1 | /* $NetBSD: netbsd32_machdep.c,v 1.97 2016/10/19 09:44:00 skrll Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2001 Wasabi Systems, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * Written by Frank van der Linden for Wasabi Systems, Inc. |
8 | * |
9 | * Redistribution and use in source and binary forms, with or without |
10 | * modification, are permitted provided that the following conditions |
11 | * are met: |
12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. |
14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in the |
16 | * documentation and/or other materials provided with the distribution. |
17 | * 3. All advertising materials mentioning features or use of this software |
18 | * must display the following acknowledgement: |
19 | * This product includes software developed for the NetBSD Project by |
20 | * Wasabi Systems, Inc. |
21 | * 4. The name of Wasabi Systems, Inc. may not be used to endorse |
22 | * or promote products derived from this software without specific prior |
23 | * written permission. |
24 | * |
25 | * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND |
26 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
27 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
28 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC |
29 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
30 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
31 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
32 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
33 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
34 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
35 | * POSSIBILITY OF SUCH DAMAGE. |
36 | */ |
37 | |
38 | #include <sys/cdefs.h> |
39 | __KERNEL_RCSID(0, "$NetBSD: netbsd32_machdep.c,v 1.97 2016/10/19 09:44:00 skrll Exp $" ); |
40 | |
41 | #ifdef _KERNEL_OPT |
42 | #include "opt_compat_netbsd.h" |
43 | #include "opt_coredump.h" |
44 | #include "opt_execfmt.h" |
45 | #include "opt_user_ldt.h" |
46 | #include "opt_mtrr.h" |
47 | #endif |
48 | |
49 | #include <sys/param.h> |
50 | #include <sys/exec.h> |
51 | #include <sys/exec_aout.h> |
52 | #include <sys/kmem.h> |
53 | #include <sys/proc.h> |
54 | #include <sys/signalvar.h> |
55 | #include <sys/systm.h> |
56 | #include <sys/core.h> |
57 | #include <sys/mount.h> |
58 | #include <sys/buf.h> |
59 | #include <sys/vnode.h> |
60 | #include <sys/ras.h> |
61 | #include <sys/ptrace.h> |
62 | #include <sys/kauth.h> |
63 | |
64 | #include <x86/fpu.h> |
65 | #include <machine/frame.h> |
66 | #include <machine/reg.h> |
67 | #include <machine/vmparam.h> |
68 | #ifdef MTRR |
69 | #include <machine/mtrr.h> |
70 | #endif |
71 | #include <machine/netbsd32_machdep.h> |
72 | #include <machine/sysarch.h> |
73 | #include <machine/userret.h> |
74 | |
75 | #include <compat/netbsd32/netbsd32.h> |
76 | #include <compat/netbsd32/netbsd32_exec.h> |
77 | #include <compat/netbsd32/netbsd32_syscallargs.h> |
78 | |
79 | #include <compat/sys/signal.h> |
80 | #include <compat/sys/signalvar.h> |
81 | |
82 | /* Provide a the name of the architecture we're emulating */ |
83 | const char machine32[] = "i386" ; |
84 | const char machine_arch32[] = "i386" ; |
85 | |
86 | #ifdef MTRR |
87 | static int x86_64_get_mtrr32(struct lwp *, void *, register_t *); |
88 | static int x86_64_set_mtrr32(struct lwp *, void *, register_t *); |
89 | #else |
90 | #define x86_64_get_mtrr32(x, y, z) ENOSYS |
91 | #define x86_64_set_mtrr32(x, y, z) ENOSYS |
92 | #endif |
93 | |
94 | static int check_sigcontext32(struct lwp *, const struct netbsd32_sigcontext *); |
95 | |
96 | #ifdef EXEC_AOUT |
97 | /* |
98 | * There is no native a.out -- this function is required |
99 | * for i386 a.out emulation (COMPAT_NETBSD32+EXEC_AOUT). |
100 | */ |
101 | int |
102 | cpu_exec_aout_makecmds(struct lwp *p, struct exec_package *e) |
103 | { |
104 | |
105 | return ENOEXEC; |
106 | } |
107 | #endif |
108 | |
109 | void |
110 | netbsd32_setregs(struct lwp *l, struct exec_package *pack, vaddr_t stack) |
111 | { |
112 | struct pcb *pcb; |
113 | struct trapframe *tf; |
114 | struct proc *p = l->l_proc; |
115 | |
116 | pcb = lwp_getpcb(l); |
117 | |
118 | #if defined(USER_LDT) && 0 |
119 | pmap_ldt_cleanup(l); |
120 | #endif |
121 | |
122 | netbsd32_adjust_limits(p); |
123 | |
124 | l->l_md.md_flags |= MDL_COMPAT32; /* Force iret not sysret */ |
