sureLDA: A Novel Multi-Disease Automated Phenotyping Method for the EHR
A statistical learning method to simultaneously predict a range of target phenotypes using codified and natural language processing (NLP)-derived Electronic Health Record (EHR) data. See Ahuja et al (2020) JAMIA <doi:10.1093/jamia/ocaa079> for details.
| Version: | 0.1.0-1 | 
| Depends: | R (≥ 3.0), Matrix | 
| Imports: | pROC, glmnet, MAP, Rcpp, foreach, doParallel | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2020-11-10 | 
| DOI: | 10.32614/CRAN.package.sureLDA | 
| Author: | Yuri Ahuja [aut, cre],
  Tianxi Cai [aut],
  PARSE LTD [aut] | 
| Maintainer: | Yuri Ahuja  <Yuri_Ahuja at hms.harvard.edu> | 
| BugReports: | https://github.com/celehs/sureLDA/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/celehs/sureLDA | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | sureLDA results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sureLDA
to link to this page.