1 | /* $NetBSD: subr_pool.c,v 1.206 2016/02/05 03:04:52 knakahara Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015 |
5 | * The NetBSD Foundation, Inc. |
6 | * All rights reserved. |
7 | * |
8 | * This code is derived from software contributed to The NetBSD Foundation |
9 | * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace |
10 | * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by |
11 | * Maxime Villard. |
12 | * |
13 | * Redistribution and use in source and binary forms, with or without |
14 | * modification, are permitted provided that the following conditions |
15 | * are met: |
16 | * 1. Redistributions of source code must retain the above copyright |
17 | * notice, this list of conditions and the following disclaimer. |
18 | * 2. Redistributions in binary form must reproduce the above copyright |
19 | * notice, this list of conditions and the following disclaimer in the |
20 | * documentation and/or other materials provided with the distribution. |
21 | * |
22 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
23 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
24 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
25 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
26 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
27 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
28 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
29 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
30 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
31 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
32 | * POSSIBILITY OF SUCH DAMAGE. |
33 | */ |
34 | |
35 | #include <sys/cdefs.h> |
36 | __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.206 2016/02/05 03:04:52 knakahara Exp $" ); |
37 | |
38 | #ifdef _KERNEL_OPT |
39 | #include "opt_ddb.h" |
40 | #include "opt_lockdebug.h" |
41 | #endif |
42 | |
43 | #include <sys/param.h> |
44 | #include <sys/systm.h> |
45 | #include <sys/sysctl.h> |
46 | #include <sys/bitops.h> |
47 | #include <sys/proc.h> |
48 | #include <sys/errno.h> |
49 | #include <sys/kernel.h> |
50 | #include <sys/vmem.h> |
51 | #include <sys/pool.h> |
52 | #include <sys/syslog.h> |
53 | #include <sys/debug.h> |
54 | #include <sys/lockdebug.h> |
55 | #include <sys/xcall.h> |
56 | #include <sys/cpu.h> |
57 | #include <sys/atomic.h> |
58 | |
59 | #include <uvm/uvm_extern.h> |
60 | |
61 | /* |
62 | * Pool resource management utility. |
63 | * |
64 | * Memory is allocated in pages which are split into pieces according to |
65 | * the pool item size. Each page is kept on one of three lists in the |
66 | * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', |
67 | * for empty, full and partially-full pages respectively. The individual |
68 | * pool items are on a linked list headed by `ph_itemlist' in each page |
69 | * header. The memory for building the page list is either taken from |
70 | * the allocated pages themselves (for small pool items) or taken from |
71 | * an internal pool of page headers (`phpool'). |
72 | */ |
73 | |
74 | /* List of all pools. Non static as needed by 'vmstat -i' */ |
75 | TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); |
76 | |
77 | /* Private pool for page header structures */ |
78 | #define PHPOOL_MAX 8 |
79 | static struct pool phpool[PHPOOL_MAX]; |
80 | #define PHPOOL_FREELIST_NELEM(idx) \ |
81 | (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) |
82 | |
83 | #ifdef POOL_SUBPAGE |
84 | /* Pool of subpages for use by normal pools. */ |
85 | static struct pool psppool; |
86 | #endif |
87 | |
88 | #ifdef POOL_REDZONE |
89 | # define POOL_REDZONE_SIZE 2 |
90 | static void pool_redzone_init(struct pool *, size_t); |
91 | static void pool_redzone_fill(struct pool *, void *); |
92 | static void pool_redzone_check(struct pool *, void *); |
93 | #else |
94 | # define pool_redzone_init(pp, sz) /* NOTHING */ |
95 | # define pool_redzone_fill(pp, ptr) /* NOTHING */ |
96 | # define pool_redzone_check(pp, ptr) /* NOTHING */ |
97 | #endif |
98 | |
99 | static void *pool_page_alloc_meta(struct pool *, int); |
100 | static void pool_page_free_meta(struct pool *, void *); |
101 | |
102 | /* allocator for pool metadata */ |
103 | struct pool_allocator pool_allocator_meta = { |
104 | .pa_alloc = pool_page_alloc_meta, |
105 | .pa_free = pool_page_free_meta, |
106 | .pa_pagesz = 0 |
107 | }; |
108 | |
109 | /* # of seconds to retain page after last use */ |
110 | int pool_inactive_time = 10; |
111 | |
112 | /* Next candidate for drainage (see pool_drain()) */ |
113 | static struct pool *drainpp; |
114 | |
115 | /* This lock protects both pool_head and drainpp. */ |
116 | static kmutex_t pool_head_lock; |
117 | static kcondvar_t pool_busy; |
118 | |
119 | /* This lock protects initialization of a potentially shared pool allocator */ |
120 | static kmutex_t pool_allocator_lock; |
121 | |
122 | typedef uint32_t pool_item_bitmap_t; |
123 | #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) |
124 | #define BITMAP_MASK (BITMAP_SIZE - 1) |
125 | |
126 | struct { |
127 | /* Page headers */ |
128 | LIST_ENTRY(pool_item_header) |
129 | ; /* pool page list */ |
130 | SPLAY_ENTRY(pool_item_header) |
131 | ; /* Off-page page headers */ |
132 | void * ; /* this page's address */ |
133 | uint32_t ; /* last referenced */ |
134 | uint16_t ; /* # of chunks in use */ |
135 | uint16_t ; /* start offset in page */ |
136 | union { |
137 | /* !PR_NOTOUCH */ |
138 | struct { |
139 | LIST_HEAD(, pool_item) |
140 | ; /* chunk list for this page */ |
141 | } ; |
142 | /* PR_NOTOUCH */ |
143 | struct { |
144 | pool_item_bitmap_t [1]; |
145 | } ; |
146 | } ; |
147 | }; |
148 | #define ph_itemlist ph_u.phu_normal.phu_itemlist |
149 | #define ph_bitmap ph_u.phu_notouch.phu_bitmap |
150 | |
151 | struct pool_item { |
152 | #ifdef DIAGNOSTIC |
153 | u_int pi_magic; |
154 | #endif |
155 | #define PI_MAGIC 0xdeaddeadU |
156 | /* Other entries use only this list entry */ |
157 | LIST_ENTRY(pool_item) pi_list; |
158 | }; |
159 | |
160 | #define POOL_NEEDS_CATCHUP(pp) \ |
161 | ((pp)->pr_nitems < (pp)->pr_minitems) |
162 | |
163 | /* |
164 | * Pool cache management. |
165 | * |
166 | * Pool caches provide a way for constructed objects to be cached by the |
167 | * pool subsystem. This can lead to performance improvements by avoiding |
168 | * needless object construction/destruction; it is deferred until absolutely |
169 | * necessary. |
170 | * |
171 | * Caches are grouped into cache groups. Each cache group references up |
172 | * to PCG_NUMOBJECTS constructed objects. When a cache allocates an |
173 | * object from the pool, it calls the object's constructor and places it |
174 | * into a cache group. When a cache group frees an object back to the |
175 | * pool, it first calls the object's destructor. This allows the object |
176 | * to persist in constructed form while freed to the cache. |
177 | * |
178 | * The pool references each cache, so that when a pool is drained by the |
179 | * pagedaemon, it can drain each individual cache as well. Each time a |
180 | * cache is drained, the most idle cache group is freed to the pool in |
181 | * its entirety. |
182 | * |
183 | * Pool caches are layed on top of pools. By layering them, we can avoid |
184 | * the complexity of cache management for pools which would not benefit |
185 | * from it. |
186 | */ |
187 | |
188 | static struct pool pcg_normal_pool; |
189 | static struct pool pcg_large_pool; |
190 | static struct pool cache_pool; |
191 | static struct pool cache_cpu_pool; |
192 | |
193 | pool_cache_t pnbuf_cache; /* pathname buffer cache */ |
194 | |
195 | /* List of all caches. */ |
196 | TAILQ_HEAD(,pool_cache) pool_cache_head = |
197 | TAILQ_HEAD_INITIALIZER(pool_cache_head); |
198 | |
199 | int pool_cache_disable; /* global disable for caching */ |
200 | static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ |
201 | |
202 | static bool pool_cache_put_slow(pool_cache_cpu_t *, int, |
203 | void *); |
204 | static bool pool_cache_get_slow(pool_cache_cpu_t *, int, |
205 | void **, paddr_t *, int); |
206 | static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); |
207 | static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); |
208 | static void pool_cache_invalidate_cpu(pool_cache_t, u_int); |
209 | static void pool_cache_transfer(pool_cache_t); |
210 | |
211 | static int pool_catchup(struct pool *); |
212 | static void pool_prime_page(struct pool *, void *, |
213 | struct pool_item_header *); |
214 | static void pool_update_curpage(struct pool *); |
215 | |
216 | static int pool_grow(struct pool *, int); |
217 | static void *pool_allocator_alloc(struct pool *, int); |
218 | static void pool_allocator_free(struct pool *, void *); |
219 | |
220 | static void pool_print_pagelist(struct pool *, struct pool_pagelist *, |
221 | void (*)(const char *, ...) __printflike(1, 2)); |
222 | static void pool_print1(struct pool *, const char *, |
223 | void (*)(const char *, ...) __printflike(1, 2)); |
224 | |
225 | static int pool_chk_page(struct pool *, const char *, |
226 | struct pool_item_header *); |
227 | |
228 | static inline unsigned int |
229 | pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, |
230 | const void *v) |
231 | { |
232 | const char *cp = v; |
233 | unsigned int idx; |
234 | |
235 | KASSERT(pp->pr_roflags & PR_NOTOUCH); |
236 | idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; |
237 | KASSERT(idx < pp->pr_itemsperpage); |
238 | return idx; |
239 | } |
240 | |
241 | static inline void |
242 | pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, |
243 | void *obj) |
244 | { |
245 | unsigned int idx = pr_item_notouch_index(pp, ph, obj); |
246 | pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); |
247 | pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); |
248 | |
249 | KASSERT((*bitmap & mask) == 0); |
250 | *bitmap |= mask; |
251 | } |
252 | |
253 | static inline void * |
254 | pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) |
255 | { |
256 | pool_item_bitmap_t *bitmap = ph->ph_bitmap; |
257 | unsigned int idx; |
258 | int i; |
259 | |
260 | for (i = 0; ; i++) { |
261 | int bit; |
262 | |
263 | KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); |
264 | bit = ffs32(bitmap[i]); |
265 | if (bit) { |
266 | pool_item_bitmap_t mask; |
267 | |
268 | bit--; |
269 | idx = (i * BITMAP_SIZE) + bit; |
270 | mask = 1 << bit; |
271 | KASSERT((bitmap[i] & mask) != 0); |
272 | bitmap[i] &= ~mask; |
273 | break; |
274 | } |
275 | } |
276 | KASSERT(idx < pp->pr_itemsperpage); |
277 | return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; |
278 | } |
279 | |
280 | static inline void |
281 | pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) |
282 | { |
283 | pool_item_bitmap_t *bitmap = ph->ph_bitmap; |
284 | const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); |
285 | int i; |
286 | |
287 | for (i = 0; i < n; i++) { |
288 | bitmap[i] = (pool_item_bitmap_t)-1; |
289 | } |
290 | } |
291 | |
292 | static inline int |
293 | phtree_compare(struct pool_item_header *a, struct pool_item_header *b) |
294 | { |
295 | |
296 | /* |
297 | * we consider pool_item_header with smaller ph_page bigger. |
298 | * (this unnatural ordering is for the benefit of pr_find_pagehead.) |
299 | */ |
300 | |
301 | if (a->ph_page < b->ph_page) |
302 | return (1); |
303 | else if (a->ph_page > b->ph_page) |
304 | return (-1); |
305 | else |
306 | return (0); |
307 | } |
308 | |
309 | SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); |
310 | SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); |
311 | |
312 | static inline struct pool_item_header * |
313 | pr_find_pagehead_noalign(struct pool *pp, void *v) |
