
Internet Engineering Task Force (IETF)                       G. Selander
Request for Comments: 8613                                   J. Mattsson
Updates: 7252                                               F. Palombini
Category: Standards Track                                    Ericsson AB
ISSN: 2070-1721                                                 L. Seitz
                                                                    RISE
                                                               July 2019

     Object Security for Constrained RESTful Environments (OSCORE)

Abstract

   This document defines Object Security for Constrained RESTful
   Environments (OSCORE), a method for application-layer protection of
   the Constrained Application Protocol (CoAP), using CBOR Object
   Signing and Encryption (COSE).  OSCORE provides end-to-end protection
   between endpoints communicating using CoAP or CoAP-mappable HTTP.
   OSCORE is designed for constrained nodes and networks supporting a
   range of proxy operations, including translation between different
   transport protocols.

   Although an optional functionality of CoAP, OSCORE alters CoAP
   options processing and IANA registration.  Therefore, this document
   updates RFC 7252.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8613.
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Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Constrained Application Protocol (CoAP) [RFC7252] is a web
   transfer protocol designed for constrained nodes and networks
   [RFC7228]; CoAP may be mapped from HTTP [RFC8075].  CoAP specifies
   the use of proxies for scalability and efficiency and references DTLS
   [RFC6347] for security.  CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP
   proxies require DTLS or TLS [RFC8446] to be terminated at the proxy.
   Therefore, the proxy not only has access to the data required for
   performing the intended proxy functionality, but is also able to
   eavesdrop on, or manipulate any part of, the message payload and
   metadata in transit between the endpoints.  The proxy can also
   inject, delete, or reorder packets since they are no longer protected
   by (D)TLS.

   This document defines the Object Security for Constrained RESTful
   Environments (OSCORE) security protocol, protecting CoAP and CoAP-
   mappable HTTP requests and responses end-to-end across intermediary
   nodes such as CoAP forward proxies and cross-protocol translators
   including HTTP-to-CoAP proxies [RFC8075].  In addition to the core
   CoAP features defined in [RFC7252], OSCORE supports the Observe
   [RFC7641], Block-wise [RFC7959], and No-Response [RFC7967] options,
   as well as the PATCH and FETCH methods [RFC8132].  An analysis of
   end-to-end security for CoAP messages through some types of
   intermediary nodes is performed in [CoAP-E2E-Sec].  OSCORE
   essentially protects the RESTful interactions: the request method,
   the requested resource, the message payload, etc. (see Section 4),
   where "RESTful" refers to the Representational State Transfer (REST)
   Architecture [REST].  OSCORE protects neither the CoAP messaging
   layer nor the CoAP Token, which may change between the endpoints;
   therefore, those are processed as defined in [RFC7252].
   Additionally, since the message formats for CoAP over unreliable
   transport [RFC7252] and for CoAP over reliable transport [RFC8323]
   differ only in terms of CoAP messaging layer, OSCORE can be applied
   to both unreliable and reliable transports (see Figure 1).

   OSCORE works in very constrained nodes and networks, thanks to its
   small message size and the restricted code and memory requirements in
   addition to what is required by CoAP.  Examples of the use of OSCORE
   are given in Appendix A.  OSCORE may be used over any underlying
   layer, such as UDP or TCP, and with non-IP transports (e.g.,
   [CoAP-802.15.4]).  OSCORE may also be used in different ways with
   HTTP.  OSCORE messages may be transported in HTTP, and OSCORE may
   also be used to protect CoAP-mappable HTTP messages, as described
   below.
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               +-----------------------------------+
               |            Application            |
               +-----------------------------------+
               +-----------------------------------+  \
               |  Requests / Responses / Signaling |  |
               |-----------------------------------|  |
               |               OSCORE              |  | CoAP
               |-----------------------------------|  |
               | Messaging Layer / Message Framing |  |
               +-----------------------------------+  /
               +-----------------------------------+
               |          UDP / TCP / ...          |
               +-----------------------------------+

              Figure 1: Abstract Layering of CoAP with OSCORE

   OSCORE is designed to protect as much information as possible while
   still allowing CoAP proxy operations (Section 10).  It works with
   existing CoAP-to-CoAP forward proxies [RFC7252], but an OSCORE-aware
   proxy will be more efficient.  HTTP-to-CoAP proxies [RFC8075] and
   CoAP-to-HTTP proxies can also be used with OSCORE, as specified in
   Section 11.  OSCORE may be used together with TLS or DTLS over one or
   more hops in the end-to-end path, e.g., transported with HTTPS in one
   hop and with plain CoAP in another hop.  The use of OSCORE does not
   affect the URI scheme; therefore, OSCORE can be used with any URI
   scheme defined for CoAP or HTTP.  The application decides the
   conditions for which OSCORE is required.

   OSCORE uses pre-shared keys that may have been established out-of-
   band or with a key establishment protocol (see Section 3.2).  The
   technical solution builds on CBOR Object Signing and Encryption
   (COSE) [RFC8152], providing end-to-end encryption, integrity, replay
   protection, and binding of response to request.  A compressed version
   of COSE is used, as specified in Section 6.  The use of OSCORE is
   signaled in CoAP with a new option (Section 2), and in HTTP with a
   new header field (Section 11.1) and content type (Section 13.5).  The
   solution transforms a CoAP/HTTP message into an "OSCORE message"
   before sending, and vice versa after receiving.  The OSCORE message
   is a CoAP/HTTP message related to the original message in the
   following way: the original CoAP/HTTP message is translated to CoAP
   (if not already in CoAP) and protected in a COSE object.  The
   encrypted message fields of this COSE object are transported in the
   CoAP payload/HTTP body of the OSCORE message, and the OSCORE option/
   header field is included in the message.  A sketch of an exchange of
   OSCORE messages, in the case of the original message being CoAP, is
   provided in Figure 2.  The use of OSCORE with HTTP is detailed in
   Section 11.
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          Client                                          Server
             |      OSCORE request - POST example.com:      |
             |        Header, Token,                        |
             |        Options: OSCORE, ...,                 |
             |        Payload: COSE ciphertext              |
             +--------------------------------------------->|
             |                                              |
             |<---------------------------------------------+
             |      OSCORE response - 2.04 (Changed):       |
             |        Header, Token,                        |
             |        Options: OSCORE, ...,                 |
             |        Payload: COSE ciphertext              |
             |                                              |

                   Figure 2: Sketch of CoAP with OSCORE

   An implementation supporting this specification MAY implement only
   the client part, MAY implement only the server part, or MAY implement
   only one of the proxy parts.

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Readers are expected to be familiar with the terms and concepts
   described in CoAP [RFC7252], COSE [RFC8152], Concise Binary Object
   Representation (CBOR) [RFC7049], Concise Data Definition Language
   (CDDL) [RFC8610] as summarized in Appendix E, and constrained
   environments [RFC7228].  Additional optional features include Observe
   [RFC7641], Block-wise [RFC7959], No-Response [RFC7967] and CoAP over
   reliable transport [RFC8323].

   The term "hop" is used to denote a particular leg in the end-to-end
   path.  The concept "hop-by-hop" (as in "hop-by-hop encryption" or
   "hop-by-hop fragmentation") opposed to "end-to-end", is used in this
   document to indicate that the messages are processed accordingly in
   the intermediaries, rather than just forwarded to the next node.

   The term "stop processing" is used throughout the document to denote
   that the message is not passed up to the CoAP request/response layer
   (see Figure 1).
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   The terms Common Context, Sender Context, Recipient Context, Master
   Secret, Master Salt, Sender ID, Sender Key, Recipient ID, Recipient
   Key, ID Context, and Common IV are defined in Section 3.1.

2.  The OSCORE Option

   The OSCORE option defined in this section (see Figure 3, which
   extends "Table 4: Options" of [RFC7252]) indicates that the CoAP
   message is an OSCORE message and that it contains a compressed COSE
   object (see Sections 5 and 6).  The OSCORE option is critical, safe
   to forward, part of the cache key, and not repeatable.

   +------+---+---+---+---+----------------+--------+--------+---------+
   | No.  | C | U | N | R | Name           | Format | Length | Default |
   +------+---+---+---+---+----------------+--------+--------+---------+
   |   9  | x |   |   |   | OSCORE         |  (*)   | 0-255  | (none)  |
   +------+---+---+---+---+----------------+--------+--------+---------+

       C = Critical,   U = Unsafe,   N = NoCacheKey,   R = Repeatable
       (*) See below.

                        Figure 3: The OSCORE Option

   The OSCORE option includes the OSCORE flag bits (Section 6), the
   Sender Sequence Number, the Sender ID, and the ID Context when these
   fields are present (Section 3).  The detailed format and length is
   specified in Section 6.  If the OSCORE flag bits are all zero (0x00),
   the option value SHALL be empty (Option Length = 0).  An endpoint
   receiving a CoAP message without payload that also contains an OSCORE
   option SHALL treat it as malformed and reject it.

   A successful response to a request with the OSCORE option SHALL
   contain the OSCORE option.  Whether error responses contain the
   OSCORE option depends on the error type (see Section 8).

   For CoAP proxy operations, see Section 10.

3.  The Security Context

   OSCORE requires that client and server establish a shared security
   context used to process the COSE objects.  OSCORE uses COSE with an
   Authenticated Encryption with Associated Data (AEAD, [RFC5116])
   algorithm for protecting message data between a client and a server.
   In this section, we define the security context and how it is derived
   in client and server based on a shared secret and a key derivation
   function.
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3.1.  Security Context Definition

   The security context is the set of information elements necessary to
   carry out the cryptographic operations in OSCORE.  For each endpoint,
   the security context is composed of a "Common Context", a "Sender
   Context", and a "Recipient Context".

