I nt ernet Engi neering Task Force (I ETF) S. Hartman, Ed

Request for Comments: 7055 Pai nl ess Security
Cat egory: Standards Track J. How ett
| SSN: 2070-1721 JANET(UK)

Decenber 2013

A GSS- APl Mechani sm for the Extensible Authentication Protoco
Abst r act

Thi s docunent defines protocols, procedures, and conventions to be
enpl oyed by peers inplenmenting the Generic Security Service
Application Program | nterface (GSS-API) when using the Extensible
Aut henti cati on Protocol nechanism Through the GS2 fam |y of
mechani sns defined in RFC 5801, these protocols also define how

Si mpl e Authentication and Security Layer (SASL) applications use the
Ext ensi bl e Aut henti cati on Protocol

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/ rfc7055

Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Hart man & How ett St andards Track [Page 1]

RFC 7055 EAP GSS- API Decenber 2013

Tabl e of Contents

1. IntroduCti On 3
1. L. D SCOVRIY it ittt e e e e e 4
1.2. Authentication 4
1.3. Secure Association Protocol 6

2. Requirenments Notation, 6

3. EAP Channel Binding and Naming 6
3.1. Mechanism Nane Format i 7
3.2. Internationalization of Names 10
3.3. Exported Mechanism Names 10
3.4. Acceptor Name RADIUS AVP i 11
3.5. Proxy Verification of Acceptor Nane 11

4., Selection of EAP Method i 12

5. Context TOKENS 13
5.1. Mechanisnms and Encryption Types 14
5.2. Processing Received Tokens 15
5.3. Error Subtokens 16
5.4, Initial State 16

5.4.1. Vendor Subtoken 17
5.4.2. Acceptor Name Request 17
5.4.3. Acceptor Name ReSpONSe 18
5.5. Authenticate State 18
5.5.1. EAP Request Subtoken 19
5.5.2. EAP Response Subtoken 19
5.6. EXtensions State 20
5.6.1. Flags Subtoken 20
5.6.2. GSS Channel Bindings Subtoken 20
5.6.3. MC Subtoken i 21
5.7. Exanpl e Token e 22
5.8. Context OptioNnNs 23

B. ACCEPLOr SEIrVi CES ..t 23
6.1. GSS-API Channel Binding 24
6.2. Per-Message SeCUrity e 24
6. 3. Pseudorandom Function 24

7. TANA Considerati ONSt e 25
7.1, O D Regi StrY it e e e e e 25
7.2. RFC 4121 Token ldentifiers 26
7.3. GSS-EAP Subtoken Types 26
7.4. RADIUS Attribute Assignments, 27
7.5. Registration of the EAP- AES128 SASL Mechanisms 28
7.6, GSS-EAP ErroOr S .. e 28
7.7. GSS-EAP Context Flags 30

8. Security Considerati oOns e 30

9. ACKNOW edgemBnt S 32

10. Ref erences 32

Appendi x A. Pre-publication RADIUS VSA 33

Hart man & How ett St andards Track [Page 2]

RFC 7055 EAP GSS- API Decenber 2013

1. Introduction

The Application Bridging for Federated Access Beyond Wb (ABFAB)
docunent [ABFAB- ARCH] describes an architecture for providing
federated access managenent to applications using the Ceneric
Security Service Application Progranm ng Interface (GSS-API)

[RFC2743] and Sinple Authentication and Security Layer (SASL)

[RFC4422]. This specification provides the core mechani sm for
bringing federated authentication to these applications.

The Extensibl e Authentication Protocol (EAP) [RFC3748] defines a
framework for authenticating a network access client and server in
order to gain access to a network. A variety of different EAP

met hods are in wi de use; one of EAP' s strengths is that for nost
types of credentials in comon use, there is an EAP nethod that
permits the credential to be used.

EAP is often used in conjunction with a backend Aut hentication

Aut hori zation and Accounting (AAA) server via RADI US [RFC3579] or

Di ameter [RFC4072]. In this node, the Network Access Server (NAS)
sinply tunnels EAP packets over the backend authentication protoco
to a home EAP/ AAA server for the client. After EAP succeeds, the
backend aut hentication protocol is used to comunicate key materi al
to the NAS. In this node, the NAS need not be aware of or have any
specific support for the EAP nethod used between the client and the
home EAP server. The client and EAP server share a credential that
depends on the EAP nethod; the NAS and AAA server share a credentia
based on the backend authentication protocol in use. The backend
aut hentication server acts as a trusted third party, enabling network
access even though the client and NAS nay not actually share any
common aut hentication nethods. As described in the architecture
docunent [ABFAB- ARCH], using AAA proxies, this node can be extended
beyond one organi zation to provide federated authentication for

net wor k access.

The GSS- APl provides a generic framework for applications to use
security services including authentication and per-nessage data
security. Between protocols that support GSS-API directly or
protocol s that support SASL [RFC4422], many application protocols can
use GSS- APl for security services. However, with the exception of
Ker beros [RFC4121], few GSS-API nechanisns are in wi de use on the
Internet. Wiile GSS-API permits an application to be witten

i ndependent of the specific GSS-API nechanismin use, there is no
facility to separate the server fromthe inplementation of the
nmechani smas there is with EAP and backend authentication servers.

Hart man & How ett St andards Track [Page 3]

RFC 7055 EAP GSS- API Decenber 2013

The goal of this specification is to conbine GSS-API's support for
application protocols with EAP/ AAA's support for conmon credenti al
types and for authenticating to a server w thout requiring that
server to specifically support the authentication method in use. In
addition, this specification supports the architectural goal of
transporting attributes about subjects to relying parties. Together
this conbination will provide federated authentication and

aut hori zation for GSS-APlI applications. This specification neets the
applicability requirenments for EAP to application authentication

[RFC7057] .

This mechanismis a GSS-API nechani smthat encapsul ates an EAP

conversation. Fromthe perspective of RFC 3748, this specification
defines a new | oner-1layer protocol for EAP. Fromthe perspective of
the application, this specification defines a new GSS-APlI nechani sm

Section 1.3 of [RFC5247] outlines the typical conversation between
EAP peers where an EAP key is derived:

Phase 0: Discovery
Phase 1: Authentication
la: EAP aut hentication
1b: AAA Key Transport (optional)
Phase 2: Secure Associ ation Protocol
2a: Unicast Secure Associ ation
2b: Multicast Secure Association (optional)

1.1. Discovery

GSS- APl peers discover each other and di scover support for GSS-APlI in
an application-dependent nechanism SASL [RFC4422] describes how

di scovery of a particular SASL nechani sm such as a GSS- APl EAP
mechani smis conducted. The Sinple and Protected Negotiation
mechani sm (SPNEGO) [RFC4178] provi des anot her approach for

di scovering what GSS-APlI nechani sns are avail able. The specific
approach used for discovery is out of scope for this nechani sm

1.2. Authentication

GSS- APl authenticates a party called the "GSS-API initiator" to the
GSS- APl acceptor, optionally providing authentication of the acceptor
to the initiator. Authentication starts with a nechani smspecific
message called a "context token" sent fromthe initiator to the
acceptor. The acceptor responds, followed by the initiator, and so
on until authentication succeeds or fails. GSS-API context tokens
are reliably delivered by the application using GSS-API. The
application is responsible for in-order delivery and retransm ssion.

Hart man & How ett St andards Track [Page 4]

RFC 7055 EAP GSS- API Decenber 2013

EAP authenticates a party called a "peer" to a party called the "EAP
server". A third party called an "EAP pass-through authenticator"
may decapsul ate EAP nessages froma | ower |ayer and re-encapsul ate
theminto a AAA protocol. The term EAP authenticator refers to

whi chever of the pass-through authenticator or EAP server receives
the | ower-1layer EAP packets. The first EAP nessage travels fromthe
authenticator to the peer; a GSS-API nessage is sent fromthe
initiator to acceptor to pronpt the authenticator to send the first
EAP nessage. The EAP peer maps onto the GSS-API initiator. The role
of the GSS-APlI acceptor is split between the EAP authenticator and
the EAP server. Wen these two entities are conbi ned, the division
resenbl es GSS- APl acceptors in other nechanisns. Wen a nore typica
depl oynent is used and there is a pass-through authenticator, nost
context establishnent takes place on the EAP server and per-nessage
operations take place on the authenticator. EAP nessages fromthe
peer to the authenticator are called responses; nessages fromthe
aut henticator to the peer are called requests.

