1 | /* $NetBSD: coda_namecache.c,v 1.26 2014/10/18 08:33:27 snj Exp $ */ |
2 | |
3 | /* |
4 | * |
5 | * Coda: an Experimental Distributed File System |
6 | * Release 3.1 |
7 | * |
8 | * Copyright (c) 1987-1998 Carnegie Mellon University |
9 | * All Rights Reserved |
10 | * |
11 | * Permission to use, copy, modify and distribute this software and its |
12 | * documentation is hereby granted, provided that both the copyright |
13 | * notice and this permission notice appear in all copies of the |
14 | * software, derivative works or modified versions, and any portions |
15 | * thereof, and that both notices appear in supporting documentation, and |
16 | * that credit is given to Carnegie Mellon University in all documents |
17 | * and publicity pertaining to direct or indirect use of this code or its |
18 | * derivatives. |
19 | * |
20 | * CODA IS AN EXPERIMENTAL SOFTWARE SYSTEM AND IS KNOWN TO HAVE BUGS, |
21 | * SOME OF WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON ALLOWS |
22 | * FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON |
23 | * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER |
24 | * RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF |
25 | * ANY DERIVATIVE WORK. |
26 | * |
27 | * Carnegie Mellon encourages users of this software to return any |
28 | * improvements or extensions that they make, and to grant Carnegie |
29 | * Mellon the rights to redistribute these changes without encumbrance. |
30 | * |
31 | * @(#) coda/coda_namecache.c,v 1.1.1.1 1998/08/29 21:26:45 rvb Exp $ |
32 | */ |
33 | |
34 | /* |
35 | * Mach Operating System |
36 | * Copyright (c) 1990 Carnegie-Mellon University |
37 | * Copyright (c) 1989 Carnegie-Mellon University |
38 | * All rights reserved. The CMU software License Agreement specifies |
39 | * the terms and conditions for use and redistribution. |
40 | */ |
41 | |
42 | /* |
43 | * This code was written for the Coda file system at Carnegie Mellon University. |
44 | * Contributers include David Steere, James Kistler, and M. Satyanarayanan. |
45 | */ |
46 | |
47 | /* |
48 | * This module contains the routines to implement the CODA name cache. The |
49 | * purpose of this cache is to reduce the cost of translating pathnames |
50 | * into Vice FIDs. Each entry in the cache contains the name of the file, |
51 | * the vnode (FID) of the parent directory, and the cred structure of the |
52 | * user accessing the file. |
53 | * |
54 | * The first time a file is accessed, it is looked up by the local Venus |
55 | * which first insures that the user has access to the file. In addition |
56 | * we are guaranteed that Venus will invalidate any name cache entries in |
57 | * case the user no longer should be able to access the file. For these |
58 | * reasons we do not need to keep access list information as well as a |
59 | * cred structure for each entry. |
60 | * |
61 | * The table can be accessed through the routines cnc_init(), cnc_enter(), |
62 | * cnc_lookup(), cnc_rmfidcred(), cnc_rmfid(), cnc_rmcred(), and cnc_purge(). |