314 | { |
315 | struct pool_item_header *ph, tmp; |
316 | |
317 | tmp.ph_page = (void *)(uintptr_t)v; |
318 | ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); |
319 | if (ph == NULL) { |
320 | ph = SPLAY_ROOT(&pp->pr_phtree); |
321 | if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { |
322 | ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); |
323 | } |
324 | KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); |
325 | } |
326 | |
327 | return ph; |
328 | } |
329 | |
330 | /* |
331 | * Return the pool page header based on item address. |
332 | */ |
333 | static inline struct pool_item_header * |
334 | pr_find_pagehead(struct pool *pp, void *v) |
335 | { |
336 | struct pool_item_header *ph, tmp; |
337 | |
338 | if ((pp->pr_roflags & PR_NOALIGN) != 0) { |
339 | ph = pr_find_pagehead_noalign(pp, v); |
340 | } else { |
341 | void *page = |
342 | (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); |
343 | |
344 | if ((pp->pr_roflags & PR_PHINPAGE) != 0) { |
345 | ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); |
346 | } else { |
347 | tmp.ph_page = page; |
348 | ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); |
349 | } |
350 | } |
351 | |
352 | KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || |
353 | ((char *)ph->ph_page <= (char *)v && |
354 | (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); |
355 | return ph; |
356 | } |
357 | |
358 | static void |
359 | pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) |
360 | { |
361 | struct pool_item_header *ph; |
362 | |
363 | while ((ph = LIST_FIRST(pq)) != NULL) { |
364 | LIST_REMOVE(ph, ph_pagelist); |
365 | pool_allocator_free(pp, ph->ph_page); |
366 | if ((pp->pr_roflags & PR_PHINPAGE) == 0) |
367 | pool_put(pp->pr_phpool, ph); |
368 | } |
369 | } |
370 | |
371 | /* |
372 | * Remove a page from the pool. |
373 | */ |
374 | static inline void |
375 | pr_rmpage(struct pool *pp, struct pool_item_header *ph, |
376 | struct pool_pagelist *pq) |
377 | { |
378 | |
379 | KASSERT(mutex_owned(&pp->pr_lock)); |
380 | |
381 | /* |
382 | * If the page was idle, decrement the idle page count. |
383 | */ |
384 | if (ph->ph_nmissing == 0) { |
385 | #ifdef DIAGNOSTIC |
386 | if (pp->pr_nidle == 0) |
387 | panic("pr_rmpage: nidle inconsistent" ); |
388 | if (pp->pr_nitems < pp->pr_itemsperpage) |
389 | panic("pr_rmpage: nitems inconsistent" ); |
390 | #endif |
391 | pp->pr_nidle--; |
392 | } |
393 | |
394 | pp->pr_nitems -= pp->pr_itemsperpage; |
395 | |
396 | /* |
397 | * Unlink the page from the pool and queue it for release. |
398 | */ |
399 | LIST_REMOVE(ph, ph_pagelist); |
400 | if ((pp->pr_roflags & PR_PHINPAGE) == 0) |
401 | SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); |
402 | LIST_INSERT_HEAD(pq, ph, ph_pagelist); |
403 | |
404 | pp->pr_npages--; |
405 | pp->pr_npagefree++; |
406 | |
407 | pool_update_curpage(pp); |
408 | } |
409 | |
410 | /* |
411 | * Initialize all the pools listed in the "pools" link set. |
412 | */ |
413 | void |
414 | pool_subsystem_init(void) |
415 | { |
416 | size_t size; |
417 | int idx; |
418 | |
419 | mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); |
420 | mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); |
421 | cv_init(&pool_busy, "poolbusy" ); |
422 | |
423 | /* |
424 | * Initialize private page header pool and cache magazine pool if we |
425 | * haven't done so yet. |
426 | */ |
427 | for (idx = 0; idx < PHPOOL_MAX; idx++) { |
428 | static char phpool_names[PHPOOL_MAX][6+1+6+1]; |
429 | int nelem; |
430 | size_t sz; |
431 | |
432 | nelem = PHPOOL_FREELIST_NELEM(idx); |
433 | snprintf(phpool_names[idx], sizeof(phpool_names[idx]), |
434 | "phpool-%d" , nelem); |
435 | sz = sizeof(struct pool_item_header); |
436 | if (nelem) { |
437 | sz = offsetof(struct pool_item_header, |
438 | ph_bitmap[howmany(nelem, BITMAP_SIZE)]); |
439 | } |
440 | pool_init(&phpool[idx], sz, 0, 0, 0, |
441 | phpool_names[idx], &pool_allocator_meta, IPL_VM); |
442 | } |
443 | #ifdef POOL_SUBPAGE |
444 | pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, |
445 | PR_RECURSIVE, "psppool" , &pool_allocator_meta, IPL_VM); |
446 | #endif |
447 | |
448 | size = sizeof(pcg_t) + |
449 | (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); |
450 | pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, |
451 | "pcgnormal" , &pool_allocator_meta, IPL_VM); |
452 | |
453 | size = sizeof(pcg_t) + |
454 | (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); |
455 | pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, |
456 | "pcglarge" , &pool_allocator_meta, IPL_VM); |
457 | |
458 | pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, |
459 | 0, 0, "pcache" , &pool_allocator_meta, IPL_NONE); |
460 | |
461 | pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, |
462 | 0, 0, "pcachecpu" , &pool_allocator_meta, IPL_NONE); |
463 | } |
464 | |
465 | /* |
466 | * Initialize the given pool resource structure. |
467 | * |
468 | * We export this routine to allow other kernel parts to declare |
469 | * static pools that must be initialized before kmem(9) is available. |
470 | */ |
471 | void |
472 | pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, |
473 | const char *wchan, struct pool_allocator *palloc, int ipl) |
474 | { |
475 | struct pool *pp1; |
476 | size_t trysize, phsize, prsize; |
477 | int off, slack; |
478 | |
479 | #ifdef DEBUG |
480 | if (__predict_true(!cold)) |
481 | mutex_enter(&pool_head_lock); |
482 | /* |
483 | * Check that the pool hasn't already been initialised and |
484 | * added to the list of all pools. |
485 | */ |
486 | TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { |
487 | if (pp == pp1) |
488 | panic("pool_init: pool %s already initialised" , |
489 | wchan); |
490 | } |
491 | if (__predict_true(!cold)) |
492 | mutex_exit(&pool_head_lock); |
493 | #endif |
494 | |
495 | if (palloc == NULL) |
496 | palloc = &pool_allocator_kmem; |
497 | #ifdef POOL_SUBPAGE |
498 | if (size > palloc->pa_pagesz) { |
499 | if (palloc == &pool_allocator_kmem) |
500 | palloc = &pool_allocator_kmem_fullpage; |
501 | else if (palloc == &pool_allocator_nointr) |
502 | palloc = &pool_allocator_nointr_fullpage; |
503 | } |
504 | #endif /* POOL_SUBPAGE */ |
505 | if (!cold) |
506 | mutex_enter(&pool_allocator_lock); |
507 | if (palloc->pa_refcnt++ == 0) { |
508 | if (palloc->pa_pagesz == 0) |
509 | palloc->pa_pagesz = PAGE_SIZE; |
510 | |
511 | TAILQ_INIT(&palloc->pa_list); |
512 | |
513 | mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); |
514 | palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); |
515 | palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; |
516 | } |
517 | if (!cold) |
518 | mutex_exit(&pool_allocator_lock); |
519 | |
520 | if (align == 0) |
521 | align = ALIGN(1); |
522 | |
523 | prsize = size; |
524 | if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) |
525 | prsize = sizeof(struct pool_item); |
526 | |
527 | prsize = roundup(prsize, align); |
528 | #ifdef DIAGNOSTIC |
529 | if (prsize > palloc->pa_pagesz) |
530 | panic("pool_init: pool item size (%zu) too large" , prsize); |
531 | #endif |
532 | |
533 | /* |
534 | * Initialize the pool structure. |
535 | */ |
536 | LIST_INIT(&pp->pr_emptypages); |
537 | LIST_INIT(&pp->pr_fullpages); |
538 | LIST_INIT(&pp->pr_partpages); |
539 | pp->pr_cache = NULL; |
540 | pp->pr_curpage = NULL; |
541 | pp->pr_npages = 0; |
542 | pp->pr_minitems = 0; |
543 | pp->pr_minpages = 0; |
544 | pp->pr_maxpages = UINT_MAX; |
545 | pp->pr_roflags = flags; |
546 | pp->pr_flags = 0; |
547 | pp->pr_size = prsize; |
548 | pp->pr_align = align; |
549 | pp->pr_wchan = wchan; |
550 | pp->pr_alloc = palloc; |
551 | pp->pr_nitems = 0; |
552 | pp->pr_nout = 0; |
553 | pp->pr_hardlimit = UINT_MAX; |
554 | pp->pr_hardlimit_warning = NULL; |
555 | pp->pr_hardlimit_ratecap.tv_sec = 0; |
556 | pp->pr_hardlimit_ratecap.tv_usec = 0; |
557 | pp->pr_hardlimit_warning_last.tv_sec = 0; |
558 | pp->pr_hardlimit_warning_last.tv_usec = 0; |
559 | pp->pr_drain_hook = NULL; |
560 | pp->pr_drain_hook_arg = NULL; |
561 | pp->pr_freecheck = NULL; |
562 | pool_redzone_init(pp, size); |
563 | |
564 | /* |
565 | * Decide whether to put the page header off page to avoid |
566 | * wasting too large a part of the page or too big item. |
567 | * Off-page page headers go on a hash table, so we can match |
568 | * a returned item with its header based on the page address. |
569 | * We use 1/16 of the page size and about 8 times of the item |
570 | * size as the threshold (XXX: tune) |
571 | * |
572 | * However, we'll put the header into the page if we can put |
573 | * it without wasting any items. |
574 | * |
575 | * Silently enforce `0 <= ioff < align'. |
576 | */ |
577 | pp->pr_itemoffset = ioff %= align; |
578 | /* See the comment below about reserved bytes. */ |
579 | trysize = palloc->pa_pagesz - ((align - ioff) % align); |
580 | phsize = ALIGN(sizeof(struct pool_item_header)); |
581 | if (pp->pr_roflags & PR_PHINPAGE || |
582 | ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && |
583 | (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || |
584 | trysize / pp->pr_size == (trysize - phsize) / pp->pr_size))) { |
585 | /* Use the end of the page for the page header */ |
586 | pp->pr_roflags |= PR_PHINPAGE; |
587 | pp->pr_phoffset = off = palloc->pa_pagesz - phsize; |
588 | } else { |
589 | /* The page header will be taken from our page header pool */ |
590 | pp->pr_phoffset = 0; |
591 | off = palloc->pa_pagesz; |
592 | SPLAY_INIT(&pp->pr_phtree); |
593 | } |
594 | |
595 | /* |
596 | * Alignment is to take place at `ioff' within the item. This means |
597 | * we must reserve up to `align - 1' bytes on the page to allow |
598 | * appropriate positioning of each item. |
599 | */ |
600 | pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; |
601 | KASSERT(pp->pr_itemsperpage != 0); |
602 | if ((pp->pr_roflags & PR_NOTOUCH)) { |
603 | int idx; |
604 | |
605 | for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); |
606 | idx++) { |
607 | /* nothing */ |
608 | } |
609 | if (idx >= PHPOOL_MAX) { |
610 | /* |
611 | * if you see this panic, consider to tweak |
612 | * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. |
613 | */ |
614 | panic("%s: too large itemsperpage(%d) for PR_NOTOUCH" , |
615 | pp->pr_wchan, pp->pr_itemsperpage); |
616 | } |
617 | pp->pr_phpool = &phpool[idx]; |
618 | } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { |
619 | pp->pr_phpool = &phpool[0]; |
620 | } |
621 | #if defined(DIAGNOSTIC) |
622 | else { |
623 | pp->pr_phpool = NULL; |
624 | } |
625 | #endif |
626 | |
627 | /* |
628 | * Use the slack between the chunks and the page header |
629 | * for "cache coloring". |
630 | */ |
631 | slack = off - pp->pr_itemsperpage * pp->pr_size; |
632 | pp->pr_maxcolor = (slack / align) * align; |
633 | pp->pr_curcolor = 0; |
634 | |
635 | pp->pr_nget = 0; |
636 | pp->pr_nfail = 0; |
637 | pp->pr_nput = 0; |
638 | pp->pr_npagealloc = 0; |
639 | pp->pr_npagefree = 0; |
640 | pp->pr_hiwat = 0; |
641 | pp->pr_nidle = 0; |
642 | pp->pr_refcnt = 0; |
643 | |
644 | mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); |
645 | cv_init(&pp->pr_cv, wchan); |
646 | pp->pr_ipl = ipl; |
647 | |
648 | /* Insert into the list of all pools. */ |
649 | if (!cold) |
650 | mutex_enter(&pool_head_lock); |
651 | TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { |
652 | if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) |
653 | break; |
654 | } |
655 | if (pp1 == NULL) |
656 | TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); |
657 | else |
658 | TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); |
659 | if (!cold) |