125 | pcb->pcb_flags = PCB_COMPAT32; |
126 | |
127 | fpu_save_area_clear(l, pack->ep_osversion >= 699002600 |
128 | ? __NetBSD_NPXCW__ : __NetBSD_COMPAT_NPXCW__); |
129 | |
130 | p->p_flag |= PK_32; |
131 | |
132 | tf = l->l_md.md_regs; |
133 | tf->tf_ds = LSEL(LUDATA32_SEL, SEL_UPL); |
134 | tf->tf_es = LSEL(LUDATA32_SEL, SEL_UPL); |
135 | cpu_fsgs_zero(l); |
136 | cpu_fsgs_reload(l, tf->tf_ds, tf->tf_es); |
137 | tf->tf_rdi = 0; |
138 | tf->tf_rsi = 0; |
139 | tf->tf_rbp = 0; |
140 | tf->tf_rbx = (uint32_t)p->p_psstrp; |
141 | tf->tf_rdx = 0; |
142 | tf->tf_rcx = 0; |
143 | tf->tf_rax = 0; |
144 | tf->tf_rip = pack->ep_entry; |
145 | tf->tf_cs = LSEL(LUCODE32_SEL, SEL_UPL); |
146 | tf->tf_rflags = PSL_USERSET; |
147 | tf->tf_rsp = stack; |
148 | tf->tf_ss = LSEL(LUDATA32_SEL, SEL_UPL); |
149 | } |
150 | |
151 | #ifdef COMPAT_16 |
152 | static void |
153 | netbsd32_sendsig_sigcontext(const ksiginfo_t *ksi, const sigset_t *mask) |
154 | { |
155 | struct lwp *l = curlwp; |
156 | struct proc *p = l->l_proc; |
157 | struct trapframe *tf; |
158 | int sig = ksi->ksi_signo; |
159 | sig_t catcher = SIGACTION(p, sig).sa_handler; |
160 | struct netbsd32_sigframe_sigcontext *fp, frame; |
161 | int onstack, error; |
162 | struct sigacts *ps = p->p_sigacts; |
163 | |
164 | tf = l->l_md.md_regs; |
165 | |
166 | /* Do we need to jump onto the signal stack? */ |
167 | onstack = |
168 | (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && |
169 | (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; |
170 | |
171 | /* Allocate space for the signal handler context. */ |
172 | if (onstack) |
173 | fp = (struct netbsd32_sigframe_sigcontext *) |
174 | ((char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size); |
175 | else |
176 | fp = (struct netbsd32_sigframe_sigcontext *)tf->tf_rsp; |
177 | fp--; |
178 | |
179 | /* Build stack frame for signal trampoline. */ |
180 | switch (ps->sa_sigdesc[sig].sd_vers) { |
181 | case 0: |
182 | frame.sf_ra = (uint32_t)(u_long)p->p_sigctx.ps_sigcode; |
183 | break; |
184 | case 1: |
185 | frame.sf_ra = (uint32_t)(u_long)ps->sa_sigdesc[sig].sd_tramp; |
186 | break; |
187 | default: |
188 | /* Don't know what trampoline version; kill it. */ |
189 | sigexit(l, SIGILL); |
190 | } |
191 | frame.sf_signum = sig; |
192 | frame.sf_code = ksi->ksi_trap; |
193 | frame.sf_scp = (uint32_t)(u_long)&fp->sf_sc; |
194 | |
195 | frame.sf_sc.sc_ds = tf->tf_ds; |
196 | frame.sf_sc.sc_es = tf->tf_es; |
197 | frame.sf_sc.sc_fs = tf->tf_fs; |
198 | frame.sf_sc.sc_gs = tf->tf_gs; |
199 | |
200 | frame.sf_sc.sc_eflags = tf->tf_rflags; |
201 | frame.sf_sc.sc_edi = tf->tf_rdi; |
202 | frame.sf_sc.sc_esi = tf->tf_rsi; |
203 | frame.sf_sc.sc_ebp = tf->tf_rbp; |
204 | frame.sf_sc.sc_ebx = tf->tf_rbx; |
205 | frame.sf_sc.sc_edx = tf->tf_rdx; |
206 | frame.sf_sc.sc_ecx = tf->tf_rcx; |
207 | frame.sf_sc.sc_eax = tf->tf_rax; |
208 | frame.sf_sc.sc_eip = tf->tf_rip; |
209 | frame.sf_sc.sc_cs = tf->tf_cs; |
210 | frame.sf_sc.sc_esp = tf->tf_rsp; |
211 | frame.sf_sc.sc_ss = tf->tf_ss; |
212 | frame.sf_sc.sc_trapno = tf->tf_trapno; |
213 | frame.sf_sc.sc_err = tf->tf_err; |
214 | |
215 | /* Save signal stack. */ |
216 | frame.sf_sc.sc_onstack = l->l_sigstk.ss_flags & SS_ONSTACK; |
217 | |
218 | /* Save signal mask. */ |
219 | frame.sf_sc.sc_mask = *mask; |
220 | |
221 | sendsig_reset(l, sig); |
222 | |
223 | mutex_exit(p->p_lock); |
224 | error = copyout(&frame, fp, sizeof(frame)); |
225 | mutex_enter(p->p_lock); |
226 | |
227 | if (error != 0) { |
228 | /* |
229 | * Process has trashed its stack; give it an illegal |
230 | * instruction to halt it in its tracks. |
231 | */ |
232 | sigexit(l, SIGILL); |
233 | /* NOTREACHED */ |
234 | } |
235 | |
236 | /* |
237 | * Build context to run handler in. |
238 | */ |
239 | tf->tf_ds = GSEL(GUDATA32_SEL, SEL_UPL); |
240 | tf->tf_es = GSEL(GUDATA32_SEL, SEL_UPL); |
241 | tf->tf_fs = GSEL(GUDATA32_SEL, SEL_UPL); |
242 | tf->tf_gs = GSEL(GUDATA32_SEL, SEL_UPL); |
243 | |
244 | /* Ensure FP state is sane. */ |
245 | fpu_save_area_reset(l); |
246 | |
247 | tf->tf_rip = (uint64_t)catcher; |
248 | tf->tf_cs = GSEL(GUCODE32_SEL, SEL_UPL); |
249 | tf->tf_rflags &= ~PSL_CLEARSIG; |
250 | tf->tf_rsp = (uint64_t)fp; |
251 | tf->tf_ss = GSEL(GUDATA32_SEL, SEL_UPL); |
252 | |
253 | /* Remember that we're now on the signal stack. */ |
254 | if (onstack) |