63 | * There are several other routines which aid in the implementation of the |
64 | * hash table. |
65 | */ |
66 | |
67 | /* |
68 | * NOTES: rvb@cs |
69 | * 1. The name cache holds a reference to every vnode in it. Hence files can not be |
70 | * closed or made inactive until they are released. |
71 | * 2. coda_nc_name(cp) was added to get a name for a cnode pointer for debugging. |
72 | * 3. coda_nc_find() has debug code to detect when entries are stored with different |
73 | * credentials. We don't understand yet, if/how entries are NOT EQ but still |
74 | * EQUAL |
75 | * 4. I wonder if this name cache could be replace by the vnode name cache. |
76 | * The latter has no zapping functions, so probably not. |
77 | */ |
78 | |
79 | #include <sys/cdefs.h> |
80 | __KERNEL_RCSID(0, "$NetBSD: coda_namecache.c,v 1.26 2014/10/18 08:33:27 snj Exp $" ); |
81 | |
82 | #include <sys/param.h> |
83 | #include <sys/errno.h> |
84 | #include <sys/malloc.h> |
85 | #include <sys/select.h> |
86 | #include <sys/kauth.h> |
87 | |
88 | #include <coda/coda.h> |
89 | #include <coda/cnode.h> |
90 | #include <coda/coda_namecache.h> |
91 | #include <coda/coda_subr.h> |
92 | |
93 | /* |
94 | * Declaration of the name cache data structure. |
95 | */ |
96 | |
97 | int coda_nc_use = 1; /* Indicate use of CODA Name Cache */ |
98 | |
99 | int coda_nc_size = CODA_NC_CACHESIZE; /* size of the cache */ |
100 | int coda_nc_hashsize = CODA_NC_HASHSIZE; /* size of the primary hash */ |
101 | |
102 | struct coda_cache *coda_nc_heap; /* pointer to the cache entries */ |
103 | struct coda_hash *coda_nc_hash; /* hash table of cfscache pointers */ |
104 | struct coda_lru coda_nc_lru; /* head of lru chain */ |
105 | |
106 | struct coda_nc_statistics coda_nc_stat; /* Keep various stats */ |
107 | |
108 | /* |
109 | * for testing purposes |
110 | */ |
111 | int coda_nc_debug = 0; |
112 | |
113 | /* |
114 | * Entry points for the CODA Name Cache |
115 | */ |
116 | static struct coda_cache * |
117 | coda_nc_find(struct cnode *dcp, const char *name, int namelen, |
118 | kauth_cred_t cred, int hash); |
119 | static void |
120 | coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat); |
121 | |
122 | /* |
123 | * Initialize the cache, the LRU structure and the Hash structure(s) |
124 | */ |
125 | |
126 | #define TOTAL_CACHE_SIZE (sizeof(struct coda_cache) * coda_nc_size) |
127 | #define TOTAL_HASH_SIZE (sizeof(struct coda_hash) * coda_nc_hashsize) |
128 | |
129 | int coda_nc_initialized = 0; /* Initially the cache has not been initialized */ |
130 | |
131 | void |
132 | coda_nc_init(void) |
133 | { |
134 | int i; |
135 | |
136 | /* zero the statistics structure */ |
137 | |
138 | memset(&coda_nc_stat, 0, (sizeof(struct coda_nc_statistics))); |
139 | |
140 | #ifdef CODA_VERBOSE |
141 | printf("CODA NAME CACHE: CACHE %d, HASH TBL %d\n" , CODA_NC_CACHESIZE, CODA_NC_HASHSIZE); |
142 | #endif |
143 | CODA_ALLOC(coda_nc_heap, struct coda_cache *, TOTAL_CACHE_SIZE); |
