition does not

have to be considered, thus 1 and 3 are considered equally powerful by the Lp solution.

Lp is a social ranking solution belonging to the family of lexicographical ranking functions. While
related to L1Ranking(), it incorporates the property of "standardness", stating that if the singleton
coalition {i} ≻ {j}, then the ranking solution should also prefer i over j.

If {i} ∼ {j}, then all coalitions from size 2 and upward are inspected, giving higher precedence to
coalitions with a lower number of elements. While this preference is similar to the L(1), it differs
in two notable ways:

1. If {i}, {j} ∈ Σk, then only coalitions S ≿ ({i} ∼ {j}) are considered,
2. From this subset of coalitions, consider the total number of coalitions i (or j) belongs to, given

each coalition size. This may ignore information about the distribution of these coalitions
within the different equivalence classes, which L(1) and the slight variation Lp∗

of the Lp

solution take into account.

30 LPScores

Alterations

The matrices as described above and in Béal S, Rémila E, Solal P (2022). “Lexicographic solutions
for coalitional rankings based on individual and collective performances.” Journal of Mathematical
Economics, 102, 102738. can be investigated with the L1Scores() function.

For efficiency, LPScores() discards much of the redundant information. Instead of a matrix for
each element, it returns a vector of size |N |.

Given a score vector v for an element i, v[1] is the position of the singleton coalition {i}. This
implies that if v[1] < w[1], where w is the score vector of an element j, then i is ranked strictly
above j.

v[2], v[3], ..., v[n] then indicates the number of coalitions of size 2, 3, ..., n that the element i
appears in.

Aliases

For better discoverability, lexcelPScores() and lexcelPRanking() serve as aliases for LPScores()
and LPRanking(), respectively.

References

Béal S, Rémila E, Solal P (2022). “Lexicographic solutions for coalitional rankings based on indi-
vidual and collective performances.” Journal of Mathematical Economics, 102, 102738.

See Also

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("(123 ~ 13 ~ 2) > (12 ~ 1 ~ 3) > (23 ~ {})")
scores <- LPScores(pr)
scores$`2`
[1] 1 0 0

LPRanking(pr)
2 > 1 ~ 3

Since L^(1) also the relation {1,2}, which ranks above {2,3}, it will place 1 above 3
L1Ranking(pr)
2 > 1 > 3

LPSScores 31

LPSScores LP* Ranking

Description

Calculate the Lp∗
scores.

Usage

LPSScores(powerRelation, elements = powerRelation$elements)

LPSRanking(powerRelation)

lexcelPSScores(powerRelation, elements = powerRelation$elements)

lexcelPSRanking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

Let N be a set of elements, ≿∈ T (P) a power relation, and Σ1 ≻ Σ2 ≻ · · · ≻ Σm its corresponding
quotient order.

For an element i ∈ N , construct a matrix M
≿
i with m columns and |N | rows. Whereas each column

q represents an equivalence class, each row p corresponds to the coalition size.

(M
≿
i)p,q = |{S ∈ Σq : |S| = p and i ∈ S}|

For i, j ∈ N , the social ranking solution Lp∗
then ranks i strictly above j if one of the following

conditions hold:

1. {i} ≻ {j};

2. {i}, {j} ∈ Σk and there exists a row p0 ∈ {2, . . . , |N |} and column q0 ∈ {1, . . . , k− 1} such
that:

(M
≿
i)p,q = (M

≿
j)p,q ∀p < p0, q < k,

(M
≿
i)p0,q = (M

≿
j)p0,q ∀q < q0, and

(M
≿
i)p0,q0 > (M

≿
j)p0,q0 .

32 LPSScores

Value

Score function returns a list of type LP*Scores and length of powerRelation$elements (unless pa-
rameter elements is specified). Each index contains a matrix with length(powerRelation$elements)
rows and a variable number of columns, depending on the equivalence class index containing the
singleton coalition of that element (matrix can have 0 columns).

Ranking function returns corresponding SocialRanking object.

Example

Let ≿: (123 ∼ 12 ∼ 2) ≻ (13 ∼ 23) ≻ (1 ∼ 3 ∼ {}). From this, we get the following three
matrices:

M
≿
1 =

0 0 1
1 1 0
1 0 0

M
≿
2 =

1 0 0
1 0 1
1 0 0

M
≿
3 =

0 0 1
0 2 0
1 0 0

(M

≿
2)2,3 in this context refers to the value in the second row and third column of element 2, in this

case 1.

In the example, 2 will be immediately put above 1 and 3 because {2} ≻ {1} and {2} ≻ {3}. Since
{1} ∼ {3}, we next consider the coalitions of size 2. Here, it turns out that (M≿

1)2,1 = 1 > 0 =

(M
≿
3)2,1, setting 3 to be the least preferred option (this is opposed to the Lp relation, which has no

strict preference of 1 over 3).

As alluded to, Lp∗
is similar to Lp, LPRanking(), in that it first considers the singleton coalitions,

then sequentially every coalition of size 2 and above that ranks better than the corresponding single-
ton. It can be assumed, however, that Lp∗

is more granular, as it doesn’t throw away any information
about which equivalence class these bigger coalitions belong to.