660 | mutex_exit(&pool_head_lock); |
661 | |
662 | /* Insert this into the list of pools using this allocator. */ |
663 | if (!cold) |
664 | mutex_enter(&palloc->pa_lock); |
665 | TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); |
666 | if (!cold) |
667 | mutex_exit(&palloc->pa_lock); |
668 | } |
669 | |
670 | /* |
671 | * De-commision a pool resource. |
672 | */ |
673 | void |
674 | pool_destroy(struct pool *pp) |
675 | { |
676 | struct pool_pagelist pq; |
677 | struct pool_item_header *ph; |
678 | |
679 | /* Remove from global pool list */ |
680 | mutex_enter(&pool_head_lock); |
681 | while (pp->pr_refcnt != 0) |
682 | cv_wait(&pool_busy, &pool_head_lock); |
683 | TAILQ_REMOVE(&pool_head, pp, pr_poollist); |
684 | if (drainpp == pp) |
685 | drainpp = NULL; |
686 | mutex_exit(&pool_head_lock); |
687 | |
688 | /* Remove this pool from its allocator's list of pools. */ |
689 | mutex_enter(&pp->pr_alloc->pa_lock); |
690 | TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); |
691 | mutex_exit(&pp->pr_alloc->pa_lock); |
692 | |
693 | mutex_enter(&pool_allocator_lock); |
694 | if (--pp->pr_alloc->pa_refcnt == 0) |
695 | mutex_destroy(&pp->pr_alloc->pa_lock); |
696 | mutex_exit(&pool_allocator_lock); |
697 | |
698 | mutex_enter(&pp->pr_lock); |
699 | |
700 | KASSERT(pp->pr_cache == NULL); |
701 | |
702 | #ifdef DIAGNOSTIC |
703 | if (pp->pr_nout != 0) { |
704 | panic("pool_destroy: pool busy: still out: %u" , |
705 | pp->pr_nout); |
706 | } |
707 | #endif |
708 | |
709 | KASSERT(LIST_EMPTY(&pp->pr_fullpages)); |
710 | KASSERT(LIST_EMPTY(&pp->pr_partpages)); |
711 | |
712 | /* Remove all pages */ |
713 | LIST_INIT(&pq); |
714 | while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) |
715 | pr_rmpage(pp, ph, &pq); |
716 | |
717 | mutex_exit(&pp->pr_lock); |
718 | |
719 | pr_pagelist_free(pp, &pq); |
720 | cv_destroy(&pp->pr_cv); |
721 | mutex_destroy(&pp->pr_lock); |
722 | } |
723 | |
724 | void |
725 | pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) |
726 | { |
727 | |
728 | /* XXX no locking -- must be used just after pool_init() */ |
729 | #ifdef DIAGNOSTIC |
730 | if (pp->pr_drain_hook != NULL) |
731 | panic("pool_set_drain_hook(%s): already set" , pp->pr_wchan); |
732 | #endif |
733 | pp->pr_drain_hook = fn; |
734 | pp->pr_drain_hook_arg = arg; |
735 | } |
736 | |
737 | static struct pool_item_header * |
738 | (struct pool *pp, void *storage, int flags) |
739 | { |
740 | struct pool_item_header *ph; |
741 | |
742 | if ((pp->pr_roflags & PR_PHINPAGE) != 0) |
743 | ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); |
744 | else |
745 | ph = pool_get(pp->pr_phpool, flags); |
746 | |
747 | return (ph); |
748 | } |
749 | |
750 | /* |
751 | * Grab an item from the pool. |
752 | */ |
753 | void * |
754 | pool_get(struct pool *pp, int flags) |
755 | { |
756 | struct pool_item *pi; |
757 | struct pool_item_header *ph; |
758 | void *v; |
759 | |
760 | #ifdef DIAGNOSTIC |
761 | if (pp->pr_itemsperpage == 0) |
762 | panic("pool_get: pool '%s': pr_itemsperpage is zero, " |
763 | "pool not initialized?" , pp->pr_wchan); |
764 | if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE && |
765 | !cold && panicstr == NULL) |
766 | panic("pool '%s' is IPL_NONE, but called from " |
767 | "interrupt context\n" , pp->pr_wchan); |
768 | #endif |
769 | if (flags & PR_WAITOK) { |
770 | ASSERT_SLEEPABLE(); |
771 | } |
772 | |
773 | mutex_enter(&pp->pr_lock); |
774 | startover: |
775 | /* |
776 | * Check to see if we've reached the hard limit. If we have, |
777 | * and we can wait, then wait until an item has been returned to |
778 | * the pool. |
779 | */ |
780 | #ifdef DIAGNOSTIC |
781 | if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { |
782 | mutex_exit(&pp->pr_lock); |
783 | panic("pool_get: %s: crossed hard limit" , pp->pr_wchan); |
784 | } |
785 | #endif |
786 | if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { |
787 | if (pp->pr_drain_hook != NULL) { |
788 | /* |
789 | * Since the drain hook is going to free things |
790 | * back to the pool, unlock, call the hook, re-lock, |
791 | * and check the hardlimit condition again. |
792 | */ |
793 | mutex_exit(&pp->pr_lock); |
794 | (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); |
795 | mutex_enter(&pp->pr_lock); |
796 | if (pp->pr_nout < pp->pr_hardlimit) |
797 | goto startover; |
798 | } |
799 | |
800 | if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { |
801 | /* |
802 | * XXX: A warning isn't logged in this case. Should |
803 | * it be? |
804 | */ |
805 | pp->pr_flags |= PR_WANTED; |
806 | cv_wait(&pp->pr_cv, &pp->pr_lock); |
807 | goto startover; |
808 | } |
809 | |
810 | /* |
811 | * Log a message that the hard limit has been hit. |
812 | */ |
813 | if (pp->pr_hardlimit_warning != NULL && |
814 | ratecheck(&pp->pr_hardlimit_warning_last, |
815 | &pp->pr_hardlimit_ratecap)) |
816 | log(LOG_ERR, "%s\n" , pp->pr_hardlimit_warning); |
817 | |
818 | pp->pr_nfail++; |
819 | |
820 | mutex_exit(&pp->pr_lock); |
821 | return (NULL); |
822 | } |
823 | |
824 | /* |
825 | * The convention we use is that if `curpage' is not NULL, then |
826 | * it points at a non-empty bucket. In particular, `curpage' |
827 | * never points at a page header which has PR_PHINPAGE set and |
828 | * has no items in its bucket. |
829 | */ |
830 | if ((ph = pp->pr_curpage) == NULL) { |
831 | int error; |
832 | |
833 | #ifdef DIAGNOSTIC |
834 | if (pp->pr_nitems != 0) { |
835 | mutex_exit(&pp->pr_lock); |
836 | printf("pool_get: %s: curpage NULL, nitems %u\n" , |
837 | pp->pr_wchan, pp->pr_nitems); |
838 | panic("pool_get: nitems inconsistent" ); |
839 | } |
840 | #endif |
841 | |
842 | /* |
843 | * Call the back-end page allocator for more memory. |
844 | * Release the pool lock, as the back-end page allocator |
845 | * may block. |
846 | */ |
847 | error = pool_grow(pp, flags); |
848 | if (error != 0) { |
849 | /* |
850 | * We were unable to allocate a page or item |
851 | * header, but we released the lock during |
852 | * allocation, so perhaps items were freed |
853 | * back to the pool. Check for this case. |
854 | */ |
855 | if (pp->pr_curpage != NULL) |
856 | goto startover; |
857 | |
858 | pp->pr_nfail++; |
859 | mutex_exit(&pp->pr_lock); |
860 | return (NULL); |
861 | } |
862 | |
863 | /* Start the allocation process over. */ |
864 | goto startover; |
865 | } |
866 | if (pp->pr_roflags & PR_NOTOUCH) { |
867 | #ifdef DIAGNOSTIC |
868 | if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { |
869 | mutex_exit(&pp->pr_lock); |
870 | panic("pool_get: %s: page empty" , pp->pr_wchan); |
871 | } |
872 | #endif |
873 | v = pr_item_notouch_get(pp, ph); |
874 | } else { |
875 | v = pi = LIST_FIRST(&ph->ph_itemlist); |
876 | if (__predict_false(v == NULL)) { |
877 | mutex_exit(&pp->pr_lock); |
878 | panic("pool_get: %s: page empty" , pp->pr_wchan); |
879 | } |
880 | #ifdef DIAGNOSTIC |
881 | if (__predict_false(pp->pr_nitems == 0)) { |
882 | mutex_exit(&pp->pr_lock); |
883 | printf("pool_get: %s: items on itemlist, nitems %u\n" , |
884 | pp->pr_wchan, pp->pr_nitems); |
885 | panic("pool_get: nitems inconsistent" ); |
886 | } |
887 | #endif |
888 | |
889 | #ifdef DIAGNOSTIC |
890 | if (__predict_false(pi->pi_magic != PI_MAGIC)) { |
891 | panic("pool_get(%s): free list modified: " |
892 | "magic=%x; page %p; item addr %p\n" , |
893 | pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); |
894 | } |
895 | #endif |
896 | |
897 | /* |
898 | * Remove from item list. |
899 | */ |
900 | LIST_REMOVE(pi, pi_list); |
901 | } |
902 | pp->pr_nitems--; |
903 | pp->pr_nout++; |
904 | if (ph->ph_nmissing == 0) { |
905 | #ifdef DIAGNOSTIC |
906 | if (__predict_false(pp->pr_nidle == 0)) |
907 | panic("pool_get: nidle inconsistent" ); |
908 | #endif |
909 | pp->pr_nidle--; |
910 | |
911 | /* |
912 | * This page was previously empty. Move it to the list of |
913 | * partially-full pages. This page is already curpage. |
914 | */ |
915 | LIST_REMOVE(ph, ph_pagelist); |
916 | LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); |
917 | } |
918 | ph->ph_nmissing++; |
919 | if (ph->ph_nmissing == pp->pr_itemsperpage) { |
920 | #ifdef DIAGNOSTIC |
921 | if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && |
922 | !LIST_EMPTY(&ph->ph_itemlist))) { |
923 | mutex_exit(&pp->pr_lock); |
924 | panic("pool_get: %s: nmissing inconsistent" , |
925 | pp->pr_wchan); |
926 | } |
927 | #endif |
928 | /* |
929 | * This page is now full. Move it to the full list |
930 | * and select a new current page. |
931 | */ |
932 | LIST_REMOVE(ph, ph_pagelist); |
933 | LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); |
934 | pool_update_curpage(pp); |
935 | } |
936 | |
937 | pp->pr_nget++; |
938 | |
939 | /* |
940 | * If we have a low water mark and we are now below that low |
941 | * water mark, add more items to the pool. |
942 | */ |
943 | if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { |
944 | /* |
945 | * XXX: Should we log a warning? Should we set up a timeout |
946 | * to try again in a second or so? The latter could break |
947 | * a caller's assumptions about interrupt protection, etc. |
948 | */ |
949 | } |
950 | |
951 | mutex_exit(&pp->pr_lock); |
952 | KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); |
953 | FREECHECK_OUT(&pp->pr_freecheck, v); |
954 | pool_redzone_fill(pp, v); |
955 | return (v); |
956 | } |
957 | |
958 | /* |
959 | * Internal version of pool_put(). Pool is already locked/entered. |
960 | */ |
961 | static void |
962 | pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) |
963 | { |
964 | struct pool_item *pi = v; |
965 | struct pool_item_header *ph; |
966 | |
967 | KASSERT(mutex_owned(&pp->pr_lock)); |
968 | pool_redzone_check(pp, v); |
969 | FREECHECK_IN(&pp->pr_freecheck, v); |
970 | LOCKDEBUG_MEM_CHECK(v, pp->pr_size); |
971 | |
972 | #ifdef DIAGNOSTIC |
973 | if (__predict_false(pp->pr_nout == 0)) { |
974 | printf("pool %s: putting with none out\n" , |
975 | pp->pr_wchan); |
976 | panic("pool_put" ); |
977 | } |
978 | #endif |
979 | |
980 | if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { |
981 | panic("pool_put: %s: page header missing" , pp->pr_wchan); |
982 | } |
983 | |
984 | /* |
985 | * Return to item list. |
986 | */ |
987 | if (pp->pr_roflags & PR_NOTOUCH) { |
988 | pr_item_notouch_put(pp, ph, v); |
989 | } else { |
990 | #ifdef DIAGNOSTIC |
991 | pi->pi_magic = PI_MAGIC; |
992 | #endif |
993 | #ifdef DEBUG |
994 | { |
995 | int i, *ip = v; |
996 | |
997 | for (i = 0; i < pp->pr_size / sizeof(int); i++) { |
998 | *ip++ = PI_MAGIC; |
999 | } |
1000 | } |
1001 | #endif |
1002 | |
1003 | LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); |
1004 | } |
1005 | KDASSERT(ph->ph_nmissing != 0); |
1006 | ph->ph_nmissing--; |
1007 | pp->pr_nput++; |
1008 | pp->pr_nitems++; |
1009 | pp->pr_nout--; |
1010 | |
1011 | /* Cancel "pool empty" condition if it exists */ |
1012 | if (pp->pr_curpage == NULL) |
1013 | pp->pr_curpage = ph; |
1014 | |
1015 | if (pp->pr_flags & PR_WANTED) { |
1016 | pp->pr_flags &= ~PR_WANTED; |
1017 | cv_broadcast(&pp->pr_cv); |
1018 | } |
1019 | |
1020 | /* |
1021 | * If this page is now empty, do one of two things: |
1022 | * |
1023 | * (1) If we have more pages than the page high water mark, |
1024 | * free the page back to the system. ONLY CONSIDER |
1025 | * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE |
1026 | * CLAIM. |
1027 | * |
1028 | * (2) Otherwise, move the page to the empty page list. |
1029 | * |
1030 | * Either way, select a new current page (so we use a partially-full |
1031 | * page if one is available). |
1032 | */ |
1033 | if (ph->ph_nmissing == 0) { |
1034 | pp->pr_nidle++; |
1035 | if (pp->pr_npages > pp->pr_minpages && |