144 | CODA_ALLOC(coda_nc_hash, struct coda_hash *, TOTAL_HASH_SIZE); |
145 | |
146 | memset(coda_nc_heap, 0, TOTAL_CACHE_SIZE); |
147 | memset(coda_nc_hash, 0, TOTAL_HASH_SIZE); |
148 | |
149 | TAILQ_INIT(&coda_nc_lru.head); |
150 | |
151 | for (i=0; i < coda_nc_size; i++) { /* initialize the heap */ |
152 | TAILQ_INSERT_HEAD(&coda_nc_lru.head, &coda_nc_heap[i], lru); |
153 | } |
154 | |
155 | for (i=0; i < coda_nc_hashsize; i++) { /* initialize the hashtable */ |
156 | LIST_INIT(&coda_nc_hash[i].head); |
157 | } |
158 | |
159 | coda_nc_initialized++; |
160 | } |
161 | |
162 | /* |
163 | * Auxillary routines -- shouldn't be entry points |
164 | */ |
165 | |
166 | static struct coda_cache * |
167 | coda_nc_find(struct cnode *dcp, const char *name, int namelen, |
168 | kauth_cred_t cred, int hash) |
169 | { |
170 | /* |
171 | * hash to find the appropriate bucket, look through the chain |
172 | * for the right entry (especially right cred, unless cred == 0) |
173 | */ |
174 | struct coda_cache *cncp; |
175 | int count = 1; |
176 | |
177 | CODA_NC_DEBUG(CODA_NC_FIND, |
178 | myprintf(("coda_nc_find(dcp %p, name %s, len %d, cred %p, hash %d\n" , |
179 | dcp, name, namelen, cred, hash));) |
180 | |
181 | LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash) |
182 | { |
183 | |
184 | if ((CODA_NAMEMATCH(cncp, name, namelen, dcp)) && |
185 | ((cred == 0) || (cncp->cred == cred))) |
186 | { |
187 | /* compare cr_uid instead */ |
188 | coda_nc_stat.Search_len += count; |
189 | return(cncp); |
190 | } |
191 | #ifdef DEBUG |
192 | else if (CODA_NAMEMATCH(cncp, name, namelen, dcp)) { |
193 | printf("coda_nc_find: name %s, new cred = %p, cred = %p\n" , |
194 | name, cred, cncp->cred); |
195 | printf("nref %d, nuid %d, ngid %d // oref %d, ocred %d, ogid %d\n" , |
196 | kauth_cred_getrefcnt(cred), |
197 | kauth_cred_geteuid(cred), |
198 | kauth_cred_getegid(cred), |
199 | kauth_cred_getrefcnt(cncp->cred), |
200 | kauth_cred_geteuid(cncp->cred), |
201 | kauth_cred_getegid(cncp->cred)); |
202 | coda_print_cred(cred); |
203 | coda_print_cred(cncp->cred); |
204 | } |
205 | #endif |
206 | count++; |
207 | } |
208 | |
209 | return((struct coda_cache *)0); |
210 | } |
211 | |
212 | /* |
213 | * Enter a new (dir cnode, name) pair into the cache, updating the |
214 | * LRU and Hash as needed. |
215 | */ |
216 | void |
217 | coda_nc_enter(struct cnode *dcp, const char *name, int namelen, |
218 | kauth_cred_t cred, struct cnode *cp) |
219 | { |
220 | struct coda_cache *cncp; |
221 | int hash; |
222 | |
223 | if (coda_nc_use == 0) /* Cache is off */ |
224 | return; |
225 | |
226 | CODA_NC_DEBUG(CODA_NC_ENTER, |
227 | myprintf(("Enter: dcp %p cp %p name %s cred %p \n" , |
228 | dcp, cp, name, cred)); ) |
229 | |
230 | if (namelen > CODA_NC_NAMELEN) { |
231 | CODA_NC_DEBUG(CODA_NC_ENTER, |
232 | myprintf(("long name enter %s\n" ,name));) |
233 | coda_nc_stat.long_name_enters++; /* record stats */ |
234 | return; |
235 | } |
236 | |
237 | hash = CODA_NC_HASH(name, namelen, dcp); |
238 | cncp = coda_nc_find(dcp, name, namelen, cred, hash); |