Alterations

The matrices as described above and in Béal S, Rémila E, Solal P (2022). “Lexicographic solutions
for coalitional rankings based on individual and collective performances.” Journal of Mathematical
Economics, 102, 102738. can be investigated with the L1Scores() function.

LPSScores() discards some redundant information, most notably all columns from each element’s
singleton class and the ones thereafter. The first row is also removed, as all values there are guaran-
teed to be 0.

For the example above, this would actually result in the matrices

matrix(c(1,1, 1,0), nrow=2)
matrix(numeric(), nrow=2)
matrix(c(0,1, 2,0), nrow=2)

Aliases

For better discoverability, lexcelPSScores() and lexcelPSRanking() serve as aliases for LPSScores()
and LPSRanking(), respectively.

makePowerRelationMonotonic 33

References

Béal S, Rémila E, Solal P (2022). “Lexicographic solutions for coalitional rankings based on indi-
vidual and collective performances.” Journal of Mathematical Economics, 102, 102738.

See Also

Other ranking solution functions: L1Scores(), L2Scores(), LPScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), lexcelScores(), ordinalBanzhafScores()

Examples

pr <- as.PowerRelation("(123 ~ 12 ~ 2) > (13 ~ 23) > (1 ~ 3 ~ {})")
scores <- LPSScores(pr)
scores$`1`
[,1] [,2]
[1,] 1 1
[2,] 1 0

scores$`2`
#
[1,]
[2,]

LPSRanking(pr)
2 > 1 > 3

makePowerRelationMonotonic

Make Power Relation monotonic

Description

Given a powerRelation object, make its order monotonic.

Usage

makePowerRelationMonotonic(powerRelation, addMissingCoalitions = TRUE)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()
addMissingCoalitions

If TRUE, also include all coalitions in the power set of powerRelation$elements
that are not present in the current power relation.

34 makePowerRelationMonotonic

Details

A power relation is monotonic if

T ⊂ S ⇔ S ≿ T.

for every coalition S ⊆ N .

Calling makePowerRelationMonotonic() on some PowerRelation object moves or adds coali-
tions to certain equivalence classes so that the power relation becomes monotonic.

Value

PowerRelation object containing the following values:

• $elements: vector of elements
• $eqs: equivalence classes. Nested list of lists, each containing vectors representing groups of

elements in the same equivalence class
• $coalitionLookup: function(v) taking a coalition vector v and returning the equivalence

class it belongs to. See coalitionLookup() for more.
• $elementLookup: function(e) taking an element e and returning a list of 2-sized tuples.

See elementLookup() for more.

See Also

Other helper functions for transforming power relations: appendMissingCoalitions()

Examples

pr <- as.PowerRelation("ab > ac > abc > b > a > {} > c > bc")
makePowerRelationMonotonic(pr)
(abc ~ ab) > ac > (bc ~ b) > a > (c ~ {})

notice that missing coalitions are automatically added,
except for the empty set
pr <- as.PowerRelation("a > b > c")
makePowerRelationMonotonic(pr)
(abc ~ ab ~ ac ~ a) > (bc ~ b) > c

setting addMissingCoalitions to FALSE changes this behavior
pr <- as.PowerRelation("a > ab > c ~ {} > b")
makePowerRelationMonotonic(pr, addMissingCoalitions = FALSE)
(ab ~ a) > (b ~ c ~ {})

notice that an equivalence class containing an empty coalition
automatically moves all remaining coalitions to that equivalence class.
pr <- as.PowerRelation("a > {} > b > c")
makePowerRelationMonotonic(pr)
(abc ~ ab ~ ac ~ a) > (bc ~ b ~ c ~ {})

newPowerRelation 35

newPowerRelation New Power Relation

Description

Deprecated. Use PowerRelation() instead.

Usage

newPowerRelation(...)

Arguments

... Any parameter.

Value

No return value.

newPowerRelationFromString

New PowerRelation object

Description

Deprecated. Use as.PowerRelation() instead.

Usage

newPowerRelationFromString(...)

Arguments

... Any parameter.

Value

No return value.

36 ordinalBanzhafScores

ordinalBanzhafScores Ordinal Banzhaf ranking

Description

Calculate the Ordinal Banzhaf scores, the number of positive and the number of negative marginal
contributions.

ordinalBanzhafRanking() returns the corresponding ranking.

Usage

ordinalBanzhafScores(powerRelation, elements = powerRelation$elements)

ordinalBanzhafRanking(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

elements Vector of elements of which to calculate their scores. By default, the scores of
all elements in powerRelation$elements are considered.

Details

Inspired by the Banzhaf index (Banzhaf III 1964), the Ordinal Banzhaf determines the score of
element i by adding the amount of coalitions S ⊆ N \ {i} its contribution impacts positively
(S∪{i} ≻ S) and subtracting the amount of coalitions where its contribution had a negative impact
(S ≻ S ∪ {i})(Khani et al. 2019).

The original definition only takes total power relations into account, where either S ≿ T or T ≿ S
for every S, T ⊆ N . If coalitions are missing from the power relation, we may not be able to
perform certain comparisons. To indicate these missing comparisons, the ordinal Banzhaf score of
an element i also includes that number at index 3. I.e., if the ordinal Banzhaf score of an element
is c(4, -2, 1), it means that it contributed positively to 4 coalitions and negatively to 2 others. For
one coalition, no comparison could be made.