   The endpoints protect messages to send using the Sender Context and
   verify messages received using the Recipient Context; both contexts
   being derived from the Common Context and other data.  Clients and
   servers need to be able to retrieve the correct security context to
   use.

   An endpoint uses its Sender ID (SID) to derive its Sender Context;
   the other endpoint uses the same ID, now called Recipient ID (RID),
   to derive its Recipient Context.  In communication between two
   endpoints, the Sender Context of one endpoint matches the Recipient
   Context of the other endpoint, and vice versa.  Thus, the two
   security contexts identified by the same IDs in the two endpoints are
   not the same, but they are partly mirrored.  Retrieval and use of the
   security context are shown in Figure 4.

             .---------------------.   .---------------------.
             |    Common Context   | = |    Common Context   |
             +---------------------+   +---------------------+
             |    Sender Context   | = |  Recipient Context  |
             +---------------------+   +---------------------+
             |  Recipient Context  | = |    Sender Context   |
             ’---------------------’   ’---------------------’
                      Client                   Server
                         |                       |
   Retrieve context for  | OSCORE request:       |
    target resource      |   Token = Token1,     |
   Protect request with  |   kid = SID, ...      |
     Sender Context      +---------------------->| Retrieve context with
                         |                       |  RID = kid
                         |                       | Verify request with
                         |                       |  Recipient Context
                         | OSCORE response:      | Protect response with
                         |   Token = Token1, ... |  Sender Context
   Retrieve context with |<----------------------+
    Token = Token1       |                       |
   Verify request with   |                       |
    Recipient Context    |                       |

            Figure 4: Retrieval and Use of the Security Context
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   The Common Context contains the following parameters:

   o  AEAD Algorithm.  The COSE AEAD algorithm to use for encryption.

   o  HKDF Algorithm.  An HMAC-based key derivation function (HKDF,
      [RFC5869]) used to derive the Sender Key, Recipient Key, and
      Common IV.

   o  Master Secret.  Variable length, random byte string (see
      Section 12.3) used to derive AEAD keys and Common IV.

   o  Master Salt.  Optional variable-length byte string containing the
      salt used to derive AEAD keys and Common IV.

   o  ID Context.  Optional variable-length byte string providing
      additional information to identify the Common Context and to
      derive AEAD keys and Common IV.  The use of ID Context is
      described in Section 5.1.

   o  Common IV.  Byte string derived from the Master Secret, Master
      Salt, and ID Context.  Used to generate the AEAD nonce (see
      Section 5.2).  Same length as the nonce of the AEAD Algorithm.

   The Sender Context contains the following parameters:

   o  Sender ID.  Byte string used to identify the Sender Context, to
      derive AEAD keys and Common IV, and to contribute to the
      uniqueness of AEAD nonces.  Maximum length is determined by the
      AEAD Algorithm.

   o  Sender Key. Byte string containing the symmetric AEAD key to
      protect messages to send.  Derived from Common Context and Sender
      ID.  Length is determined by the AEAD Algorithm.

   o  Sender Sequence Number.  Non-negative integer used by the sender
      to enumerate requests and certain responses, e.g., Observe
      notifications.  Used as "Partial IV" [RFC8152] to generate unique
      AEAD nonces.  Maximum value is determined by the AEAD Algorithm.
      Initialization is described in Section 3.2.2.

   The Recipient Context contains the following parameters:

   o  Recipient ID.  Byte string used to identify the Recipient Context,
      to derive AEAD keys and Common IV, and to contribute to the
      uniqueness of AEAD nonces.  Maximum length is determined by the
      AEAD Algorithm.
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   o  Recipient Key. Byte string containing the symmetric AEAD key to
      verify messages received.  Derived from Common Context and
      Recipient ID.  Length is determined by the AEAD Algorithm.

   o  Replay Window (Server only).  The replay window used to verify
      requests received.  Replay protection is described in Section 7.4
      and Section 3.2.2.

   All parameters except Sender Sequence Number and Replay Window are
   immutable once the security context is established.  An endpoint may
   free up memory by not storing the Common IV, Sender Key, and
   Recipient Key, deriving them when needed.  Alternatively, an endpoint
   may free up memory by not storing the Master Secret and Master Salt
   after the other parameters have been derived.

   Endpoints MAY operate as both client and server and use the same
   security context for those roles.  Independent of being client or
   server, the endpoint protects messages to send using its Sender
   Context, and verifies messages received using its Recipient Context.
   The endpoints MUST NOT change the Sender/Recipient ID when changing
   roles.  In other words, changing the roles does not change the set of
   AEAD keys to be used.

3.2.  Establishment of Security Context Parameters

   Each endpoint derives the parameters in the security context from a
   small set of input parameters.  The following input parameters SHALL
   be preestablished:

   o  Master Secret

   o  Sender ID

   o  Recipient ID

   The following input parameters MAY be preestablished.  In case any of
   these parameters is not preestablished, the default value indicated
   below is used:

   o  AEAD Algorithm

      *  Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

   o  Master Salt

      *  Default is the empty byte string
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   o  HKDF Algorithm

      *  Default is HKDF SHA-256

   o  Replay Window

      *  The default mechanism is an anti-replay sliding window (see
         Section 4.1.2.6 of [RFC6347] with a window size of 32

   All input parameters need to be known and agreed on by both
   endpoints, but the Replay Window may be different in the two
   endpoints.  The way the input parameters are preestablished is
   application specific.  Considerations of security context
   establishment are given in Section 12.2 and examples of deploying
   OSCORE in Appendix B.

3.2.1.  Derivation of Sender Key, Recipient Key, and Common IV

   The HKDF MUST be one of the HMAC-based HKDF [RFC5869] algorithms
   defined for COSE [RFC8152].  HKDF SHA-256 is mandatory to implement.
   The security context parameters Sender Key, Recipient Key, and Common
   IV SHALL be derived from the input parameters using the HKDF, which
   consists of the composition of the HKDF-Extract and HKDF-Expand steps
   [RFC5869]:

      output parameter = HKDF(salt, IKM, info, L)

   where:

   o  salt is the Master Salt as defined above

   o  IKM is the Master Secret as defined above

   o  info is the serialization of a CBOR array consisting of (the
      notation follows [RFC8610] as summarized in Appendix E):

      info = [
        id : bstr,
        id_context : bstr / nil,
        alg_aead : int / tstr,
        type : tstr,
        L : uint,
      ]

Selander, et al.             Standards Track                   [Page 12]



RFC 8613                         OSCORE                        July 2019

   where:

   o  id is the Sender ID or Recipient ID when deriving Sender Key and
      Recipient Key, respectively, and the empty byte string when
      deriving the Common IV.

   o  id_context is the ID Context, or nil if ID Context is not
      provided.

   o  alg_aead is the AEAD Algorithm, encoded as defined in [RFC8152].

   o  type is "Key" or "IV".  The label is an ASCII string and does not
      include a trailing NUL byte.

   o  L is the size of the key/nonce for the AEAD Algorithm used, in
      bytes.

   For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
   [RFC8152]) is used, the integer value for alg_aead is 10, the value
   for L is 16 for keys and 13 for the Common IV.  Assuming use of the
   default algorithms HKDF SHA-256 and AES-CCM-16-64-128, the extract
   phase of HKDF produces a pseudorandom key (PRK) as follows:

      PRK = HMAC-SHA-256(Master Salt, Master Secret)

   and as L is smaller than the hash function output size, the expand
   phase of HKDF consists of a single HMAC invocation; therefore, the
   Sender Key, Recipient Key, and Common IV are the first 16 or 13 bytes
   of

      output parameter = HMAC-SHA-256(PRK, info || 0x01)

   where different values of info are used for each derived parameter
   and where || denotes byte string concatenation.

   Note that [RFC5869] specifies that if the salt is not provided, it is
   set to a string of zeros.  For implementation purposes, not providing
   the salt is the same as setting the salt to the empty byte string.
   OSCORE sets the salt default value to empty byte string, which is
   converted to a string of zeroes (see Section 2.2 of [RFC5869]).
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3.2.2.  Initial Sequence Numbers and Replay Window

   The Sender Sequence Number is initialized to 0.

   The supported types of replay protection and replay window size is
   application specific and depends on how OSCORE is transported (see
   Section 7.4).  The default mechanism is the anti-replay window of
   received messages used by IPsec AH/ESP and DTLS (see Section 4.1.2.6
   of [RFC6347]) with a window size of 32.

3.3.  Requirements on the Security Context Parameters

   To ensure unique Sender Keys, the quartet (Master Secret, Master
   Salt, ID Context, Sender ID) MUST be unique, i.e., the pair (ID
   Context, Sender ID) SHALL be unique in the set of all security
   contexts using the same Master Secret and Master Salt.  This means
   that Sender ID SHALL be unique in the set of all security contexts
   using the same Master Secret, Master Salt, and ID Context; such a
   requirement guarantees unique (key, nonce) pairs for the AEAD.

   Different methods can be used to assign Sender IDs: a protocol that
   allows the parties to negotiate locally unique identifiers, a trusted
   third party (e.g., [ACE-OAuth]), or the identifiers can be assigned
   out-of-band.  The Sender IDs can be very short (note that the empty
   string is a legitimate value).  The maximum length of Sender ID in
   bytes equals the length of the AEAD nonce minus 6, see Section 5.2.
   For AES-CCM-16-64-128 the maximum length of Sender ID is 7 bytes.

   To simplify retrieval of the right Recipient Context, the Recipient
   ID SHOULD be unique in the sets of all Recipient Contexts used by an
   endpoint.  If an endpoint has the same Recipient ID with different
   Recipient Contexts, i.e., the Recipient Contexts are derived from
   different Common Contexts, then the endpoint may need to try multiple
   times before verifying the right security context associated to the
   Recipient ID.