239 | if (cncp != (struct coda_cache *) 0) { |
240 | coda_nc_stat.dbl_enters++; /* duplicate entry */ |
241 | return; |
242 | } |
243 | |
244 | coda_nc_stat.enters++; /* record the enters statistic */ |
245 | |
246 | /* Grab the next element in the lru chain */ |
247 | cncp = TAILQ_FIRST(&coda_nc_lru.head); |
248 | TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); |
249 | |
250 | if (CODA_NC_VALID(cncp)) { |
251 | /* Seems really ugly, but we have to decrement the appropriate |
252 | hash bucket length here, so we have to find the hash bucket |
253 | */ |
254 | coda_nc_hash[CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp)].length--; |
255 | |
256 | coda_nc_stat.lru_rm++; /* zapped a valid entry */ |
257 | LIST_REMOVE(cncp, hash); |
258 | vrele(CTOV(cncp->dcp)); |
259 | vrele(CTOV(cncp->cp)); |
260 | kauth_cred_free(cncp->cred); |
261 | } |
262 | |
263 | /* |
264 | * Put a hold on the current vnodes and fill in the cache entry. |
265 | */ |
266 | vref(CTOV(cp)); |
267 | vref(CTOV(dcp)); |
268 | kauth_cred_hold(cred); |
269 | cncp->dcp = dcp; |
270 | cncp->cp = cp; |
271 | cncp->namelen = namelen; |
272 | cncp->cred = cred; |
273 | |
274 | memcpy(cncp->name, name, (unsigned)namelen); |
275 | |
276 | /* Insert into the lru and hash chains. */ |
277 | TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru); |
278 | LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash); |
279 | coda_nc_hash[hash].length++; /* Used for tuning */ |
280 | |
281 | CODA_NC_DEBUG(CODA_NC_PRINTCODA_NC, print_coda_nc(); ) |
282 | } |
283 | |
284 | /* |
285 | * Find the (dir cnode, name) pair in the cache, if its cred |
286 | * matches the input, return it, otherwise return 0 |
287 | */ |
288 | struct cnode * |
289 | coda_nc_lookup(struct cnode *dcp, const char *name, int namelen, |
290 | kauth_cred_t cred) |
291 | { |
292 | int hash; |
293 | struct coda_cache *cncp; |
294 | |
295 | if (coda_nc_use == 0) /* Cache is off */ |
296 | return((struct cnode *) 0); |
297 | |
298 | if (namelen > CODA_NC_NAMELEN) { |
299 | CODA_NC_DEBUG(CODA_NC_LOOKUP, |
300 | myprintf(("long name lookup %s\n" ,name));) |
301 | coda_nc_stat.long_name_lookups++; /* record stats */ |
302 | return((struct cnode *) 0); |
303 | } |
304 | |
305 | /* Use the hash function to locate the starting point, |
306 | then the search routine to go down the list looking for |
307 | the correct cred. |
308 | */ |
309 | |
310 | hash = CODA_NC_HASH(name, namelen, dcp); |
311 | cncp = coda_nc_find(dcp, name, namelen, cred, hash); |
312 | if (cncp == (struct coda_cache *) 0) { |
313 | coda_nc_stat.misses++; /* record miss */ |
314 | return((struct cnode *) 0); |
315 | } |
316 | |
317 | coda_nc_stat.hits++; |
318 | |
319 | /* put this entry at the end of the LRU */ |
320 | TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); |
321 | TAILQ_INSERT_TAIL(&coda_nc_lru.head, cncp, lru); |
322 | |
323 | /* move it to the front of the hash chain */ |
324 | /* don't need to change the hash bucket length */ |