Value

Score function returns list of class type OrdinalBanzhafScores and length of powerRelation$elements.
Each index contains a vector of three numbers, the number of positive marginal contributions, the
number of negative marginal contributions, and the number of coalitions for which no comparison
could be done. The first two numbers summed together gives us the actual ordinal Banzhaf score.

Ranking function returns corresponding SocialRanking object.

PowerRelation 37

References

Khani H, Moretti S, Öztürk M (2019). “An ordinal banzhaf index for social ranking.” In 28th
International Joint Conference on Artificial Intelligence (IJCAI 2019), 378–384.

Banzhaf III JF (1964). “Weighted voting doesn’t work: A mathematical analysis.” Rutgers L. Rev.,
19, 317.

See Also

Other ranking solution functions: L1Scores(), L2Scores(), LPSScores(), LPScores(), copelandScores(),
cumulativeScores(), kramerSimpsonScores(), lexcelScores()

Examples

pr <- as.PowerRelation("12 > (2 ~ {}) > 1")

Player 1 contributes positively to {2}
Player 1 contributes negatively to {empty set}
Therefore player 1 has a score of 1 - 1 = 0
#
Player 2 contributes positively to {1}
Player 2 does NOT have an impact on {empty set}
Therefore player 2 has a score of 1 - 0 = 0
ordinalBanzhafScores(pr)
`1` = c(1, -1, 0)
`2` = c(1, 0, 0)

ordinalBanzhafRanking(pr)
1 > 2

PowerRelation PowerRelation object

Description

Create a PowerRelation object.

Usage

PowerRelation(
equivalenceClasses,
elements = NULL,
coalitionLookup = NULL,
elementLookup = NULL

)

is.PowerRelation(x, ...)

38 PowerRelation

S3 method for class 'PowerRelation'
print(x, ...)

Arguments

equivalenceClasses

A nested list of lists, each containing coalitions or groups represented as vectors
that are in the same equivalence class.

elements Vector of elements in power relation. Only set this value if you know what you
are doing. See Details for more.

coalitionLookup

A function taking a vector parameter and returning an index. See return value
for more details. Only set this value if you know what you are doing.

elementLookup A function taking an element and returning a list of 2-sized tuples. See return
value for more details. Only set this value if you know what you are doing.

x An R object.

... Additional arguments to be passed to or from methods.

Details

A power relation describes the ordinal information between elements. Here specifically, we are
interested in the power relation between coalitions, or groups of elements. Each coalition is assumed
to be a vector containing zero (empty coalition), one (singleton) or more elements.

createPowerset() offers a convenient way of creating a power set over a set of elements that can
be used to call PowerRelation() or as.PowerRelation().

Trying to figure out what equivalence class certain coalitions or elements belong to is quite common.
For these sets of problems, the functions $coalitionLookup(v) and $elementLookup(e) should
be utilized. We use some redundancy to speed up the lookup methods. As such, it is highly discour-
aged to edit a PowerRelation object directly, as the different power relation representations will
fall out of sync. For more information, see the vignette: vignette(package = 'socialranking')

The PowerRelation() function expects a nested list of coalitions as input. For alternatives, see
as.PowerRelation().

Value

PowerRelation object containing the following values:

• $elements: vector of elements
• $eqs: equivalence classes. Nested list of lists, each containing vectors representing groups of

elements in the same equivalence class
• $coalitionLookup: function(v) taking a coalition vector v and returning the equivalence

class it belongs to. See coalitionLookup() for more.
• $elementLookup: function(e) taking an element e and returning a list of 2-sized tuples.

See elementLookup() for more.

PowerRelation 39

Mathematical background

Let N = {1, ..., n} be a finite set of elements (also called players). Any subset S ⊆ N is considered
to be a group or coalition of elements, where {} is referred to as the empty coalition, {i} as a
singleton (a coalition of size 1), and N as the grand coalition. The power set 2N denotes the set of
all subsets over N .

Let P ⊆ 2N be a collection of coalitions. A power relation on P is a total preorder ≿⊆ P × P .
That is, for any two coalitions S, T ∈ P , either (S, T) ∈≿, or (T, S) ∈≿, or both. In other words,
we can compare any two groups of elements in P and determine, if one group is better than, worse
than, or equivalent to the other.

More commonly, the relation (S, T) ∈≿ is notated as S ≿ T .

T (P) denotes the family of all power relations on every collection P ⊆ 2N . Given a power relation
≿∈ T (P), ∼ denotes its symmetric part whereas ≻ its asymmetric part. Let S, T ∈ P . Then,

S ∼ T if S ≿ T and T ≿ S, S ≻ T if S ≿ T and not T ≿ S.

Coalitions which are deemed equivalent (S ∼ T) can be collected into an equivalence class Σi. The
list of equivalence classes forms a linear order, Σ1 ≻ Σ2 ≻ · · · ≻ Σm.

Mathematical example

As an example, consider the elements N = {apple, banana, chocolate}. Each of them individually
may go well with pancakes, but we are also interested in the combination of condiments. If we
consider all possibilities, we will have to compare the sets

P = 2N = {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, {}}.