   The ID Context is used to distinguish between security contexts.  The
   methods used for assigning Sender ID can also be used for assigning
   the ID Context.  Additionally, the ID Context can be used to
   introduce randomness into new Sender and Recipient Contexts (see
   Appendix B.2).  ID Context can be arbitrarily long.
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4.  Protected Message Fields

   OSCORE transforms a CoAP message (which may have been generated from
   an HTTP message) into an OSCORE message, and vice versa.  OSCORE
   protects as much of the original message as possible while still
   allowing certain proxy operations (see Sections 10 and 11).  This
   section defines how OSCORE protects the message fields and transfers
   them end-to-end between client and server (in any direction).

   The remainder of this section and later sections focus on the
   behavior in terms of CoAP messages.  If HTTP is used for a particular
   hop in the end-to-end path, then this section applies to the
   conceptual CoAP message that is mappable to/from the original HTTP
   message as discussed in Section 11.  That is, an HTTP message is
   conceptually transformed to a CoAP message and then to an OSCORE
   message, and similarly in the reverse direction.  An actual
   implementation might translate directly from HTTP to OSCORE without
   the intervening CoAP representation.

   Protection of signaling messages (Section 5 of [RFC8323]) is
   specified in Section 4.3.  The other parts of this section target
   request/response messages.

   Message fields of the CoAP message may be protected end-to-end
   between CoAP client and CoAP server in different ways:

   o  Class E: encrypted and integrity protected,

   o  Class I: integrity protected only, or

   o  Class U: unprotected.

   The sending endpoint SHALL transfer Class E message fields in the
   ciphertext of the COSE object in the OSCORE message.  The sending
   endpoint SHALL include Class I message fields in the AAD of the AEAD
   algorithm, allowing the receiving endpoint to detect if the value has
   changed in transfer.  Class U message fields SHALL NOT be protected
   in transfer.  Class I and Class U message field values are
   transferred in the header or options part of the OSCORE message,
   which is visible to proxies.

   Message fields not visible to proxies, i.e., transported in the
   ciphertext of the COSE object, are called "Inner" (Class E).  Message
   fields transferred in the header or options part of the OSCORE
   message, which is visible to proxies, are called "Outer" (Class I or
   Class U).  There are currently no Class I options defined.
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   An OSCORE message may contain both an Inner and an Outer instance of
   a certain CoAP message field.  Inner message fields are intended for
   the receiving endpoint, whereas Outer message fields are used to
   enable proxy operations.

4.1.  CoAP Options

   A summary of how options are protected is shown in Figure 5.  Note
   that some options may have both Inner and Outer message fields, which
   are protected accordingly.  Certain options require special
   processing as is described in Section 4.1.3.

   Options that are unknown or for which OSCORE processing is not
   defined SHALL be processed as Class E (and no special processing).
   Specifications of new CoAP options SHOULD define how they are
   processed with OSCORE.  A new COAP option SHOULD be of Class E unless
   it requires proxy processing.  If a new CoAP option is of class U,
   the potential issues with the option being unprotected SHOULD be
   documented (see Appendix D.5).

4.1.1.  Inner Options

   Inner option message fields (Class E) are used to communicate
   directly with the other endpoint.

   The sending endpoint SHALL write the Inner option message fields
   present in the original CoAP message into the plaintext of the COSE
   object (Section 5.3) and then remove the Inner option message fields
   from the OSCORE message.

   The processing of Inner option message fields by the receiving
   endpoint is specified in Sections 8.2 and 8.4.
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                   +------+-----------------+---+---+
                   | No.  | Name            | E | U |
                   +------+-----------------+---+---+
                   |   1  | If-Match        | x |   |
                   |   3  | Uri-Host        |   | x |
                   |   4  | ETag            | x |   |
                   |   5  | If-None-Match   | x |   |
                   |   6  | Observe         | x | x |
                   |   7  | Uri-Port        |   | x |
                   |   8  | Location-Path   | x |   |
                   |   9  | OSCORE          |   | x |
                   |  11  | Uri-Path        | x |   |
                   |  12  | Content-Format  | x |   |
                   |  14  | Max-Age         | x | x |
                   |  15  | Uri-Query       | x |   |
                   |  17  | Accept          | x |   |
                   |  20  | Location-Query  | x |   |
                   |  23  | Block2          | x | x |
                   |  27  | Block1          | x | x |
                   |  28  | Size2           | x | x |
                   |  35  | Proxy-Uri       |   | x |
                   |  39  | Proxy-Scheme    |   | x |
                   |  60  | Size1           | x | x |
                   | 258  | No-Response     | x | x |
                   +------+-----------------+---+---+

                 E = Encrypt and Integrity Protect (Inner)
                 U = Unprotected (Outer)

                   Figure 5: Protection of CoAP Options

4.1.2.  Outer Options

   Outer option message fields (Class U or I) are used to support proxy
   operations, see Appendix D.2.

   The sending endpoint SHALL include the Outer option message field
   present in the original message in the options part of the OSCORE
   message.  All Outer option message fields, including the OSCORE
   option, SHALL be encoded as described in Section 3.1 of [RFC7252],
   where the delta is the difference from the previously included
   instance of Outer option message field.

   The processing of Outer options by the receiving endpoint is
   specified in Sections 8.2 and 8.4.
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   A procedure for integrity-protection-only of Class I option message
   fields is specified in Section 5.4.  Specifications that introduce
   repeatable Class I options MUST specify that proxies MUST NOT change
   the order of the instances of such an option in the CoAP message.

   Note: There are currently no Class I option message fields defined.

4.1.3.  Special Options

   Some options require special processing as specified in this section.

4.1.3.1.  Max-Age

   An Inner Max-Age message field is used to indicate the maximum time a
   response may be cached by the client (as defined in [RFC7252]), end-
   to-end from the server to the client, taking into account that the
   option is not accessible to proxies.  The Inner Max-Age SHALL be
   processed by OSCORE as a normal Inner option, specified in
   Section 4.1.1.

   An Outer Max-Age message field is used to avoid unnecessary caching
   of error responses caused by OSCORE processing at OSCORE-unaware
   intermediary nodes.  A server MAY set a Class U Max-Age message field
   with value zero to such error responses, described in Sections 7.4,
   8.2, and 8.4, since these error responses are cacheable, but
   subsequent OSCORE requests would never create a hit in the
   intermediary node caching it.  Setting the Outer Max-Age to zero
   relieves the intermediary from uselessly caching responses.
   Successful OSCORE responses do not need to include an Outer Max-Age
   option.  Except when the Observe option (see Section 4.1.3.5) is
   used, responses appear to the OSCORE-unaware intermediary as 2.04
   (Changed) responses, which are non-cacheable (see Section 4.2).  For
   Observe responses, which are cacheable, an Outer Max-Age option with
   value 0 may be used to avoid unnecessary proxy caching.

   The Outer Max-Age message field is processed according to
   Section 4.1.2.

4.1.3.2.  Uri-Host and Uri-Port

   When the Uri-Host and Uri-Port are set to their default values (see
   Section 5.10.1 [RFC7252]), they are omitted from the message
   (Section 5.4.4 of [RFC7252]), which is favorable both for overhead
   and privacy.

   In order to support forward proxy operations, Proxy-Scheme, Uri-Host,
   and Uri-Port need to be Class U.  For the use of Proxy-Uri, see
   Section 4.1.3.3.
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   Manipulation of unprotected message fields (including Uri-Host, Uri-
   Port, destination IP/port or request scheme) MUST NOT lead to an
   OSCORE message becoming verified by an unintended server.  Different
   servers SHALL have different security contexts.

4.1.3.3.  Proxy-Uri

   When Proxy-Uri is present, the client SHALL first decompose the
   Proxy-Uri value of the original CoAP message into the Proxy-Scheme,
   Uri-Host, Uri-Port, Uri-Path, and Uri-Query options according to
   Section 6.4 of [RFC7252].

   Uri-Path and Uri-Query are Class E options and SHALL be protected and
   processed as Inner options (Section 4.1.1).

   The Proxy-Uri option of the OSCORE message SHALL be set to the
   composition of Proxy-Scheme, Uri-Host, and Uri-Port options as
   specified in Section 6.5 of [RFC7252] and processed as an Outer
   option of Class U (Section 4.1.2).

   Note that replacing the Proxy-Uri value with the Proxy-Scheme and
   Uri-* options works by design for all CoAP URIs (see Section 6 of
   [RFC7252]).  OSCORE-aware HTTP servers should not use the userinfo
   component of the HTTP URI (as defined in Section 3.2.1 of [RFC3986]),
   so that this type of replacement is possible in the presence of CoAP-
   to-HTTP proxies (see Section 11.2).  In future specifications of
   cross-protocol proxying behavior using different URI structures, it
   is expected that the authors will create Uri-* options that allow
   decomposing the Proxy-Uri, and specifying the OSCORE processing.

   An example of how Proxy-Uri is processed is given here.  Assume that
   the original CoAP message contains:

   o  Proxy-Uri = "coap://example.com/resource?q=1"

   During OSCORE processing, Proxy-Uri is split into:

   o  Proxy-Scheme = "coap"

   o  Uri-Host = "example.com"

   o  Uri-Port = "5683" (default)

   o  Uri-Path = "resource"

   o  Uri-Query = "q=1"
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   Uri-Path and Uri-Query follow the processing defined in
   Section 4.1.1; thus, they are encrypted and transported in the COSE
   object:

   o  Uri-Path = "resource"

   o  Uri-Query = "q=1"

   The remaining options are composed into the Proxy-Uri included in the
   options part of the OSCORE message, which has value:

   o  Proxy-Uri = "coap://example.com"

   See Sections 6.1 and 12.6 of [RFC7252] for more details.