325 | LIST_REMOVE(cncp, hash); |
326 | LIST_INSERT_HEAD(&coda_nc_hash[hash].head, cncp, hash); |
327 | |
328 | CODA_NC_DEBUG(CODA_NC_LOOKUP, |
329 | printf("lookup: dcp %p, name %s, cred %p = cp %p\n" , |
330 | dcp, name, cred, cncp->cp); ) |
331 | |
332 | return(cncp->cp); |
333 | } |
334 | |
335 | static void |
336 | coda_nc_remove(struct coda_cache *cncp, enum dc_status dcstat) |
337 | { |
338 | /* |
339 | * remove an entry -- vrele(cncp->dcp, cp), crfree(cred), |
340 | * remove it from its hash chain, and |
341 | * place it at the head of the lru list. |
342 | */ |
343 | CODA_NC_DEBUG(CODA_NC_REMOVE, |
344 | myprintf(("coda_nc_remove %s from parent %s\n" , |
345 | cncp->name, coda_f2s(&cncp->dcp->c_fid))); ) |
346 | |
347 | |
348 | LIST_REMOVE(cncp, hash); |
349 | memset(&cncp->hash, 0, sizeof(cncp->hash)); |
350 | |
351 | if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->dcp)->v_usecount == 1)) { |
352 | cncp->dcp->c_flags |= C_PURGING; |
353 | } |
354 | vrele(CTOV(cncp->dcp)); |
355 | |
356 | if ((dcstat == IS_DOWNCALL) && (CTOV(cncp->cp)->v_usecount == 1)) { |
357 | cncp->cp->c_flags |= C_PURGING; |
358 | } |
359 | vrele(CTOV(cncp->cp)); |
360 | |
361 | kauth_cred_free(cncp->cred); |
362 | memset(DATA_PART(cncp), 0, DATA_SIZE); |
363 | |
364 | /* move the null entry to the front for reuse */ |
365 | TAILQ_REMOVE(&coda_nc_lru.head, cncp, lru); |
366 | TAILQ_INSERT_HEAD(&coda_nc_lru.head, cncp, lru); |
367 | } |
368 | |
369 | /* |
370 | * Remove all entries with a parent which has the input fid. |
371 | */ |
372 | void |
373 | coda_nc_zapParentfid(CodaFid *fid, enum dc_status dcstat) |
374 | { |
375 | /* To get to a specific fid, we might either have another hashing |
376 | function or do a sequential search through the cache for the |
377 | appropriate entries. The later may be acceptable since I don't |
378 | think callbacks or whatever Case 1 covers are frequent occurrences. |
379 | */ |
380 | struct coda_cache *cncp, *ncncp; |
381 | int i; |
382 | |
383 | if (coda_nc_use == 0) /* Cache is off */ |
384 | return; |
385 | |
386 | CODA_NC_DEBUG(CODA_NC_ZAPPFID, |
387 | myprintf(("ZapParent: fid %s\n" , coda_f2s(fid))); ) |
388 | |
389 | coda_nc_stat.zapPfids++; |
390 | |
391 | for (i = 0; i < coda_nc_hashsize; i++) { |
392 | |
393 | /* |
394 | * Need to save the hash_next pointer in case we remove the |
395 | * entry. remove causes hash_next to point to itself. |
396 | */ |
397 | |
398 | ncncp = LIST_FIRST(&coda_nc_hash[i].head); |
399 | while ((cncp = ncncp) != NULL) { |
400 | ncncp = LIST_NEXT(cncp, hash); |
401 | |
402 | if (coda_fid_eq(&(cncp->dcp->c_fid), fid)) { |
403 | coda_nc_hash[i].length--; /* Used for tuning */ |
404 | coda_nc_remove(cncp, dcstat); |
405 | } |
406 | } |
407 | } |
408 | } |
409 | |
410 | /* |
411 | * Remove all entries which have the same fid as the input |
412 | */ |
413 | void |
414 | coda_nc_zapfid(CodaFid *fid, enum dc_status dcstat) |
415 | { |
416 | /* See comment for zapParentfid. This routine will be used |