Looking for a way to rank this group of objects, one may arrive at the following total preorder
≿∈ T (P):

{b, c} ≻ ({a} ∼ {c}) ≻ {b} ≻ {} ≻ ({a, b, c} ∼ {a, b} ∼ {a, c}).

In this particular case, we get five equivalence classes.

Σ1 = {{b, c}}Σ2 = {{a}, {c}}Σ3 = {{b}}Σ4 = {{}}Σ5 = {{a, b, c}, {a, b}, {a, c}}

The power relation ≿ can be copy-pasted as a character string to the as.PowerRelation() function
(it should accept the special characters ≿ and ∼).

as.PowerRelation("{b,c} > ({a} ~ {c}) > {b} > {} > ({a,b,c} ~ {a,b} ~ {a,c})")

References

Moretti S, Öztürk M (2017). “Some axiomatic and algorithmic perspectives on the social ranking
problem.” In International Conference on Algorithmic Decision Theory, 166–181. Springer.

Bernardi G, Lucchetti R, Moretti S (2019). “Ranking objects from a preference relation over their
subsets.” Social Choice and Welfare, 52(4), 589–606.

Algaba E, Moretti S, Rémila E, Solal P (2021). “Lexicographic solutions for coalitional rankings.”
Social Choice and Welfare, 57(4), 1–33.

40 PowerRelation

See Also

Other ways to create a PowerRelation() object using as.PowerRelation().

Examples

pr <- PowerRelation(list(
list(c(1,2,3)),
list(c(1, 2), 2, 3),
list(c(2, 3), c()),
list(c(1, 3)),
list(1)

))

pr
123 > (12 ~ 2 ~ 3) > (23 ~ {}) > 13 > 1

stopifnot(pr$elements == 1:3)
stopifnot(pr$coalitionLookup(1) == 5)
stopifnot(pr$coalitionLookup(c()) == 3)
stopifnot(pr$coalitionLookup(c(1,2)) == 2)

find coalitions an element appears in
for(t in pr$elementLookup(2)) {

stopifnot(2 %in% pr$eqs[[t[1]]][[t[2]]])
}

use createPowerset to help generate a valid function call
if(interactive())

createPowerset(letters[1:3], result = "copy")

pasted, rearranged using alt+up / alt+down in RStudio

note that the function call looks different if elements are multiple characters long
if(interactive())

createPowerset(c("apple", "banana", "chocolate"), result = "copy")

pasted clipboard
PowerRelation(rlang::list2(

list(c("banana", "chocolate")),
list(c("apple"),

c("chocolate")),
list(c("banana")),
list(c()),
list(c("apple", "banana", "chocolate"),

c("apple", "banana"),
c("apple", "chocolate")),

))
{banana, chocolate} > ({apple} ~ {chocolate}) > {banana} > {} > ...

powerRelationGenerator 41

powerRelationGenerator

Generate power relations

Description

Based on a list of coalitions, create a generator function that returns a new PowerRelation object
with every call. NULL is returned once every possible power relation has been generated.

Alternatively, use generateRandomPowerRelation() to create random power relations.

Usage

powerRelationGenerator(coalitions, startWithLinearOrder = FALSE)

generateNextPartition(gen)

generateRandomPowerRelation(coalitions, linearOrder = FALSE, monotonic = FALSE)

Arguments

coalitions List of coalition vectors. An empty coalition can be set with c().
startWithLinearOrder

If set to TRUE, the first PowerRelation object generated will be a linear order
in the order of the list of coalitions they are given. If set to FALSE, the first
PowerRelation object generated will have a single equivalence class containing
all coalitions, as in, every coalition is equally powerful.

gen A generator object returned by powerRelationGenerator().

linearOrder logical, if TRUE, only linear orders are generated.

monotonic logical, if TRUE, only monotonic power relations are created (see makePowerRelationMonotonic()).

Details

Using the partitions library, partitions::compositions() is used to create all possible parti-
tions over the set of coalitions. For every partition, partitions::multinomial() is used to create
all permutations over the order of the coalitions.

Note that the number of power relations (or total preorders) grows incredibly fast.

The Stirling number of second kind S(n, k) gives us the number of k partitions over n elements.

S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n

For example, with 4 coalitions (n = 4) there are 6 ways to split it into k = 3 partitions. The sum
of all partitions of any size is also known as the Bell number (Bn =

∑n
k=0 S(n, k), see also

numbers::bell()).

42 powerRelationGenerator

Regarding total preorders T (X) over a set X , the Stirling number of second kind can be used to
determine the number of all possible total preorders |T (X)|.

|T (X)| =
|X|∑
k=0

k! ∗ S(|X|, k)

In literature, it is referred to as the ordered Bell number or Fubini number.

In the context of social rankings we may consider total preorders over the set of coalitions 2N for a
given set of elements or players N . Here, the number of coalitions doubles with every new element.
The number of preorders then are:

of elements # of coalitions # of total preorders 1ms / computation
0 1 1 1ms
1 2 3 3ms
2 4 75 75ms
3 7 (w/o empty set) 47,293 47 seconds
3 8 545,835 9 minutes
4 15 (w/o empty set) 230,283,190,977,853 7,302 years
4 16 5,315,654,681,981,355 168,558 years

Value

A generator function. Every time this generator function is called, a different PowerRelation object
is returned. Once all possible power relations have been generated, the generator function returns
NULL.