1036 | pp->pr_npages > pp->pr_maxpages) { |
1037 | pr_rmpage(pp, ph, pq); |
1038 | } else { |
1039 | LIST_REMOVE(ph, ph_pagelist); |
1040 | LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); |
1041 | |
1042 | /* |
1043 | * Update the timestamp on the page. A page must |
1044 | * be idle for some period of time before it can |
1045 | * be reclaimed by the pagedaemon. This minimizes |
1046 | * ping-pong'ing for memory. |
1047 | * |
1048 | * note for 64-bit time_t: truncating to 32-bit is not |
1049 | * a problem for our usage. |
1050 | */ |
1051 | ph->ph_time = time_uptime; |
1052 | } |
1053 | pool_update_curpage(pp); |
1054 | } |
1055 | |
1056 | /* |
1057 | * If the page was previously completely full, move it to the |
1058 | * partially-full list and make it the current page. The next |
1059 | * allocation will get the item from this page, instead of |
1060 | * further fragmenting the pool. |
1061 | */ |
1062 | else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { |
1063 | LIST_REMOVE(ph, ph_pagelist); |
1064 | LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); |
1065 | pp->pr_curpage = ph; |
1066 | } |
1067 | } |
1068 | |
1069 | void |
1070 | pool_put(struct pool *pp, void *v) |
1071 | { |
1072 | struct pool_pagelist pq; |
1073 | |
1074 | LIST_INIT(&pq); |
1075 | |
1076 | mutex_enter(&pp->pr_lock); |
1077 | pool_do_put(pp, v, &pq); |
1078 | mutex_exit(&pp->pr_lock); |
1079 | |
1080 | pr_pagelist_free(pp, &pq); |
1081 | } |
1082 | |
1083 | /* |
1084 | * pool_grow: grow a pool by a page. |
1085 | * |
1086 | * => called with pool locked. |
1087 | * => unlock and relock the pool. |
1088 | * => return with pool locked. |
1089 | */ |
1090 | |
1091 | static int |
1092 | pool_grow(struct pool *pp, int flags) |
1093 | { |
1094 | struct pool_item_header *ph = NULL; |
1095 | char *cp; |
1096 | |
1097 | mutex_exit(&pp->pr_lock); |
1098 | cp = pool_allocator_alloc(pp, flags); |
1099 | if (__predict_true(cp != NULL)) { |
1100 | ph = pool_alloc_item_header(pp, cp, flags); |
1101 | } |
1102 | if (__predict_false(cp == NULL || ph == NULL)) { |
1103 | if (cp != NULL) { |
1104 | pool_allocator_free(pp, cp); |
1105 | } |
1106 | mutex_enter(&pp->pr_lock); |
1107 | return ENOMEM; |
1108 | } |
1109 | |
1110 | mutex_enter(&pp->pr_lock); |
1111 | pool_prime_page(pp, cp, ph); |
1112 | pp->pr_npagealloc++; |
1113 | return 0; |
1114 | } |
1115 | |
1116 | /* |
1117 | * Add N items to the pool. |
1118 | */ |
1119 | int |
1120 | pool_prime(struct pool *pp, int n) |
1121 | { |
1122 | int newpages; |
1123 | int error = 0; |
1124 | |
1125 | mutex_enter(&pp->pr_lock); |
1126 | |
1127 | newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; |
1128 | |
1129 | while (newpages-- > 0) { |
1130 | error = pool_grow(pp, PR_NOWAIT); |
1131 | if (error) { |
1132 | break; |
1133 | } |
1134 | pp->pr_minpages++; |
1135 | } |
1136 | |
1137 | if (pp->pr_minpages >= pp->pr_maxpages) |
1138 | pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ |
1139 | |
1140 | mutex_exit(&pp->pr_lock); |
1141 | return error; |
1142 | } |
1143 | |
1144 | /* |
1145 | * Add a page worth of items to the pool. |
1146 | * |
1147 | * Note, we must be called with the pool descriptor LOCKED. |
1148 | */ |
1149 | static void |
1150 | pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) |
1151 | { |
1152 | struct pool_item *pi; |
1153 | void *cp = storage; |
1154 | const unsigned int align = pp->pr_align; |
1155 | const unsigned int ioff = pp->pr_itemoffset; |
1156 | int n; |
1157 | |
1158 | KASSERT(mutex_owned(&pp->pr_lock)); |
1159 | |
1160 | #ifdef DIAGNOSTIC |
1161 | if ((pp->pr_roflags & PR_NOALIGN) == 0 && |
1162 | ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) |
1163 | panic("pool_prime_page: %s: unaligned page" , pp->pr_wchan); |
1164 | #endif |
1165 | |
1166 | /* |
1167 | * Insert page header. |
1168 | */ |
1169 | LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); |
1170 | LIST_INIT(&ph->ph_itemlist); |
1171 | ph->ph_page = storage; |
1172 | ph->ph_nmissing = 0; |
1173 | ph->ph_time = time_uptime; |
1174 | if ((pp->pr_roflags & PR_PHINPAGE) == 0) |
1175 | SPLAY_INSERT(phtree, &pp->pr_phtree, ph); |
1176 | |
1177 | pp->pr_nidle++; |
1178 | |
1179 | /* |
1180 | * Color this page. |
1181 | */ |
1182 | ph->ph_off = pp->pr_curcolor; |
1183 | cp = (char *)cp + ph->ph_off; |
1184 | if ((pp->pr_curcolor += align) > pp->pr_maxcolor) |
1185 | pp->pr_curcolor = 0; |
1186 | |
1187 | /* |
1188 | * Adjust storage to apply aligment to `pr_itemoffset' in each item. |
1189 | */ |
1190 | if (ioff != 0) |
1191 | cp = (char *)cp + align - ioff; |
1192 | |
1193 | KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); |
1194 | |
1195 | /* |
1196 | * Insert remaining chunks on the bucket list. |
1197 | */ |
1198 | n = pp->pr_itemsperpage; |
1199 | pp->pr_nitems += n; |
1200 | |
1201 | if (pp->pr_roflags & PR_NOTOUCH) { |
1202 | pr_item_notouch_init(pp, ph); |
1203 | } else { |
1204 | while (n--) { |
1205 | pi = (struct pool_item *)cp; |
1206 | |
1207 | KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); |
1208 | |
1209 | /* Insert on page list */ |
1210 | LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); |
1211 | #ifdef DIAGNOSTIC |
1212 | pi->pi_magic = PI_MAGIC; |
1213 | #endif |
1214 | cp = (char *)cp + pp->pr_size; |
1215 | |
1216 | KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); |
1217 | } |
1218 | } |
1219 | |
1220 | /* |
1221 | * If the pool was depleted, point at the new page. |
1222 | */ |
1223 | if (pp->pr_curpage == NULL) |
1224 | pp->pr_curpage = ph; |
1225 | |
1226 | if (++pp->pr_npages > pp->pr_hiwat) |
1227 | pp->pr_hiwat = pp->pr_npages; |
1228 | } |
1229 | |
1230 | /* |
1231 | * Used by pool_get() when nitems drops below the low water mark. This |
1232 | * is used to catch up pr_nitems with the low water mark. |
1233 | * |
1234 | * Note 1, we never wait for memory here, we let the caller decide what to do. |
1235 | * |
1236 | * Note 2, we must be called with the pool already locked, and we return |
1237 | * with it locked. |
1238 | */ |
1239 | static int |
1240 | pool_catchup(struct pool *pp) |
1241 | { |
1242 | int error = 0; |
1243 | |
1244 | while (POOL_NEEDS_CATCHUP(pp)) { |
1245 | error = pool_grow(pp, PR_NOWAIT); |
1246 | if (error) { |
1247 | break; |
1248 | } |
1249 | } |
1250 | return error; |
1251 | } |
1252 | |
1253 | static void |
1254 | pool_update_curpage(struct pool *pp) |
1255 | { |
1256 | |
1257 | pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); |
1258 | if (pp->pr_curpage == NULL) { |
1259 | pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); |
1260 | } |
1261 | KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || |
1262 | (pp->pr_curpage != NULL && pp->pr_nitems > 0)); |
1263 | } |
1264 | |
1265 | void |
1266 | pool_setlowat(struct pool *pp, int n) |
1267 | { |
1268 | |
1269 | mutex_enter(&pp->pr_lock); |
1270 | |
1271 | pp->pr_minitems = n; |
1272 | pp->pr_minpages = (n == 0) |
1273 | ? 0 |
1274 | : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; |
1275 | |
1276 | /* Make sure we're caught up with the newly-set low water mark. */ |
1277 | if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { |
1278 | /* |
1279 | * XXX: Should we log a warning? Should we set up a timeout |
1280 | * to try again in a second or so? The latter could break |
1281 | * a caller's assumptions about interrupt protection, etc. |
1282 | */ |
1283 | } |
1284 | |
1285 | mutex_exit(&pp->pr_lock); |
1286 | } |
1287 | |
1288 | void |
1289 | pool_sethiwat(struct pool *pp, int n) |
1290 | { |
1291 | |
1292 | mutex_enter(&pp->pr_lock); |
1293 | |
1294 | pp->pr_maxpages = (n == 0) |
1295 | ? 0 |
1296 | : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; |
1297 | |
1298 | mutex_exit(&pp->pr_lock); |
1299 | } |
1300 | |
1301 | void |
1302 | pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) |
1303 | { |
1304 | |
1305 | mutex_enter(&pp->pr_lock); |
1306 | |
1307 | pp->pr_hardlimit = n; |
1308 | pp->pr_hardlimit_warning = warnmess; |
1309 | pp->pr_hardlimit_ratecap.tv_sec = ratecap; |
1310 | pp->pr_hardlimit_warning_last.tv_sec = 0; |
1311 | pp->pr_hardlimit_warning_last.tv_usec = 0; |
1312 | |
1313 | /* |
1314 | * In-line version of pool_sethiwat(), because we don't want to |
1315 | * release the lock. |
1316 | */ |
1317 | pp->pr_maxpages = (n == 0) |
1318 | ? 0 |
1319 | : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; |
1320 | |
1321 | mutex_exit(&pp->pr_lock); |
1322 | } |
1323 | |
1324 | /* |
1325 | * Release all complete pages that have not been used recently. |
1326 | * |
1327 | * Must not be called from interrupt context. |
1328 | */ |
1329 | int |
1330 | pool_reclaim(struct pool *pp) |
1331 | { |
1332 | struct pool_item_header *ph, *phnext; |
1333 | struct pool_pagelist pq; |
1334 | uint32_t curtime; |
1335 | bool klock; |
1336 | int rv; |
1337 | |
1338 | KASSERT(!cpu_intr_p() && !cpu_softintr_p()); |
1339 | |
1340 | if (pp->pr_drain_hook != NULL) { |
1341 | /* |
1342 | * The drain hook must be called with the pool unlocked. |
1343 | */ |
1344 | (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); |
1345 | } |
1346 | |
1347 | /* |
1348 | * XXXSMP Because we do not want to cause non-MPSAFE code |
1349 | * to block. |
1350 | */ |
1351 | if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || |
1352 | pp->pr_ipl == IPL_SOFTSERIAL) { |
1353 | KERNEL_LOCK(1, NULL); |
1354 | klock = true; |
1355 | } else |
1356 | klock = false; |
1357 | |
1358 | /* Reclaim items from the pool's cache (if any). */ |
1359 | if (pp->pr_cache != NULL) |
1360 | pool_cache_invalidate(pp->pr_cache); |
1361 | |
1362 | if (mutex_tryenter(&pp->pr_lock) == 0) { |
1363 | if (klock) { |
1364 | KERNEL_UNLOCK_ONE(NULL); |
1365 | } |
1366 | return (0); |
1367 | } |
1368 | |
1369 | LIST_INIT(&pq); |
1370 | |
1371 | curtime = time_uptime; |
1372 | |
1373 | for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { |
1374 | phnext = LIST_NEXT(ph, ph_pagelist); |
1375 | |
1376 | /* Check our minimum page claim */ |
1377 | if (pp->pr_npages <= pp->pr_minpages) |
1378 | break; |
1379 | |
1380 | KASSERT(ph->ph_nmissing == 0); |
1381 | if (curtime - ph->ph_time < pool_inactive_time) |
1382 | continue; |
1383 | |
1384 | /* |
1385 | * If freeing this page would put us below |
1386 | * the low water mark, stop now. |
1387 | */ |
1388 | if ((pp->pr_nitems - pp->pr_itemsperpage) < |
1389 | pp->pr_minitems) |
1390 | break; |
1391 | |
1392 | pr_rmpage(pp, ph, &pq); |
1393 | } |
1394 | |
1395 | mutex_exit(&pp->pr_lock); |
1396 | |
1397 | if (LIST_EMPTY(&pq)) |
1398 | rv = 0; |
1399 | else { |
1400 | pr_pagelist_free(pp, &pq); |
1401 | rv = 1; |
1402 | } |
1403 | |
1404 | if (klock) { |
1405 | KERNEL_UNLOCK_ONE(NULL); |
1406 | } |
1407 | |
1408 | return (rv); |
1409 | } |
1410 | |
1411 | /* |
1412 | * Drain pools, one at a time. The drained pool is returned within ppp. |
1413 | * |
1414 | * Note, must never be called from interrupt context. |
1415 | */ |
1416 | bool |
1417 | pool_drain(struct pool **ppp) |
1418 | { |
1419 | bool reclaimed; |
1420 | struct pool *pp; |
1421 | |
1422 | KASSERT(!TAILQ_EMPTY(&pool_head)); |
1423 | |
1424 | pp = NULL; |
1425 | |
1426 | /* Find next pool to drain, and add a reference. */ |
1427 | mutex_enter(&pool_head_lock); |
1428 | do { |
1429 | if (drainpp == NULL) { |
1430 | drainpp = TAILQ_FIRST(&pool_head); |
1431 | } |
1432 | if (drainpp != NULL) { |
1433 | pp = drainpp; |
1434 | drainpp = TAILQ_NEXT(pp, pr_poollist); |
1435 | } |
1436 | /* |
1437 | * Skip completely idle pools. We depend on at least |
1438 | * one pool in the system being active. |
1439 | */ |
1440 | } while (pp == NULL || pp->pr_npages == 0); |
1441 | pp->pr_refcnt++; |