4.1.3.4.  The Block Options

   Block-wise [RFC7959] is an optional feature.  An implementation MAY
   support CoAP [RFC7252] and the OSCORE option without supporting
   block-wise transfers.  The Block options (Block1, Block2, Size1,
   Size2), when Inner message fields, provide secure message
   segmentation such that each segment can be verified.  The Block
   options, when Outer message fields, enable hop-by-hop fragmentation
   of the OSCORE message.  Inner and Outer block processing may have
   different performance properties depending on the underlying
   transport.  The end-to-end integrity of the message can be verified
   both in case of Inner and Outer Block-wise transfers, provided all
   blocks are received.

4.1.3.4.1.  Inner Block Options

   The sending CoAP endpoint MAY fragment a CoAP message as defined in
   [RFC7959] before the message is processed by OSCORE.  In this case,
   the Block options SHALL be processed by OSCORE as normal Inner
   options (Section 4.1.1).  The receiving CoAP endpoint SHALL process
   the OSCORE message before processing Block-wise as defined in
   [RFC7959].

4.1.3.4.2.  Outer Block Options

   Proxies MAY fragment an OSCORE message using [RFC7959] by introducing
   Block option message fields that are Outer (Section 4.1.2).  Note
   that the Outer Block options are neither encrypted nor integrity
   protected.  As a consequence, a proxy can maliciously inject block
   fragments indefinitely, since the receiving endpoint needs to receive
   the last block (see [RFC7959]) to be able to compose the OSCORE
   message and verify its integrity.  Therefore, applications supporting
   OSCORE and [RFC7959] MUST specify a security policy defining a
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   maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
   the maximum size of message that can be handled by the endpoints.
   Messages exceeding this size SHOULD be fragmented by the sending
   endpoint using Inner Block options (Section 4.1.3.4.1).

   An endpoint receiving an OSCORE message with an Outer Block option
   SHALL first process this option according to [RFC7959], until all
   blocks of the OSCORE message have been received or the cumulated
   message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE.  In the
   former case, the processing of the OSCORE message continues as
   defined in this document.  In the latter case, the message SHALL be
   discarded.

   Because of encryption of Uri-Path and Uri-Query, messages to the same
   server may, from the point of view of a proxy, look like they also
   target the same resource.  A proxy SHOULD mitigate a potential mix-up
   of blocks from concurrent requests to the same server, for example,
   using the Request-Tag processing specified in Section 3.3.2 of
   [CoAP-ECHO-REQ-TAG].

4.1.3.5.  Observe

   Observe [RFC7641] is an optional feature.  An implementation MAY
   support CoAP [RFC7252] and the OSCORE option without supporting
   [RFC7641], in which case the Observe-related processing can be
   omitted.

   The support for Observe [RFC7641] with OSCORE targets the
   requirements on forwarding of Section 2.2.1 of [CoAP-E2E-Sec], i.e.,
   that observations go through intermediary nodes, as illustrated in
   Figure 8 of [RFC7641].

   Inner Observe SHALL be used to protect the value of the Observe
   option between the endpoints.  Outer Observe SHALL be used to support
   forwarding by intermediary nodes.

   The server SHALL include a new Partial IV (see Section 5) in
   responses (with or without the Observe option) to Observe
   registrations, except for the first response where Partial IV MAY be
   omitted.

   For cancellations, Section 3.6 of [RFC7641] specifies that all
   options MUST be identical to those in the registration request except
   for the Observe option and the set of ETag options.  For OSCORE
   messages, this matching is to be done to the options in the decrypted
   message.
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   [RFC7252] does not specify how the server should act upon receiving
   the same Token in different requests.  When using OSCORE, the server
   SHOULD NOT remove an active observation just because it receives a
   request with the same Token.

   Since POST with the Observe option is not defined, for messages with
   the Observe option, the Outer Code MUST be set to 0.05 (FETCH) for
   requests and to 2.05 (Content) for responses (see Section 4.2).

4.1.3.5.1.  Registrations and Cancellations

   The Inner and Outer Observe options in the request MUST contain the
   Observe value of the original CoAP request; 0 (registration) or 1
   (cancellation).

   Every time a client issues a new request with the Observe option, a
   new Partial IV MUST be used (see Section 5), and so the payload and
   OSCORE option are changed.  The server uses the Partial IV of the new
   request as the ’request_piv’ of all associated notifications (see
   Section 5.4).

   Intermediaries are not assumed to have access to the OSCORE security
   context used by the endpoints; thus, they cannot make requests or
   transform responses with the OSCORE option that pass verification (at
   the receiving endpoint) as having come from the other endpoint.  This
   has the following consequences and limitations for Observe
   operations.

   o  An intermediary node removing the Outer Observe 0 option does not
      change the registration request to a request without the Observe
      option (see Section 2 of [RFC7641]).  Instead other means for
      cancellation may be used as described in Section 3.6 of [RFC7641].

   o  An intermediary node is not able to transform a normal response
      into an OSCORE-protected Observe notification (see Figure 7 of
      [RFC7641]) that verifies as coming from the server.

   o  An intermediary node is not able to initiate an OSCORE protected
      Observe registration (Observe option with value 0) that verifies
      as coming from the client.  An OSCORE-aware intermediary SHALL NOT
      initiate registrations of observations (see Section 10).  If an
      OSCORE-unaware proxy resends an old registration message from a
      client, the replay protection mechanism in the server will be
      triggered.  To prevent this from resulting in the OSCORE-unaware
      proxy canceling the registration, a server MAY respond to a
      replayed registration request with a replay of a cached
      notification.  Alternatively, the server MAY send a new
      notification.
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   o  An intermediary node is not able to initiate an OSCORE-protected
      Observe cancellation (Observe option with value 1) that verifies
      as coming from the client.  An application MAY decide to allow
      intermediaries to cancel Observe registrations, e.g., to send the
      Observe option with value 1 (see Section 3.6 of [RFC7641]);
      however, that can also be done with other methods, e.g., by
      sending a RST message.  This is out of scope for this
      specification.

4.1.3.5.2.  Notifications

   If the server accepts an Observe registration, a Partial IV MUST be
   included in all notifications (both successful and error), except for
   the first one where the Partial IV MAY be omitted.  To protect
   against replay, the client SHALL maintain a Notification Number for
   each Observation it registers.  The Notification Number is a non-
   negative integer containing the largest Partial IV of the received
   notifications for the associated Observe registration.  Further
   details of replay protection of notifications are specified in
   Section 7.4.1.

   For notifications, the Inner Observe option value MUST be empty (see
   Section 3.2 of [RFC7252]).  The Outer Observe option in a
   notification is needed for intermediary nodes to allow multiple
   responses to one request, and it MAY be set to the value of the
   Observe option in the original CoAP message.  The client performs
   ordering of notifications and replay protection by comparing their
   Partial IVs and SHALL ignore the Outer Observe option value.

   If the client receives a response to an Observe request without an
   Inner Observe option, then it verifies the response as a non-Observe
   response, as specified in Section 8.4.  If the client receives a
   response to a non-Observe request with an Inner Observe option, then
   it stops processing the message, as specified in Section 8.4.

   A client MUST consider the notification with the highest Partial IV
   as the freshest, regardless of the order of arrival.  In order to
   support existing Observe implementations, the OSCORE client
   implementation MAY set the Observe option value to the three least
   significant bytes of the Partial IV.  Implementations need to make
   sure that the notification without Partial IV is considered the
   oldest.

Selander, et al.             Standards Track                   [Page 23]



RFC 8613                         OSCORE                        July 2019

4.1.3.6.  No-Response

   No-Response [RFC7967] is an optional feature used by the client to
   communicate its disinterest in certain classes of responses to a
   particular request.  An implementation MAY support [RFC7252] and the
   OSCORE option without supporting [RFC7967].

   If used, No-Response MUST be Inner.  The Inner No-Response SHALL be
   processed by OSCORE as specified in Section 4.1.1.  The Outer option
   SHOULD NOT be present.  The server SHALL ignore the Outer No-Response
   option.  The client MAY set the Outer No-Response value to 26
   (suppress all known codes) if the Inner value is set to 26.  The
   client MUST be prepared to receive and discard 5.04 (Gateway Timeout)
   error messages from intermediaries potentially resulting from
   destination time out due to no response.

4.1.3.7.  OSCORE

   The OSCORE option is only defined to be present in OSCORE messages as
   an indication that OSCORE processing has been performed.  The content
   in the OSCORE option is neither encrypted nor integrity protected as
   a whole, but some part of the content of this option is protected
   (see Section 5.4).  Nested use of OSCORE is not supported: If OSCORE
   processing detects an OSCORE option in the original CoAP message,
   then processing SHALL be stopped.

4.2.  CoAP Header Fields and Payload

   A summary of how the CoAP header fields and payload are protected is
   shown in Figure 6, including fields specific to CoAP over UDP and
   CoAP over TCP (marked accordingly in the table).

                       +------------------+---+---+
                       | Field            | E | U |
                       +------------------+---+---+
                       | Version (UDP)    |   | x |
                       | Type (UDP)       |   | x |
                       | Length (TCP)     |   | x |
                       | Token Length     |   | x |
                       | Code             | x |   |
                       | Message ID (UDP) |   | x |
                       | Token            |   | x |
                       | Payload          | x |   |
                       +------------------+---+---+
                 E = Encrypt and Integrity Protect (Inner)
                 U = Unprotected (Outer)

          Figure 6: Protection of CoAP Header Fields and Payload
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   Most CoAP header fields (i.e., the message fields in the fixed 4-byte
   header) are required to be read and/or changed by CoAP proxies; thus,
   they cannot, in general, be protected end-to-end from one endpoint to
   the other.  As mentioned in Section 1, OSCORE protects the CoAP
   request/response layer only and not the CoAP messaging layer
   (Section 2 of [RFC7252]), so fields such as Type and Message ID are
   not protected with OSCORE.