Because GSS- APl applications provide guaranteed delivery of context
t okens, the EAP retransm ssion tinmeout MJST be infinite and the EAP
| ayer MUST NOT retransmit a nessage.

This specification pernmts a GSS-APlI acceptor to hand off the
processing of the EAP packets to a renpte EAP server by using AAA
protocol s such as RADI US, Transport Layer Security (TLS) Encryption

t hereof [RFC6929], or Dianeter. |In this case, the GSS-APlI acceptor
acts as an EAP pass-through authenticator. The pass-through

aut henticator is responsible for retransmtting AAA nessages if a
response is not received fromthe AAA server. |If a response cannot
be received, then the authenticator generates an error at the GSS-API
level. |f EAP authentication is successful, and where the chosen EAP
nmet hod supports key derivation, EAP keying material may al so be
derived. |If a AAA protocol is used, this can also be used to
replicate the EAP Key fromthe EAP server to the EAP authenti cator.

See Section 5 for details of the authenticati on exchange.

Hart man & How ett St andards Track [Page 5]

RFC 7055 EAP GSS- API Decenber 2013

1.3. Secure Association Protoco

After authentication succeeds, GSS-API provides a nunber of per-
nmessage security services that can be used

GSS Wap() provides integrity and optional confidentiality for a
nessage

GSS GetM C() provides integrity protection for data sent
i ndependently of the GSS-API

GSS Pseudo_random [RFC4401] provides key derivation functionality.

These services performa function simlar to secure association
protocols in network access. Like secure association protocols,
these services need to be perforned near the authenticator/acceptor
even when a AAA protocol is used to separate the authenticator from
the EAP server. The key used for these per-nessage services is
derived fromthe EAP key; the EAP peer and authenticator derive this
key as a result of a successful EAP authentication. |In the case that
the EAP authenticator is acting as a pass-through, it obtains it via
the AAA protocol. See Section 6 for details.

2. Requirenments Notation

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

3. EAP Channel Binding and Nani ng

EAP authenticates a user to a realm The peer knows that it has
exchanged aut hentication with an EAP server in a given realm Today,
the peer does not typically know which NAS it is talking to securely.
That is often fine for network access. However, privileges to

del egate to a chat server seemvery different than privileges for a
file server or trading site. Also, an EAP peer knows the identity of
the hone real m but perhaps not even the visited realm

In contrast, GSS-API takes a nane for both the initiator and acceptor
as inputs to the authentication process. Wen nutual authentication
is used, both parties are authenticated. The granularity of these
nanes i s sonewhat nechani sm dependent. |n the case of the Kerberos
mechani sm the acceptor nane typically identifies both the protoco
in use (such as I MAP) and the specific instance of the service being
connected to. The acceptor nane al nost always identifies the

adm ni strative domain providing service

Hart man & How ett St andards Track [Page 6]

RFC 7055 EAP GSS- API Decenber 2013

A GSS- APl EAP nechani sm needs to provide GSS-API naning semantics in
order to work with existing GSS-APlI applications. EAP channe

bi ndi ng [RFC6677] is used to provide GSS-API nam ng senanti cs.
Channel binding sends a set of attributes fromthe peer to the EAP
server either as part of the EAP conversation or as part of a secure
association protocol. |In addition, attributes are sent in the
backend aut hentication protocol fromthe authenticator to the EAP
server. The EAP server confirns the consistency of these attributes.
Confirmng attribute consistency al so invol ves checki ng consi stency
agai nst a |l ocal policy database as discussed in Section 3.5. In
particul ar, the peer sends the nane of the acceptor it is
authenticating to as part of channel binding. The acceptor sends its
full nanme as part of the backend authentication protocol. The EAP
server confirms consistency of the nanes.

EAP channel binding is easily confused with a facility in GSS-API

al so called "channel binding". GSS-API channel binding provides
protection against nan-in-the-mddle attacks when GSS-APlI is used as
aut hentication inside sonme tunnel; it is simlar to a facility called

"cryptographic binding" in EAP. See [RFC5056] for a discussion of
the differences between these two facilities and Section 6.1 for how
GSS- APl channel binding is handled in this nechani sm

3.1. Mechani sm Nane For mat

Bef ore discussing how the initiator and acceptor names are validated
in the AA infrastructure, it is necessary to discuss what conposes a
nane for an EAP GSS- APl nmechanism GSS-APlI permits several types of
generic names to be inported using GSS |Inport_nane(). Once a

mechani smis chosen, these nanes are converted into a nmechani sm
specific name called a "Mechani sm Nane". Note that a Mechani sm Nane
is the name of an initiator or acceptor, not of a GSS-API nechani sm
This section first discusses the nechani smnane form and then

di scusses what nane fornms are support ed.

Hart man & How ett St andards Track [Page 7]

RFC 7055 EAP GSS- API Decenber 2013

The string representation of the GSS-EAP nechani sm nane has the
foll owi ng ABNF [RFC5234] representation

char-normal = %00- 2E/ % 30- 3F/ %41- 5B/ %5D- FF

char-escaped = "\" W&2F / "\" %40 / "\" W&5C

nane-char = char-normal / char-escaped

nane-string = 1*nane-char

user-or-service = nanme-string

host = [name-string]

real m= nane-string

service-specific = nanme-string

service-specifics = service-specific 0*("/" service-specifics)

nane = user-or-service ["/" host ["/" service-specifics]] ["@
real m]

Speci al characters appearing in a nanme can be backsl ash escaped to
avoid their special neanings. For exanple, "\\" represents a litera
backsl ash. This escaping nechanismis a property of the string
representation; if the conponents of a nane are transported in sone
nmechani smthat will keep them separate wi thout backsl ash escapi ng,

t hen backsl ash SHOULD have no speci al neani ng.

The user-or-service conponent is sinmlar to the portion of a network
access identifier (NAI) before the '@ synbol for initiator names and
the service nane fromthe registry of GSS-APlI host-based services in
the case of acceptor nanmes [GSS-1 ANA]. The NAI specification
provides rules for encoding and string preparation in order to
support internationalization of NAls; inplenentations of this
mechani sm MUST NOT prepare the user-or-service according to these
rules; see Section 3.2 for internationalization of this nechani sm
The host portion is enpty for initiators and typically contains the
domai n name of the system on which an acceptor service is running.
Some services MAY require additional paraneters to distinguish the
entity being authenticated against. Such paraneters are encoded in
the service-specifics portion of the name. The EAP server MJST
reject authentication of any acceptor nane that has a non-enpty
servi ce-specifics conponent unless the EAP server understands the
service-specifics and authenticates them The interpretation of the
service-specifics is scoped by the user-or-service portion. The
realmis simlar to the realmportion of a NAI for initiator nanes;
again the NAl specification’s internationalization rules MJUST NOT be
applied to the realm The realmis the administrative realmof a
service for an acceptor nane.

The string representation of this name formis designed to be

generally conpatible with the string representati on of Kerberos nanes
defined in [RFC1964] .

Hart man & How ett St andards Track [Page 8]

RFC 7055 EAP GSS- API Decenber 2013

The GSS C NT_USER NAME form represents the nane of an individua

user. Fromthe standpoint of this nechanism it may take the form of
ei ther an undecorated user name or a nane semantically sinmilar to a
network access identifier (NA) [RFC4282]. The nane is split at the
first at-sign (@) into the part preceding the realm which is the
user-or-service portion of the nmechani smnane, and the real mportion
which is the real mportion of the nechani sm nane.