417 | if attributes are being cached. |
418 | */ |
419 | struct coda_cache *cncp, *ncncp; |
420 | int i; |
421 | |
422 | if (coda_nc_use == 0) /* Cache is off */ |
423 | return; |
424 | |
425 | CODA_NC_DEBUG(CODA_NC_ZAPFID, |
426 | myprintf(("Zapfid: fid %s\n" , coda_f2s(fid))); ) |
427 | |
428 | coda_nc_stat.zapFids++; |
429 | |
430 | for (i = 0; i < coda_nc_hashsize; i++) { |
431 | |
432 | ncncp = LIST_FIRST(&coda_nc_hash[i].head); |
433 | while ((cncp = ncncp) != NULL) { |
434 | ncncp = LIST_NEXT(cncp, hash); |
435 | |
436 | if (coda_fid_eq(&cncp->cp->c_fid, fid)) { |
437 | coda_nc_hash[i].length--; /* Used for tuning */ |
438 | coda_nc_remove(cncp, dcstat); |
439 | } |
440 | } |
441 | } |
442 | } |
443 | |
444 | /* |
445 | * Remove all entries which match the fid and the cred |
446 | */ |
447 | void |
448 | coda_nc_zapvnode(CodaFid *fid, kauth_cred_t cred, |
449 | enum dc_status dcstat) |
450 | { |
451 | /* See comment for zapfid. I don't think that one would ever |
452 | want to zap a file with a specific cred from the kernel. |
453 | We'll leave this one unimplemented. |
454 | */ |
455 | if (coda_nc_use == 0) /* Cache is off */ |
456 | return; |
457 | |
458 | CODA_NC_DEBUG(CODA_NC_ZAPVNODE, |
459 | myprintf(("Zapvnode: fid %s cred %p\n" , |
460 | coda_f2s(fid), cred)); ) |
461 | } |
462 | |
463 | /* |
464 | * Remove all entries which have the (dir vnode, name) pair |
465 | */ |
466 | void |
467 | coda_nc_zapfile(struct cnode *dcp, const char *name, int namelen) |
468 | { |
469 | /* use the hash function to locate the file, then zap all |
470 | entries of it regardless of the cred. |
471 | */ |
472 | struct coda_cache *cncp; |
473 | int hash; |
474 | |
475 | if (coda_nc_use == 0) /* Cache is off */ |
476 | return; |
477 | |
478 | CODA_NC_DEBUG(CODA_NC_ZAPFILE, |
479 | myprintf(("Zapfile: dcp %p name %s \n" , |
480 | dcp, name)); ) |
481 | |
482 | if (namelen > CODA_NC_NAMELEN) { |
483 | coda_nc_stat.long_remove++; /* record stats */ |
484 | return; |
485 | } |
486 | |
487 | coda_nc_stat.zapFile++; |
488 | |
489 | hash = CODA_NC_HASH(name, namelen, dcp); |
490 | cncp = coda_nc_find(dcp, name, namelen, 0, hash); |
491 | |
492 | while (cncp) { |
493 | coda_nc_hash[hash].length--; /* Used for tuning */ |
494 | /* 1.3 */ |
495 | coda_nc_remove(cncp, NOT_DOWNCALL); |
496 | cncp = coda_nc_find(dcp, name, namelen, 0, hash); |
497 | } |
498 | } |
499 | |
500 | /* |
501 | * Remove all the entries for a particular user. Used when tokens expire. |
502 | * A user is determined by his/her effective user id (id_uid). |
503 | */ |
504 | void |
505 | coda_nc_purge_user(uid_t uid, enum dc_status dcstat) |
506 | { |
507 | /* |
508 | * I think the best approach is to go through the entire cache |
509 | * via HASH or whatever and zap all entries which match the |
510 | * input cred. Or just flush the whole cache. It might be |
511 | * best to go through on basis of LRU since cache will almost |
512 | * always be full and LRU is more straightforward. |
513 | */ |
514 | |