1442 | mutex_exit(&pool_head_lock); |
1443 | |
1444 | /* Drain the cache (if any) and pool.. */ |
1445 | reclaimed = pool_reclaim(pp); |
1446 | |
1447 | /* Finally, unlock the pool. */ |
1448 | mutex_enter(&pool_head_lock); |
1449 | pp->pr_refcnt--; |
1450 | cv_broadcast(&pool_busy); |
1451 | mutex_exit(&pool_head_lock); |
1452 | |
1453 | if (ppp != NULL) |
1454 | *ppp = pp; |
1455 | |
1456 | return reclaimed; |
1457 | } |
1458 | |
1459 | /* |
1460 | * Diagnostic helpers. |
1461 | */ |
1462 | |
1463 | void |
1464 | pool_printall(const char *modif, void (*pr)(const char *, ...)) |
1465 | { |
1466 | struct pool *pp; |
1467 | |
1468 | TAILQ_FOREACH(pp, &pool_head, pr_poollist) { |
1469 | pool_printit(pp, modif, pr); |
1470 | } |
1471 | } |
1472 | |
1473 | void |
1474 | pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) |
1475 | { |
1476 | |
1477 | if (pp == NULL) { |
1478 | (*pr)("Must specify a pool to print.\n" ); |
1479 | return; |
1480 | } |
1481 | |
1482 | pool_print1(pp, modif, pr); |
1483 | } |
1484 | |
1485 | static void |
1486 | pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, |
1487 | void (*pr)(const char *, ...)) |
1488 | { |
1489 | struct pool_item_header *ph; |
1490 | #ifdef DIAGNOSTIC |
1491 | struct pool_item *pi; |
1492 | #endif |
1493 | |
1494 | LIST_FOREACH(ph, pl, ph_pagelist) { |
1495 | (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n" , |
1496 | ph->ph_page, ph->ph_nmissing, ph->ph_time); |
1497 | #ifdef DIAGNOSTIC |
1498 | if (!(pp->pr_roflags & PR_NOTOUCH)) { |
1499 | LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { |
1500 | if (pi->pi_magic != PI_MAGIC) { |
1501 | (*pr)("\t\t\titem %p, magic 0x%x\n" , |
1502 | pi, pi->pi_magic); |
1503 | } |
1504 | } |
1505 | } |
1506 | #endif |
1507 | } |
1508 | } |
1509 | |
1510 | static void |
1511 | pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) |
1512 | { |
1513 | struct pool_item_header *ph; |
1514 | pool_cache_t pc; |
1515 | pcg_t *pcg; |
1516 | pool_cache_cpu_t *cc; |
1517 | uint64_t cpuhit, cpumiss; |
1518 | int i, print_log = 0, print_pagelist = 0, print_cache = 0; |
1519 | char c; |
1520 | |
1521 | while ((c = *modif++) != '\0') { |
1522 | if (c == 'l') |
1523 | print_log = 1; |
1524 | if (c == 'p') |
1525 | print_pagelist = 1; |
1526 | if (c == 'c') |
1527 | print_cache = 1; |
1528 | } |
1529 | |
1530 | if ((pc = pp->pr_cache) != NULL) { |
1531 | (*pr)("POOL CACHE" ); |
1532 | } else { |
1533 | (*pr)("POOL" ); |
1534 | } |
1535 | |
1536 | (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n" , |
1537 | pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, |
1538 | pp->pr_roflags); |
1539 | (*pr)("\talloc %p\n" , pp->pr_alloc); |
1540 | (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n" , |
1541 | pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); |
1542 | (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n" , |
1543 | pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); |
1544 | |
1545 | (*pr)("\tnget %lu, nfail %lu, nput %lu\n" , |
1546 | pp->pr_nget, pp->pr_nfail, pp->pr_nput); |
1547 | (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n" , |
1548 | pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); |
1549 | |
1550 | if (print_pagelist == 0) |
1551 | goto skip_pagelist; |
1552 | |
1553 | if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) |
1554 | (*pr)("\n\tempty page list:\n" ); |
1555 | pool_print_pagelist(pp, &pp->pr_emptypages, pr); |
1556 | if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) |
1557 | (*pr)("\n\tfull page list:\n" ); |
1558 | pool_print_pagelist(pp, &pp->pr_fullpages, pr); |
1559 | if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) |
1560 | (*pr)("\n\tpartial-page list:\n" ); |
1561 | pool_print_pagelist(pp, &pp->pr_partpages, pr); |
1562 | |
1563 | if (pp->pr_curpage == NULL) |
1564 | (*pr)("\tno current page\n" ); |
1565 | else |
1566 | (*pr)("\tcurpage %p\n" , pp->pr_curpage->ph_page); |
1567 | |
1568 | skip_pagelist: |
1569 | if (print_log == 0) |
1570 | goto skip_log; |
1571 | |
1572 | (*pr)("\n" ); |
1573 | |
1574 | skip_log: |
1575 | |
1576 | #define PR_GROUPLIST(pcg) \ |
1577 | (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ |
1578 | for (i = 0; i < pcg->pcg_size; i++) { \ |
1579 | if (pcg->pcg_objects[i].pcgo_pa != \ |
1580 | POOL_PADDR_INVALID) { \ |
1581 | (*pr)("\t\t\t%p, 0x%llx\n", \ |
1582 | pcg->pcg_objects[i].pcgo_va, \ |
1583 | (unsigned long long) \ |
1584 | pcg->pcg_objects[i].pcgo_pa); \ |
1585 | } else { \ |
1586 | (*pr)("\t\t\t%p\n", \ |
1587 | pcg->pcg_objects[i].pcgo_va); \ |
1588 | } \ |
1589 | } |
1590 | |
1591 | if (pc != NULL) { |
1592 | cpuhit = 0; |
1593 | cpumiss = 0; |
1594 | for (i = 0; i < __arraycount(pc->pc_cpus); i++) { |
1595 | if ((cc = pc->pc_cpus[i]) == NULL) |
1596 | continue; |
1597 | cpuhit += cc->cc_hits; |
1598 | cpumiss += cc->cc_misses; |
1599 | } |
1600 | (*pr)("\tcpu layer hits %llu misses %llu\n" , cpuhit, cpumiss); |
1601 | (*pr)("\tcache layer hits %llu misses %llu\n" , |
1602 | pc->pc_hits, pc->pc_misses); |
1603 | (*pr)("\tcache layer entry uncontended %llu contended %llu\n" , |
1604 | pc->pc_hits + pc->pc_misses - pc->pc_contended, |
1605 | pc->pc_contended); |
1606 | (*pr)("\tcache layer empty groups %u full groups %u\n" , |
1607 | pc->pc_nempty, pc->pc_nfull); |
1608 | if (print_cache) { |
1609 | (*pr)("\tfull cache groups:\n" ); |
1610 | for (pcg = pc->pc_fullgroups; pcg != NULL; |
1611 | pcg = pcg->pcg_next) { |
1612 | PR_GROUPLIST(pcg); |
1613 | } |
1614 | (*pr)("\tempty cache groups:\n" ); |
1615 | for (pcg = pc->pc_emptygroups; pcg != NULL; |
1616 | pcg = pcg->pcg_next) { |
1617 | PR_GROUPLIST(pcg); |
1618 | } |
1619 | } |
1620 | } |
1621 | #undef PR_GROUPLIST |
1622 | } |
1623 | |
1624 | static int |
1625 | pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) |
1626 | { |
1627 | struct pool_item *pi; |
1628 | void *page; |
1629 | int n; |
1630 | |
1631 | if ((pp->pr_roflags & PR_NOALIGN) == 0) { |
1632 | page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); |
1633 | if (page != ph->ph_page && |
1634 | (pp->pr_roflags & PR_PHINPAGE) != 0) { |
1635 | if (label != NULL) |
1636 | printf("%s: " , label); |
1637 | printf("pool(%p:%s): page inconsistency: page %p;" |
1638 | " at page head addr %p (p %p)\n" , pp, |
1639 | pp->pr_wchan, ph->ph_page, |
1640 | ph, page); |
1641 | return 1; |
1642 | } |
1643 | } |
1644 | |
1645 | if ((pp->pr_roflags & PR_NOTOUCH) != 0) |
1646 | return 0; |
1647 | |
1648 | for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; |
1649 | pi != NULL; |
1650 | pi = LIST_NEXT(pi,pi_list), n++) { |
1651 | |
1652 | #ifdef DIAGNOSTIC |
1653 | if (pi->pi_magic != PI_MAGIC) { |
1654 | if (label != NULL) |
1655 | printf("%s: " , label); |
1656 | printf("pool(%s): free list modified: magic=%x;" |
1657 | " page %p; item ordinal %d; addr %p\n" , |
1658 | pp->pr_wchan, pi->pi_magic, ph->ph_page, |
1659 | n, pi); |
1660 | panic("pool" ); |
1661 | } |
1662 | #endif |
1663 | if ((pp->pr_roflags & PR_NOALIGN) != 0) { |
1664 | continue; |
1665 | } |
1666 | page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); |
1667 | if (page == ph->ph_page) |
1668 | continue; |
1669 | |
1670 | if (label != NULL) |
1671 | printf("%s: " , label); |
1672 | printf("pool(%p:%s): page inconsistency: page %p;" |
1673 | " item ordinal %d; addr %p (p %p)\n" , pp, |
1674 | pp->pr_wchan, ph->ph_page, |
1675 | n, pi, page); |
1676 | return 1; |
1677 | } |
1678 | return 0; |
1679 | } |
1680 | |
1681 | |
1682 | int |
1683 | pool_chk(struct pool *pp, const char *label) |
1684 | { |
1685 | struct pool_item_header *ph; |
1686 | int r = 0; |
1687 | |
1688 | mutex_enter(&pp->pr_lock); |
1689 | LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { |
1690 | r = pool_chk_page(pp, label, ph); |
1691 | if (r) { |
1692 | goto out; |
1693 | } |
1694 | } |
1695 | LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { |
1696 | r = pool_chk_page(pp, label, ph); |
1697 | if (r) { |
1698 | goto out; |
1699 | } |
1700 | } |
1701 | LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { |
1702 | r = pool_chk_page(pp, label, ph); |
1703 | if (r) { |
1704 | goto out; |
1705 | } |
1706 | } |
1707 | |
1708 | out: |
1709 | mutex_exit(&pp->pr_lock); |
1710 | return (r); |
1711 | } |
1712 | |
1713 | /* |
1714 | * pool_cache_init: |
1715 | * |
1716 | * Initialize a pool cache. |
1717 | */ |
1718 | pool_cache_t |
1719 | pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, |
1720 | const char *wchan, struct pool_allocator *palloc, int ipl, |
1721 | int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) |
1722 | { |
1723 | pool_cache_t pc; |
1724 | |
1725 | pc = pool_get(&cache_pool, PR_WAITOK); |
1726 | if (pc == NULL) |
1727 | return NULL; |
1728 | |
1729 | pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, |
1730 | palloc, ipl, ctor, dtor, arg); |
1731 | |
1732 | return pc; |
1733 | } |
1734 | |
1735 | /* |
1736 | * pool_cache_bootstrap: |
1737 | * |
1738 | * Kernel-private version of pool_cache_init(). The caller |
1739 | * provides initial storage. |
1740 | */ |
1741 | void |
1742 | pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, |
1743 | u_int align_offset, u_int flags, const char *wchan, |
1744 | struct pool_allocator *palloc, int ipl, |
1745 | int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), |
1746 | void *arg) |
1747 | { |
1748 | CPU_INFO_ITERATOR cii; |
1749 | pool_cache_t pc1; |
1750 | struct cpu_info *ci; |
1751 | struct pool *pp; |
1752 | |
1753 | pp = &pc->pc_pool; |
1754 | if (palloc == NULL && ipl == IPL_NONE) |
1755 | palloc = &pool_allocator_nointr; |
1756 | pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); |
1757 | mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); |
1758 | |
1759 | if (ctor == NULL) { |
1760 | ctor = (int (*)(void *, void *, int))nullop; |
1761 | } |
1762 | if (dtor == NULL) { |
1763 | dtor = (void (*)(void *, void *))nullop; |
1764 | } |
1765 | |
1766 | pc->pc_emptygroups = NULL; |
1767 | pc->pc_fullgroups = NULL; |
1768 | pc->pc_partgroups = NULL; |
1769 | pc->pc_ctor = ctor; |
1770 | pc->pc_dtor = dtor; |
1771 | pc->pc_arg = arg; |
1772 | pc->pc_hits = 0; |
1773 | pc->pc_misses = 0; |
1774 | pc->pc_nempty = 0; |
1775 | pc->pc_npart = 0; |
1776 | pc->pc_nfull = 0; |
1777 | pc->pc_contended = 0; |
1778 | pc->pc_refcnt = 0; |
1779 | pc->pc_freecheck = NULL; |
1780 | |
1781 | if ((flags & PR_LARGECACHE) != 0) { |
1782 | pc->pc_pcgsize = PCG_NOBJECTS_LARGE; |
1783 | pc->pc_pcgpool = &pcg_large_pool; |
1784 | } else { |
1785 | pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; |
1786 | pc->pc_pcgpool = &pcg_normal_pool; |
1787 | } |
1788 | |
1789 | /* Allocate per-CPU caches. */ |
1790 | memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); |
1791 | pc->pc_ncpu = 0; |
1792 | if (ncpu < 2) { |
1793 | /* XXX For sparc: boot CPU is not attached yet. */ |
1794 | pool_cache_cpu_init1(curcpu(), pc); |
1795 | } else { |
1796 | for (CPU_INFO_FOREACH(cii, ci)) { |
1797 | pool_cache_cpu_init1(ci, pc); |
1798 | } |
1799 | } |
1800 | |
1801 | /* Add to list of all pools. */ |
1802 | if (__predict_true(!cold)) |
1803 | mutex_enter(&pool_head_lock); |
1804 | TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { |
1805 | if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) |
1806 | break; |
1807 | } |
1808 | if (pc1 == NULL) |
1809 | TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); |
1810 | else |
1811 | TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); |
1812 | if (__predict_true(!cold)) |
1813 | mutex_exit(&pool_head_lock); |
1814 | |
1815 | membar_sync(); |
1816 | pp->pr_cache = pc; |
1817 | } |
1818 | |
1819 | /* |
1820 | * pool_cache_destroy: |