The GSS_C NT_HOSTBASED SERVI CE nane formrepresents a service running
on a host; it is textually represented as "service@ost". This nane
formis required by nost SASL profiles and is used by many existing
applications that use the Kerberos GSS-API nechanism Wil e support
for this nane formis critical, it presents an interesting chall enge
in ternms of EAP channel binding. Consider a case where the server
communi cates with a "server proxy," or a AAA server near the server.
That server proxy comunicates with the EAP server. The EAP server
and server proxy are in different adm nistrative realnms. The server
proxy is in a position to verify that the request cones fromthe

i ndi cated host. However, the EAP server cannot make this
determination directly. So, the EAP server needs to determ ne

whet her to trust the server proxy to verify the host portion of the
acceptor name. This trust decision depends both on the host name and
the real mof the server proxy. |In effect, the EAP server decides
whet her to trust that the real mof the server proxy is the right

real mfor the given hostnanme and then nakes a trust decision about
the server proxy itself. The same probl em appears in Kerberos:

there, clients decide what Kerberos realmto trust for a given

host name. The service portion of this nane is inported into the
user-or-service portion of the mechani sm nane; the host portion is
inmported into the host portion of the nmechani smname. The real m
portion is enpty. However, authentication will typically fail unless
sonme AAA conponent indicates the realmto the EAP server. |If the
application server knows its realm then it should be indicated in

t he out goi ng AAA request. O herw se, a proxy SHOULD add the realm
An alternate formof this nanme type MAY be used on acceptors; in this
case, the nane formis "service" with no host conponent. This is
inmported with the service as user-or-service and an enpty host and
realmportion. This formis useful when a service is unsure which
name an initiator knows it by.

If the null name type or the GSS_EAP_NT_EAP_NAME (A D
1.3.6.1.5.5.15.2.1) (see Section 7.1) is inported, then the string
representation above should be directly inported. Mechanisns MAY
support the GSS KRB5_NT_KRB5 PRI NCl PAL_NAME nane formwith the O D
{iso(1) nenber-body(2) United States(840) mt(113554) infosys(1)
gssapi (2) krb5(2) krb5 nane(1)}. |In many circunstances, Kerberos
GSS- APl nechani sm nanmes wi |l behave as expected when used with the
GSS- APl EAP nechani sm but there are sone differences that nay cause

Hart man & How ett St andards Track [Page 9]

RFC 7055 EAP GSS- API Decenber 2013

some confusion. |If an inplenentation does support inporting Kerberos
nanes it SHOULD fail the inport if the Kerberos nane is not
syntactically a valid GSS-API EAP nmechani sm nane as defined in this
section.

3.2. Internationalization of Nanes

For the nobst part, GSS-EAP nanes are transported in other protocols;
those protocols define the internationalization semantics. For
exanple, if a AAA server wi shes to comuni cate the user-or-service
portion of the initiator nanme to an acceptor, it does so using

exi sting nechanisns in the AAA protocol. Existing
internationalization rules are applied. Simlarly, within an
application, existing specifications such as [RFC5178] define the
encodi ng of nanes that are inported and displayed with the GSS-API

Thi s mechani sm does introduce a few cases where nane conponents are
sent. 1In these cases, the encoding of the string is UTF-8. Senders
SHOULD NOT nornmlize or map strings before sending. These strings
include RADIUS attributes introduced in Section 3.4.

When conparing the host portion of a GSS-EAP acceptor nane supplied
in EAP channel binding by a peer to that supplied by an acceptor, EAP
servers SHOULD prepare the host portion according to [RFC5891] pri or
to conparison. Applications MAY prepare donain nanes prior to
inmporting theminto this mechani sm

3.3. Exported Mechani sm Nanes

GSS- APl provides the GSS Export _nane call. This call can be used to
export the binary representation of a nane. This nane form can be
stored on access control lists for binary conparison

The exported nanme token MJST use the fornmat described in Section 3.2
of RFC 2743. The mechani sm specific portion of this name token is
the string format of the mechani sm nane described in Section 3.1.

RFC 2744 [RFC2744] places the requirenent that the result of
importing a name, canonicalizing it to a Mechani sm Nane and then
exporting it needs to be the same as inporting that name, obtaining
credentials for that principal, initiating a context with those
credentials and exporting the nane on the acceptor. |In practice, GSS
mechani snms often, but not always, nmeet this requirenent. For nanes
expected to be used as initiator names, this requirenment is net.
However, permitting enpty host and real m conponents when inporting
host - based services may nmake it possible for an inported nane to

Hart man & How ett St andards Track [Page 10]

RFC 7055 EAP GSS- API Decenber 2013

differ fromthe exported nane actually used. Oher nechani snms such
as Kerberos have simlar situations where inported and exported nanes
may differ.

3.4. Acceptor Name RAD US AVP

See Section 7.4 for registrations of RADIUS attribute types to carry
the acceptor service name. Al the attribute types registered in
that section are strings. See Section 3.1 for details of the val ues
in a nane.

If RADIUS is used as a AAA transport, the acceptor MJST send the
acceptor name in these attribute types. That is, the acceptor
deconposes its nane and sends any non-enpty portion as a RADI US
attribute. Wth the exception of the service-specifics portion of
t he nane, the backsl ash escapi ng mechanismis not used in RADI US
attributes; backslash has no special nmeaning. |In the service-
specifics portion, a literal "/" separates conponents. In this one
attribute, "\/" indicates a slash character that does not separate
components and "\\" indicates a literal backslash character.

The initiator MIUST require that the EAP nethod in use support channe
bi ndi ng and MJST send the acceptor nane as part of the channe

bi nding data. The client MJST NOT indicate nutual authentication in
the result of GSS Init_sec_context unless all nane elenents that the
client supplied are in a successful channel binding response. For
exanple, if the client supplied a hostname in channel binding data,

t he hostname MUST be in a successful channel binding response.

If an enpty target nane is supplied to GSS | nit_sec_context, the
initiator MUST fail context establishment unless the acceptor
supplies the acceptor nanme response (Section 5.4.3). If a nul
target nane is supplied, the initiator MUST use this response to
popul at e EAP channel bi ndi ngs.

3.5. Proxy Verification of Acceptor Name

Proxies nmay play a role in verification of the acceptor identity.
For exanple, a AAA proxy near the acceptor may be in a position to
verify the acceptor hostname, while the EAP server is likely to be
too distant to reliably verify this on its own.

The EAP server or sone proxy trusted by the EAP server is likely to
be in a position to verify the acceptor realm |In effect, this proxy
is confirming that the right AAA credential is used for the clained
real mand thus that the acceptor is in the organization it clains to

Hart man & How ett St andards Track [Page 11]

RFC 7055 EAP GSS- API Decenber 2013

be part of. This proxy is also typically trusted by the EAP server
to nmake sure that the hostnanme clained by the acceptor is a
reasonabl e hostname for the real mof the acceptor

A proxy close to the EAP server is unlikely to be in a position to
confirmthat the acceptor is clainmng the correct hostnane. |Instead,
this is typically delegated to a proxy near the acceptor. That proxy
is typically expected to verify the acceptor hostnane and to verify
the appropriate AAA credential for that host is used. Such a proxy
may insert the acceptor realmif it is absent, permtting realm
configuration to be at the proxy boundary rather than on acceptors.

Utinmately, specific proxy behavior is a matter for deploynent. The
EAP server MJST assure that the appropriate validation has been done
before includi ng acceptor nane attributes in a successful channe

bi ndi ng response. |f the acceptor service is included, the EAP
server asserts that the service is plausible for the acceptor. |If
the acceptor hostnane is included, the EAP server asserts that the
acceptor hostname is verified. |If the realmis included the EAP
server asserts that the real mhas been verified, and if the hostnane
was al so included, that the real mand hostnane are consistent. Part
of this verification MAY be del egated to proxies, but the EAP server
configurati on MIST guarantee that the conbination of proxies neets
these requirenents. Typically, such delegation will involve business
or operational nmeasures such as cross-organi zational agreenents as
wel | as technical neasures.

It is likely that future technical work will be needed to conmunicate
what verification has been done by proxies along the path. Such
techni cal neasures will not rel ease the EAP server fromits
responsibility to deci de whether proxies on the path should be
trusted to perform checks delegated to them However, technica
nmeasures coul d prevent misconfigurations and help to support diverse
envi ronment s.

4, Sel ection of EAP Met hod

EAP does not provide a facility for an EAP server to advertise what
nmet hods are available to a peer. Instead, a server starts with its
preferred nethod selection. |If the peer does not accept that nethod,
the peer sends a NAK response containing the |list of nethods
supported by the client.

Providing multiple facilities to negotiate which security mechani sm
to use is undesirable. Section 7.3 of [RFC4462] describes the problem
referencing the Secure Shell (SSH) Protocol key exchange negoti ation
and the SPNEGO GSS- APl mechanism If a client preferred an EAP

net hod A, a non-EAP aut hentication nmechanism B, and then an EAP

Hart man & How ett St andards Track [Page 12]

RFC 7055 EAP GSS- API Decenber 2013

met hod C, then the client would have to commit to using EAP before
| earni ng whether A is actually supported. Such a client night end up
using C when B is avail able.