255 | l->l_sigstk.ss_flags |= SS_ONSTACK; |
256 | if ((vaddr_t)catcher >= VM_MAXUSER_ADDRESS32) { |
257 | /* |
258 | * process has given an invalid address for the |
259 | * handler. Stop it, but do not do it before so |
260 | * we can return the right info to userland (or in core dump) |
261 | */ |
262 | sigexit(l, SIGILL); |
263 | /* NOTREACHED */ |
264 | } |
265 | } |
266 | #endif |
267 | |
268 | static void |
269 | netbsd32_sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask) |
270 | { |
271 | struct lwp *l = curlwp; |
272 | struct proc *p = l->l_proc; |
273 | struct sigacts *ps = p->p_sigacts; |
274 | int onstack, error; |
275 | int sig = ksi->ksi_signo; |
276 | struct netbsd32_sigframe_siginfo *fp, frame; |
277 | sig_t catcher = SIGACTION(p, sig).sa_handler; |
278 | struct trapframe *tf = l->l_md.md_regs; |
279 | |
280 | /* Do we need to jump onto the signal stack? */ |
281 | onstack = |
282 | (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && |
283 | (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; |
284 | |
285 | /* Allocate space for the signal handler context. */ |
286 | if (onstack) |
287 | fp = (struct netbsd32_sigframe_siginfo *) |
288 | ((char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size); |
289 | else |
290 | fp = (struct netbsd32_sigframe_siginfo *)tf->tf_rsp; |
291 | |
292 | fp--; |
293 | |
294 | /* Build stack frame for signal trampoline. */ |
295 | switch (ps->sa_sigdesc[sig].sd_vers) { |
296 | case 0: /* handled by sendsig_sigcontext */ |
297 | case 1: /* handled by sendsig_sigcontext */ |
298 | default: /* unknown version */ |
299 | printf("nsendsig: bad version %d\n" , |
300 | ps->sa_sigdesc[sig].sd_vers); |
301 | sigexit(l, SIGILL); |
302 | case 2: |
303 | break; |
304 | } |
305 | |
306 | frame.sf_ra = (uint32_t)(uintptr_t)ps->sa_sigdesc[sig].sd_tramp; |
307 | frame.sf_signum = sig; |
308 | frame.sf_sip = (uint32_t)(uintptr_t)&fp->sf_si; |
309 | frame.sf_ucp = (uint32_t)(uintptr_t)&fp->sf_uc; |
310 | netbsd32_si_to_si32(&frame.sf_si, (const siginfo_t *)&ksi->ksi_info); |
311 | frame.sf_uc.uc_flags = _UC_SIGMASK; |
312 | frame.sf_uc.uc_sigmask = *mask; |
313 | frame.sf_uc.uc_link = (uint32_t)(uintptr_t)l->l_ctxlink; |
314 | frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK) |
315 | ? _UC_SETSTACK : _UC_CLRSTACK; |
316 | memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack)); |
317 | sendsig_reset(l, sig); |
318 | |
319 | mutex_exit(p->p_lock); |
320 | cpu_getmcontext32(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags); |
321 | error = copyout(&frame, fp, sizeof(frame)); |
322 | mutex_enter(p->p_lock); |
323 | |
324 | if (error != 0) { |
325 | /* |
326 | * Process has trashed its stack; give it an illegal |
327 | * instruction to halt it in its tracks. |
328 | */ |
329 | sigexit(l, SIGILL); |
330 | /* NOTREACHED */ |
331 | } |
332 | |
333 | /* |
334 | * Build context to run handler in. |
335 | */ |
336 | tf->tf_ds = GSEL(GUDATA32_SEL, SEL_UPL); |
337 | tf->tf_es = GSEL(GUDATA32_SEL, SEL_UPL); |
338 | tf->tf_fs = GSEL(GUDATA32_SEL, SEL_UPL); |
339 | tf->tf_gs = GSEL(GUDATA32_SEL, SEL_UPL); |
340 | |
341 | tf->tf_rip = (uint64_t)catcher; |
342 | tf->tf_cs = GSEL(GUCODE32_SEL, SEL_UPL); |
343 | tf->tf_rflags &= ~PSL_CLEARSIG; |
344 | tf->tf_rsp = (uint64_t)fp; |
345 | tf->tf_ss = GSEL(GUDATA32_SEL, SEL_UPL); |
346 | |
347 | /* Ensure FP state is sane. */ |
348 | fpu_save_area_reset(l); |
349 | |
350 | /* Remember that we're now on the signal stack. */ |
351 | if (onstack) |
352 | l->l_sigstk.ss_flags |= SS_ONSTACK; |
353 | if ((vaddr_t)catcher >= VM_MAXUSER_ADDRESS32) { |
354 | /* |
355 | * process has given an invalid address for the |
356 | * handler. Stop it, but do not do it before so |
357 | * we can return the right info to userland (or in core dump) |
358 | */ |
359 | sigexit(l, SIGILL); |
360 | /* NOTREACHED */ |
361 | } |
362 | } |
363 | |
364 | void |
365 | netbsd32_sendsig(const ksiginfo_t *ksi, const sigset_t *mask) |
366 | { |
367 | #ifdef COMPAT_16 |
368 | if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) |
369 | netbsd32_sendsig_sigcontext(ksi, mask); |
370 | else |
371 | #endif |
372 | netbsd32_sendsig_siginfo(ksi, mask); |
373 | } |
374 | |
375 | int |
376 | compat_16_netbsd32___sigreturn14(struct lwp *l, const struct compat_16_netbsd32___sigreturn14_args *uap, register_t *retval) |