515 | struct coda_cache *cncp, *ncncp; |
516 | int hash; |
517 | |
518 | if (coda_nc_use == 0) /* Cache is off */ |
519 | return; |
520 | |
521 | CODA_NC_DEBUG(CODA_NC_PURGEUSER, |
522 | myprintf(("ZapDude: uid %x\n" , uid)); ) |
523 | coda_nc_stat.zapUsers++; |
524 | |
525 | ncncp = TAILQ_FIRST(&coda_nc_lru.head); |
526 | while ((cncp = ncncp) != NULL) { |
527 | ncncp = TAILQ_NEXT(cncp, lru); |
528 | |
529 | if ((CODA_NC_VALID(cncp)) && |
530 | (kauth_cred_geteuid(cncp->cred) == uid)) { |
531 | /* Seems really ugly, but we have to decrement the appropriate |
532 | hash bucket length here, so we have to find the hash bucket |
533 | */ |
534 | hash = CODA_NC_HASH(cncp->name, cncp->namelen, cncp->dcp); |
535 | coda_nc_hash[hash].length--; /* For performance tuning */ |
536 | |
537 | coda_nc_remove(cncp, dcstat); |
538 | } |
539 | } |
540 | } |
541 | |
542 | /* |
543 | * Flush the entire name cache. In response to a flush of the Venus cache. |
544 | */ |
545 | void |
546 | coda_nc_flush(enum dc_status dcstat) |
547 | { |
548 | /* One option is to deallocate the current name cache and |
549 | call init to start again. Or just deallocate, then rebuild. |
550 | Or again, we could just go through the array and zero the |
551 | appropriate fields. |
552 | */ |
553 | |
554 | /* |
555 | * Go through the whole lru chain and kill everything as we go. |
556 | * I don't use remove since that would rebuild the lru chain |
557 | * as it went and that seemed unneccesary. |
558 | */ |
559 | struct coda_cache *cncp; |
560 | int i; |
561 | |
562 | if (coda_nc_use == 0) /* Cache is off */ |
563 | return; |
564 | |
565 | coda_nc_stat.Flushes++; |
566 | |
567 | TAILQ_FOREACH(cncp, &coda_nc_lru.head, lru) { |
568 | if (CODA_NC_VALID(cncp)) { /* only zero valid nodes */ |
569 | LIST_REMOVE(cncp, hash); |
570 | memset(&cncp->hash, 0, sizeof(cncp->hash)); |
571 | |
572 | if ((dcstat == IS_DOWNCALL) |
573 | && (CTOV(cncp->dcp)->v_usecount == 1)) |
574 | { |
575 | cncp->dcp->c_flags |= C_PURGING; |
576 | } |
577 | vrele(CTOV(cncp->dcp)); |
578 | |
579 | if (CTOV(cncp->cp)->v_iflag & VI_TEXT) { |
580 | if (coda_vmflush(cncp->cp)) |
581 | CODADEBUG(CODA_FLUSH, |
582 | myprintf(("coda_nc_flush: %s busy\n" , |
583 | coda_f2s(&cncp->cp->c_fid))); ) |
584 | } |
585 | |
586 | if ((dcstat == IS_DOWNCALL) |
587 | && (CTOV(cncp->cp)->v_usecount == 1)) |
588 | { |
589 | cncp->cp->c_flags |= C_PURGING; |
590 | } |
591 | vrele(CTOV(cncp->cp)); |
592 | |
593 | kauth_cred_free(cncp->cred); |
594 | memset(DATA_PART(cncp), 0, DATA_SIZE); |
595 | } |
596 | } |
597 | |
598 | for (i = 0; i < coda_nc_hashsize; i++) |
599 | coda_nc_hash[i].length = 0; |
600 | } |
601 | |
602 | /* |
603 | * Debugging routines |
604 | */ |
605 | |
606 | /* |
607 | * This routine should print out all the hash chains to the console. |
608 | */ |
609 | void |
610 | print_coda_nc(void) |
611 | { |
612 | int hash; |
613 | struct coda_cache *cncp; |
614 | |
615 | for (hash = 0; hash < coda_nc_hashsize; hash++) { |
616 | myprintf(("\nhash %d\n" ,hash)); |