1821 | * |
1822 | * Destroy a pool cache. |
1823 | */ |
1824 | void |
1825 | pool_cache_destroy(pool_cache_t pc) |
1826 | { |
1827 | |
1828 | pool_cache_bootstrap_destroy(pc); |
1829 | pool_put(&cache_pool, pc); |
1830 | } |
1831 | |
1832 | /* |
1833 | * pool_cache_bootstrap_destroy: |
1834 | * |
1835 | * Destroy a pool cache. |
1836 | */ |
1837 | void |
1838 | pool_cache_bootstrap_destroy(pool_cache_t pc) |
1839 | { |
1840 | struct pool *pp = &pc->pc_pool; |
1841 | u_int i; |
1842 | |
1843 | /* Remove it from the global list. */ |
1844 | mutex_enter(&pool_head_lock); |
1845 | while (pc->pc_refcnt != 0) |
1846 | cv_wait(&pool_busy, &pool_head_lock); |
1847 | TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); |
1848 | mutex_exit(&pool_head_lock); |
1849 | |
1850 | /* First, invalidate the entire cache. */ |
1851 | pool_cache_invalidate(pc); |
1852 | |
1853 | /* Disassociate it from the pool. */ |
1854 | mutex_enter(&pp->pr_lock); |
1855 | pp->pr_cache = NULL; |
1856 | mutex_exit(&pp->pr_lock); |
1857 | |
1858 | /* Destroy per-CPU data */ |
1859 | for (i = 0; i < __arraycount(pc->pc_cpus); i++) |
1860 | pool_cache_invalidate_cpu(pc, i); |
1861 | |
1862 | /* Finally, destroy it. */ |
1863 | mutex_destroy(&pc->pc_lock); |
1864 | pool_destroy(pp); |
1865 | } |
1866 | |
1867 | /* |
1868 | * pool_cache_cpu_init1: |
1869 | * |
1870 | * Called for each pool_cache whenever a new CPU is attached. |
1871 | */ |
1872 | static void |
1873 | pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) |
1874 | { |
1875 | pool_cache_cpu_t *cc; |
1876 | int index; |
1877 | |
1878 | index = ci->ci_index; |
1879 | |
1880 | KASSERT(index < __arraycount(pc->pc_cpus)); |
1881 | |
1882 | if ((cc = pc->pc_cpus[index]) != NULL) { |
1883 | KASSERT(cc->cc_cpuindex == index); |
1884 | return; |
1885 | } |
1886 | |
1887 | /* |
1888 | * The first CPU is 'free'. This needs to be the case for |
1889 | * bootstrap - we may not be able to allocate yet. |
1890 | */ |
1891 | if (pc->pc_ncpu == 0) { |
1892 | cc = &pc->pc_cpu0; |
1893 | pc->pc_ncpu = 1; |
1894 | } else { |
1895 | mutex_enter(&pc->pc_lock); |
1896 | pc->pc_ncpu++; |
1897 | mutex_exit(&pc->pc_lock); |
1898 | cc = pool_get(&cache_cpu_pool, PR_WAITOK); |
1899 | } |
1900 | |
1901 | cc->cc_ipl = pc->pc_pool.pr_ipl; |
1902 | cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); |
1903 | cc->cc_cache = pc; |
1904 | cc->cc_cpuindex = index; |
1905 | cc->cc_hits = 0; |
1906 | cc->cc_misses = 0; |
1907 | cc->cc_current = __UNCONST(&pcg_dummy); |
1908 | cc->cc_previous = __UNCONST(&pcg_dummy); |
1909 | |
1910 | pc->pc_cpus[index] = cc; |
1911 | } |
1912 | |
1913 | /* |
1914 | * pool_cache_cpu_init: |
1915 | * |
1916 | * Called whenever a new CPU is attached. |
1917 | */ |
1918 | void |
1919 | pool_cache_cpu_init(struct cpu_info *ci) |
1920 | { |
1921 | pool_cache_t pc; |
1922 | |
1923 | mutex_enter(&pool_head_lock); |
1924 | TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { |
1925 | pc->pc_refcnt++; |
1926 | mutex_exit(&pool_head_lock); |
1927 | |
1928 | pool_cache_cpu_init1(ci, pc); |
1929 | |
1930 | mutex_enter(&pool_head_lock); |
1931 | pc->pc_refcnt--; |
1932 | cv_broadcast(&pool_busy); |
1933 | } |
1934 | mutex_exit(&pool_head_lock); |
1935 | } |
1936 | |
1937 | /* |
1938 | * pool_cache_reclaim: |
1939 | * |
1940 | * Reclaim memory from a pool cache. |
1941 | */ |
1942 | bool |
1943 | pool_cache_reclaim(pool_cache_t pc) |
1944 | { |
1945 | |
1946 | return pool_reclaim(&pc->pc_pool); |
1947 | } |
1948 | |
1949 | static void |
1950 | pool_cache_destruct_object1(pool_cache_t pc, void *object) |
1951 | { |
1952 | |
1953 | (*pc->pc_dtor)(pc->pc_arg, object); |
1954 | pool_put(&pc->pc_pool, object); |
1955 | } |
1956 | |
1957 | /* |
1958 | * pool_cache_destruct_object: |
1959 | * |
1960 | * Force destruction of an object and its release back into |
1961 | * the pool. |
1962 | */ |
1963 | void |
1964 | pool_cache_destruct_object(pool_cache_t pc, void *object) |
1965 | { |
1966 | |
1967 | FREECHECK_IN(&pc->pc_freecheck, object); |
1968 | |
1969 | pool_cache_destruct_object1(pc, object); |
1970 | } |
1971 | |
1972 | /* |
1973 | * pool_cache_invalidate_groups: |
1974 | * |
1975 | * Invalidate a chain of groups and destruct all objects. |
1976 | */ |
1977 | static void |
1978 | pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) |
1979 | { |
1980 | void *object; |
1981 | pcg_t *next; |
1982 | int i; |
1983 | |
1984 | for (; pcg != NULL; pcg = next) { |
1985 | next = pcg->pcg_next; |
1986 | |
1987 | for (i = 0; i < pcg->pcg_avail; i++) { |
1988 | object = pcg->pcg_objects[i].pcgo_va; |
1989 | pool_cache_destruct_object1(pc, object); |
1990 | } |
1991 | |
1992 | if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { |
1993 | pool_put(&pcg_large_pool, pcg); |
1994 | } else { |
1995 | KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); |
1996 | pool_put(&pcg_normal_pool, pcg); |
1997 | } |
1998 | } |
1999 | } |
2000 | |
2001 | /* |
2002 | * pool_cache_invalidate: |
2003 | * |
2004 | * Invalidate a pool cache (destruct and release all of the |
2005 | * cached objects). Does not reclaim objects from the pool. |
2006 | * |
2007 | * Note: For pool caches that provide constructed objects, there |
2008 | * is an assumption that another level of synchronization is occurring |
2009 | * between the input to the constructor and the cache invalidation. |
2010 | * |
2011 | * Invalidation is a costly process and should not be called from |
2012 | * interrupt context. |
2013 | */ |
2014 | void |
2015 | pool_cache_invalidate(pool_cache_t pc) |
2016 | { |
2017 | uint64_t where; |
2018 | pcg_t *full, *empty, *part; |
2019 | |
2020 | KASSERT(!cpu_intr_p() && !cpu_softintr_p()); |
2021 | |
2022 | if (ncpu < 2 || !mp_online) { |
2023 | /* |
2024 | * We might be called early enough in the boot process |
2025 | * for the CPU data structures to not be fully initialized. |
2026 | * In this case, transfer the content of the local CPU's |
2027 | * cache back into global cache as only this CPU is currently |
2028 | * running. |
2029 | */ |
2030 | pool_cache_transfer(pc); |
2031 | } else { |
2032 | /* |
2033 | * Signal all CPUs that they must transfer their local |
2034 | * cache back to the global pool then wait for the xcall to |
2035 | * complete. |
2036 | */ |
2037 | where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, |
2038 | pc, NULL); |
2039 | xc_wait(where); |
2040 | } |
2041 | |
2042 | /* Empty pool caches, then invalidate objects */ |
2043 | mutex_enter(&pc->pc_lock); |
2044 | full = pc->pc_fullgroups; |
2045 | empty = pc->pc_emptygroups; |
2046 | part = pc->pc_partgroups; |
2047 | pc->pc_fullgroups = NULL; |
2048 | pc->pc_emptygroups = NULL; |
2049 | pc->pc_partgroups = NULL; |
2050 | pc->pc_nfull = 0; |
2051 | pc->pc_nempty = 0; |
2052 | pc->pc_npart = 0; |
2053 | mutex_exit(&pc->pc_lock); |
2054 | |
2055 | pool_cache_invalidate_groups(pc, full); |
2056 | pool_cache_invalidate_groups(pc, empty); |
2057 | pool_cache_invalidate_groups(pc, part); |
2058 | } |
2059 | |
2060 | /* |
2061 | * pool_cache_invalidate_cpu: |
2062 | * |
2063 | * Invalidate all CPU-bound cached objects in pool cache, the CPU being |
2064 | * identified by its associated index. |
2065 | * It is caller's responsibility to ensure that no operation is |
2066 | * taking place on this pool cache while doing this invalidation. |
2067 | * WARNING: as no inter-CPU locking is enforced, trying to invalidate |
2068 | * pool cached objects from a CPU different from the one currently running |
2069 | * may result in an undefined behaviour. |
2070 | */ |
2071 | static void |
2072 | pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) |
2073 | { |
2074 | pool_cache_cpu_t *cc; |
2075 | pcg_t *pcg; |
2076 | |
2077 | if ((cc = pc->pc_cpus[index]) == NULL) |
2078 | return; |
2079 | |
2080 | if ((pcg = cc->cc_current) != &pcg_dummy) { |
2081 | pcg->pcg_next = NULL; |
2082 | pool_cache_invalidate_groups(pc, pcg); |
2083 | } |
2084 | if ((pcg = cc->cc_previous) != &pcg_dummy) { |
2085 | pcg->pcg_next = NULL; |
2086 | pool_cache_invalidate_groups(pc, pcg); |
2087 | } |
2088 | if (cc != &pc->pc_cpu0) |
2089 | pool_put(&cache_cpu_pool, cc); |
2090 | |
2091 | } |
2092 | |
2093 | void |
2094 | pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) |
2095 | { |
2096 | |
2097 | pool_set_drain_hook(&pc->pc_pool, fn, arg); |
2098 | } |
2099 | |
2100 | void |
2101 | pool_cache_setlowat(pool_cache_t pc, int n) |
2102 | { |
2103 | |
2104 | pool_setlowat(&pc->pc_pool, n); |
2105 | } |
2106 | |
2107 | void |
2108 | pool_cache_sethiwat(pool_cache_t pc, int n) |
2109 | { |
2110 | |
2111 | pool_sethiwat(&pc->pc_pool, n); |
2112 | } |
2113 | |
2114 | void |
2115 | pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) |
2116 | { |
2117 | |
2118 | pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); |
2119 | } |
2120 | |
2121 | static bool __noinline |
2122 | pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, |
2123 | paddr_t *pap, int flags) |
2124 | { |
2125 | pcg_t *pcg, *cur; |
2126 | uint64_t ncsw; |
2127 | pool_cache_t pc; |
2128 | void *object; |
2129 | |
2130 | KASSERT(cc->cc_current->pcg_avail == 0); |
2131 | KASSERT(cc->cc_previous->pcg_avail == 0); |
2132 | |
2133 | pc = cc->cc_cache; |
2134 | cc->cc_misses++; |
2135 | |
2136 | /* |
2137 | * Nothing was available locally. Try and grab a group |
2138 | * from the cache. |
2139 | */ |
2140 | if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { |
2141 | ncsw = curlwp->l_ncsw; |
2142 | mutex_enter(&pc->pc_lock); |
2143 | pc->pc_contended++; |
2144 | |
2145 | /* |
2146 | * If we context switched while locking, then |
2147 | * our view of the per-CPU data is invalid: |
2148 | * retry. |
2149 | */ |
2150 | if (curlwp->l_ncsw != ncsw) { |
2151 | mutex_exit(&pc->pc_lock); |
2152 | return true; |
2153 | } |
2154 | } |
2155 | |
2156 | if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { |
2157 | /* |
2158 | * If there's a full group, release our empty |
2159 | * group back to the cache. Install the full |
2160 | * group as cc_current and return. |
2161 | */ |
2162 | if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { |
2163 | KASSERT(cur->pcg_avail == 0); |
2164 | cur->pcg_next = pc->pc_emptygroups; |
2165 | pc->pc_emptygroups = cur; |
2166 | pc->pc_nempty++; |
2167 | } |
2168 | KASSERT(pcg->pcg_avail == pcg->pcg_size); |
2169 | cc->cc_current = pcg; |
2170 | pc->pc_fullgroups = pcg->pcg_next; |
2171 | pc->pc_hits++; |
2172 | pc->pc_nfull--; |
2173 | mutex_exit(&pc->pc_lock); |
2174 | return true; |
2175 | } |
2176 | |
2177 | /* |
2178 | * Nothing available locally or in cache. Take the slow |
2179 | * path: fetch a new object from the pool and construct |
2180 | * it. |
2181 | */ |
2182 | pc->pc_misses++; |
2183 | mutex_exit(&pc->pc_lock); |
2184 | splx(s); |
2185 | |
2186 | object = pool_get(&pc->pc_pool, flags); |
2187 | *objectp = object; |
2188 | if (__predict_false(object == NULL)) |
2189 | return false; |
2190 | |
2191 | if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { |
2192 | pool_put(&pc->pc_pool, object); |
2193 | *objectp = NULL; |
2194 | return false; |
2195 | } |
2196 | |
2197 | KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & |
2198 | (pc->pc_pool.pr_align - 1)) == 0); |
2199 | |
2200 | if (pap != NULL) { |
2201 | #ifdef POOL_VTOPHYS |
2202 | *pap = POOL_VTOPHYS(object); |
2203 | #else |
2204 | *pap = POOL_PADDR_INVALID; |
2205 | #endif |
2206 | } |
2207 | |
2208 | FREECHECK_OUT(&pc->pc_freecheck, object); |
2209 | pool_redzone_fill(&pc->pc_pool, object); |
2210 | return false; |
2211 | } |
2212 | |
2213 | /* |
2214 | * pool_cache_get{,_paddr}: |
2215 | * |
2216 | * Get an object from a pool cache (optionally returning |