377 | { |
378 | /* { |
379 | syscallarg(netbsd32_sigcontextp_t) sigcntxp; |
380 | } */ |
381 | struct netbsd32_sigcontext *scp, context; |
382 | struct proc *p = l->l_proc; |
383 | struct trapframe *tf; |
384 | int error; |
385 | |
386 | /* |
387 | * The trampoline code hands us the context. |
388 | * It is unsafe to keep track of it ourselves, in the event that a |
389 | * program jumps out of a signal handler. |
390 | */ |
391 | scp = NETBSD32PTR64(SCARG(uap, sigcntxp)); |
392 | if (copyin(scp, &context, sizeof(*scp)) != 0) |
393 | return (EFAULT); |
394 | |
395 | /* |
396 | * Check for security violations. |
397 | */ |
398 | error = check_sigcontext32(l, &context); |
399 | if (error != 0) |
400 | return error; |
401 | |
402 | /* Restore register context. */ |
403 | tf = l->l_md.md_regs; |
404 | tf->tf_ds = context.sc_ds; |
405 | tf->tf_es = context.sc_es; |
406 | cpu_fsgs_reload(l, context.sc_fs, context.sc_gs); |
407 | tf->tf_rflags = context.sc_eflags; |
408 | tf->tf_rdi = context.sc_edi; |
409 | tf->tf_rsi = context.sc_esi; |
410 | tf->tf_rbp = context.sc_ebp; |
411 | tf->tf_rbx = context.sc_ebx; |
412 | tf->tf_rdx = context.sc_edx; |
413 | tf->tf_rcx = context.sc_ecx; |
414 | tf->tf_rax = context.sc_eax; |
415 | |
416 | tf->tf_rip = context.sc_eip; |
417 | tf->tf_cs = context.sc_cs; |
418 | tf->tf_rsp = context.sc_esp; |
419 | tf->tf_ss = context.sc_ss; |
420 | |
421 | mutex_enter(p->p_lock); |
422 | /* Restore signal stack. */ |
423 | if (context.sc_onstack & SS_ONSTACK) |
424 | l->l_sigstk.ss_flags |= SS_ONSTACK; |
425 | else |
426 | l->l_sigstk.ss_flags &= ~SS_ONSTACK; |
427 | /* Restore signal mask. */ |
428 | (void) sigprocmask1(l, SIG_SETMASK, &context.sc_mask, 0); |
429 | mutex_exit(p->p_lock); |
430 | |
431 | return (EJUSTRETURN); |
432 | } |
433 | |
434 | |
435 | #ifdef COREDUMP |
436 | /* |
437 | * Dump the machine specific segment at the start of a core dump. |
438 | */ |
439 | struct md_core32 { |
440 | struct reg32 intreg; |
441 | struct fpreg32 freg; |
442 | }; |
443 | |
444 | int |
445 | cpu_coredump32(struct lwp *l, struct coredump_iostate *iocookie, |
446 | struct core32 *chdr) |
447 | { |
448 | struct md_core32 md_core; |
449 | struct coreseg cseg; |
450 | int error; |
451 | |
452 | if (iocookie == NULL) { |
453 | CORE_SETMAGIC(*chdr, COREMAGIC, MID_I386, 0); |
454 | chdr->c_hdrsize = ALIGN32(sizeof(*chdr)); |
455 | chdr->c_seghdrsize = ALIGN32(sizeof(cseg)); |
456 | chdr->c_cpusize = sizeof(md_core); |
457 | chdr->c_nseg++; |
458 | return 0; |
459 | } |
460 | |
461 | /* Save integer registers. */ |
462 | error = netbsd32_process_read_regs(l, &md_core.intreg); |
463 | if (error) |
464 | return error; |
465 | |
466 | /* Save floating point registers. */ |
467 | error = netbsd32_process_read_fpregs(l, &md_core.freg, NULL); |
468 | if (error) |
469 | return error; |
470 | |
471 | CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_I386, CORE_CPU); |
472 | cseg.c_addr = 0; |
473 | cseg.c_size = chdr->c_cpusize; |
474 | |
475 | error = coredump_write(iocookie, UIO_SYSSPACE, &cseg, |
476 | chdr->c_seghdrsize); |
477 | if (error) |
478 | return error; |
479 | |
480 | return coredump_write(iocookie, UIO_SYSSPACE, &md_core, |
481 | sizeof(md_core)); |
482 | } |
483 | #endif |
484 | |
485 | int |
486 | netbsd32_process_read_regs(struct lwp *l, struct reg32 *regs) |
487 | { |
488 | struct trapframe *tf = l->l_md.md_regs; |
489 | |
490 | /* XXX avoid sign extension problems with unknown upper bits? */ |
491 | regs->r_gs = tf->tf_gs & 0xffff; |
492 | regs->r_fs = tf->tf_fs & 0xffff; |
493 | regs->r_es = tf->tf_es & 0xffff; |
494 | regs->r_ds = tf->tf_ds & 0xffff; |
495 | regs->r_eflags = tf->tf_rflags; |
496 | regs->r_edi = tf->tf_rdi & 0xffffffff; |
497 | regs->r_esi = tf->tf_rsi & 0xffffffff; |
498 | regs->r_ebp = tf->tf_rbp & 0xffffffff; |
499 | regs->r_ebx = tf->tf_rbx & 0xffffffff; |
500 | regs->r_edx = tf->tf_rdx & 0xffffffff; |
501 | regs->r_ecx = tf->tf_rcx & 0xffffffff; |
502 | regs->r_eax = tf->tf_rax & 0xffffffff; |
503 | regs->r_eip = tf->tf_rip & 0xffffffff; |
504 | regs->r_cs = tf->tf_cs & 0xffff; |
505 | regs->r_esp = tf->tf_rsp & 0xffffffff; |
506 | regs->r_ss = tf->tf_ss & 0xffff; |
507 | |
508 | return (0); |
509 | } |
510 | |
511 | int |
512 | netbsd32_process_read_fpregs(struct lwp *l, struct fpreg32 *regs, size_t *sz) |
513 | { |
514 | |