The standard solution to this problemis to performall the
negotiation at one layer. |In this case, rather than defining a
single GSS-API nmechanism a fanily of nechani sns shoul d be defi ned.
Each nechani sm corresponds to an EAP nethod. The EAP nethod type
shoul d be part of the GSS-API O D. Then, a GSS-APlI rather than EAP
facility can be used for negotiation.

Unfortunately, using a fanmly of nechani sms has a nunber of problens.
First, GSS-API assunes that both the initiator and acceptor know the
entire set of nechanisns that are available. Some negotiation
mechani snms are driven by the client; others are driven by the server
Wth EAP GSS-APlI, the acceptor does not know what nethods the EAP
server inplenents. The EAP server that is used depends on the
identity of the client. The best solution so far is to accept the

di sadvantages of nulti-layer negotiation and commt to using EAP GSS-
APl before a specific EAP nethod. This has two main di sadvant ages.
First, authentication may fail when other methods might all ow

aut hentication to succeed. Second, a non-optimal security mechani sm
may be chosen.

5. Context Tokens

Al'l context establishnent tokens enitted by the EAP mechani sm SHALL
have the fram ng described in Section 3.1 of [RFC2743], as
illustrated by the foll ow ng pseudo- ASN. 1 structures:

GSS-API DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER
-- representing EAP nmechani sm
GSSAPI - Token :: =
-- option indication (delegation, etc.) indicated within
-- mechani sm specific token
[APPLI CATI ON 0] I MPLICI T SEQUENCE {
t hi sMech MechType,
i nner Token ANY DEFI NED BY t hi sMech
-- contents nechani smspecific
-- ASN. 1 structure not required

END

Hart man & How ett St andards Track [Page 13]

RFC 7055 EAP GSS- API Decenber 2013

The innerToken field starts with a 16-bit network byte order token
type identifier. The remainder of the innerToken field is a set of
type-1 engt h-val ue subtokens. The follow ng figure describes the
structure of the inner token

S o +
| Octet Position | Description
o e oo o m e e e e e e +
0..1	token ID
2..5	first subtoken type
6..9	length of first subtoken

10..10+n-1	first subtoken body

10+n. . 10+n+3 second subt oken type

Structure of |nner Token

The inner token continues with |l ength, second subtoken body, and so
forth. |If a subtoken type is present, its Iength and body MJST be
present.

The length is a four-octet Iength of the subtoken body in network
byte order. The length does not include the length of the type field
or the length field; the length only covers the body.

Tokens fromthe initiator to acceptor use an inner token type with ID
06 01; tokens fromacceptor to initiator use an inner token type with
ID 06 02. These token types are registered in the registry of RFC
4121 token types; see Section 7.2.

See Section 5.7 for the encoding of a conplete token. The follow ng
sections di scuss how nmechanism O Ds are chosen and the state machi ne
that defines what subtokens are pernitted at each point in the

cont ext establishment process.

5.1. Mechanisns and Encryption Types

This mechanismfam |y uses the security services of the Kerberos
cryptographic franework [RFC3961]. The root of the O D ARC for
nmechani snms described in this docunent is 1.3.6.1.5.5.15.1.1; a

Ker beros encryption type nunber [RFC3961] is appended to that root
ODto forma nechanism O D. As such, a particular encryption type
needs to be chosen. By convention, there is a single object
identifier arc for the EAP fam |y of GSS-API nechanisns. A specific

Hart man & How ett St andards Track [Page 14]

RFC 7055 EAP GSS- API Decenber 2013

mechani smis chosen by addi ng the nuneric Kerberos encryption type
number to the root of this arc. However, in order to register the
SASL nane, the specific usage with a given encryption type needs to
be registered. This docunent defines the EAP- AES128 GSS- API
mechani sm

5.2. Processing Received Tokens

Wienever a context token is received, the receiver perforns the

foll owi ng checks. First, the receiver confirns the object identifier
is that of the nechani sm being used. The receiver confirnms that the
token type corresponds to the role of the peer: acceptors will only
process initiator tokens and initiators will only process acceptor

t okens.

| mpl enent ati ons of this nmechanismnmaintain a state machine for the
cont ext establishnent process. Both the initiator and acceptor start
out inthe initial state; see Section 5.4 for a description of this
state. Associated with each state are a set of subtoken types that
are processed in that state and rules for processing these subtoken
types. The receiver examines the subtokens in order, processing any
that are appropriate for the current state. Unknown subtokens or
subt okens that are not expected in the current state are ignored if
their critical bit (see below) is clear

A state may have a set of required subtoken types. |f a subtoken
type is required by the current state but no subtoken of that type is
present, then the context establishnment MJST fail.

The nost significant bit (0x80000000) in a subtoken type is the
critical bit. |If a subtoken with this bit set in the type is
received, the receiver MJIST fail context establishnment unless the
subt oken i s understood and processed for the current state.

The subt oken type MJUST be unique within a given token

Hart man & How ett St andards Track [Page 15]

RFC 7055 EAP GSS- API Decenber 2013

5.3.

5. 4.

Har

Error Subt okens

The acceptor may al ways end the exchange by generating an error
subt oken. The error subtoken has the foll owi ng format:

Fom e oo - o m o e oo +
| Pos | Description |
E R o o m e aaa +
| 0..3 | 0x80 00 00 01

4..7	length of error token
8..11	mgjor status from RFC 2744 as 32-bit network byte order

12..15	GSS-EAP error code as 32-bit network byte order; see
	Section 7.6
Fom e e e - o e +

Initiators MJUST ignore octets beyond the GSS-EAP error code for
future extensibility. As indicated, the error token is always marked
critical

Initial State

Both the acceptor and initiator start the context establishnent
process in the initial state.

The initiator sends a token to the acceptor. It MAY be enpty; no
subt okens are required in this state. Alternatively, the initiator
MAY i nclude a vendor |D subtoken or an acceptor nane request

subt oken.

The acceptor responds to this nmessage. It MAY include an acceptor
nane response subtoken. It MJST include a first EAP request; this is
an EAP request/identity message (see Section 5.5.1 for the format of
thi s subtoken).

The initiator and acceptor then transition to authenticate state.

tman & How ett St andards Track [Page 16]

RFC 7055 EAP GSS- API Decenber 2013

5.4.1. Vendor Subtoken

The vendor | D subtoken has type 0x0000000B and the foll ow ng

structure:

S e +
| Pos | Description |
S o e e e e e e e e oo +
| 0..3 | 0x0000000B |
| | |
| 4..7 | length of vendor token

| | |
| 8..8+length | Vendor ID string |

The vendor ID string is an UTF-8 string describing the vendor of this
i npl ementation. This string is unstructured and for debuggi ng
pur poses only.

5.4.2. Acceptor Nane Request

The acceptor nanme request token is sent fromthe initiator to the
acceptor indicating that the initiator wishes a particul ar acceptor
nane. This is simlar to Transport Layer Security (TLS) Server Nane
I ndi cation [RFC6066] that pernits a client to indicate which one of a
number of virtual services to contact. The structure is as follows:

It is likely that channel binding and thus authentication will fai
if the acceptor does not choose a nane that is a superset of this
nane. That is, if a hostnane is sent, the acceptor needs to be
willing to accept this hostnane.

Hart man & How ett St andards Track [Page 17]

RFC 7055 EAP GSS- API Decenber 2013

5.4.3. Acceptor Nanme Response

The acceptor nane response subtoken indicates what acceptor name is
used. This is useful, for exanple, if the initiator supplied no
target name to the context initialization. This allows the initiator
to learn the acceptor nane. EAP channel bindings will provide
confirmation that the acceptor is accurately nanming itself.

This token is sent fromthe acceptor to initiator. |In the Initia
state, this token would typically be sent if the acceptor nane
request is absent, because if the initiator already sent an acceptor
nane, then the initiator knows what acceptor it wi shes to contact.
This subtoken is also sent in Extensions state Section 5.6, so the
initiator can protect against a man-in-the-mddle nodifying the
acceptor name request subtoken

5.5. Authenticate State

In this state, the acceptor sends EAP requests to the initiator and
the initiator generates EAP responses. The goal of the state is to
performa successful EAP authentication. Since the acceptor sends an
identity request at the end of the initial state, the first half-
round-trip in this state is a response to that request fromthe
initiator.