A generator function. If the generator is already down to its last partition, it will throw an error.

Use generateNextPartition(gen) to skip to the next partition of the generator.

Note

Due to its implementation, randomPowerRelation() does not create weak orders uniformly. I.e.,
it is much less likely to generate linear orders even though they have the proportionally highest
representation in the set of all weak orders.

Examples

coalitions <- createPowerset(c('a','b'), includeEmptySet = FALSE)
list(c('a','b'), 'a', 'b')

gen <- powerRelationGenerator(coalitions)

while(!is.null(pr <- gen())) {
print(pr)

}
(ab ~ a ~ b)
(ab ~ a) > b
(ab ~ b) > a
(a ~ b) > ab

powerRelationGenerator 43

ab > (a ~ b)
a > (ab ~ b)
b > (ab ~ a)
ab > a > b
ab > b > a
a > ab > b
b > ab > a
a > b > ab
b > a > ab

from now on, gen() always returns NULL
gen()
NULL

Use generateNextPartition() to skip certain partitions
gen <- powerRelationGenerator(coalitions)

gen <- generateNextPartition(gen)
gen <- generateNextPartition(gen)
gen()
ab > (a ~ b)

gen <- generateNextPartition(gen)
gen()
ab > a > b

coalitions <- createPowerset(c('a','b'), includeEmptySet = FALSE)
list(c('a','b'), 'a', 'b')

gen <- powerRelationGenerator(coalitions)
gen()
(ab ~ a ~ b)

gen()
(ab ~ b) > a

skipping partition of size two, where the first partition has
2 coalitions and the second partition has 1 coalition
gen <- generateNextPartition(gen)
gen()
ab > (a ~ b)

only remaining partition is one of size 3, wherein each
equivalence class is of size 1
gen <- generateNextPartition(gen)
gen()
ab > a > b

went through all partitions, it will only generate NULL now
gen <- generateNextPartition(gen)
stopifnot(is.null(gen()))

44 powerRelationMatrix

create random power relation
generateRandomPowerRelation(coalitions)

make sure it's monotonic, i.e., {1} > {1,2} cannot exist
because {1} is a subset of {1,2}
generateRandomPowerRelation(coalitions, monotonic = TRUE)

powerRelationMatrix Create relation matrix

Description

For a given PowerRelation object create a relations::relation() object.

Usage

powerRelationMatrix(
powerRelation,
domainNames = c("pretty", "numericPrec", "numeric")

)

S3 method for class 'PowerRelation'
as.relation(x, ...)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

domainNames How should the row and column names be formatted?

• pretty: Coalitions such as c(1,2) are formatted as 12. To ensure that it’s
correctly sorted alphabetically, every name is preceded by a certain amount
of the invisible Unicode character \u200b

• numericPrec: Coalitions such as c(1,2) are formatted as 1{12}, the number
in front of the curly brace marking its sorted spot. While less pretty, it won’t
use Unicode characters.

• numeric: Drop coalition names, only count from 1 upwards. Each number
corresponds to the index in TODO powerRelation$rankingCoalitions

• function(x): A custom function that is passed a number from 1 through
length(powerRelation$rankingCoalitions). Must return a character
object.

x A PowerRelation object

... Further parameters (ignored)

powerRelationMatrix 45

Details

Turn a PowerRelation object into a relations::relation() object. The incidence matrix can
be viewed with relations::relation_incidence().

The columns and rows of a PowerRelation object are ordered by TODO powerRelation$rankingCoalitions.
The relations package automatically sorts the columns and rows by their domain names, which is
the reason the parameter domainNames is included. This way we ensure that the columns and rows
are sorted by the order of the power relation.

Value

relations::relation() object to the corresponding power relation.

Cycles

A PowerRelation object is defined as being transitive. If a power relation includes a cycle, mean-
ing that the same coalition appears twice in the ranking, all coalitions within that cycle will be
considered to be indifferent from one another.

For example, given the power relation 1 ≻ 2 ≻ 3 ≻ 1 ≻ 12, the relation is somewhat equivalent to
1 ∼ 2 ∼ 3 ≻ 12. There is no way to check for cycles in the incidence matrix only.

Call transitiveClosure() to remove cycles in a PowerRelation object.

See Also

relations::as.relation()

Examples

pr <- as.PowerRelation("12 > 1 > 2")
relation <- powerRelationMatrix(pr)

do relation stuff
Incidence matrix
111
011
001
relations::relation_incidence(relation)

all TRUE
stopifnot(all(

relations::relation_is_acyclic(relation),
relations::relation_is_antisymmetric(relation),
relations::relation_is_linear_order(relation),
relations::relation_is_complete(relation),
relations::relation_is_reflexive(relation),
relations::relation_is_transitive(relation)

))

a power relation where coalitions {1} and {2} are indifferent
pr <- as.PowerRelation("12 > (1 ~ 2)")

46 SocialRanking

relation <- powerRelationMatrix(pr)

Incidence matrix
111
011
011
relations::relation_incidence(relation)