617 | |
618 | LIST_FOREACH(cncp, &coda_nc_hash[hash].head, hash) { |
619 | myprintf(("cp %p dcp %p cred %p name %s\n" , |
620 | cncp->cp, cncp->dcp, |
621 | cncp->cred, cncp->name)); |
622 | } |
623 | } |
624 | } |
625 | |
626 | void |
627 | coda_nc_gather_stats(void) |
628 | { |
629 | int i, xmax = 0, sum = 0, temp, zeros = 0, ave, n; |
630 | |
631 | for (i = 0; i < coda_nc_hashsize; i++) { |
632 | if (coda_nc_hash[i].length) { |
633 | sum += coda_nc_hash[i].length; |
634 | } else { |
635 | zeros++; |
636 | } |
637 | |
638 | if (coda_nc_hash[i].length > xmax) |
639 | xmax = coda_nc_hash[i].length; |
640 | } |
641 | |
642 | /* |
643 | * When computing the Arithmetic mean, only count slots which |
644 | * are not empty in the distribution. |
645 | */ |
646 | coda_nc_stat.Sum_bucket_len = sum; |
647 | coda_nc_stat.Num_zero_len = zeros; |
648 | coda_nc_stat.Max_bucket_len = xmax; |
649 | |
650 | if ((n = coda_nc_hashsize - zeros) > 0) |
651 | ave = sum / n; |
652 | else |
653 | ave = 0; |
654 | |
655 | sum = 0; |
656 | for (i = 0; i < coda_nc_hashsize; i++) { |
657 | if (coda_nc_hash[i].length) { |
658 | temp = coda_nc_hash[i].length - ave; |
659 | sum += temp * temp; |
660 | } |
661 | } |
662 | coda_nc_stat.Sum2_bucket_len = sum; |
663 | } |
664 | |
665 | /* |
666 | * The purpose of this routine is to allow the hash and cache sizes to be |
667 | * changed dynamically. This should only be used in controlled environments, |
668 | * it makes no effort to lock other users from accessing the cache while it |
669 | * is in an improper state (except by turning the cache off). |
670 | */ |
671 | int |
672 | coda_nc_resize(int hashsize, int heapsize, enum dc_status dcstat) |
673 | { |
674 | if ((hashsize % 2) || (heapsize % 2)) { /* Illegal hash or cache sizes */ |
675 | return(EINVAL); |
676 | } |
677 | |
678 | coda_nc_use = 0; /* Turn the cache off */ |
679 | |
680 | coda_nc_flush(dcstat); /* free any cnodes in the cache */ |
681 | |
682 | /* WARNING: free must happen *before* size is reset */ |
683 | CODA_FREE(coda_nc_heap,TOTAL_CACHE_SIZE); |
684 | CODA_FREE(coda_nc_hash,TOTAL_HASH_SIZE); |
685 | |
686 | coda_nc_hashsize = hashsize; |
687 | coda_nc_size = heapsize; |
688 | |
689 | coda_nc_init(); /* Set up a cache with the new size */ |
690 | |
691 | coda_nc_use = 1; /* Turn the cache back on */ |
692 | return(0); |
693 | } |
694 | |
695 | char coda_nc_name_buf[CODA_MAXNAMLEN+1]; |
696 | |
697 | void |
698 | coda_nc_name(struct cnode *cp) |
699 | { |
700 | struct coda_cache *cncp; |
701 | int i; |
702 | |
703 | if (coda_nc_use == 0) /* Cache is off */ |
704 | return; |
705 | |
706 | for (i = 0; i < coda_nc_hashsize; i++) { |
707 | |
708 | LIST_FOREACH(cncp, &coda_nc_hash[i].head, hash) { |
709 | if (cncp->cp == cp) { |
710 | memcpy(coda_nc_name_buf, cncp->name, cncp->namelen); |
711 | coda_nc_name_buf[cncp->namelen] = 0; |
712 | printf(" is %s (%p,%p)@%p" , |
713 | coda_nc_name_buf, cncp->cp, cncp->dcp, cncp); |
714 | } |
715 | |
716 | } |
717 | } |
718 | } |
719 | |