   The CoAP header field Code is protected by OSCORE.  Code SHALL be
   encrypted and integrity protected (Class E) to prevent an
   intermediary from eavesdropping on or manipulating it (e.g., changing
   from GET to DELETE).

   The sending endpoint SHALL write the Code of the original CoAP
   message into the plaintext of the COSE object (see Section 5.3).
   After that, the sending endpoint writes an Outer Code to the OSCORE
   message.  With one exception (see Section 4.1.3.5), the Outer Code
   SHALL be set to 0.02 (POST) for requests and to 2.04 (Changed) for
   responses.  The receiving endpoint SHALL discard the Outer Code in
   the OSCORE message and write the Code of the COSE object plaintext
   (Section 5.3) into the decrypted CoAP message.

   The other currently defined CoAP header fields are Unprotected (Class
   U).  The sending endpoint SHALL write all other header fields of the
   original message into the header of the OSCORE message.  The
   receiving endpoint SHALL write the header fields from the received
   OSCORE message into the header of the decrypted CoAP message.

   The CoAP Payload, if present in the original CoAP message, SHALL be
   encrypted and integrity protected; thus, it is an Inner message
   field.  The sending endpoint writes the payload of the original CoAP
   message into the plaintext (Section 5.3) input to the COSE object.
   The receiving endpoint verifies and decrypts the COSE object, and it
   recreates the payload of the original CoAP message.

4.3.  Signaling Messages

   Signaling messages (CoAP Code 7.00-7.31) were introduced to exchange
   information related to an underlying transport connection in the
   specific case of CoAP over reliable transports [RFC8323].

   OSCORE MAY be used to protect signaling if the endpoints for OSCORE
   coincide with the endpoints for the signaling message.  If OSCORE is
   used to protect signaling then:

   o  To comply with [RFC8323], an initial empty Capabilities and
      Settings Message (CSM) SHALL be sent.  The subsequent signaling
      message SHALL be protected.
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   o  Signaling messages SHALL be protected as CoAP request messages,
      except in the case in which the signaling message is a response to
      a previous signaling message; then it SHALL be protected as a CoAP
      response message.  For example, 7.02 (Ping) is protected as a CoAP
      request and 7.03 (Pong) as a CoAP response.

   o  The Outer Code for signaling messages SHALL be set to 0.02 (POST),
      unless it is a response to a previous signaling message, in which
      case it SHALL be set to 2.04 (Changed).

   o  All signaling options, except the OSCORE option, SHALL be Inner
      (Class E).

   NOTE: Option numbers for signaling messages are specific to the CoAP
   Code (see Section 5.2 of [RFC8323]).

   If OSCORE is not used to protect signaling, Signaling messages SHALL
   be unaltered by OSCORE.

5.  The COSE Object

   This section defines how to use COSE [RFC8152] to wrap and protect
   data in the original message.  OSCORE uses the untagged COSE_Encrypt0
   structure (see Section 5.2 of [RFC8152]) with an AEAD algorithm.  The
   AEAD key lengths, AEAD nonce length, and maximum Sender Sequence
   Number are algorithm dependent.

   The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
   [RFC8152] is mandatory to implement.  For AES-CCM-16-64-128, the
   length of Sender Key and Recipient Key is 128 bits; the length of
   AEAD nonce and Common IV is 13 bytes.  The maximum Sender Sequence
   Number is specified in Section 12.

   As specified in [RFC5116], plaintext denotes the data that is to be
   encrypted and integrity protected, and Additional Authenticated Data
   (AAD) denotes the data that is to be integrity protected only.

   The COSE object SHALL be a COSE_Encrypt0 object with fields defined
   as follows:

   o  The ’protected’ field is empty.

   o  The ’unprotected’ field includes:

      *  The ’Partial IV’ parameter.  The value is set to the Sender
         Sequence Number.  All leading bytes of value zero SHALL be
         removed when encoding the Partial IV, except in the case of
         Partial IV value 0, which is encoded to the byte string 0x00.
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         This parameter SHALL be present in requests and will not
         typically be present in responses (for two exceptions, see
         Observe notifications (Section 4.1.3.5.2) and Replay Window
         synchronization (Appendix B.1.2)).

      *  The ’kid’ parameter.  The value is set to the Sender ID.  This
         parameter SHALL be present in requests and will not typically
         be present in responses.  An example where the Sender ID is
         included in a response is the extension of OSCORE to group
         communication [Group-OSCORE].

      *  Optionally, a ’kid context’ parameter (see Section 5.1).  This
         parameter MAY be present in requests and, if so, MUST contain
         an ID Context (see Section 3.1).  This parameter SHOULD NOT be
         present in responses: an example of how ’kid context’ can be
         used in responses is given in Appendix B.2.  If ’kid context’
         is present in the request, then the server SHALL use a security
         context with that ID Context when verifying the request.

   o  The ’ciphertext’ field is computed from the secret key (Sender Key
      or Recipient Key), AEAD nonce (see Section 5.2), plaintext (see
      Section 5.3), and the AAD (see Section 5.4) following Section 5.2
      of [RFC8152].

   The encryption process is described in Section 5.3 of [RFC8152].

5.1.  ID Context and ’kid context’

   For certain use cases, e.g., deployments where the same Sender ID is
   used with multiple contexts, it is possible (and sometimes necessary,
   see Section 3.3) for the client to use an ID Context to distinguish
   the security contexts (see Section 3.1).  For example:

   o  If the client has a unique identifier in some namespace, then that
      identifier can be used as ID Context.

   o  The ID Context may be used to add randomness into new Sender and
      Recipient Contexts, see Appendix B.2.

   o  In the case of group communication [Group-OSCORE], a group
      identifier is used as ID Context to enable different security
      contexts for a server belonging to multiple groups.

   The Sender ID and ID Context are used to establish the necessary
   input parameters and in the derivation of the security context (see
   Section 3.2).
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   While the ’kid’ parameter is used to transport the Sender ID, the new
   COSE header parameter ’kid context’ is used to transport the ID
   Context in requests, see Figure 7.

   +----------+--------+------------+----------------+-----------------+
   |   Name   |  Label | Value Type | Value Registry |   Description   |
   +----------+--------+------------+----------------+-----------------+
   |   kid    |    10  | bstr       |                | Identifies the  |
   | context  |        |            |                | context for the |
   |          |        |            |                | key identifier  |
   +----------+--------+------------+----------------+-----------------+

    Figure 7: Common Header Parameter ’kid context’ for the COSE Object

   If ID Context is non-empty and the client sends a request without
   ’kid context’ resulting in an error indicating that the server could
   not find the security context, then the client could include the ID
   Context in the ’kid context’ when making another request.  Note that
   since the error is unprotected, it may have been spoofed and the real
   response blocked by an on-path attacker.

5.2.  AEAD Nonce

   The high-level design of the AEAD nonce follows Section 4.4 of
   [IV-GEN].  The detailed construction of the AEAD nonce is presented
   here (see Figure 8):

   1.  left-pad the Partial IV (PIV) with zeroes to exactly 5 bytes,

   2.  left-pad the Sender ID of the endpoint that generated the Partial
       IV (ID_PIV) with zeroes to exactly nonce length minus 6 bytes,

   3.  concatenate the size of the ID_PIV (a single byte S) with the
       padded ID_PIV and the padded PIV,

   4.  and then XOR with the Common IV.

   Note that in this specification, only AEAD algorithms that use nonces
   equal or greater than 7 bytes are supported.  The nonce construction
   with S, ID_PIV, and PIV together with endpoint-unique IDs and
   encryption keys makes it easy to verify that the nonces used with a
   specific key will be unique, see Appendix D.4.

   If the Partial IV is not present in a response, the nonce from the
   request is used.  For responses that are not notifications (i.e.,
   when there is a single response to a request), the request and the
   response should typically use the same nonce to reduce message
   overhead.  Both alternatives provide all the required security
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   properties, see Section 7.4 and Appendix D.4.  Another non-Observe
   scenario where a Partial IV is included in a response is when the
   server is unable to perform replay protection, see Appendix B.1.2.
   For processing instructions see Section 8.

              <- nonce length minus 6 B -> <-- 5 bytes -->
         +---+-------------------+--------+---------+-----+
         | S |      padding      | ID_PIV | padding | PIV |----+
         +---+-------------------+--------+---------+-----+    |
                                                               |
          <---------------- nonce length ---------------->     |
         +------------------------------------------------+    |
         |                   Common IV                    |->(XOR)
         +------------------------------------------------+    |
                                                               |
          <---------------- nonce length ---------------->     |
         +------------------------------------------------+    |
         |                     Nonce                      |<---+
         +------------------------------------------------+

                      Figure 8: AEAD Nonce Formation

5.3.  Plaintext

   The plaintext is formatted as a CoAP message with a subset of the
   header (see Figure 9) consisting of:

   o  the Code of the original CoAP message as defined in Section 3 of
      [RFC7252]; and

   o  all Inner option message fields (see Section 4.1.1) present in the
      original CoAP message (see Section 4.1).  The options are encoded
      as described in Section 3.1 of [RFC7252], where the delta is the
      difference from the previously included instance of Class E
      option; and

   o  the Payload of original CoAP message, if present, and in that case
      prefixed by the one-byte Payload Marker (0xff).