FALSE
stopifnot(!any(

relations::relation_is_acyclic(relation),
relations::relation_is_antisymmetric(relation),
relations::relation_is_linear_order(relation)

))
TRUE
stopifnot(all(

relations::relation_is_complete(relation),
relations::relation_is_reflexive(relation),
relations::relation_is_transitive(relation)

))

a pr with cycles
pr <- suppressWarnings(as.PowerRelation("12 > 1 > 2 > 1"))
relation <- powerRelationMatrix(pr)

Incidence matrix
1111
0111
0111
0111
relations::relation_incidence(relation)

custom naming convention
relation <- powerRelationMatrix(

pr,
function(x) paste0(letters[x], ":", paste(pr$rankingCoalitions[[x]], collapse = "|"))

)

relations::relation_incidence(relation)
Incidences:
a:1|2 b:1 c:2 d:1
a:1|2 1 1 1 1
b:1 0 1 1 1
c:2 0 1 1 1
d:1 0 1 1 1

SocialRanking SocialRanking object

SocialRanking 47

Description

Create a SocialRanking object.

Usage

SocialRanking(l)

Arguments

l A list of vectors

Details

Similar to PowerRelation(), SocialRanking expects expects a list to represent a power relation.
Unlike PowerRelation() however, this list should not be nested and should only contain vectors,
each vector containing elements that are deemed equally preferable.

Use doRanking() to rank elements based on arbitrary score objects.

A social ranking solution, or ranking solution, or solution, maps each power relation between coali-
tions to a power relation between its elements. I.e., from the power relation ≿: {1, 2} ≻ {2} ≻ {1},
we may expect the result of a ranking solution R≿ to rank element 2 over 1. Therefore 2R≿1 will
be present, but not 1R≿2.

Formally, a ranking solution R : T (P) → T (N) is a function that, given a power relation ≿∈
T (P), always produces a power relation R(≿) (or R≿) over its set of elements. For two elements
i, j ∈ N , iR≿j means that applying the solution R on the ranking ≿ makes i at least as preferable as
j. Often times iI≿j and iP≿j are used to indicate its symmetric and asymmetric part, respectively.
As in, iI≿j implies that iR≿j and jR≿i, whereas iP≿j implies that iR≿j but not jR≿i.

Value

A list of type SocialRanking. Each element of the list contains a vector of elements in powerRelation$elements
that are indifferent to one another.

See Also

Function that ranks elements based on their scores, doRanking()

Examples

SocialRanking(list(c("a", "b"), "f", c("c", "d")))
a ~ b > f > c ~ d

48 testRelation

testRelation Test relation between two elements

Description

On a given PowerRelation object pr, check if e1 relates to e2 based on the given social ranking
solution.

Usage

testRelation(powerRelation, e1)

powerRelation %:% e1

pr_e1 %>=dom% e2

pr_e1 %>dom% e2

pr_e1 %>=cumuldom% e2

pr_e1 %>cumuldom% e2

pr_e1 %>=cp% e2

pr_e1 %>cp% e2

pr_e1 %>=banz% e2

pr_e1 %>banz% e2

pr_e1 %>=cop% e2

pr_e1 %>cop% e2

pr_e1 %>=ks% e2

pr_e1 %>ks% e2

pr_e1 %>=lex% e2

pr_e1 %>lex% e2

pr_e1 %>=duallex% e2

pr_e1 %>duallex% e2

pr_e1 %>=L1% e2

testRelation 49

pr_e1 %>L1% e2

pr_e1 %>=L2% e2

pr_e1 %>L2% e2

pr_e1 %>=LP% e2

pr_e1 %>LP% e2

pr_e1 %>=LPS% e2

pr_e1 %>LPS% e2

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

e1, e2 Elements in powerRelation$elements

pr_e1 PowerRelation and e1 element, packed into a list using pr %:% e1

Details

The function testRelation is somewhat only used to make the offered comparison operators in
the package better discoverable.

testRelation(pr, e1) is equivalent to pr %:% e1 and list(pr, e1). It should be used together
with one of the comparison operators listed in the usage section.

Value

testRelation() and %:% returns list(powerRelation, e1).

Followed by a %>=comparison% or %>comparison% it returns TRUE or FALSE, depending on the
relation between e1 and e2.

See Also

Comparison function: dominates(), cumulativelyDominates(), cpMajorityComparison().

Score Functions: ordinalBanzhafScores(), copelandScores(), kramerSimpsonScores(), lexcelScores().

Examples

pr <- as.PowerRelation("123 > 12 ~ 13 ~ 23 > 3 > 1 ~ 2 > {}")

Dominance
stopifnot(pr %:% 1 %>=dom% 2)

Strict dominance
stopifnot((pr %:% 1 %>dom% 2) == FALSE)

50 testRelation

Cumulative dominance
stopifnot(pr %:% 1 %>=cumuldom% 2)

Strict cumulative dominance
stopifnot((pr %:% 1 %>cumuldom% 2) == FALSE)

CP-Majority relation
stopifnot(pr %:% 1 %>=cp% 2)

Strict CP-Majority relation
stopifnot((pr %:% 1 %>cp% 2) == FALSE)

Ordinal banzhaf relation
stopifnot(pr %:% 1 %>=banz% 2)

