1 | /* $NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2011 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Mindaugas Rasiukevicius. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | /* |
33 | * Kernel CPU set implementation. |
34 | * |
35 | * Interface can be used by kernel subsystems as a unified dynamic CPU |
36 | * bitset implementation handling many CPUs. Facility also supports early |
37 | * use by MD code on boot, as it fixups bitsets on further boot. |
38 | * |
39 | * TODO: |
40 | * - Handle "reverse" bitset on fixup/grow. |
41 | */ |
42 | |
43 | #include <sys/cdefs.h> |
44 | __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.11 2014/05/19 20:39:23 rmind Exp $" ); |
45 | |
46 | #include <sys/param.h> |
47 | #include <sys/types.h> |
48 | |
49 | #include <sys/atomic.h> |
50 | #include <sys/sched.h> |
51 | #include <sys/kcpuset.h> |
52 | #include <sys/pool.h> |
53 | |
54 | /* Number of CPUs to support. */ |
55 | #define KC_MAXCPUS roundup2(MAXCPUS, 32) |
56 | |
57 | /* |
58 | * Structure of dynamic CPU set in the kernel. |
59 | */ |
60 | struct kcpuset { |
61 | uint32_t bits[0]; |
62 | }; |
63 | |
64 | typedef struct kcpuset_impl { |
65 | /* Reference count. */ |
66 | u_int kc_refcnt; |
67 | /* Next to free, if non-NULL (used when multiple references). */ |
68 | struct kcpuset * kc_next; |
69 | /* Actual variable-sized field of bits. */ |
70 | struct kcpuset kc_field; |
71 | } kcpuset_impl_t; |
72 | |
73 | #define KC_BITS_OFF (offsetof(struct kcpuset_impl, kc_field)) |
74 | #define KC_GETSTRUCT(b) ((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF)) |
75 | #define KC_GETCSTRUCT(b) ((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF)) |
76 | |
77 | /* Sizes of a single bitset. */ |
78 | #define KC_SHIFT 5 |
79 | #define KC_MASK 31 |
80 | |
81 | /* An array of noted early kcpuset creations and data. */ |
82 | #define KC_SAVE_NITEMS 8 |
83 | |
84 | /* Structures for early boot mechanism (must be statically initialised). */ |
85 | static kcpuset_t ** kc_noted_early[KC_SAVE_NITEMS]; |
86 | static uint32_t kc_bits_early[KC_SAVE_NITEMS]; |
87 | static int kc_last_idx = 0; |
88 | static bool kc_initialised = false; |
89 | |
90 | #define KC_BITSIZE_EARLY sizeof(kc_bits_early[0]) |
91 | #define KC_NFIELDS_EARLY 1 |
92 | |
93 | /* |
94 | * The size of whole bitset fields and amount of fields. |
95 | * The whole size must statically initialise for early case. |
96 | */ |
97 | static size_t kc_bitsize __read_mostly = KC_BITSIZE_EARLY; |
98 | static size_t kc_nfields __read_mostly = KC_NFIELDS_EARLY; |
99 | |
100 | static pool_cache_t kc_cache __read_mostly; |
101 | |
102 | static kcpuset_t * kcpuset_create_raw(bool); |
103 | |
104 | /* |
105 | * kcpuset_sysinit: initialize the subsystem, transfer early boot cases |
106 | * to dynamically allocated sets. |
107 | */ |
108 | void |
109 | kcpuset_sysinit(void) |
110 | { |
111 | kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp; |
112 | int i, s; |
113 | |
114 | /* Set a kcpuset_t sizes. */ |
115 | kc_nfields = (KC_MAXCPUS >> KC_SHIFT); |
116 | kc_bitsize = sizeof(uint32_t) * kc_nfields; |
117 | KASSERT(kc_nfields != 0 && kc_bitsize != 0); |
118 | |
119 | kc_cache = pool_cache_init(sizeof(kcpuset_impl_t) + kc_bitsize, |
120 | coherency_unit, 0, 0, "kcpuset" , NULL, IPL_NONE, NULL, NULL, NULL); |
121 | |
122 | /* First, pre-allocate kcpuset entries. */ |
123 | for (i = 0; i < kc_last_idx; i++) { |
124 | kcp = kcpuset_create_raw(true); |
125 | kc_dynamic[i] = kcp; |
126 | } |
127 | |
128 | /* |
129 | * Prepare to convert all early noted kcpuset uses to dynamic sets. |
130 | * All processors, except the one we are currently running (primary), |