The EAP conversation can end in a nunber of ways:

o |If the EAP state nachi ne generates an EAP Success nessage, then
t he EAP aut henticator believes the authentication is successful
The acceptor MJIST confirmthat a key has been derived
(Section 7.10 of [RFC3748]). The acceptor MJIST confirmthat this
success indication is consistent with any protected result
i ndi cation for conbined authenticators and with AAA indication of
success for pass-through authenticators. |f any of these checks
fail, the acceptor MJIST send an error subtoken and fail the
context establishnent. |f these checks succeed, the acceptor
sends the Success message using the EAP Request subtoken type and
transitions to Extensions state. |If the initiator receives an EAP

Hart man & How ett St andards Track [Page 18]

RFC 7055 EAP GSS- API Decenber 2013

5.

5.

5.

5.

1

Success nessage, it confirns that a key has been derived and that
the EAP Success is consistent with any protected result
indication. |If so, it transitions to Extensions state.

QO herwise, it returns an error to the caller of

GSS Init_sec_context w thout producing an output token.

If the acceptor receives an EAP failure, then the acceptor sends
this in the EAP Request subtoken type. |If the initiator receives
an EAP Failure, it returns GSS failure.

If there is some other error, the acceptor MAY return an error
subt oken.

EAP Request Subt oken

The EAP Request subtoken is sent fromthe acceptor to the initiator.
This subtoken is always critical and is REQU RED in the
authentication state.

S Fom e e e a i oo +
| Pos | Description |
Fom e e e e e o oo o e e e e e e e e oo +
| 0..3 | 0x80000005
| | |
| 4..7 | length of EAP nessage
| | |
| 8..8+length | EAP nessage
Fom e e e e e o oo o e e e e e e e e oo +
2. EAP Response Subt oken
This subtoken is REQU RED i n authentication state nessages fromthe
initiator to the acceptor. It is always critical
B S o e e e e e e +
| Pos | Description
T Fom e e i aaa o +
| 0..3 | 0x80000004
| | |
| 4..7 | length of EAP nessage
| | |
| 8..8+length | EAP nessage

Hart man & How ett St andards Track [Page 19]

RFC 7055 EAP GSS- API Decenber 2013

5.6. Extensions State

After EAP Success, the initiator sends a token to the acceptor

i ncl udi ng addi tional subtokens that negotiate optional features or
provi de GSS- APl channel binding (see Section 6.1). The acceptor then
responds with a token to the initiator. Wen the acceptor produces
its final token, it returns GSS S COVPLETE;, when the initiator
consunmes this token, it returns GSS_S COWLETE if no errors are

det ect ed.

The acceptor SHOULD send an acceptor nanme response (Section 5.4.3) so
that the initiator can get a copy of the acceptor nane protected by
the Message Integrity Check (M C) subtoken.

Both the initiator and acceptor MJST include and verify a MC
subt oken to protect the extensions exchange.

5.6.1. Flags Subtoken

This subtoken is sent to convey initiator flags to the acceptor. The
flags are sent as a 32-bit integer in network byte order. The only
flag defined so far is GSS_ C MJTUAL FLAG indicating that the
initiator successfully performed nutual authentication of the
acceptor. This flag is communicated to the acceptor because sone
protocol s [RFC4462] require the acceptor to know whet her the
initiator has confirned its identity. This flag has the value 0x2 to
be consistent with RFC 2744.

Fomm - o e e e e e e +
| Pos | Description |
N . +
| 0..3 | 0x0000000C

| | |
| 4..7 | length of flags token

| | |
| 8..11 | flags

N . +

Initiators MIUST send 4 octets of flags. Acceptors MJIST ignore flag
octets beyond the first 4 and MJUST ignore flag bits other than
GSS C MUTUAL_FLAG Initiators MJST send undefined flag bits as zero

5.6.2. GSS Channel Bindi ngs Subtoken
Thi s subtoken is always critical when sent. It is sent fromthe
initiator to the acceptor. The contents of this token are an RFC

3961 get_mc token of the application data fromthe GSS channe
bi ndi ngs structure passed into the context establishnent call

Hart man & How ett St andards Track [Page 20]

RFC 7055 EAP GSS- API Decenber 2013

T o o m emee o +
| Pos | Description |
B o o o e e e e e e e e e e e e e e e e e e eme o +
| 0..3 | 0x80000006 |
I I I
| 4..7 | length of token |
I I I
| 8..8+length | get_nmic of channel binding application data

Again, only the application data is sent in the channel binding. Any
initiator and acceptor addresses passed by an application into
context establishnent calls are ignored and not sent over the wre.
The checksum type of the get mic token SHOULD be the nandatory-to-

i mpl ement checksum type of the Context Root Key (CRK). The key to
use is the CRK and the key usage is 60 (KEY_USAGE_GSSEAP _CHBIND M C).
An acceptor MAY accept any M C in the channel bindings subtoken if

t he channel bindings input to GSS Accept _sec_context is not provided.
If the channel binding input to GSS Accept _sec_context is provided,
the acceptor MJUST return failure if the channel binding MCin a
recei ved channel binding subtoken fails to verify.

The initiator MIUST send this token if channel bindings including
application data are passed into GSS | nit_sec_context and MJST NOT
send this token otherw se.

5.6.3. M C Subt oken

Thi s subt oken MJST be the last subtoken in the tokens sent in
Extensi ons state. This subtoken is sent both by the initiator and

acceptor.

. I e +
| Pos | Description |
B S o e m e m o +
| 0..3 | 0x8000000D for initiator Ox8000000E for acceptor

I I I
| 4..7 | Iength of RFC 3961 M C token

I I I
| 8..8+length | RFC 3961 result of get_mc

B S o e m e m o +

As with any call to get _nmic, a token is produced as described in RFC
3961 using the CRK (Section 6) as the key and the mandatory checksum
type for the encryption type of the CRK as the checksumtype. The
key usage is 61 (KEY_USAGE GSSEAP_ACCTCKEN M C) for the subtoken from

Hart man & How ett St andards Track [Page 21]

RFC 7055 EAP GSS- API Decenber 2013

the acceptor to the initiator and 62 (KEY_USAGE GSSEAP | NI TTOKEN M C)
for the subtoken fromthe initiator to the acceptor. The input is as
fol | ows:

1. The DER-encoded object identifier of the mechanismin use; this
value starts with Ox06 (the tag for object identifier). Wen
encoded in an RFC 2743 context token, the object identifier is
preceded by the tag and length for [Application 0] SEQUENCE
This tag and the length of the overall token is not included;
only the tag, length, and value of the object identifier itself.

2. A 16-bit token type in network byte order of the RFC 4121 token
identifier (0x0601 for initiator, 0x0602 for acceptor).

3. For each subtoken, other than the M C subtoken itself, the order
t he subt okens appear in the token is as foll ows:

1. A four-octet subtoken type in network byte order
2. A four-byte length in network byte order
3. Length octets of value fromthat subtoken

5.7. Exanpl e Token

. . F--- - Fom e e e e e e e e e mea oo +
| 60| 23 | 06| 09 | 2b | 06 01 05 05 Of 01 01 11

E E L o e e e e e e e e oo +
| AppO| Token |[OD |OD | 13] 6 1 5 515 1 1 17 |
| Tag |l ength| Tag || engt h| Mechani sm object ID |
F R F R o m e e e e e e e e a o a oo +
Fom e e - B S B S +

| 06 01 | 00 00 00 02 | 00 OO 00 Oe

S SRR Y ey |

| Initiator | Acceptor | Length

| cont ext | nare | (14 octets)

|token ID | request |

Fom e e - B S B S +

oo o e e e e e e e e e e e e e e e e eaa +

| 68 6f 73 74 2f 6¢c 6f 63 61 6¢ 68 6f 73 74

oo e e e e e e e e e e e e e e e e e e e aaa - +

| String formof acceptor nane |
| "host/Iocal host" |

Hart man & How ett St andards Track [Page 22]

RFC 7055 EAP GSS- API Decenber 2013

Exanpl e Initiator Token
5.8. Context Options

GSS- APl provi des a nunber of optional per-context services requested
by flags on the call to GSS Init_sec_context and indicated as outputs
fromboth GSS Init_sec_context and GSS Accept _sec_context. This
section describes how these services are handl ed. Which services the
client selects in the call to GSS | nit_sec_context controls what EAP
met hods MAY be used by the client. Section 7.2 of RFC 3748 descri bes
a set of security clains for EAP. As described bel ow, the selected
GSS options place requirenents on security clainms that MJST be net.