   NOTE: The plaintext contains all CoAP data that needs to be encrypted
   end-to-end between the endpoints.
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      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |    Class E options (if any) ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 1 1 1 1 1 1 1|    Payload (if any) ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      (only if there is payload)

                            Figure 9: Plaintext

5.4.  Additional Authenticated Data

   The external_aad SHALL be a CBOR array wrapped in a bstr object as
   defined below, following the notation of [RFC8610] as summarized in
   Appendix E:

   external_aad = bstr .cbor aad_array

   aad_array = [
     oscore_version : uint,
     algorithms : [ alg_aead : int / tstr ],
     request_kid : bstr,
     request_piv : bstr,
     options : bstr,
   ]

   where:

   o  oscore_version: contains the OSCORE version number.
      Implementations of this specification MUST set this field to 1.
      Other values are reserved for future versions.

   o  algorithms: contains (for extensibility) an array of algorithms,
      according to this specification only containing alg_aead.

   o  alg_aead: contains the AEAD Algorithm from the security context
      used for the exchange (see Section 3.1).

   o  request_kid: contains the value of the ’kid’ in the COSE object of
      the request (see Section 5).

   o  request_piv: contains the value of the ’Partial IV’ in the COSE
      object of the request (see Section 5).
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   o  options: contains the Class I options (see Section 4.1.2) present
      in the original CoAP message encoded as described in Section 3.1
      of [RFC7252], where the delta is the difference from the
      previously included instance of class I option.

   The oscore_version and algorithms parameters are established out-of-
   band; thus, they are not transported in OSCORE, but the external_aad
   allows to verify that they are the same in both endpoints.

   NOTE: The format of the external_aad is, for simplicity, the same for
   requests and responses, although some parameters, e.g., request_kid,
   need not be integrity protected in all requests.

   The AAD is composed from the external_aad as described in Section 5.3
   of [RFC8152] (the notation follows [RFC8610] as summarized in
   Appendix E):

      AAD = Enc_structure = [ "Encrypt0", h’’, external_aad ]

   The following is an example of AAD constructed using AEAD Algorithm =
   AES-CCM-16-64-128 (10), request_kid = 0x00, request_piv = 0x25 and no
   Class I options:

   o  oscore_version: 0x01 (1 byte)

   o  algorithms: 0x810a (2 bytes)

   o  request_kid: 0x00 (1 byte)

   o  request_piv: 0x25 (1 byte)

   o  options: 0x (0 bytes)

   o  aad_array: 0x8501810a4100412540 (9 bytes)

   o  external_aad: 0x498501810a4100412540 (10 bytes)

   o  AAD: 0x8368456e63727970743040498501810a4100412540 (21 bytes)

   Note that the AAD consists of a fixed string of 11 bytes concatenated
   with the external_aad.

6.  OSCORE Header Compression

   The Concise Binary Object Representation (CBOR) [RFC7049] combines
   very small message sizes with extensibility.  The CBOR Object Signing
   and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
   of signed and encrypted data.  However, COSE is constructed to
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   support a large number of different stateless use cases and is not
   fully optimized for use as a stateful security protocol, leading to a
   larger than necessary message expansion.  In this section, we define
   a stateless header compression mechanism, simply removing redundant
   information from the COSE objects, which significantly reduces the
   per-packet overhead.  The result of applying this mechanism to a COSE
   object is called the "compressed COSE object".

   The COSE_Encrypt0 object used in OSCORE is transported in the OSCORE
   option and in the Payload.  The Payload contains the ciphertext of
   the COSE object.  The headers of the COSE object are compactly
   encoded as described in the next section.

6.1.  Encoding of the OSCORE Option Value

   The value of the OSCORE option SHALL contain the OSCORE flag bits,
   the ’Partial IV’ parameter, the ’kid context’ parameter (length and
   value), and the ’kid’ parameter as follows:

          0 1 2 3 4 5 6 7 <------------- n bytes -------------->
         +-+-+-+-+-+-+-+-+--------------------------------------
         |0 0 0|h|k|  n  |       Partial IV (if any) ...
         +-+-+-+-+-+-+-+-+--------------------------------------

          <- 1 byte -> <----- s bytes ------>
         +------------+----------------------+------------------+
         | s (if any) | kid context (if any) | kid (if any) ... |
         +------------+----------------------+------------------+

                    Figure 10: The OSCORE Option Value

   o  The first byte, containing the OSCORE flag bits, encodes the
      following set of bits and the length of the ’Partial IV’
      parameter:

      *  The three least significant bits encode the Partial IV length
         n.  If n = 0, then the Partial IV is not present in the
         compressed COSE object.  The values n = 6 and n = 7 are
         reserved.

      *  The fourth least significant bit is the ’kid’ flag, k.  It is
         set to 1 if ’kid’ is present in the compressed COSE object.

      *  The fifth least significant bit is the ’kid context’ flag, h.
         It is set to 1 if the compressed COSE object contains a ’kid
         context’ (see Section 5.1).

Selander, et al.             Standards Track                   [Page 32]



RFC 8613                         OSCORE                        July 2019

      *  The sixth-to-eighth least significant bits are reserved for
         future use.  These bits SHALL be set to zero when not in use.
         According to this specification, if any of these bits are set
         to 1, the message is considered to be malformed and
         decompression fails as specified in item 2 of Section 8.2.

   The flag bits are registered in the "OSCORE Flag Bits" registry
   specified in Section 13.7.

   o  The following n bytes encode the value of the Partial IV, if the
      Partial IV is present (n > 0).

   o  The following 1 byte encodes the length s of the ’kid context’
      (Section 5.1), if the ’kid context’ flag is set (h = 1).

   o  The following s bytes encode the ’kid context’, if the ’kid
      context’ flag is set (h = 1).

   o  The remaining bytes encode the value of the ’kid’, if the ’kid’ is
      present (k = 1).

   Note that the ’kid’ MUST be the last field of the OSCORE option
   value, even in the case in which reserved bits are used and
   additional fields are added to it.

   The length of the OSCORE option thus depends on the presence and
   length of Partial IV, ’kid context’, ’kid’, as specified in this
   section, and on the presence and length of additional parameters, as
   defined in the future documents registering those parameters.

6.2.  Encoding of the OSCORE Payload

   The payload of the OSCORE message SHALL encode the ciphertext of the
   COSE object.

6.3.  Examples of Compressed COSE Objects

   This section covers a list of OSCORE Header Compression examples for
   requests and responses.  The examples assume the COSE_Encrypt0 object
   is set (which means the CoAP message and cryptographic material is
   known).  Note that the full CoAP unprotected message, as well as the
   full security context, is not reported in the examples, but only the
   input necessary to the compression mechanism, i.e., the COSE_Encrypt0
   object.  The output is the compressed COSE object as defined in
   Section 6, divided into two parts, since the object is transported in
   two CoAP fields: the OSCORE option and payload.
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   1.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
       0x25, and Partial IV = 0x05

       Before compression (24 bytes):

         [
           h’’,
           { 4:h’25’, 6:h’05’ },
           h’aea0155667924dff8a24e4cb35b9’,
         ]

       After compression (17 bytes):

         Flag byte: 0b00001001 = 0x09 (1 byte)

         Option Value: 0x090525 (3 bytes)

         Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

   2.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
       empty string, and Partial IV = 0x00

       Before compression (23 bytes):

         [
           h’’,
           { 4:h’’, 6:h’00’ },
           h’aea0155667924dff8a24e4cb35b9’,
         ]

       After compression (16 bytes):

         Flag byte: 0b00001001 = 0x09 (1 byte)

         Option Value: 0x0900 (2 bytes)

         Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

   3.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
       empty string, Partial IV = 0x05, and kid context = 0x44616c656b

       Before compression (30 bytes):

         [
           h’’,
           { 4:h’’, 6:h’05’, 10:h’44616c656b’ },
           h’aea0155667924dff8a24e4cb35b9’,
         ]
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       After compression (22  bytes):

         Flag byte: 0b00011001 = 0x19 (1 byte)

         Option Value: 0x19050544616c656b (8 bytes)

         Payload: 0xae a0155667924dff8a24e4cb35b9 (14 bytes)

   4.  Response with ciphertext = 0xaea0155667924dff8a24e4cb35b9 and no
       Partial IV

       Before compression (18 bytes):

         [
           h’’,
           {},
           h’aea0155667924dff8a24e4cb35b9’,
         ]

       After compression (14 bytes):

         Flag byte: 0b00000000 = 0x00 (1 byte)

         Option Value: 0x (0 bytes)

         Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

   5.  Response with ciphertext = 0xaea0155667924dff8a24e4cb35b9 and
       Partial IV = 0x07

       Before compression (21 bytes):

         [
           h’’,
           { 6:h’07’ },
           h’aea0155667924dff8a24e4cb35b9’,
         ]

       After compression (16 bytes):

         Flag byte: 0b00000001 = 0x01 (1 byte)

         Option Value: 0x0107 (2 bytes)

         Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)
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7.  Message Binding, Sequence Numbers, Freshness, and Replay Protection

7.1.  Message Binding

   In order to prevent response delay and mismatch attacks
   [CoAP-Actuators] from on-path attackers and compromised
   intermediaries, OSCORE binds responses to the requests by including
   the ’kid’ and Partial IV of the request in the AAD of the response.
   Therefore, the server needs to store the ’kid’ and Partial IV of the
   request until all responses have been sent.

7.2.  Sequence Numbers

   An AEAD nonce MUST NOT be used more than once per AEAD key.  The
   uniqueness of (key, nonce) pairs is shown in Appendix D.4, and in
   particular depends on a correct usage of Partial IVs (which encode
   the Sender Sequence Numbers, see Section 5).  If messages are
   processed concurrently, the operation of reading and increasing the
   Sender Sequence Number MUST be atomic.

7.2.1.  Maximum Sequence Number

   The maximum Sender Sequence Number is algorithm dependent (see
   Section 12) and SHALL be less than 2^40.  If the Sender Sequence
   Number exceeds the maximum, the endpoint MUST NOT process any more
   messages with the given Sender Context.  If necessary, the endpoint
   SHOULD acquire a new security context before this happens.  The
   latter is out of scope of this document.