2217 | * the physical address of the object). |
2218 | */ |
2219 | void * |
2220 | pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) |
2221 | { |
2222 | pool_cache_cpu_t *cc; |
2223 | pcg_t *pcg; |
2224 | void *object; |
2225 | int s; |
2226 | |
2227 | KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || |
2228 | (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), |
2229 | "pool '%s' is IPL_NONE, but called from interrupt context\n" , |
2230 | pc->pc_pool.pr_wchan); |
2231 | |
2232 | if (flags & PR_WAITOK) { |
2233 | ASSERT_SLEEPABLE(); |
2234 | } |
2235 | |
2236 | /* Lock out interrupts and disable preemption. */ |
2237 | s = splvm(); |
2238 | while (/* CONSTCOND */ true) { |
2239 | /* Try and allocate an object from the current group. */ |
2240 | cc = pc->pc_cpus[curcpu()->ci_index]; |
2241 | KASSERT(cc->cc_cache == pc); |
2242 | pcg = cc->cc_current; |
2243 | if (__predict_true(pcg->pcg_avail > 0)) { |
2244 | object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; |
2245 | if (__predict_false(pap != NULL)) |
2246 | *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; |
2247 | #if defined(DIAGNOSTIC) |
2248 | pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; |
2249 | KASSERT(pcg->pcg_avail < pcg->pcg_size); |
2250 | KASSERT(object != NULL); |
2251 | #endif |
2252 | cc->cc_hits++; |
2253 | splx(s); |
2254 | FREECHECK_OUT(&pc->pc_freecheck, object); |
2255 | pool_redzone_fill(&pc->pc_pool, object); |
2256 | return object; |
2257 | } |
2258 | |
2259 | /* |
2260 | * That failed. If the previous group isn't empty, swap |
2261 | * it with the current group and allocate from there. |
2262 | */ |
2263 | pcg = cc->cc_previous; |
2264 | if (__predict_true(pcg->pcg_avail > 0)) { |
2265 | cc->cc_previous = cc->cc_current; |
2266 | cc->cc_current = pcg; |
2267 | continue; |
2268 | } |
2269 | |
2270 | /* |
2271 | * Can't allocate from either group: try the slow path. |
2272 | * If get_slow() allocated an object for us, or if |
2273 | * no more objects are available, it will return false. |
2274 | * Otherwise, we need to retry. |
2275 | */ |
2276 | if (!pool_cache_get_slow(cc, s, &object, pap, flags)) |
2277 | break; |
2278 | } |
2279 | |
2280 | return object; |
2281 | } |
2282 | |
2283 | static bool __noinline |
2284 | pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) |
2285 | { |
2286 | struct lwp *l = curlwp; |
2287 | pcg_t *pcg, *cur; |
2288 | uint64_t ncsw; |
2289 | pool_cache_t pc; |
2290 | |
2291 | KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); |
2292 | KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); |
2293 | |
2294 | pc = cc->cc_cache; |
2295 | pcg = NULL; |
2296 | cc->cc_misses++; |
2297 | ncsw = l->l_ncsw; |
2298 | |
2299 | /* |
2300 | * If there are no empty groups in the cache then allocate one |
2301 | * while still unlocked. |
2302 | */ |
2303 | if (__predict_false(pc->pc_emptygroups == NULL)) { |
2304 | if (__predict_true(!pool_cache_disable)) { |
2305 | pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); |
2306 | } |
2307 | /* |
2308 | * If pool_get() blocked, then our view of |
2309 | * the per-CPU data is invalid: retry. |
2310 | */ |
2311 | if (__predict_false(l->l_ncsw != ncsw)) { |
2312 | if (pcg != NULL) { |
2313 | pool_put(pc->pc_pcgpool, pcg); |
2314 | } |
2315 | return true; |
2316 | } |
2317 | if (__predict_true(pcg != NULL)) { |
2318 | pcg->pcg_avail = 0; |
2319 | pcg->pcg_size = pc->pc_pcgsize; |
2320 | } |
2321 | } |
2322 | |
2323 | /* Lock the cache. */ |
2324 | if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { |
2325 | mutex_enter(&pc->pc_lock); |
2326 | pc->pc_contended++; |
2327 | |
2328 | /* |
2329 | * If we context switched while locking, then our view of |
2330 | * the per-CPU data is invalid: retry. |
2331 | */ |
2332 | if (__predict_false(l->l_ncsw != ncsw)) { |
2333 | mutex_exit(&pc->pc_lock); |
2334 | if (pcg != NULL) { |
2335 | pool_put(pc->pc_pcgpool, pcg); |
2336 | } |
2337 | return true; |
2338 | } |
2339 | } |
2340 | |
2341 | /* If there are no empty groups in the cache then allocate one. */ |
2342 | if (pcg == NULL && pc->pc_emptygroups != NULL) { |
2343 | pcg = pc->pc_emptygroups; |
2344 | pc->pc_emptygroups = pcg->pcg_next; |
2345 | pc->pc_nempty--; |
2346 | } |
2347 | |
2348 | /* |
2349 | * If there's a empty group, release our full group back |
2350 | * to the cache. Install the empty group to the local CPU |
2351 | * and return. |
2352 | */ |
2353 | if (pcg != NULL) { |
2354 | KASSERT(pcg->pcg_avail == 0); |
2355 | if (__predict_false(cc->cc_previous == &pcg_dummy)) { |
2356 | cc->cc_previous = pcg; |
2357 | } else { |
2358 | cur = cc->cc_current; |
2359 | if (__predict_true(cur != &pcg_dummy)) { |
2360 | KASSERT(cur->pcg_avail == cur->pcg_size); |
2361 | cur->pcg_next = pc->pc_fullgroups; |
2362 | pc->pc_fullgroups = cur; |
2363 | pc->pc_nfull++; |
2364 | } |
2365 | cc->cc_current = pcg; |
2366 | } |
2367 | pc->pc_hits++; |
2368 | mutex_exit(&pc->pc_lock); |
2369 | return true; |
2370 | } |
2371 | |
2372 | /* |
2373 | * Nothing available locally or in cache, and we didn't |
2374 | * allocate an empty group. Take the slow path and destroy |
2375 | * the object here and now. |
2376 | */ |
2377 | pc->pc_misses++; |
2378 | mutex_exit(&pc->pc_lock); |
2379 | splx(s); |
2380 | pool_cache_destruct_object(pc, object); |
2381 | |
2382 | return false; |
2383 | } |
2384 | |
2385 | /* |
2386 | * pool_cache_put{,_paddr}: |
2387 | * |
2388 | * Put an object back to the pool cache (optionally caching the |
2389 | * physical address of the object). |
2390 | */ |
2391 | void |
2392 | pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) |
2393 | { |
2394 | pool_cache_cpu_t *cc; |
2395 | pcg_t *pcg; |
2396 | int s; |
2397 | |
2398 | KASSERT(object != NULL); |
2399 | pool_redzone_check(&pc->pc_pool, object); |
2400 | FREECHECK_IN(&pc->pc_freecheck, object); |
2401 | |
2402 | /* Lock out interrupts and disable preemption. */ |
2403 | s = splvm(); |
2404 | while (/* CONSTCOND */ true) { |
2405 | /* If the current group isn't full, release it there. */ |
2406 | cc = pc->pc_cpus[curcpu()->ci_index]; |
2407 | KASSERT(cc->cc_cache == pc); |
2408 | pcg = cc->cc_current; |
2409 | if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { |
2410 | pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; |
2411 | pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; |
2412 | pcg->pcg_avail++; |
2413 | cc->cc_hits++; |
2414 | splx(s); |
2415 | return; |
2416 | } |
2417 | |
2418 | /* |
2419 | * That failed. If the previous group isn't full, swap |
2420 | * it with the current group and try again. |
2421 | */ |
2422 | pcg = cc->cc_previous; |
2423 | if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { |
2424 | cc->cc_previous = cc->cc_current; |
2425 | cc->cc_current = pcg; |
2426 | continue; |
2427 | } |
2428 | |
2429 | /* |
2430 | * Can't free to either group: try the slow path. |
2431 | * If put_slow() releases the object for us, it |
2432 | * will return false. Otherwise we need to retry. |
2433 | */ |
2434 | if (!pool_cache_put_slow(cc, s, object)) |
2435 | break; |
2436 | } |
2437 | } |
2438 | |
2439 | /* |
2440 | * pool_cache_transfer: |
2441 | * |
2442 | * Transfer objects from the per-CPU cache to the global cache. |
2443 | * Run within a cross-call thread. |
2444 | */ |
2445 | static void |
2446 | pool_cache_transfer(pool_cache_t pc) |
2447 | { |
2448 | pool_cache_cpu_t *cc; |
2449 | pcg_t *prev, *cur, **list; |
2450 | int s; |
2451 | |
2452 | s = splvm(); |
2453 | mutex_enter(&pc->pc_lock); |
2454 | cc = pc->pc_cpus[curcpu()->ci_index]; |
2455 | cur = cc->cc_current; |
2456 | cc->cc_current = __UNCONST(&pcg_dummy); |
2457 | prev = cc->cc_previous; |
2458 | cc->cc_previous = __UNCONST(&pcg_dummy); |
2459 | if (cur != &pcg_dummy) { |
2460 | if (cur->pcg_avail == cur->pcg_size) { |
2461 | list = &pc->pc_fullgroups; |
2462 | pc->pc_nfull++; |
2463 | } else if (cur->pcg_avail == 0) { |
2464 | list = &pc->pc_emptygroups; |
2465 | pc->pc_nempty++; |
2466 | } else { |
2467 | list = &pc->pc_partgroups; |
2468 | pc->pc_npart++; |
2469 | } |
2470 | cur->pcg_next = *list; |
2471 | *list = cur; |
2472 | } |
2473 | if (prev != &pcg_dummy) { |
2474 | if (prev->pcg_avail == prev->pcg_size) { |
2475 | list = &pc->pc_fullgroups; |
2476 | pc->pc_nfull++; |
2477 | } else if (prev->pcg_avail == 0) { |
2478 | list = &pc->pc_emptygroups; |
2479 | pc->pc_nempty++; |
2480 | } else { |
2481 | list = &pc->pc_partgroups; |
2482 | pc->pc_npart++; |
2483 | } |
2484 | prev->pcg_next = *list; |
2485 | *list = prev; |
2486 | } |
2487 | mutex_exit(&pc->pc_lock); |
2488 | splx(s); |
2489 | } |
2490 | |
2491 | /* |
2492 | * Pool backend allocators. |
2493 | * |
2494 | * Each pool has a backend allocator that handles allocation, deallocation, |
2495 | * and any additional draining that might be needed. |
2496 | * |
2497 | * We provide two standard allocators: |
2498 | * |
2499 | * pool_allocator_kmem - the default when no allocator is specified |
2500 | * |
2501 | * pool_allocator_nointr - used for pools that will not be accessed |
2502 | * in interrupt context. |
2503 | */ |
2504 | void *pool_page_alloc(struct pool *, int); |
2505 | void pool_page_free(struct pool *, void *); |
2506 | |
2507 | #ifdef POOL_SUBPAGE |
2508 | struct pool_allocator pool_allocator_kmem_fullpage = { |
2509 | .pa_alloc = pool_page_alloc, |
2510 | .pa_free = pool_page_free, |
2511 | .pa_pagesz = 0 |
2512 | }; |
2513 | #else |
2514 | struct pool_allocator pool_allocator_kmem = { |
2515 | .pa_alloc = pool_page_alloc, |
2516 | .pa_free = pool_page_free, |
2517 | .pa_pagesz = 0 |
2518 | }; |
2519 | #endif |
2520 | |
2521 | #ifdef POOL_SUBPAGE |
2522 | struct pool_allocator pool_allocator_nointr_fullpage = { |
2523 | .pa_alloc = pool_page_alloc, |
2524 | .pa_free = pool_page_free, |
2525 | .pa_pagesz = 0 |
2526 | }; |
2527 | #else |
2528 | struct pool_allocator pool_allocator_nointr = { |
2529 | .pa_alloc = pool_page_alloc, |
2530 | .pa_free = pool_page_free, |
2531 | .pa_pagesz = 0 |
2532 | }; |
2533 | #endif |
2534 | |
2535 | #ifdef POOL_SUBPAGE |
2536 | void *pool_subpage_alloc(struct pool *, int); |
2537 | void pool_subpage_free(struct pool *, void *); |
2538 | |
2539 | struct pool_allocator pool_allocator_kmem = { |
2540 | .pa_alloc = pool_subpage_alloc, |
2541 | .pa_free = pool_subpage_free, |
2542 | .pa_pagesz = POOL_SUBPAGE |
2543 | }; |
2544 | |
2545 | struct pool_allocator pool_allocator_nointr = { |
2546 | .pa_alloc = pool_subpage_alloc, |
2547 | .pa_free = pool_subpage_free, |
2548 | .pa_pagesz = POOL_SUBPAGE |
2549 | }; |
2550 | #endif /* POOL_SUBPAGE */ |
2551 | |
2552 | static void * |
2553 | pool_allocator_alloc(struct pool *pp, int flags) |
2554 | { |
2555 | struct pool_allocator *pa = pp->pr_alloc; |
2556 | void *res; |
2557 | |
2558 | res = (*pa->pa_alloc)(pp, flags); |
2559 | if (res == NULL && (flags & PR_WAITOK) == 0) { |
2560 | /* |
2561 | * We only run the drain hook here if PR_NOWAIT. |
2562 | * In other cases, the hook will be run in |
2563 | * pool_reclaim(). |
2564 | */ |
2565 | if (pp->pr_drain_hook != NULL) { |
2566 | (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); |
2567 | res = (*pa->pa_alloc)(pp, flags); |
2568 | } |
2569 | } |
2570 | return res; |
2571 | } |
2572 | |
2573 | static void |
2574 | pool_allocator_free(struct pool *pp, void *v) |
2575 | { |
2576 | struct pool_allocator *pa = pp->pr_alloc; |
2577 | |
2578 | (*pa->pa_free)(pp, v); |
2579 | } |
2580 | |
2581 | void * |
2582 | pool_page_alloc(struct pool *pp, int flags) |
2583 | { |
2584 | const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; |
2585 | vmem_addr_t va; |
2586 | int ret; |
2587 | |