515 | __CTASSERT(sizeof *regs == sizeof (struct save87)); |
516 | process_read_fpregs_s87(l, (struct save87 *)regs); |
517 | return 0; |
518 | } |
519 | |
520 | int |
521 | netbsd32_process_write_regs(struct lwp *l, const struct reg32 *regs) |
522 | { |
523 | struct trapframe *tf = l->l_md.md_regs; |
524 | |
525 | /* |
526 | * Check for security violations. Taken from i386/process_machdep.c. |
527 | */ |
528 | if (((regs->r_eflags ^ tf->tf_rflags) & PSL_USERSTATIC) != 0 || |
529 | !VALID_USER_CSEL32(regs->r_cs)) |
530 | return EINVAL; |
531 | |
532 | tf->tf_rax = regs->r_eax; |
533 | tf->tf_rcx = regs->r_ecx; |
534 | tf->tf_rdx = regs->r_edx; |
535 | tf->tf_rbx = regs->r_ebx; |
536 | tf->tf_rsp = regs->r_esp; |
537 | tf->tf_rbp = regs->r_ebp; |
538 | tf->tf_rsi = regs->r_esi; |
539 | tf->tf_rdi = regs->r_edi; |
540 | tf->tf_rip = regs->r_eip; |
541 | tf->tf_rflags = regs->r_eflags; |
542 | tf->tf_cs = regs->r_cs; |
543 | tf->tf_ss = regs->r_ss; |
544 | tf->tf_ds = regs->r_ds; |
545 | tf->tf_es = regs->r_es; |
546 | tf->tf_fs = regs->r_fs; |
547 | tf->tf_gs = regs->r_gs; |
548 | |
549 | return 0; |
550 | } |
551 | |
552 | int |
553 | netbsd32_process_write_fpregs(struct lwp *l, const struct fpreg32 *regs, |
554 | size_t sz) |
555 | { |
556 | |
557 | __CTASSERT(sizeof *regs == sizeof (struct save87)); |
558 | process_write_fpregs_s87(l, (const struct save87 *)regs); |
559 | return 0; |
560 | } |
561 | |
562 | int |
563 | netbsd32_sysarch(struct lwp *l, const struct netbsd32_sysarch_args *uap, register_t *retval) |
564 | { |
565 | /* { |
566 | syscallarg(int) op; |
567 | syscallarg(netbsd32_voidp) parms; |
568 | } */ |
569 | int error; |
570 | |
571 | switch (SCARG(uap, op)) { |
572 | case X86_IOPL: |
573 | error = x86_iopl(l, |
574 | NETBSD32PTR64(SCARG(uap, parms)), retval); |
575 | break; |
576 | case X86_GET_MTRR: |
577 | error = x86_64_get_mtrr32(l, |
578 | NETBSD32PTR64(SCARG(uap, parms)), retval); |
579 | break; |
580 | case X86_SET_MTRR: |
581 | error = x86_64_set_mtrr32(l, |
582 | NETBSD32PTR64(SCARG(uap, parms)), retval); |
583 | break; |
584 | default: |
585 | error = EINVAL; |
586 | break; |
587 | } |
588 | return error; |
589 | } |
590 | |
591 | #ifdef MTRR |
592 | static int |
593 | x86_64_get_mtrr32(struct lwp *l, void *args, register_t *retval) |
594 | { |
595 | struct x86_64_get_mtrr_args32 args32; |
596 | int error, i; |
597 | int32_t n; |
598 | struct mtrr32 *m32p, m32; |
599 | struct mtrr *m64p, *mp; |
600 | size_t size; |
601 | |
602 | m64p = NULL; |
603 | |
604 | if (mtrr_funcs == NULL) |
605 | return ENOSYS; |
606 | |
607 | error = kauth_authorize_machdep(l->l_cred, KAUTH_MACHDEP_MTRR_GET, |
608 | NULL, NULL, NULL, NULL); |
609 | if (error) |
610 | return (error); |
611 | |
612 | error = copyin(args, &args32, sizeof args32); |
613 | if (error != 0) |
614 | return error; |
615 | |
616 | if (args32.mtrrp == 0) { |
617 | n = (MTRR_I686_NFIXED_SOFT + MTRR_I686_NVAR_MAX); |
618 | return copyout(&n, (void *)(uintptr_t)args32.n, sizeof n); |
619 | } |
620 | |
621 | error = copyin((void *)(uintptr_t)args32.n, &n, sizeof n); |
622 | if (error != 0) |
623 | return error; |
624 | |
625 | if (n <= 0 || n > (MTRR_I686_NFIXED_SOFT + MTRR_I686_NVAR_MAX)) |
626 | return EINVAL; |
627 | |
628 | size = n * sizeof(struct mtrr); |
629 | m64p = kmem_zalloc(size, KM_SLEEP); |
630 | if (m64p == NULL) { |
631 | error = ENOMEM; |
632 | goto fail; |
633 | } |
634 | error = mtrr_get(m64p, &n, l->l_proc, 0); |
635 | if (error != 0) |
636 | goto fail; |
637 | m32p = (struct mtrr32 *)(uintptr_t)args32.mtrrp; |
638 | mp = m64p; |
639 | for (i = 0; i < n; i++) { |
640 | m32.base = mp->base; |
641 | m32.len = mp->len; |
642 | m32.type = mp->type; |
643 | m32.flags = mp->flags; |
644 | m32.owner = mp->owner; |
645 | error = copyout(&m32, m32p, sizeof m32); |
646 | if (error != 0) |
647 | break; |
648 | mp++; |
649 | m32p++; |
650 | } |
651 | fail: |
652 | if (m64p != NULL) |
653 | kmem_free(m64p, size); |
654 | if (error != 0) |
655 | n = 0; |
656 | copyout(&n, (void *)(uintptr_t)args32.n, sizeof n); |
657 | return error; |
658 | } |
659 | |
660 | static int |
661 | x86_64_set_mtrr32(struct lwp *l, void *args, register_t *retval) |
662 | { |
663 | struct x86_64_set_mtrr_args32 args32; |
664 | struct mtrr32 *m32p, m32; |
665 | struct mtrr *m64p, *mp; |
666 | int error, i; |
667 | int32_t n; |