7.3.  Freshness

   For requests, OSCORE provides only the guarantee that the request is
   not older than the security context.  For applications having
   stronger demands on request freshness (e.g., control of actuators),
   OSCORE needs to be augmented with mechanisms providing freshness (for
   example, as specified in [CoAP-ECHO-REQ-TAG]).

   Assuming an honest server (see Appendix D), the message binding
   guarantees that a response is not older than its request.  For
   responses that are not notifications (i.e., when there is a single
   response to a request), this gives absolute freshness.  For
   notifications, the absolute freshness gets weaker with time, and it
   is RECOMMENDED that the client regularly re-register the observation.
   Note that the message binding does not guarantee that a misbehaving
   server created the response before receiving the request, i.e., it
   does not verify server aliveness.
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   For requests and notifications, OSCORE also provides relative
   freshness in the sense that the received Partial IV allows a
   recipient to determine the relative order of requests or responses.

7.4.  Replay Protection

   In order to protect from replay of requests, the server’s Recipient
   Context includes a Replay Window.  A server SHALL verify that the
   Sender Sequence Number received in the ’Partial IV’ parameter of the
   COSE object (see Section 6.1) has not been received before.  If this
   verification fails, the server SHALL stop processing the message, and
   it MAY optionally respond with a 4.01 (Unauthorized) error message.
   Also, the server MAY set an Outer Max-Age option with value zero to
   inform any intermediary that the response is not to be cached.  The
   diagnostic payload MAY contain the string "Replay detected".  The
   size and type of the Replay Window depends on the use case and the
   protocol with which the OSCORE message is transported.  In case of
   reliable and ordered transport from endpoint to endpoint, e.g., TCP,
   the server MAY just store the last received Partial IV and require
   that newly received Partial IVs equal the last received Partial IV +
   1.  However, in the case of mixed reliable and unreliable transports
   and where messages may be lost, such a replay mechanism may be too
   restrictive and the default replay window may be more suitable (see
   Section 3.2.2).

   Responses (with or without Partial IV) are protected against replay
   as they are bound to the request and the fact that only a single
   response is accepted.  In this case the Partial IV is not used for
   replay protection of responses.

   The operation of validating the Partial IV and updating the replay
   protection MUST be atomic.

7.4.1.  Replay Protection of Notifications

   The following applies additionally when the Observe option is
   supported.

   The Notification Number (see Section 4.1.3.5.2) is initialized to the
   Partial IV of the first successfully verified notification in
   response to the registration request.  A client MUST only accept at
   most one Observe notification without Partial IV, and treat it as the
   oldest notification received.  A client receiving a notification
   containing a Partial IV SHALL compare the Partial IV with the
   Notification Number associated to that Observe registration.  The
   client MUST stop processing notifications with a Partial IV that has
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   been previously received.  Applications MAY decide that a client only
   processes notifications that have a greater Partial IV than the
   Notification Number.

   If the verification of the response succeeds, and the received
   Partial IV was greater than the Notification Number, then the client
   SHALL overwrite the corresponding Notification Number with the
   received Partial IV.

7.5.  Losing Part of the Context State

   To prevent reuse of an AEAD nonce with the same AEAD key or the
   acceptance of replayed messages, an endpoint needs to handle the
   situation of losing rapidly changing parts of the context, such as
   the Sender Sequence Number and Replay Window.  These are typically
   stored in RAM and therefore lost in the case of, e.g., an unplanned
   reboot.  There are different alternatives to recover, for example:

   1.  The endpoints can reuse an existing Security Context after
       updating the mutable parts of the security context (Sender
       Sequence Number and Replay Window).  This requires that the
       mutable parts of the security context are available throughout
       the lifetime of the device or that the device can establish a
       fresh security context after loss of mutable security context
       data.  Examples are given based on careful use of nonvolatile
       memory, see Appendix B.1.1 and the use of the Echo option, see
       Appendix B.1.2.  If an endpoint makes use of a partial security
       context stored in nonvolatile memory, it MUST NOT reuse a
       previous Sender Sequence Number and MUST NOT accept previously
       received messages.

   2.  The endpoints can reuse an existing shared Master Secret and
       derive new Sender and Recipient Contexts, see Appendix B.2 for an
       example.  This typically requires a good source of randomness.

   3.  The endpoints can use a trusted third-party-assisted key
       establishment protocol such as [OSCORE-PROFILE].  This requires
       the execution of a three-party protocol and may require a good
       source of randomness.

   4.  The endpoints can run a key exchange protocol providing forward
       secrecy resulting in a fresh Master Secret, from which an
       entirely new Security Context is derived.  This requires a good
       source of randomness, and additionally, the transmission and
       processing of the protocol may have a non-negligible cost, e.g.,
       in terms of power consumption.
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   The endpoints need to be configured with information about which
   method is used.  The choice of method may depend on capabilities of
   the devices deployed and the solution architecture.  Using a key
   exchange protocol is necessary for deployments that require forward
   secrecy.

8.  Processing

   This section describes the OSCORE message processing.  Additional
   processing for Observe or Block-wise are described in subsections.

   Note that, analogously to [RFC7252] where the Token and source/
   destination pair are used to match a response with a request, both
   endpoints MUST keep the association (Token, {Security Context,
   Partial IV of the request}), in order to be able to find the Security
   Context and compute the AAD to protect or verify the response.  The
   association MAY be forgotten after it has been used to successfully
   protect or verify the response, with the exception of Observe
   processing, where the association MUST be kept as long as the
   Observation is active.

   The processing of the Sender Sequence Number follows the procedure
   described in Section 3 of [IV-GEN].

8.1.  Protecting the Request

   Given a CoAP request, the client SHALL perform the following steps to
   create an OSCORE request:

   1.  Retrieve the Sender Context associated with the target resource.

   2.  Compose the AAD and the plaintext, as described in Sections 5.3
       and 5.4.

   3.  Encode the Partial IV (Sender Sequence Number in network byte
       order) and increment the Sender Sequence Number by one.  Compute
       the AEAD nonce from the Sender ID, Common IV, and Partial IV as
       described in Section 5.2.

   4.  Encrypt the COSE object using the Sender Key. Compress the COSE
       object as specified in Section 6.

   5.  Format the OSCORE message according to Section 4.  The OSCORE
       option is added (see Section 4.1.2).

Selander, et al.             Standards Track                   [Page 39]



RFC 8613                         OSCORE                        July 2019

8.2.  Verifying the Request

   A server receiving a request containing the OSCORE option SHALL
   perform the following steps:

   1.  Discard Code and all Class E options (marked in Figure 5 with ’x’
       in column E) present in the received message.  For example, an
       If-Match Outer option is discarded, but an Uri-Host Outer option
       is not discarded.

   2.  Decompress the COSE object (Section 6) and retrieve the Recipient
       Context associated with the Recipient ID in the ’kid’ parameter,
       additionally using the ’kid context’, if present.  Note that the
       Recipient Context MAY be retrieved by deriving a new security
       context, e.g. as described in Appendix B.2.  If either the
       decompression or the COSE message fails to decode, or the server
       fails to retrieve a Recipient Context with Recipient ID
       corresponding to the ’kid’ parameter received, then the server
       SHALL stop processing the request.

       *  If either the decompression or the COSE message fails to
          decode, the server MAY respond with a 4.02 (Bad Option) error
          message.  The server MAY set an Outer Max-Age option with
          value zero.  The diagnostic payload MAY contain the string
          "Failed to decode COSE".

       *  If the server fails to retrieve a Recipient Context with
          Recipient ID corresponding to the ’kid’ parameter received,
          the server MAY respond with a 4.01 (Unauthorized) error
          message.  The server MAY set an Outer Max-Age option with
          value zero.  The diagnostic payload MAY contain the string
          "Security context not found".

   3.  Verify that the Partial IV has not been received before using the
       Replay Window, as described in Section 7.4.

   4.  Compose the AAD, as described in Section 5.4.

   5.  Compute the AEAD nonce from the Recipient ID, Common IV, and the
       Partial IV, received in the COSE object.
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   6.  Decrypt the COSE object using the Recipient Key, as per
       Section 5.3 of [RFC8152].  (The decrypt operation includes the
       verification of the integrity.)

       *  If decryption fails, the server MUST stop processing the
          request and MAY respond with a 4.00 (Bad Request) error
          message.  The server MAY set an Outer Max-Age option with
          value zero.  The diagnostic payload MAY contain the string
          "Decryption failed".

       *  If decryption succeeds, update the Replay Window, as described
          in Section 7.

   7.  Add decrypted Code, options, and payload to the decrypted
       request.  The OSCORE option is removed.

   8.  The decrypted CoAP request is processed according to [RFC7252].

8.2.1.  Supporting Block-wise

   If Block-wise is supported, insert the following step before any
   other:

   A.  If Block-wise is present in the request, then process the Outer
   Block options according to [RFC7959], until all blocks of the request
   have been received (see Section 4.1.3.4).

8.3.  Protecting the Response

   If a CoAP response is generated in response to an OSCORE request, the
   server SHALL perform the following steps to create an OSCORE
   response.  Note that CoAP error responses derived from CoAP
   processing (step 8 in Section 8.2) are protected, as well as
   successful CoAP responses, while the OSCORE errors (steps 2, 3, and 6
   in Section 8.2) do not follow the processing below but are sent as
   simple CoAP responses, without OSCORE processing.