131 | * must not be spinned yet. Since MD facilities can use kcpuset, |
132 | * raise the IPL to high. |
133 | */ |
134 | KASSERT(mp_online == false); |
135 | |
136 | s = splhigh(); |
137 | for (i = 0; i < kc_last_idx; i++) { |
138 | /* |
139 | * Transfer the bits from early static storage to the kcpuset. |
140 | */ |
141 | KASSERT(kc_bitsize >= KC_BITSIZE_EARLY); |
142 | memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY); |
143 | |
144 | /* |
145 | * Store the new pointer, pointing to the allocated kcpuset. |
146 | * Note: we are not in an interrupt context and it is the only |
147 | * CPU running - thus store is safe (e.g. no need for pointer |
148 | * variable to be volatile). |
149 | */ |
150 | *kc_noted_early[i] = kc_dynamic[i]; |
151 | } |
152 | kc_initialised = true; |
153 | kc_last_idx = 0; |
154 | splx(s); |
155 | } |
156 | |
157 | /* |
158 | * kcpuset_early_ptr: note an early boot use by saving the pointer and |
159 | * returning a pointer to a static, temporary bit field. |
160 | */ |
161 | static kcpuset_t * |
162 | kcpuset_early_ptr(kcpuset_t **kcptr) |
163 | { |
164 | kcpuset_t *kcp; |
165 | int s; |
166 | |
167 | s = splhigh(); |
168 | if (kc_last_idx < KC_SAVE_NITEMS) { |
169 | /* |
170 | * Save the pointer, return pointer to static early field. |
171 | * Need to zero it out. |
172 | */ |
173 | kc_noted_early[kc_last_idx] = kcptr; |
174 | kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx]; |
175 | kc_last_idx++; |
176 | memset(kcp, 0, KC_BITSIZE_EARLY); |
177 | KASSERT(kc_bitsize == KC_BITSIZE_EARLY); |
178 | } else { |
179 | panic("kcpuset(9): all early-use entries exhausted; " |
180 | "increase KC_SAVE_NITEMS\n" ); |
181 | } |
182 | splx(s); |
183 | |
184 | return kcp; |
185 | } |
186 | |
187 | /* |
188 | * Routines to create or destroy the CPU set. |
189 | * Early boot case is handled. |
190 | */ |
191 | |
192 | static kcpuset_t * |
193 | kcpuset_create_raw(bool zero) |
194 | { |
195 | kcpuset_impl_t *kc; |
196 | |
197 | kc = pool_cache_get(kc_cache, PR_WAITOK); |
198 | kc->kc_refcnt = 1; |
199 | kc->kc_next = NULL; |
200 | |
201 | if (zero) { |
202 | memset(&kc->kc_field, 0, kc_bitsize); |
203 | } |
204 | |
205 | /* Note: return pointer to the actual field of bits. */ |
206 | KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field); |
207 | return &kc->kc_field; |
208 | } |
209 | |
210 | void |
211 | kcpuset_create(kcpuset_t **retkcp, bool zero) |
212 | { |
213 | if (__predict_false(!kc_initialised)) { |
214 | /* Early boot use - special case. */ |
215 | *retkcp = kcpuset_early_ptr(retkcp); |
216 | return; |
217 | } |
218 | *retkcp = kcpuset_create_raw(zero); |
219 | } |
220 | |
221 | void |
222 | kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp) |
223 | { |
224 | kcpuset_create(retkcp, false); |
225 | memcpy(*retkcp, kcp, kc_bitsize); |
226 | } |
227 | |
228 | void |
229 | kcpuset_destroy(kcpuset_t *kcp) |
230 | { |
231 | kcpuset_impl_t *kc; |
232 | |
233 | KASSERT(kc_initialised); |
234 | KASSERT(kcp != NULL); |
235 | |
236 | do { |
237 | kc = KC_GETSTRUCT(kcp); |
238 | kcp = kc->kc_next; |
239 | pool_cache_put(kc_cache, kc); |
240 | } while (kcp); |
241 | } |
242 | |
243 | /* |
244 | * Routines to reference/unreference the CPU set. |
245 | * Note: early boot case is not supported by these routines. |
246 | */ |
247 | |
248 | void |
249 | kcpuset_use(kcpuset_t *kcp) |
250 | { |
251 | kcpuset_impl_t *kc = KC_GETSTRUCT(kcp); |
252 | |
253 | KASSERT(kc_initialised); |
254 | atomic_inc_uint(&kc->kc_refcnt); |
255 | } |
256 | |
257 | void |
258 | kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst) |
259 | { |
260 | kcpuset_impl_t *kc = KC_GETSTRUCT(kcp); |