668 | size_t size; |
669 | |
670 | m64p = NULL; |
671 | |
672 | if (mtrr_funcs == NULL) |
673 | return ENOSYS; |
674 | |
675 | error = kauth_authorize_machdep(l->l_cred, KAUTH_MACHDEP_MTRR_SET, |
676 | NULL, NULL, NULL, NULL); |
677 | if (error) |
678 | return (error); |
679 | |
680 | error = copyin(args, &args32, sizeof args32); |
681 | if (error != 0) |
682 | return error; |
683 | |
684 | error = copyin((void *)(uintptr_t)args32.n, &n, sizeof n); |
685 | if (error != 0) |
686 | return error; |
687 | |
688 | if (n <= 0 || n > (MTRR_I686_NFIXED_SOFT + MTRR_I686_NVAR_MAX)) { |
689 | error = EINVAL; |
690 | goto fail; |
691 | } |
692 | |
693 | size = n * sizeof(struct mtrr); |
694 | m64p = kmem_zalloc(size, KM_SLEEP); |
695 | if (m64p == NULL) { |
696 | error = ENOMEM; |
697 | goto fail; |
698 | } |
699 | m32p = (struct mtrr32 *)(uintptr_t)args32.mtrrp; |
700 | mp = m64p; |
701 | for (i = 0; i < n; i++) { |
702 | error = copyin(m32p, &m32, sizeof m32); |
703 | if (error != 0) |
704 | goto fail; |
705 | mp->base = m32.base; |
706 | mp->len = m32.len; |
707 | mp->type = m32.type; |
708 | mp->flags = m32.flags; |
709 | mp->owner = m32.owner; |
710 | m32p++; |
711 | mp++; |
712 | } |
713 | |
714 | error = mtrr_set(m64p, &n, l->l_proc, 0); |
715 | fail: |
716 | if (m64p != NULL) |
717 | kmem_free(m64p, size); |
718 | if (error != 0) |
719 | n = 0; |
720 | copyout(&n, (void *)(uintptr_t)args32.n, sizeof n); |
721 | return error; |
722 | } |
723 | #endif |
724 | |
725 | #if 0 |
726 | void |
727 | netbsd32_mcontext_to_mcontext32(mcontext32_t *m32, mcontext_t *m, int flags) |
728 | { |
729 | if ((flags & _UC_CPU) != 0) { |
730 | m32->__gregs[_REG32_GS] = m->__gregs[_REG_GS] & 0xffffffff; |
731 | m32->__gregs[_REG32_FS] = m->__gregs[_REG_FS] & 0xffffffff; |
732 | m32->__gregs[_REG32_ES] = m->__gregs[_REG_ES] & 0xffffffff; |
733 | m32->__gregs[_REG32_DS] = m->__gregs[_REG_DS] & 0xffffffff; |
734 | m32->__gregs[_REG32_EDI] = m->__gregs[_REG_RDI] & 0xffffffff; |
735 | m32->__gregs[_REG32_ESI] = m->__gregs[_REG_RSI] & 0xffffffff; |
736 | m32->__gregs[_REG32_EBP] = m->__gregs[_REG_RBP] & 0xffffffff; |
737 | m32->__gregs[_REG32_ESP] = m->__gregs[_REG_URSP] & 0xffffffff; |
738 | m32->__gregs[_REG32_EBX] = m->__gregs[_REG_RBX] & 0xffffffff; |
739 | m32->__gregs[_REG32_EDX] = m->__gregs[_REG_RDX] & 0xffffffff; |
740 | m32->__gregs[_REG32_ECX] = m->__gregs[_REG_RCX] & 0xffffffff; |
741 | m32->__gregs[_REG32_EAX] = m->__gregs[_REG_RAX] & 0xffffffff; |
742 | m32->__gregs[_REG32_TRAPNO] = |
743 | m->__gregs[_REG_TRAPNO] & 0xffffffff; |
744 | m32->__gregs[_REG32_ERR] = m->__gregs[_REG_ERR] & 0xffffffff; |
745 | m32->__gregs[_REG32_EIP] = m->__gregs[_REG_RIP] & 0xffffffff; |
746 | m32->__gregs[_REG32_CS] = m->__gregs[_REG_CS] & 0xffffffff; |
747 | m32->__gregs[_REG32_EFL] = m->__gregs[_REG_RFL] & 0xffffffff; |
748 | m32->__gregs[_REG32_UESP] = m->__gregs[_REG_URSP] & 0xffffffff; |
749 | m32->__gregs[_REG32_SS] = m->__gregs[_REG_SS] & 0xffffffff; |
750 | } |
751 | if ((flags & _UC_FPU) != 0) |
752 | memcpy(&m32->__fpregs, &m->__fpregs, sizeof (m32->__fpregs)); |
753 | } |
754 | |
755 | void |
756 | netbsd32_mcontext32_to_mcontext(mcontext_t *m, mcontext32_t *m32, int flags) |
757 | { |
758 | if ((flags & _UC_CPU) != 0) { |
759 | m->__gregs[_REG_GS] = m32->__gregs[_REG32_GS]; |
760 | m->__gregs[_REG_FS] = m32->__gregs[_REG32_FS]; |
761 | m->__gregs[_REG_ES] = m32->__gregs[_REG32_ES]; |
762 | m->__gregs[_REG_DS] = m32->__gregs[_REG32_DS]; |
763 | m->__gregs[_REG_RDI] = m32->__gregs[_REG32_EDI]; |
764 | m->__gregs[_REG_RSI] = m32->__gregs[_REG32_ESI]; |
765 | m->__gregs[_REG_RBP] = m32->__gregs[_REG32_EBP]; |
766 | m->__gregs[_REG_URSP] = m32->__gregs[_REG32_ESP]; |
767 | m->__gregs[_REG_RBX] = m32->__gregs[_REG32_EBX]; |
768 | m->__gregs[_REG_RDX] = m32->__gregs[_REG32_EDX]; |
769 | m->__gregs[_REG_RCX] = m32->__gregs[_REG32_ECX]; |
770 | m->__gregs[_REG_RAX] = m32->__gregs[_REG32_EAX]; |
771 | m->__gregs[_REG_TRAPNO] = m32->__gregs[_REG32_TRAPNO]; |
772 | m->__gregs[_REG_ERR] = m32->__gregs[_REG32_ERR]; |
773 | m->__gregs[_REG_RIP] = m32->__gregs[_REG32_EIP]; |
774 | m->__gregs[_REG_CS] = m32->__gregs[_REG32_CS]; |
775 | m->__gregs[_REG_RFL] = m32->__gregs[_REG32_EFL]; |
776 | m->__gregs[_REG_URSP] = m32->__gregs[_REG32_UESP]; |
777 | m->__gregs[_REG_SS] = m32->__gregs[_REG32_SS]; |
778 | } |