This GSS nmechani sm MUST only be used with EAP net hods that provide
dictionary-attack resistance. Typically, dictionary-attack

resi stance i s obtained by using an EAP tunnel nmethod to tunnel an
i nner nmethod in TLS

The EAP net hod MJUST support key derivation. Integrity,
confidentiality, sequencing, and replay detection MJST be indicated
in the output of GSS Init_sec_context and GSS_Accept _sec_cont ext
regardl ess of which services are requested.

The PROT_READY service defined in Section 1.2.7 of [RFC2743] is never
avail able with this nmechanism |Inplenentations MUST NOT offer this
flag or pernit per-nessage security services to be used before

cont ext establishment.

The EAP net hod MJST support nutual authentication and channe

bi nding. See Section 3.4 for details on what is required for
successful mutual authentication. Regardless of whether nutual

aut hentication is requested, the inplenentati on MIST i ncl ude channel
bi ndings in the EAP authentication. |f nutual authentication is
requested and successful nutual authentication takes place as defined
in Section 3.4, the initiator MIST send a fl ags subtoken

Section 5.6.1 in Extensions state.

6. Acceptor Services

The context establishnent process may be passed through to an EAP
server via a backend authentication protocol. However, after the EAP
aut henti cati on succeeds, security services are provided directly by

t he acceptor.

Thi s mechani sm uses an RFC 3961 cryptographi c key called the Context
Root Key (CRK). The CRK is derived fromthe GWK (GSS- APl Master
Session Key). The GwK is the result of the randomto-key [RFC3961]
operation of the encryption type of this mechani smconsunm ng the

Hart man & How ett St andards Track [Page 23]

RFC 7055 EAP GSS- API Decenber 2013

appropriate nunber of bits fromthe EAP MBK. For exanple, for
aes128-cts-hmac-shal- 96, the randomto-key operation consunes 16
octets of key material; thus, the first 16 bytes of the MSK are input
to randomto-key to formthe GwSK. |If the MSK is too short,

aut hentication MJIST fail.

In the follow ng, pseudorandomis the RFC 3961 pseudorandom operation
for the encryption type of the GWSK and randomto-key is the RFC 3961
randomt o- key operation for the enctype of the mechanism The
truncate function takes the initial | bits of its input. The goal in
constructing a CRKis to call the pseudorandom function enough timnmes
to produce the right nunber of bits of output and di scard any excess
bits of output.

The CRK is derived fromthe GWBK using the follow ng procedure:

Tn = pseudorandon(GWVBK, n || "rfc4121-gss-eap")
CRK = randomto-key(truncate(L, TO || T1 || .. || Tn))
L = randomto-key input size

Where n is a 32-bit integer in network byte order starting at 0 and
increnmented to each call to the pseudo_random operation

6.1. GSS-API Channel Binding

GSS- APl channel binding [RFC5554] is a protected facility for
exchangi ng a cryptographic name for an encl osi ng channel between the
initiator and acceptor. The initiator sends channel binding data and
the acceptor confirns that channel binding data has been checked.

The acceptor SHOULD accept any channel binding provided by the
initiator if null channel bindings are passed into

gss_accept _sec_context. Protocols such as HTTP Negoti ate [RFC4559]
depend on this behavior of sonme Kerberos inpl enentations.

As di scussed, the GSS channel bindings subtoken is sent in the
Ext ensi ons state.

6.2. Per-Message Security
The per-nessage tokens of Section 4 of RFC 4121 are used. The CRK
SHALL be treated as the initiator sub-session key, the acceptor sub-
session key and the ticket session key.

6. 3. Pseudorandom Functi on

The pseudorandom function defined in [RFC4402] is used to provide
GSS Pseudo_Random functionality to applications.

Hart man & How ett St andards Track [Page 24]

RFC 7055 EAP GSS- API Decenber 2013

7. | ANA Consi derations
This specification creates a nunber of |ANA registries.
7.1. OAD Registry

| ANA has created a registry of ABFAB object identifiers titled
"Cbject lIdentifiers for Application Bridging for Federated Access".
The initial contents of the registry are specified below The
registration policy is | ETF Review or | ESG Approval [RFC5226]. Early
allocation is pernmitted. |ANA has updated the reference for the root
of this OD delegation to point to the newy created registry.

Deci mal Narme Descri ption Ref erences
0 Reserved Reserved RFC 7055
1 mechani sms A sub-arc contai ni ng ABFAB RFC 7055
mechani sns
2 nanet ypes A sub-arc contai ning ABFAB RFC 7055

GSS- APl Nane Types

Prefix:
i so.org.dod.internet.security. mechani sns. abf ab
(1.3.6.1.5.5.15)

NOTE: the followi ng nechanisns registry is the root of the A D for
the mechani smin question. As discussed in Section 5.1, a Kerberos
encryption type nunber [RFC3961] is appended to the mechani sm version
O D belowto formthe O D of a specific nechanism

Prefix:
i so.org.dod.internet.security. mechani sms. abf ab. nechani sns
(1.3.6.1.5.5.15.1)

Deci mal Narme Descri ption Ref er ences
0 Reserved Reserved RFC 7055
1 gss-eap-vl The GSS- EAP nmechani sm RFC 7055
Prefix:

i so.org.dod.internet.security. mechani sns. abf ab. nanet ypes
(1.3.6.1.5.5.15.2)

Deci nal Nare Description Ref er ences
0 Reserved Reserved RFC 7055
1 GSS_EAP_NT_EAP_NAME RFC 7055, Section 3.1

Hart man & How ett St andards Track [Page 25]

RFC 7055 EAP GSS- API Decenber 2013

7.2. RFC 4121 Token ldentifiers

In the top-level registry titled "Kerberos V GSS-API Mechani sm
Paraneters”, a subregistry called "Kerberos GSS-APlI Token Type
Identifiers" was created; the references for this subregistry are RFC
4121 and this docunment. The allocation procedure is Expert Review

[RFC5226]. The Expert’s prinary job is to nmake sure that token type
identifiers are requested by an appropriate requester for the RFC
4121 nechanismin which they will be used and that nultiple val ues
are not allocated for the same purpose. For RFC 4121 and this
mechani sm the Expert is currently expected to nake allocations for
token identifiers fromdocunents in the | ETF stream effectively, for
t hese nechani sns, the Expert currently confirns the allocation neets
the requirements of the | ETF Revi ew process

The ID field is a hexadeci mal token identifier specified in network
byte order.

The initial registrations are as foll ows:

o - T e T T +
| ID | Description | Reference

Fomm - o e e e e e e e e e e e e e e e e e m o o e e e e e e m e e e +
01 00	KRB_AP_REQ	RFC 4121, Section 4.1
02 00	KRB_AP_REP	RFC 4121, Section 4.1
03 00	KRB_ERROR	RFC 4121, Section 4.1
04 04	MC tokens	RFC 4121, Section 4.2.6.1

| | | |
| 05 04 | wap tokens | RFC 4121, Section 4.2.6.2

| | | |
| 06 01 | GSS-EAP initiator context | RFC 7055, Section 5

	token	
06 02	GSS EAP acceptor context	RFC 7055, Section 5
	token	
o - T T T +

7.3. GSS-EAP Subt oken Types

This docunent creates a top-level registry called "The Extensible
Aut henti cation Protocol Mechanismfor the Generic Security Service
Application Programing Interface (GSS-EAP) Paraneters”. In any
short formof that nanme, including any URI for this registry, it is
i mportant that the string GSS cone before the string EAP; this wll

Hart man & How ett St andards Track [Page 26]

RFC 7055 EAP GSS- API Decenber 2013

hel p to distinguish registries if EAP nethods for perform ng GSS-API
aut hentication are ever defined.