261 | |
262 | KASSERT(kc_initialised); |
263 | KASSERT(kc->kc_refcnt > 0); |
264 | |
265 | if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) { |
266 | return; |
267 | } |
268 | KASSERT(kc->kc_next == NULL); |
269 | if (lst == NULL) { |
270 | kcpuset_destroy(kcp); |
271 | return; |
272 | } |
273 | kc->kc_next = *lst; |
274 | *lst = kcp; |
275 | } |
276 | |
277 | /* |
278 | * Routines to transfer the CPU set from / to userspace. |
279 | * Note: early boot case is not supported by these routines. |
280 | */ |
281 | |
282 | int |
283 | kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len) |
284 | { |
285 | kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp); |
286 | |
287 | KASSERT(kc_initialised); |
288 | KASSERT(kc->kc_refcnt > 0); |
289 | KASSERT(kc->kc_next == NULL); |
290 | |
291 | if (len > kc_bitsize) { /* XXX */ |
292 | return EINVAL; |
293 | } |
294 | return copyin(ucp, kcp, len); |
295 | } |
296 | |
297 | int |
298 | kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len) |
299 | { |
300 | kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp); |
301 | |
302 | KASSERT(kc_initialised); |
303 | KASSERT(kc->kc_refcnt > 0); |
304 | KASSERT(kc->kc_next == NULL); |
305 | |
306 | if (len > kc_bitsize) { /* XXX */ |
307 | return EINVAL; |
308 | } |
309 | return copyout(kcp, ucp, len); |
310 | } |
311 | |
312 | void |
313 | kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len) |
314 | { |
315 | size_t rlen = MIN(kc_bitsize, len); |
316 | |
317 | KASSERT(kcp != NULL); |
318 | memcpy(bitfield, kcp->bits, rlen); |
319 | } |
320 | |
321 | /* |
322 | * Routines to change bit field - zero, fill, copy, set, unset, etc. |
323 | */ |
324 | |
325 | void |
326 | kcpuset_zero(kcpuset_t *kcp) |
327 | { |
328 | |
329 | KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0); |
330 | KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); |
331 | memset(kcp, 0, kc_bitsize); |
332 | } |
333 | |
334 | void |
335 | kcpuset_fill(kcpuset_t *kcp) |
336 | { |
337 | |
338 | KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0); |
339 | KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); |
340 | memset(kcp, ~0, kc_bitsize); |
341 | } |
342 | |
343 | void |
344 | kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp) |
345 | { |
346 | |
347 | KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0); |
348 | KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL); |
349 | memcpy(dkcp, skcp, kc_bitsize); |
350 | } |
351 | |
352 | void |
353 | kcpuset_set(kcpuset_t *kcp, cpuid_t i) |
354 | { |
355 | const size_t j = i >> KC_SHIFT; |
356 | |
357 | KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL); |
358 | KASSERT(j < kc_nfields); |
359 | |
360 | kcp->bits[j] |= 1 << (i & KC_MASK); |
361 | } |
362 | |
363 | void |
364 | kcpuset_clear(kcpuset_t *kcp, cpuid_t i) |
365 | { |
366 | const size_t j = i >> KC_SHIFT; |
367 | |
368 | KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL); |
369 | KASSERT(j < kc_nfields); |
370 | |
371 | kcp->bits[j] &= ~(1 << (i & KC_MASK)); |
372 | } |
373 | |
374 | bool |
375 | kcpuset_isset(const kcpuset_t *kcp, cpuid_t i) |
376 | { |
377 | const size_t j = i >> KC_SHIFT; |
378 | |
379 | KASSERT(kcp != NULL); |
380 | KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0); |
381 | KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL); |
382 | KASSERT(j < kc_nfields); |
383 | |
384 | return ((1 << (i & KC_MASK)) & kcp->bits[j]) != 0; |
385 | } |
386 | |
387 | bool |
388 | kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i) |
389 | { |
390 | const size_t j2 = i >> KC_SHIFT; |
391 | const uint32_t mask = ~(1 << (i & KC_MASK)); |