2588 | ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, |
2589 | vflags | VM_INSTANTFIT, &va); |
2590 | |
2591 | return ret ? NULL : (void *)va; |
2592 | } |
2593 | |
2594 | void |
2595 | pool_page_free(struct pool *pp, void *v) |
2596 | { |
2597 | |
2598 | uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); |
2599 | } |
2600 | |
2601 | static void * |
2602 | pool_page_alloc_meta(struct pool *pp, int flags) |
2603 | { |
2604 | const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; |
2605 | vmem_addr_t va; |
2606 | int ret; |
2607 | |
2608 | ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, |
2609 | vflags | VM_INSTANTFIT, &va); |
2610 | |
2611 | return ret ? NULL : (void *)va; |
2612 | } |
2613 | |
2614 | static void |
2615 | pool_page_free_meta(struct pool *pp, void *v) |
2616 | { |
2617 | |
2618 | vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); |
2619 | } |
2620 | |
2621 | #ifdef POOL_REDZONE |
2622 | #if defined(_LP64) |
2623 | # define PRIME 0x9e37fffffffc0000UL |
2624 | #else /* defined(_LP64) */ |
2625 | # define PRIME 0x9e3779b1 |
2626 | #endif /* defined(_LP64) */ |
2627 | #define STATIC_BYTE 0xFE |
2628 | CTASSERT(POOL_REDZONE_SIZE > 1); |
2629 | |
2630 | static inline uint8_t |
2631 | pool_pattern_generate(const void *p) |
2632 | { |
2633 | return (uint8_t)(((uintptr_t)p) * PRIME |
2634 | >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); |
2635 | } |
2636 | |
2637 | static void |
2638 | pool_redzone_init(struct pool *pp, size_t requested_size) |
2639 | { |
2640 | size_t nsz; |
2641 | |
2642 | if (pp->pr_roflags & PR_NOTOUCH) { |
2643 | pp->pr_reqsize = 0; |
2644 | pp->pr_redzone = false; |
2645 | return; |
2646 | } |
2647 | |
2648 | /* |
2649 | * We may have extended the requested size earlier; check if |
2650 | * there's naturally space in the padding for a red zone. |
2651 | */ |
2652 | if (pp->pr_size - requested_size >= POOL_REDZONE_SIZE) { |
2653 | pp->pr_reqsize = requested_size; |
2654 | pp->pr_redzone = true; |
2655 | return; |
2656 | } |
2657 | |
2658 | /* |
2659 | * No space in the natural padding; check if we can extend a |
2660 | * bit the size of the pool. |
2661 | */ |
2662 | nsz = roundup(pp->pr_size + POOL_REDZONE_SIZE, pp->pr_align); |
2663 | if (nsz <= pp->pr_alloc->pa_pagesz) { |
2664 | /* Ok, we can */ |
2665 | pp->pr_size = nsz; |
2666 | pp->pr_reqsize = requested_size; |
2667 | pp->pr_redzone = true; |
2668 | } else { |
2669 | /* No space for a red zone... snif :'( */ |
2670 | pp->pr_reqsize = 0; |
2671 | pp->pr_redzone = false; |
2672 | printf("pool redzone disabled for '%s'\n" , pp->pr_wchan); |
2673 | } |
2674 | } |
2675 | |
2676 | static void |
2677 | pool_redzone_fill(struct pool *pp, void *p) |
2678 | { |
2679 | uint8_t *cp, pat; |
2680 | const uint8_t *ep; |
2681 | |
2682 | if (!pp->pr_redzone) |
2683 | return; |
2684 | |
2685 | cp = (uint8_t *)p + pp->pr_reqsize; |
2686 | ep = cp + POOL_REDZONE_SIZE; |
2687 | |
2688 | /* |
2689 | * We really don't want the first byte of the red zone to be '\0'; |
2690 | * an off-by-one in a string may not be properly detected. |
2691 | */ |
2692 | pat = pool_pattern_generate(cp); |
2693 | *cp = (pat == '\0') ? STATIC_BYTE: pat; |
2694 | cp++; |
2695 | |
2696 | while (cp < ep) { |
2697 | *cp = pool_pattern_generate(cp); |
2698 | cp++; |
2699 | } |
2700 | } |
2701 | |
2702 | static void |
2703 | pool_redzone_check(struct pool *pp, void *p) |
2704 | { |
2705 | uint8_t *cp, pat, expected; |
2706 | const uint8_t *ep; |
2707 | |
2708 | if (!pp->pr_redzone) |
2709 | return; |
2710 | |
2711 | cp = (uint8_t *)p + pp->pr_reqsize; |
2712 | ep = cp + POOL_REDZONE_SIZE; |
2713 | |
2714 | pat = pool_pattern_generate(cp); |
2715 | expected = (pat == '\0') ? STATIC_BYTE: pat; |
2716 | if (expected != *cp) { |
2717 | panic("%s: %p: 0x%02x != 0x%02x\n" , |
2718 | __func__, cp, *cp, expected); |
2719 | } |
2720 | cp++; |
2721 | |
2722 | while (cp < ep) { |
2723 | expected = pool_pattern_generate(cp); |
2724 | if (*cp != expected) { |
2725 | panic("%s: %p: 0x%02x != 0x%02x\n" , |
2726 | __func__, cp, *cp, expected); |
2727 | } |
2728 | cp++; |
2729 | } |
2730 | } |
2731 | |
2732 | #endif /* POOL_REDZONE */ |
2733 | |
2734 | |
2735 | #ifdef POOL_SUBPAGE |
2736 | /* Sub-page allocator, for machines with large hardware pages. */ |
2737 | void * |
2738 | pool_subpage_alloc(struct pool *pp, int flags) |
2739 | { |
2740 | return pool_get(&psppool, flags); |
2741 | } |
2742 | |
2743 | void |
2744 | pool_subpage_free(struct pool *pp, void *v) |
2745 | { |
2746 | pool_put(&psppool, v); |
2747 | } |
2748 | |
2749 | #endif /* POOL_SUBPAGE */ |
2750 | |
2751 | #if defined(DDB) |
2752 | static bool |
2753 | pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) |
2754 | { |
2755 | |
2756 | return (uintptr_t)ph->ph_page <= addr && |
2757 | addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; |
2758 | } |
2759 | |
2760 | static bool |
2761 | pool_in_item(struct pool *pp, void *item, uintptr_t addr) |
2762 | { |
2763 | |
2764 | return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; |
2765 | } |
2766 | |
2767 | static bool |
2768 | pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) |
2769 | { |
2770 | int i; |
2771 | |
2772 | if (pcg == NULL) { |
2773 | return false; |
2774 | } |
2775 | for (i = 0; i < pcg->pcg_avail; i++) { |
2776 | if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { |
2777 | return true; |
2778 | } |
2779 | } |
2780 | return false; |
2781 | } |
2782 | |
2783 | static bool |
2784 | pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) |
2785 | { |
2786 | |
2787 | if ((pp->pr_roflags & PR_NOTOUCH) != 0) { |
2788 | unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); |
2789 | pool_item_bitmap_t *bitmap = |
2790 | ph->ph_bitmap + (idx / BITMAP_SIZE); |
2791 | pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); |
2792 | |
2793 | return (*bitmap & mask) == 0; |
2794 | } else { |
2795 | struct pool_item *pi; |
2796 | |
2797 | LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { |
2798 | if (pool_in_item(pp, pi, addr)) { |
2799 | return false; |
2800 | } |
2801 | } |
2802 | return true; |
2803 | } |
2804 | } |
2805 | |
2806 | void |
2807 | pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) |
2808 | { |
2809 | struct pool *pp; |
2810 | |
2811 | TAILQ_FOREACH(pp, &pool_head, pr_poollist) { |
2812 | struct pool_item_header *ph; |
2813 | uintptr_t item; |
2814 | bool allocated = true; |
2815 | bool incache = false; |
2816 | bool incpucache = false; |
2817 | char cpucachestr[32]; |
2818 | |
2819 | if ((pp->pr_roflags & PR_PHINPAGE) != 0) { |
2820 | LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { |
2821 | if (pool_in_page(pp, ph, addr)) { |
2822 | goto found; |
2823 | } |
2824 | } |
2825 | LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { |
2826 | if (pool_in_page(pp, ph, addr)) { |
2827 | allocated = |
2828 | pool_allocated(pp, ph, addr); |
2829 | goto found; |
2830 | } |
2831 | } |
2832 | LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { |
2833 | if (pool_in_page(pp, ph, addr)) { |
2834 | allocated = false; |
2835 | goto found; |
2836 | } |
2837 | } |
2838 | continue; |
2839 | } else { |
2840 | ph = pr_find_pagehead_noalign(pp, (void *)addr); |
2841 | if (ph == NULL || !pool_in_page(pp, ph, addr)) { |
2842 | continue; |
2843 | } |
2844 | allocated = pool_allocated(pp, ph, addr); |
2845 | } |
2846 | found: |
2847 | if (allocated && pp->pr_cache) { |
2848 | pool_cache_t pc = pp->pr_cache; |
2849 | struct pool_cache_group *pcg; |
2850 | int i; |
2851 | |
2852 | for (pcg = pc->pc_fullgroups; pcg != NULL; |
2853 | pcg = pcg->pcg_next) { |
2854 | if (pool_in_cg(pp, pcg, addr)) { |
2855 | incache = true; |
2856 | goto print; |
2857 | } |
2858 | } |
2859 | for (i = 0; i < __arraycount(pc->pc_cpus); i++) { |
2860 | pool_cache_cpu_t *cc; |
2861 | |
2862 | if ((cc = pc->pc_cpus[i]) == NULL) { |
2863 | continue; |
2864 | } |
2865 | if (pool_in_cg(pp, cc->cc_current, addr) || |
2866 | pool_in_cg(pp, cc->cc_previous, addr)) { |
2867 | struct cpu_info *ci = |
2868 | cpu_lookup(i); |
2869 | |
2870 | incpucache = true; |
2871 | snprintf(cpucachestr, |
2872 | sizeof(cpucachestr), |
2873 | "cached by CPU %u" , |
2874 | ci->ci_index); |
2875 | goto print; |
2876 | } |
2877 | } |
2878 | } |
2879 | print: |
2880 | item = (uintptr_t)ph->ph_page + ph->ph_off; |
2881 | item = item + rounddown(addr - item, pp->pr_size); |
2882 | (*pr)("%p is %p+%zu in POOL '%s' (%s)\n" , |
2883 | (void *)addr, item, (size_t)(addr - item), |
2884 | pp->pr_wchan, |
2885 | incpucache ? cpucachestr : |
2886 | incache ? "cached" : allocated ? "allocated" : "free" ); |
2887 | } |
2888 | } |
2889 | #endif /* defined(DDB) */ |
2890 | |
2891 | static int |
2892 | pool_sysctl(SYSCTLFN_ARGS) |
2893 | { |
2894 | struct pool_sysctl data; |
2895 | struct pool *pp; |
2896 | struct pool_cache *pc; |
2897 | pool_cache_cpu_t *cc; |
2898 | int error; |
2899 | size_t i, written; |
2900 | |
2901 | if (oldp == NULL) { |
2902 | *oldlenp = 0; |
2903 | TAILQ_FOREACH(pp, &pool_head, pr_poollist) |
2904 | *oldlenp += sizeof(data); |
2905 | return 0; |
2906 | } |
2907 | |
2908 | memset(&data, 0, sizeof(data)); |
2909 | error = 0; |
2910 | written = 0; |
2911 | TAILQ_FOREACH(pp, &pool_head, pr_poollist) { |
2912 | if (written + sizeof(data) > *oldlenp) |
2913 | break; |
2914 | strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan)); |
2915 | data.pr_pagesize = pp->pr_alloc->pa_pagesz; |
2916 | data.pr_flags = pp->pr_roflags | pp->pr_flags; |
2917 | #define COPY(field) data.field = pp->field |
2918 | COPY(pr_size); |
2919 | |
2920 | COPY(pr_itemsperpage); |
2921 | COPY(pr_nitems); |
2922 | COPY(pr_nout); |
2923 | COPY(pr_hardlimit); |
2924 | COPY(pr_npages); |
2925 | COPY(pr_minpages); |
2926 | COPY(pr_maxpages); |
2927 | |
2928 | COPY(pr_nget); |
2929 | COPY(pr_nfail); |
2930 | COPY(pr_nput); |
2931 | COPY(pr_npagealloc); |
2932 | COPY(pr_npagefree); |
2933 | COPY(pr_hiwat); |
2934 | COPY(pr_nidle); |
2935 | #undef COPY |
2936 | |
2937 | data.pr_cache_nmiss_pcpu = 0; |
2938 | data.pr_cache_nhit_pcpu = 0; |
2939 | if (pp->pr_cache) { |
2940 | pc = pp->pr_cache; |
2941 | data.pr_cache_meta_size = pc->pc_pcgsize; |
2942 | data.pr_cache_nfull = pc->pc_nfull; |
2943 | data.pr_cache_npartial = pc->pc_npart; |
2944 | data.pr_cache_nempty = pc->pc_nempty; |
2945 | data.pr_cache_ncontended = pc->pc_contended; |
2946 | data.pr_cache_nmiss_global = pc->pc_misses; |
2947 | data.pr_cache_nhit_global = pc->pc_hits; |
2948 | for (i = 0; i < pc->pc_ncpu; ++i) { |
2949 | cc = pc->pc_cpus[i]; |
2950 | if (cc == NULL) |
2951 | continue; |
2952 | data.pr_cache_nmiss_pcpu += cc->cc_misses; |
2953 | data.pr_cache_nhit_pcpu += cc->cc_hits; |
2954 | } |
2955 | } else { |
2956 | data.pr_cache_meta_size = 0; |
2957 | data.pr_cache_nfull = 0; |
2958 | data.pr_cache_npartial = 0; |
2959 | data.pr_cache_nempty = 0; |
2960 | data.pr_cache_ncontended = 0; |
2961 | data.pr_cache_nmiss_global = 0; |
2962 | data.pr_cache_nhit_global = 0; |
2963 | } |
2964 | |
2965 | error = sysctl_copyout(l, &data, oldp, sizeof(data)); |
2966 | if (error) |
2967 | break; |
2968 | written += sizeof(data); |
2969 | oldp = (char *)oldp + sizeof(data); |
2970 | } |
2971 | |
2972 | *oldlenp = written; |
2973 | return error; |
2974 | } |
2975 | |
2976 | SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup" ) |
2977 | { |
2978 | const struct sysctlnode *rnode = NULL; |
2979 | |
2980 | sysctl_createv(clog, 0, NULL, &rnode, |
2981 | CTLFLAG_PERMANENT, |
2982 | CTLTYPE_STRUCT, "pool" , |
2983 | SYSCTL_DESCR("Get pool statistics" ), |
2984 | pool_sysctl, 0, NULL, 0, |
2985 | CTL_KERN, CTL_CREATE, CTL_EOL); |
2986 | } |
2987 | |