779 | if (flags & _UC_FPU) |
780 | memcpy(&m->__fpregs, &m32->__fpregs, sizeof (m->__fpregs)); |
781 | } |
782 | #endif |
783 | |
784 | |
785 | int |
786 | cpu_setmcontext32(struct lwp *l, const mcontext32_t *mcp, unsigned int flags) |
787 | { |
788 | struct trapframe *tf = l->l_md.md_regs; |
789 | const __greg32_t *gr = mcp->__gregs; |
790 | struct proc *p = l->l_proc; |
791 | int error; |
792 | |
793 | /* Restore register context, if any. */ |
794 | if ((flags & _UC_CPU) != 0) { |
795 | /* |
796 | * Check for security violations. |
797 | */ |
798 | error = cpu_mcontext32_validate(l, mcp); |
799 | if (error != 0) |
800 | return error; |
801 | |
802 | cpu_fsgs_reload(l, gr[_REG32_FS], gr[_REG32_GS]); |
803 | tf->tf_es = gr[_REG32_ES]; |
804 | tf->tf_ds = gr[_REG32_DS]; |
805 | /* Only change the user-alterable part of eflags */ |
806 | tf->tf_rflags &= ~PSL_USER; |
807 | tf->tf_rflags |= (gr[_REG32_EFL] & PSL_USER); |
808 | tf->tf_rdi = gr[_REG32_EDI]; |
809 | tf->tf_rsi = gr[_REG32_ESI]; |
810 | tf->tf_rbp = gr[_REG32_EBP]; |
811 | tf->tf_rbx = gr[_REG32_EBX]; |
812 | tf->tf_rdx = gr[_REG32_EDX]; |
813 | tf->tf_rcx = gr[_REG32_ECX]; |
814 | tf->tf_rax = gr[_REG32_EAX]; |
815 | tf->tf_rip = gr[_REG32_EIP]; |
816 | tf->tf_cs = gr[_REG32_CS]; |
817 | tf->tf_rsp = gr[_REG32_UESP]; |
818 | tf->tf_ss = gr[_REG32_SS]; |
819 | } |
820 | |
821 | if ((flags & _UC_TLSBASE) != 0) |
822 | lwp_setprivate(l, (void *)(uintptr_t)mcp->_mc_tlsbase); |
823 | |
824 | /* Restore floating point register context, if any. */ |
825 | if ((flags & _UC_FPU) != 0) { |
826 | /* Assume fxsave context */ |
827 | process_write_fpregs_xmm(l, (const struct fxsave *) |
828 | &mcp->__fpregs.__fp_reg_set.__fp_xmm_state); |
829 | } |
830 | |
831 | mutex_enter(p->p_lock); |
832 | if (flags & _UC_SETSTACK) |
833 | l->l_sigstk.ss_flags |= SS_ONSTACK; |
834 | if (flags & _UC_CLRSTACK) |
835 | l->l_sigstk.ss_flags &= ~SS_ONSTACK; |
836 | mutex_exit(p->p_lock); |
837 | |
838 | return (0); |
839 | } |
840 | |
841 | void |
842 | cpu_getmcontext32(struct lwp *l, mcontext32_t *mcp, unsigned int *flags) |
843 | { |
844 | const struct trapframe *tf = l->l_md.md_regs; |
845 | __greg32_t *gr = mcp->__gregs; |
846 | __greg32_t ras_eip; |
847 | |
848 | /* Save register context. */ |
849 | gr[_REG32_GS] = tf->tf_gs; |
850 | gr[_REG32_FS] = tf->tf_fs; |
851 | gr[_REG32_ES] = tf->tf_es; |
852 | gr[_REG32_DS] = tf->tf_ds; |
853 | gr[_REG32_EFL] = tf->tf_rflags; |
854 | gr[_REG32_EDI] = tf->tf_rdi; |
855 | gr[_REG32_ESI] = tf->tf_rsi; |
856 | gr[_REG32_EBP] = tf->tf_rbp; |
857 | gr[_REG32_EBX] = tf->tf_rbx; |
858 | gr[_REG32_EDX] = tf->tf_rdx; |
859 | gr[_REG32_ECX] = tf->tf_rcx; |
860 | gr[_REG32_EAX] = tf->tf_rax; |
861 | gr[_REG32_EIP] = tf->tf_rip; |
862 | gr[_REG32_CS] = tf->tf_cs; |
863 | gr[_REG32_ESP] = tf->tf_rsp; |
864 | gr[_REG32_UESP] = tf->tf_rsp; |
865 | gr[_REG32_SS] = tf->tf_ss; |
866 | gr[_REG32_TRAPNO] = tf->tf_trapno; |
867 | gr[_REG32_ERR] = tf->tf_err; |
868 | |
869 | if ((ras_eip = (__greg32_t)(uintptr_t)ras_lookup(l->l_proc, |
870 | (void *) (uintptr_t)gr[_REG32_EIP])) != -1) |
871 | gr[_REG32_EIP] = ras_eip; |
872 | |
873 | *flags |= _UC_CPU; |
874 | |
875 | mcp->_mc_tlsbase = (uint32_t)(uintptr_t)l->l_private; |
876 | *flags |= _UC_TLSBASE; |
877 | |
878 | /* Save floating point register context. */ |
879 | process_read_fpregs_xmm(l, (struct fxsave *) |
880 | &mcp->__fpregs.__fp_reg_set.__fp_xmm_state); |
881 | memset(&mcp->__fpregs.__fp_pad, 0, sizeof mcp->__fpregs.__fp_pad); |
882 | *flags |= _UC_FXSAVE | _UC_FPU; |
883 | } |
884 | |
885 | void |
886 | startlwp32(void *arg) |
887 | { |
888 | ucontext32_t *uc = arg; |
889 | lwp_t *l = curlwp; |
890 | int error __diagused; |
891 | |
892 | error = cpu_setmcontext32(l, &uc->uc_mcontext, uc->uc_flags); |
893 | KASSERT(error == 0); |
894 | |
895 | /* Note: we are freeing ucontext_t, not ucontext32_t. */ |
896 | kmem_free(uc, sizeof(ucontext_t)); |
897 | userret(l); |
898 | } |
899 | |
900 | /* |
901 | * For various reasons, the amd64 port can't do what the i386 port does, |
902 | * and rely on catching invalid user contexts on exit from the kernel. |
903 | * These functions perform the needed checks. |
904 | */ |
905 | |
906 | static int |
907 | check_sigcontext32(struct lwp *l, const struct netbsd32_sigcontext *scp) |
908 | { |
909 | struct trapframe *tf; |