392 | |
393 | for (size_t j = 0; j < kc_nfields; j++) { |
394 | const uint32_t bits = kcp->bits[j]; |
395 | if (bits && (j != j2 || (bits & mask) != 0)) { |
396 | return true; |
397 | } |
398 | } |
399 | return false; |
400 | } |
401 | |
402 | bool |
403 | kcpuset_iszero(const kcpuset_t *kcp) |
404 | { |
405 | |
406 | for (size_t j = 0; j < kc_nfields; j++) { |
407 | if (kcp->bits[j] != 0) { |
408 | return false; |
409 | } |
410 | } |
411 | return true; |
412 | } |
413 | |
414 | bool |
415 | kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2) |
416 | { |
417 | |
418 | return memcmp(kcp1, kcp2, kc_bitsize) == 0; |
419 | } |
420 | |
421 | bool |
422 | kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2) |
423 | { |
424 | |
425 | for (size_t j = 0; j < kc_nfields; j++) { |
426 | if (kcp1->bits[j] & kcp2->bits[j]) |
427 | return true; |
428 | } |
429 | return false; |
430 | } |
431 | |
432 | cpuid_t |
433 | kcpuset_ffs(const kcpuset_t *kcp) |
434 | { |
435 | |
436 | for (size_t j = 0; j < kc_nfields; j++) { |
437 | if (kcp->bits[j]) |
438 | return 32 * j + ffs(kcp->bits[j]); |
439 | } |
440 | return 0; |
441 | } |
442 | |
443 | cpuid_t |
444 | kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2) |
445 | { |
446 | |
447 | for (size_t j = 0; j < kc_nfields; j++) { |
448 | uint32_t bits = kcp1->bits[j] & kcp2->bits[j]; |
449 | if (bits) |
450 | return 32 * j + ffs(bits); |
451 | } |
452 | return 0; |
453 | } |
454 | |
455 | void |
456 | kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
457 | { |
458 | |
459 | for (size_t j = 0; j < kc_nfields; j++) { |
460 | kcp1->bits[j] |= kcp2->bits[j]; |
461 | } |
462 | } |
463 | |
464 | void |
465 | kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
466 | { |
467 | |
468 | for (size_t j = 0; j < kc_nfields; j++) { |
469 | kcp1->bits[j] &= kcp2->bits[j]; |
470 | } |
471 | } |
472 | |
473 | void |
474 | kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
475 | { |
476 | |
477 | for (size_t j = 0; j < kc_nfields; j++) { |
478 | kcp1->bits[j] &= ~kcp2->bits[j]; |
479 | } |
480 | } |
481 | |
482 | int |
483 | kcpuset_countset(const kcpuset_t *kcp) |
484 | { |
485 | int count = 0; |
486 | |
487 | for (size_t j = 0; j < kc_nfields; j++) { |
488 | count += popcount32(kcp->bits[j]); |
489 | } |
490 | return count; |
491 | } |
492 | |
493 | /* |
494 | * Routines to set/clear the flags atomically. |
495 | */ |
496 | |
497 | void |
498 | kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i) |
499 | { |
500 | const size_t j = i >> KC_SHIFT; |
501 | |
502 | KASSERT(j < kc_nfields); |
503 | atomic_or_32(&kcp->bits[j], 1 << (i & KC_MASK)); |
504 | } |
505 | |
506 | void |
507 | kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i) |
508 | { |
509 | const size_t j = i >> KC_SHIFT; |
510 | |
511 | KASSERT(j < kc_nfields); |
512 | atomic_and_32(&kcp->bits[j], ~(1 << (i & KC_MASK))); |
513 | } |
514 | |
515 | void |
516 | kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
517 | { |
518 | |
519 | for (size_t j = 0; j < kc_nfields; j++) { |
520 | if (kcp2->bits[j]) |
521 | atomic_and_32(&kcp1->bits[j], kcp2->bits[j]); |
522 | } |
523 | } |
524 | |
525 | void |
526 | kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
527 | { |
528 | |
529 | for (size_t j = 0; j < kc_nfields; j++) { |
530 | if (kcp2->bits[j]) |
531 | atomic_or_32(&kcp1->bits[j], kcp2->bits[j]); |
532 | } |
533 | } |
534 | |
535 | void |
536 | kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2) |
537 | { |
538 | |
539 | for (size_t j = 0; j < kc_nfields; j++) { |
540 | if (kcp2->bits[j]) |
541 | atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]); |
542 | } |
543 | } |
544 | |