In this registry is a subregistry of subtoken types. ldentifiers are
32-bit integers; the upper bit (0x80000000) is reserved as a critica
flag and should not be indicated in the registration. Assignnents of
GSS- EAP subt oken types are nade by Expert Review [RFC5226]. The
Expert is expected to require a public specification of the subtoken
simlar in detail to registrations given in this docunent. The
security of GSS-EAP depends on meking sure that subtoken information
has adequate protection and that the overall mechani smcontinues to
be secure. Exami ning the security and architectural consistency of
the proposed registration is the prinmary responsibility of the
Expert.

B SR o T +
| Type | Description | Reference |
o m e oo oo - oo e e e oo oo - S +
| O0x00000001 | Error | Section 5.3

| | | |
| 0x0000000B | Vendor | Section 5.4.1

| | | |
| O0x00000002 | Acceptor nane request | Section 5.4.2

| | | |
| Ox00000003 | Acceptor nane response | Section 5.4.3

| | | |
| Ox00000005 | EAP request | Section 5.5.1

| | | |
| O0x00000004 | EAP response | Section 5.5.2

| | | |
| 0x0000000C | Fl ags | Section 5.6.1

| | | |
| 0x00000006 | GSS-API channel bindings | Section 5.6.2

| | | |
| Ox0000000D | Initiator MC | Section 5.6.3

| | | |
| OxO0000000E | Acceptor MC | Section 5.6.3
R o e e e e e e e R +

7.4. RADIUS Attribute Assignnments
The following RADIUS attribute type val ues [RFC3575] are assi gned.

The allocation instructions in Section 10.3 of [RFC6929] have been
fol | oned.

Hart man & How ett St andards Track [Page 27]

RFC 7055 EAP GSS- API Decenber 2013

S Fommnnan e e mmeeiieasceiaieaaeaaa +
| Description | Value | More Information |
e o - s +
| GSS- Accept or- Servi ce- Nane | 164 | user-or-service portion

| | | of nane |
| | | |
| GSS- Accept or - Host - Name | 165 | host portion of name

GSS- Acceptor-Service-Specifics	166	service-specifics
		portion of name
GSS- Accept or - Real m Nane	167	Real m portion of nane
B N e +

7.5. Registration of the EAP-AES128 SASL Mechani sns

Subject: Registration of SASL mechani snms EAP- AES128 and
EAP- AES128- PLUS

SASL mechani sm names: EAP- AES128 and EAP- AES128- PLUS
Security considerations: See RFC 5801 and RFC 7055
Publ i shed specification (recommended): RFC 7055

Person & emnil address to contact for further information:
Abfab Working Goup, abfab@etf.org

I nt ended usage: conmon

Owner/ Change controller: iesg@etf.org

Note: This mechani sm descri bes the GSS-EAP nechani smused with the
aes128-cts-hnmac-shal-96 enctype. The GSS-API O D for this
mechanismis 1.3.6.1.5.5.15.1.1.17.

As described in RFC 5801, a PLUS variant of this nmechanismis al so
required.

7.6. GSS- EAP Errors

A new subregistry is created in the GSS-EAP paraneters registry
titled "GSS-EAP Error Codes". The error codes in this registry are
unsi gned 32-bit nunmbers. Values less than or equal to 127 are
assigned by Standards Action [RFC5226]. Values 128 through 255 are
assigned with the Specification Required assignment policy [RFC5226].

Hart man & How ett St andards Track [Page 28]

RFC 7055 EAP GSS- API Decenber 2013

Val ues greater than 255 are reserved; updates to registration policy
may nmake these val ues avail abl e for assignnment and i npl enentations
MUST be prepared to receive them

This table provides the initial contents of the registry.

Fommnnan e e TS +
| Value | Description

o - T e +
O	Reserved
1	Buffer is incorrect size
2	I'ncorrect nechanism O D

3	Token is corrupted
4	Token is truncated
5	Packet received by direction that sent it
6	I'ncorrect token type identifier
7	Unhandl ed critical subtoken received
8	Mssing required subtoken
9	Duplicate subtoken type
10	Received unexpected subtoken for current state

11	EAP did not produce a key
12	EAP key too short
13	Authentication rejected

| | |
| 14 | AAA returned an unexpected nessage type

15	AAA response did not include EAP request
16	Generic AAA failure

N S e TS +

Hart man & How ett St andards Track [Page 29]

RFC 7055 EAP GSS- API Decenber 2013

7.7. GSS-EAP Context Flags

A new subregistry is created in the GSS-EAP paraneters registry.

This registry holds registrations of flag bits sent in the flags

subt oken (Section 5.6.1). There are 32 flag bits avail able for

regi stration represented as hexadeci nal nunbers fromthe nost
significant bit 0x80000000 to the least significant bit Ox1. The
registration policy for this registry is |ETF Review or, in
exceptional cases, |ESG Approval. The follow ng table indicates
initial registrations; all other values are available for assignnment.

Hom - - e e e a - S +
| Flag | Name | Reference

Hom oo e e e e ek R +
| Ox2 | GSS_C MUTUAL_FLAG | Section 5.6.1

[o m e e e e e e me o oo Fom e e e e e oo oo +

8. Security Considerations

RFC 3748 di scusses security issues surrounding EAP. RFC 5247

di scusses the security and requirenents surroundi ng key managenent
that | everages the AAA infrastructure. These docunents are critica
to the security analysis of this mechani sm

RFC 2743 di scusses generic security considerations for the GSS-API.
RFC 4121 di scusses security issues surrounding the specific per-
nmessage services used in this mechani sm

As discussed in Section 4, this nmechanismmay introduce nmultiple

| ayers of security negotiation into application protocols. Miltiple
| ayer negotiations are vulnerable to a bid-down attack when a
mechani sm negotiated at the outer layer is preferred to sonme but not
all mechani sms negotiated at the inner |ayer; see Section 7.3 of

[RFC4462] for an exanple. One possible approach to mitigate this
attack is to construct security policy such that the preference for
al |l nechani sns negotiated in the inner layer falls between
preferences for two outer-layer nechanisns or falls at one end of the
overal | ranked preferences including both the inner and outer |ayer.
Anot her approach is to only use this nechanismwhen it has
specifically been selected for a given service. The second approach
is likely to be common in practice because one conmon depl oynent wil |
i nvol ve an EAP supplicant interacting with a user to select a given
identity. Only when an identity is successfully chosen by the user
will this nmechani smbe attenpted.

EAP channel binding is used to give the GSS-APlI initiator confidence

inthe identity of the GSS-APlI acceptor. Thus, the security of this
mechani sm depends on the use and verification of EAP channel binding.

Hart man & How ett St andards Track [Page 30]

RFC 7055 EAP GSS- API Decenber 2013

Today, EAP channel binding is in very linted deploynent. |f EAP
channel binding is not used, then the system may be vulnerable to
phi shing attacks where a user is diverted fromone service to
another. |If the EAP nethod in question supports mutua

aut henti cation then users can only be diverted between servers that
are part of the sanme AAA infrastructure. For depl oynents where
menbership in the AAA infrastructure is limted, this may serve as a
significant Iimtation on the value of phishing as an attack. For
ot her depl oyments, use of EAP channel binding is critical to avoid
phi shing. These attacks are possible with EAP today although not
typically with common GSS- APl nmechani sms. For this reason

i npl enentations are required to i nplement and use EAP channe

bi ndi ng; see Section 3 for details.

The security considerations of EAP channel binding [RFC6677] describe
the security properties of channel binding. Two attacks are worth
calling out here. First, when a tunneled EAP nethod is used, it is
critical that the channel binding be perforned with an EAP server
trusted by the peer. Wth existing EAP nethods, this typically
requires validating the certificate of the server tunnel endpoint
back to a trust anchor and confirm ng the nane of the entity who is a
subject of that certificate. EAP nmethods nmay suffer from bid-down
attacks where an attacker can cause a peer to think that a particul ar
EAP server does not support channel binding. This does not directly
cause a probl em because nmutual authentication is only offered at the
GSS- APl | evel when channel binding to the server’s identity is
successful. However, when an EAP nethod is not vulnerable to these
bi d-down attacks, additional protection is available. This nmechani sm
will benefit significantly fromnew strong EAP net hods such as

[TEAP] .