Strict ordinal banzhaf relation
(meaning 1 had a strictly higher positive contribution than 2)
stopifnot((pr %:% 1 %>banz% 2) == FALSE)

Copeland-like method
stopifnot(pr %:% 1 %>=cop% 2)
stopifnot(pr %:% 2 %>=cop% 1)

Strict Copeland-like method
(meaning pairwise winning minus pairwise losing comparison of
1 is strictly higher than of 2)
stopifnot((pr %:% 1 %>cop% 2) == FALSE)
stopifnot((pr %:% 2 %>cop% 1) == FALSE)
stopifnot(pr %:% 3 %>cop% 1)

Kramer-Simpson-like method
stopifnot(pr %:% 1 %>=ks% 2)
stopifnot(pr %:% 2 %>=ks% 1)

Strict Kramer-Simpson-like method
(meaning ks-score of 1 is actually higher than 2)
stopifnot((pr %:% 2 %>ks% 1) == FALSE)
stopifnot((pr %:% 1 %>ks% 2) == FALSE)
stopifnot(pr %:% 3 %>ks% 1)

Lexicographical and dual lexicographical excellence
stopifnot(pr %:% 3 %>=lex% 1)
stopifnot(pr %:% 3 %>=duallex% 1)

Strict lexicographical and dual lexicographical excellence
(meaning their lexicographical scores don't match)
stopifnot(pr %:% 3 %>lex% 1)
stopifnot(pr %:% 3 %>duallex% 1)

L^(1) and L^(2)
stopifnot(pr %:% 1 %>=L1% 2)
stopifnot(pr %:% 1 %>=L2% 2)

transitiveClosure 51

Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>L1% 2) == FALSE)
stopifnot(pr %:% 3 %>L1% 1)

stopifnot((pr %:% 1 %>L2% 2) == FALSE)
stopifnot(pr %:% 3 %>L2% 1)

L^p and L^p*
stopifnot(pr %:% 1 %>=LP% 2)
stopifnot(pr %:% 1 %>=LPS% 2)

Strict L^(1) and L^(2)
stopifnot((pr %:% 1 %>LP% 2) == FALSE)
stopifnot(pr %:% 3 %>LP% 1)

stopifnot((pr %:% 1 %>LPS% 2) == FALSE)
stopifnot(pr %:% 3 %>LPS% 1)

transitiveClosure Transitive Closure

Description

Apply transitive closure over power relation that has cycles.

Usage

transitiveClosure(powerRelation)

Arguments

powerRelation A PowerRelation object created by PowerRelation() or as.PowerRelation()

Details

A power relation is a binary relationship between coalitions that is transitive. For coalitions a, b, c ∈
2N , this means that if a ≻ b and b ≻ c, then a ≻ c.

A power relation with cycles is not transitive. A transitive closure over a power relation removes
all cycles and turns it into a transitive relation, placing all coalitions within a cycle in the same
equivalence class. If a ≻ b ≻ a, from the symmetric definition in PowerRelation() we therefore
assume that a ∼ b. Similarly, if a ≻ b1 ≻ b2 ≻ · · · ≻ bn ≻ a, the transitive closure turns it into
a ∼ b1 ∼ b2 ∼ · · · ∼ bn.

transitiveClosure() transforms a PowerRelation object with cycles into a PowerRelation
object without cycles. As described above, all coalitions within a cycle then are put into the same
equivalence class and all duplicate coalitions are removed.

52 transitiveClosure

Value

PowerRelation object with no cycles.

Examples

pr <- as.PowerRelation("1 > 2")

nothing changes
transitiveClosure(pr)

pr <- suppressWarnings(as.PowerRelation("1 > 2 > 1"))

1 ~ 2
transitiveClosure(pr)

pr <- suppressWarnings(
as.PowerRelation("1 > 3 > 1 > 2 > 23 > 2")

)

1 > 3 > 1 > 2 > 23 > 2 =>
1 ~ 3 > 2 ~ 23
transitiveClosure(pr)

Index

∗ CP-majority based functions
copelandScores, 6
cpMajorityComparison, 8
kramerSimpsonScores, 19

∗ generator functions
powerRelationGenerator, 41

∗ helper functions for transforming power
relations

appendMissingCoalitions, 2
makePowerRelationMonotonic, 33

∗ lookup functions
coalitionsAreIndifferent, 5
elementLookup, 17
equivalenceClassIndex, 18

∗ ranking solution functions
copelandScores, 6
cumulativeScores, 12
kramerSimpsonScores, 19
L1Scores, 21
L2Scores, 23
lexcelScores, 26
LPScores, 28
LPSScores, 31
ordinalBanzhafScores, 36

%:% (testRelation), 48
%>=L1% (testRelation), 48
%>=L2% (testRelation), 48
%>=LPS% (testRelation), 48
%>=LP% (testRelation), 48
%>=banz% (testRelation), 48
%>=cop% (testRelation), 48
%>=cp% (testRelation), 48
%>=cumuldom% (testRelation), 48
%>=dom% (testRelation), 48
%>=duallex% (testRelation), 48
%>=ks% (testRelation), 48
%>=lex% (testRelation), 48
%>L1% (testRelation), 48
%>L2% (testRelation), 48