910 | struct pcb *pcb; |
911 | |
912 | tf = l->l_md.md_regs; |
913 | pcb = lwp_getpcb(curlwp); |
914 | |
915 | if (((scp->sc_eflags ^ tf->tf_rflags) & PSL_USERSTATIC) != 0 || |
916 | !VALID_USER_CSEL32(scp->sc_cs)) |
917 | return EINVAL; |
918 | if (scp->sc_fs != 0 && !VALID_USER_DSEL32(scp->sc_fs) && |
919 | !(VALID_USER_FSEL32(scp->sc_fs) && pcb->pcb_fs != 0)) |
920 | return EINVAL; |
921 | if (scp->sc_gs != 0 && !VALID_USER_DSEL32(scp->sc_gs) && |
922 | !(VALID_USER_GSEL32(scp->sc_gs) && pcb->pcb_gs != 0)) |
923 | return EINVAL; |
924 | if (scp->sc_es != 0 && !VALID_USER_DSEL32(scp->sc_es)) |
925 | return EINVAL; |
926 | if (!VALID_USER_DSEL32(scp->sc_ds) || !VALID_USER_DSEL32(scp->sc_ss)) |
927 | return EINVAL; |
928 | if (scp->sc_eip >= VM_MAXUSER_ADDRESS32) |
929 | return EINVAL; |
930 | return 0; |
931 | } |
932 | |
933 | int |
934 | cpu_mcontext32_validate(struct lwp *l, const mcontext32_t *mcp) |
935 | { |
936 | const __greg32_t *gr; |
937 | struct trapframe *tf; |
938 | struct pcb *pcb; |
939 | |
940 | gr = mcp->__gregs; |
941 | tf = l->l_md.md_regs; |
942 | pcb = lwp_getpcb(l); |
943 | |
944 | if (((gr[_REG32_EFL] ^ tf->tf_rflags) & PSL_USERSTATIC) != 0 || |
945 | !VALID_USER_CSEL32(gr[_REG32_CS])) |
946 | return EINVAL; |
947 | if (gr[_REG32_FS] != 0 && !VALID_USER_DSEL32(gr[_REG32_FS]) && |
948 | !(VALID_USER_FSEL32(gr[_REG32_FS]) && pcb->pcb_fs != 0)) |
949 | return EINVAL; |
950 | if (gr[_REG32_GS] != 0 && !VALID_USER_DSEL32(gr[_REG32_GS]) && |
951 | !(VALID_USER_GSEL32(gr[_REG32_GS]) && pcb->pcb_gs != 0)) |
952 | return EINVAL; |
953 | if (gr[_REG32_ES] != 0 && !VALID_USER_DSEL32(gr[_REG32_ES])) |
954 | return EINVAL; |
955 | if (!VALID_USER_DSEL32(gr[_REG32_DS]) || |
956 | !VALID_USER_DSEL32(gr[_REG32_SS])) |
957 | return EINVAL; |
958 | if (gr[_REG32_EIP] >= VM_MAXUSER_ADDRESS32) |
959 | return EINVAL; |
960 | return 0; |
961 | } |
962 | |
963 | vaddr_t |
964 | netbsd32_vm_default_addr(struct proc *p, vaddr_t base, vsize_t sz, |
965 | int topdown) |
966 | { |
967 | if (topdown) |
968 | return VM_DEFAULT_ADDRESS32_TOPDOWN(base, sz); |
969 | else |
970 | return VM_DEFAULT_ADDRESS32_BOTTOMUP(base, sz); |
971 | } |
972 | |
973 | #ifdef COMPAT_13 |
974 | int |
975 | compat_13_netbsd32_sigreturn(struct lwp *l, const struct compat_13_netbsd32_sigreturn_args *uap, register_t *retval) |
976 | { |
977 | /* { |
978 | syscallarg(struct netbsd32_sigcontext13 *) sigcntxp; |
979 | } */ |
980 | struct proc *p = l->l_proc; |
981 | struct netbsd32_sigcontext13 *scp, context; |
982 | struct trapframe *tf; |
983 | sigset_t mask; |
984 | int error; |
985 | |
986 | /* |
987 | * The trampoline code hands us the context. |
988 | * It is unsafe to keep track of it ourselves, in the event that a |
989 | * program jumps out of a signal handler. |
990 | */ |
991 | scp = (struct netbsd32_sigcontext13 *)NETBSD32PTR64(SCARG(uap, sigcntxp)); |
992 | if (copyin((void *)scp, &context, sizeof(*scp)) != 0) |
993 | return (EFAULT); |
994 | |
995 | /* Restore register context. */ |
996 | tf = l->l_md.md_regs; |
997 | |
998 | /* |
999 | * Check for security violations. |
1000 | */ |
1001 | error = check_sigcontext32(l, (const struct netbsd32_sigcontext *)&context); |
1002 | if (error != 0) |
1003 | return error; |
1004 | |
1005 | tf->tf_gs = context.sc_gs; |
1006 | tf->tf_fs = context.sc_fs; |
1007 | tf->tf_es = context.sc_es; |
1008 | tf->tf_ds = context.sc_ds; |
1009 | tf->tf_rflags = context.sc_eflags; |
1010 | tf->tf_rdi = context.sc_edi; |
1011 | tf->tf_rsi = context.sc_esi; |
1012 | tf->tf_rbp = context.sc_ebp; |
1013 | tf->tf_rbx = context.sc_ebx; |
1014 | tf->tf_rdx = context.sc_edx; |
1015 | tf->tf_rcx = context.sc_ecx; |
1016 | tf->tf_rax = context.sc_eax; |
1017 | tf->tf_rip = context.sc_eip; |
1018 | tf->tf_cs = context.sc_cs; |
1019 | tf->tf_rsp = context.sc_esp; |
1020 | tf->tf_ss = context.sc_ss; |
1021 | |
1022 | mutex_enter(p->p_lock); |
1023 | /* Restore signal stack. */ |
1024 | if (context.sc_onstack & SS_ONSTACK) |
1025 | l->l_sigstk.ss_flags |= SS_ONSTACK; |
1026 | else |
1027 | l->l_sigstk.ss_flags &= ~SS_ONSTACK; |
1028 | /* Restore signal mask. */ |
1029 | native_sigset13_to_sigset((sigset13_t *)&context.sc_mask, &mask); |
1030 | (void) sigprocmask1(l, SIG_SETMASK, &mask, 0); |
1031 | mutex_exit(p->p_lock); |
1032 | |
1033 | return (EJUSTRETURN); |
1034 | } |
1035 | #endif |
1036 | |