Every proxy in the AAA chain fromthe authenticator to the EAP server
needs to be trusted to help verify channel bindings and to protect
the integrity of key material. GSS-APlI applications nay be built to
assune a trust nodel where the acceptor is directly responsible for
aut hentication. However, GSS-APlI is definitely used with trusted-
third-party mechani sns such as Kerberos

RADI US does provide a weak form of hop-by-hop confidentiality of key
mat eri al based on using MD5 as a stream cipher. Dianeter can use TLS
or | Psec but has no mandatory-to-inplenent confidentiality mechani sm
Operationally, protecting key naterial as it is transported between
the lIdentity Provider (1dP) and Relying Party (RP) is critical to

per - message security and verification of GSS-APlI channel binding

[RFC5056]. Mechani sns such as RADI US over TLS [RFC6614] provide
significantly better protection of key material than the base RADI US
speci fication.

Hart man & How ett St andards Track [Page 31]

RFC 7055 EAP GSS- API Decenber 2013

9.

10.

10.

Acknowl edgenent s

Luke Howard, Jim Schaad, Al ejandro Perez Mendez, Al exey Mel nikov, and
Suj i ng Zhou provided val uabl e revi ews of this docunent.

Rhys Smith provided the text for the OD registry section. Sam
Hartman’s work on this docunment has been funded by JANET

Ref er ences
1. Nor mati ve Ref erences

[GSS-1 ANA] | ANA, "GSS- APl Service Nane Registry"”
<http://ww. i ana. or g/ assi gnnent s/ gssapi - servi ce- nanmes>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC2743] Linn, J., "Ceneric Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC2744] Way, J., "Ceneric Security Service APl Version 2
C-bi ndi ngs", RFC 2744, January 2000.

[RFC3575] Aboba, B., "I ANA Considerations for RADI US (Renote
Aut hentication Dial In User Service)", RFC 3575, July
2003.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H
Levkowet z, "Extensible Authentication Protocol (EAP)", RFC
3748, June 2004.

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
Ker beros 5", RFC 3961, February 2005.

[RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 CGeneric Security Service Application Program
Interface (GSS-APlI) Mechanism Version 2", RFC 4121, July
2005.

[RFC4282] Aboba, B., Beadles, M, Arkko, J., and P. Eronen, "The
Net wor k Access ldentifier", RFC 4282, Decenber 2005.

[RFC4401] Wlliams, N, "A Pseudo-Random Function (PRF) API
Extension for the Generic Security Service Application
Program I nterface (GSS-API)", RFC 4401, February 2006

Hart man & How ett St andards Track [Page 32]

RFC 7055

[RFC4402]

[RFC5056]

[RFC5226]

[RFC5234]

[RFC5554]

[RFC5891]

[RFC6677]

[RFC7057]

EAP GSS- API Decenber 2013

Willians, N, "A Pseudo-Random Function (PRF) for the
Kerberos V Ceneric Security Service Application Program
Interface (GSS-APlI) Mechani sm', RFC 4402, February 2006.

WIllianms, N., "On the Use of Channel Bindings to Secure
Channel s", RFC 5056, Novenber 2007.

Narten, T. and H Alvestrand, "Cuidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

Wlliams, N., "Clarifications and Extensions to the
Ceneric Security Service Application ProgramlInterface
(GSS-APlI) for the Use of Channel Bindings", RFC 5554, My
2009.

Klensin, J., "Internationalized Domain Nanes in
Applications (IDNA): Protocol", RFC 5891, August 2010.

Hartman, S., dancy, T., and K Hoeper, "Channel -Binding
Support for Extensible Authentication Protocol (EAP)
Met hods", RFC 6677, July 2012.

Wnter, S. and J. Salowey, "Update to the Extensible

Aut henti cation Protocol (EAP) Applicability Statement for
Application Bridging for Federated Access Beyond Wb
(ABFAB) ", RFC 7057, Decenber 2013.

10.2. Informati ve References

[ABFAB- ARCH]

[RFC1964]

[RFC3579]

[RFC4072]

Howl ett, J., Hartman, S., Tschofenig, H, Lear, E., and J.
Schaad, "Application Bridging for Federated Access Beyond
Web (ABFAB) Architecture", Work in Progress, July 2013.

Linn, J., "The Kerberos Version 5 GSS-API Mechani snt, RFC
1964, June 1996.

Aboba, B. and P. Cal houn, "RADI US (Renbte Authentication
Dial In User Service) Support For Extensible
Aut henti cation Protocol (EAP)", RFC 3579, Septenber 2003.

Eronen, P., Hller, T., and G Zorn, "D aneter Extensible
Aut henti cation Protocol (EAP) Application", RFC 4072,
August 2005.

Hart man & How ett St andards Track [Page 33]

RFC 7055

[RFC4178]

[RFC4422]

[REC4462]

[RFCA559]

[RFC5178]

[RFC5247]

[RFCB066]

[RFC6614]

[RFC6929]

[TEAP]

EAP GSS- API Decenber 2013

Zhu, L., Leach, P., Jaganathan, K., and W Ingersoll, "The
Sinpl e and Protected CGeneric Security Service Application
Program Interface (GSS-API) Negotiation Mechani sn', RFC
4178, Cctober 2005.

Mel ni kov, A. and K. Zeilenga, "Sinple Authentication and
Security Layer (SASL)", RFC 4422, June 2006.

Hut zel man, J., Salowey, J., Glbraith, J., and V. Wl ch,
"Ceneric Security Service Application ProgramInterface
(GSS- APl) Authentication and Key Exchange for the Secure
Shell (SSH) Protocol”, RFC 4462, May 2006.

Jaganat han, K., Zhu, L., and J. Brezak, "SPNEGO based
Ker beros and NTLM HTTP Aut hentication in M crosoft
W ndows", RFC 4559, June 2006.

Willians, N. and A Melnikov, "CGeneric Security Service
Application Program | nterface (GSS-API)

I nternationalization and Domai n- Based Service Names and
Nanme Type", RFC 5178, May 2008.

Aboba, B., Sinmon, D., and P. Eronen, "Extensible
Aut henti cation Protocol (EAP) Key Managenent Framework",
RFC 5247, August 2008.

Eastl ake, D., "Transport Layer Security (TLS) Extensions:
Extensi on Definitions", RFC 6066, January 2011.

Wnter, S., MCauley, M, Venaas, S., and K W erenga,
"Transport Layer Security (TLS) Encryption for RADI US",
RFC 6614, May 2012.

DeKok, A. and A. Lior, "Renote Authentication Dial In User
Service (RADI US) Protocol Extensions", RFC 6929, April
2013.

Zhou, H., CamWnget, N, Salowey, J., and S. Hanna,
"Tunnel EAP Method (TEAP) Version 1", Wrk in Progress,
Sept enber 2013.

Hart man & How ett St andards Track [Page 34]

RFC 7055 EAP GSS- API Decenber 2013

Appendi x A, Pre-publication RADIUS VSA

As described in Section 3.4, RADIUS attributes are used to carry the
acceptor name when this famly of mechanisnms is used with RADI US.
Prior to the publication of this specification, a vendor-specific
RADI US attribute was used. This non-normative appendi x docunents
that attribute as it may be seen from ol der inplenentations.

Prior to | ANA assignnent, GSS-EAP used a RADI US vendor-specific
attribute for carrying the acceptor nane. The Vendor- Specific
Attribute (VSA) with enterprise ID 25622 is formatted as a VSA
according to the recommendation in the RADI US specification. The
foll owi ng sub-attributes are defined:

o m e e e e e e e e e e oo R Fmm e e e a oo +
| Narne | Attribute | Description |
o e e e e e e e e e e e e e e e S o e e e +
GSS- Accept or - Servi ce- Nane	128	user-or-service
		portion of name
GSS- Accept or - Host - Name	129	host portion of nanme
GSS- Acceptor-Service-Specifics	130	service-specifics
		portion of nane
GSS- Accept or - Real m Nane	131	Real mportion of
		nane
Fom e e e e e m o S o e e e e e e oo +

Aut hor s’ Addr esses

Sam Hartman (editor)
Pai nl ess Security

EMail: hartmans-ietf@rit. edu
Josh How ett
JANET(UK)

EMai |l : josh. how ett @ a. net

Hart man & How ett St andards Track [Page 35]