%>LPS% (testRelation), 48
%>LP% (testRelation), 48
%>banz% (testRelation), 48
%>cop% (testRelation), 48
%>cp% (testRelation), 48
%>cumuldom% (testRelation), 48
%>dom% (testRelation), 48
%>duallex% (testRelation), 48
%>ks% (testRelation), 48
%>lex% (testRelation), 48

appendMissingCoalitions, 2, 34
as.PowerRelation, 4
as.PowerRelation(), 3, 6–8, 11, 13, 14, 17,

18, 20, 21, 23, 26, 28, 31, 33, 35, 36,
38–40, 44, 49, 51

as.relation.PowerRelation
(powerRelationMatrix), 44

coalitionLookup
(equivalenceClassIndex), 18

coalitionLookup(), 3, 34, 38
coalitionsAreIndifferent, 5, 18, 19
copelandRanking (copelandScores), 6
copelandScores, 6, 10, 13, 20, 23, 25, 27, 30,

33, 37
copelandScores(), 49
cpMajorityComparison, 7, 8, 20
cpMajorityComparison(), 6, 9, 49
cpMajorityComparisonScore

(cpMajorityComparison), 8
cpMajorityComparisonScore(), 9, 20
createPowerset, 11
createPowerset(), 38
cumulativelyDominates

(cumulativeScores), 12
cumulativelyDominates(), 49
cumulativeScores, 7, 12, 20, 23, 25, 27, 30,

33, 37

53

54 INDEX

dominates, 14
dominates(), 49
doRanking, 15
doRanking(), 47
dualLexcelRanking (lexcelScores), 26

elementLookup, 6, 17, 19
elementLookup(), 3, 34, 38
equivalenceClassIndex, 6, 18, 18

generateNextPartition
(powerRelationGenerator), 41

generateRandomPowerRelation
(powerRelationGenerator), 41

is.PowerRelation (PowerRelation), 37

kramerSimpsonRanking
(kramerSimpsonScores), 19

kramerSimpsonScores, 7, 10, 13, 19, 23, 25,
27, 30, 33, 37

kramerSimpsonScores(), 49

L1Ranking (L1Scores), 21
L1Ranking(), 15, 24, 29
L1Scores, 7, 13, 20, 21, 25, 27, 30, 33, 37
L1Scores(), 25, 30, 32
L2Ranking (L2Scores), 23
L2Scores, 7, 13, 20, 23, 23, 27, 30, 33, 37
lexcel1Ranking (L1Scores), 21
lexcel1Scores (L1Scores), 21
lexcel2Ranking (L2Scores), 23
lexcel2Scores (L2Scores), 23
lexcelPRanking (LPScores), 28
lexcelPScores (LPScores), 28
lexcelPSRanking (LPSScores), 31
lexcelPSScores (LPSScores), 31
lexcelRanking (lexcelScores), 26
lexcelRanking(), 15, 22
lexcelScores, 7, 13, 20, 23, 25, 26, 30, 33, 37
lexcelScores(), 16, 49
lists, 16
LPRanking (LPScores), 28
LPRanking(), 32
LPScores, 7, 13, 20, 23, 25, 27, 28, 33, 37
LPSRanking (LPSScores), 31
LPSScores, 7, 13, 20, 23, 25, 27, 30, 31, 37

makePowerRelationMonotonic, 3, 33
makePowerRelationMonotonic(), 41

newPowerRelation, 35
newPowerRelationFromString, 35
numbers::bell(), 41

order(), 15
ordinalBanzhafRanking

(ordinalBanzhafScores), 36
ordinalBanzhafRanking(), 15
ordinalBanzhafScores, 7, 13, 20, 23, 25, 27,

30, 33, 36
ordinalBanzhafScores(), 49

partitions::compositions(), 41
partitions::multinomial(), 41
PowerRelation, 3–8, 11, 13, 14, 17, 18, 20,

21, 23, 26, 28, 31, 33–36, 37, 38, 41,
42, 44, 45, 48, 49, 51, 52

PowerRelation(), 3, 6–8, 11, 13, 14, 17, 18,
20, 21, 23, 26, 28, 31, 33, 35, 36, 44,
47, 49, 51

powerRelationGenerator, 41
powerRelationMatrix, 44
print.PowerRelation (PowerRelation), 37

relations::as.relation(), 45
relations::relation(), 44, 45
relations::relation_incidence(), 45

SocialRanking, 7, 20, 22, 24, 26, 29, 32, 36,
46

SocialRanking(), 16

testRelation, 48
transitiveClosure, 51
transitiveClosure(), 45

vector, 6, 9, 16, 18, 38, 47
vectors, 5, 9, 16

	appendMissingCoalitions
	as.PowerRelation
	coalitionsAreIndifferent
	copelandScores
	cpMajorityComparison
	createPowerset
	cumulativeScores
	dominates
	doRanking
	elementLookup
	equivalenceClassIndex
	kramerSimpsonScores
	L1Scores
	L2Scores
	lexcelScores
	LPScores
	LPSScores
	makePowerRelationMonotonic
	newPowerRelation
	newPowerRelationFromString
	ordinalBanzhafScores
	PowerRelation
	powerRelationGenerator
	powerRelationMatrix
	SocialRanking
	testRelation
	transitiveClosure
	Index