   1.  Retrieve the Sender Context in the Security Context associated
       with the Token.

   2.  Compose the AAD and the plaintext, as described in Sections 5.3
       and 5.4.

   3.  Compute the AEAD nonce as described in Section 5.2:

       *  Either use the AEAD nonce from the request, or
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       *  Encode the Partial IV (Sender Sequence Number in network byte
          order) and increment the Sender Sequence Number by one.
          Compute the AEAD nonce from the Sender ID, Common IV, and
          Partial IV.

   4.  Encrypt the COSE object using the Sender Key. Compress the COSE
       object as specified in Section 6.  If the AEAD nonce was
       constructed from a new Partial IV, this Partial IV MUST be
       included in the message.  If the AEAD nonce from the request was
       used, the Partial IV MUST NOT be included in the message.

   5.  Format the OSCORE message according to Section 4.  The OSCORE
       option is added (see Section 4.1.2).

8.3.1.  Supporting Observe

   If Observe is supported, insert the following step between steps 2
   and 3 of Section 8.3:

   A.  If the response is an Observe notification:

   o  If the response is the first notification:

      *  compute the AEAD nonce as described in Section 5.2:

         +  Either use the AEAD nonce from the request, or

         +  Encode the Partial IV (Sender Sequence Number in network
            byte order) and increment the Sender Sequence Number by one.
            Compute the AEAD nonce from the Sender ID, Common IV, and
            Partial IV.

         Then, go to 4.

   o  If the response is not the first notification:

      *  encode the Partial IV (Sender Sequence Number in network byte
         order) and increment the Sender Sequence Number by one.
         Compute the AEAD nonce from the Sender ID, Common IV, and
         Partial IV, then go to 4.
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8.4.  Verifying the Response

   A client receiving a response containing the OSCORE option SHALL
   perform the following steps:

   1.  Discard Code and all Class E options (marked in Figure 5 with ’x’
       in column E) present in the received message.  For example, ETag
       Outer option is discarded, as well as Max-Age Outer option.

   2.  Retrieve the Recipient Context in the Security Context associated
       with the Token.  Decompress the COSE object (Section 6).  If
       either the decompression or the COSE message fails to decode,
       then go to 8.

   3.  Compose the AAD, as described in Section 5.4.

   4.  Compute the AEAD nonce

       *  If the Partial IV is not present in the response, the AEAD
          nonce from the request is used.

       *  If the Partial IV is present in the response, compute the AEAD
          nonce from the Recipient ID, Common IV, and the Partial IV,
          received in the COSE object.

   5.  Decrypt the COSE object using the Recipient Key, as per
       Section 5.3 of [RFC8152].  (The decrypt operation includes the
       verification of the integrity.)  If decryption fails, then go to
       8.

   6.  Add decrypted Code, options and payload to the decrypted request.
       The OSCORE option is removed.

   7.  The decrypted CoAP response is processed according to [RFC7252].

   8.  In case any of the previous erroneous conditions apply: the
       client SHALL stop processing the response.

8.4.1.  Supporting Block-wise

   If Block-wise is supported, insert the following step before any
   other:

   A.  If Block-wise is present in the response, then process the Outer
   Block options according to [RFC7959], until all blocks of the
   response have been received (see Section 4.1.3.4).
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8.4.2.  Supporting Observe

   If Observe is supported:

   Insert the following step between step 5 and step 6:

   A.  If the request was an Observe registration, then:

   o  If the Partial IV is not present in the response, and the Inner
      Observe option is present, and the AEAD nonce from the request was
      already used once, then go to 8.

   o  If the Partial IV is present in the response and the Inner Observe
      option is present, then follow the processing described in
      Section 4.1.3.5.2 and Section 7.4.1, then:

      *  initialize the Notification Number (if first successfully
         verified notification), or

      *  overwrite the Notification Number (if the received Partial IV
         was greater than the Notification Number).

   Replace step 8 of Section 8.4 with:

   B.  In case any of the previous erroneous conditions apply: the
   client SHALL stop processing the response.  An error condition
   occurring while processing a response to an observation request does
   not cancel the observation.  A client MUST NOT react to failure by
   re-registering the observation immediately.

9.  Web Linking

   The use of OSCORE MAY be indicated by a target "osc" attribute in a
   web link [RFC8288] to a resource, e.g., using a link-format document
   [RFC6690] if the resource is accessible over CoAP.

   The "osc" attribute is a hint indicating that the destination of that
   link is only accessible using OSCORE, and unprotected access to it is
   not supported.  Note that this is simply a hint, it does not include
   any security context material or any other information required to
   run OSCORE.

   A value MUST NOT be given for the "osc" attribute; any present value
   MUST be ignored by parsers.  The "osc" attribute MUST NOT appear more
   than once in a given link-value; occurrences after the first MUST be
   ignored by parsers.
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   The example in Figure 11 shows a use of the "osc" attribute: the
   client does resource discovery on a server and gets back a list of
   resources, one of which includes the "osc" attribute indicating that
   the resource is protected with OSCORE.  The link-format notation (see
   Section 5 of [RFC6690]) is used.

                      REQ: GET /.well-known/core

                      RES: 2.05 Content
                         </sensors/temp>;osc,
                         </sensors/light>;if="sensor"

                          Figure 11: The Web Link

10.  CoAP-to-CoAP Forwarding Proxy

   CoAP is designed for proxy operations (see Section 5.7 of [RFC7252]).

   OSCORE is designed to work with OSCORE-unaware CoAP proxies.
   Security requirements for forwarding are listed in Section 2.2.1 of
   [CoAP-E2E-Sec].  Proxy processing of the (Outer) Proxy-Uri option
   works as defined in [RFC7252].  Proxy processing of the (Outer) Block
   options works as defined in [RFC7959].

   However, not all CoAP proxy operations are useful:

   o  Since a CoAP response is only applicable to the original CoAP
      request, caching is in general not useful.  In support of existing
      proxies, OSCORE uses the Outer Max-Age option, see
      Section 4.1.3.1.

   o  Proxy processing of the (Outer) Observe option as defined in
      [RFC7641] is specified in Section 4.1.3.5.

   Optionally, a CoAP proxy MAY detect OSCORE and act accordingly.  An
   OSCORE-aware CoAP proxy:

   o  SHALL bypass caching for the request if the OSCORE option is
      present.

   o  SHOULD avoid caching responses to requests with an OSCORE option.

   In the case of Observe (see Section 4.1.3.5), the OSCORE-aware CoAP
   proxy:

   o  SHALL NOT initiate an Observe registration.
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   o  MAY verify the order of notifications using Partial IV rather than
      the Observe option.

11.  HTTP Operations

   The CoAP request/response model may be mapped to HTTP and vice versa
   as described in Section 10 of [RFC7252].  The HTTP-CoAP mapping is
   further detailed in [RFC8075].  This section defines the components
   needed to map and transport OSCORE messages over HTTP hops.  By
   mapping between HTTP and CoAP and by using cross-protocol proxies,
   OSCORE may be used end-to-end between, e.g., an HTTP client and a
   CoAP server.  Examples are provided in Sections 11.5 and 11.6.

11.1.  The HTTP OSCORE Header Field

   The HTTP OSCORE header field (see Section 13.4) is used for carrying
   the content of the CoAP OSCORE option when transporting OSCORE
   messages over HTTP hops.

   The HTTP OSCORE header field is only used in POST requests and
   responses with HTTP Status Code 200 (OK).  When used, the HTTP header
   field Content-Type is set to ’application/oscore’ (see Section 13.5)
   indicating that the HTTP body of this message contains the OSCORE
   payload (see Section 6.2).  No additional semantics are provided by
   other message fields.

   Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234],
   including the following core ABNF syntax rules defined by that
   specification: ALPHA (letters) and DIGIT (decimal digits), the HTTP
   OSCORE header field value is as follows.

   base64url-char = ALPHA / DIGIT / "-" / "_"

   OSCORE = 2*base64url-char

   The HTTP OSCORE header field is not appropriate to list in the
   Connection header field (see Section 6.1 of [RFC7230]) since it is
   not hop-by-hop.  OSCORE messages are generally not useful when served
   from cache (i.e., they will generally be marked Cache-Control: no-
   cache) and so interaction with Vary is not relevant (Section 7.1.4 of
   [RFC7231]).  Since the HTTP OSCORE header field is critical for
   message processing, moving it from headers to trailers renders the
   message unusable in case trailers are ignored (see Section 4.1 of
   [RFC7230]).

Selander, et al.             Standards Track                   [Page 46]



RFC 8613                         OSCORE                        July 2019

   In general, intermediaries are not allowed to insert, delete, or
   modify the OSCORE header.  In general, changes to the HTTP OSCORE
   header field will violate the integrity of the OSCORE message
   resulting in an error.  For the same reason the HTTP OSCORE header
   field is generally not preserved across redirects.

   Since redirects are not defined in the mappings between HTTP and CoAP
   ([RFC8075] [RFC7252]), a number of conditions need to be fulfilled
   for redirects to work.  For CoAP-client-to-HTTP-server redirects,
   such conditions include:

   o  the CoAP-to-HTTP proxy follows the redirect, instead of the CoAP
      client as in the HTTP case.

   o  the CoAP-to-HTTP proxy copies the HTTP OSCORE header field and
      body to the new request.

   o  the target of the redirect has the necessary OSCORE security
      context required to decrypt and verify the message.

   Since OSCORE requires the HTTP body to be preserved across redirects,
   the HTTP server is RECOMMENDED to reply with 307 (Temporary Redirect)
   or 308 (Permanent Redirect) instead of 301 (Moved Permanently) or 302
   (Found).

   For the case of HTTP-client-to-CoAP-server redirects, although
   redirect is not defined for CoAP servers [RFC7252], an HTTP client
   receiving a redirect should generate a new OSCORE request for the
   server it was redirected to.

11.2.  CoAP-to-HTTP Mapping

   Section 10.1 of [RFC7252] describes the fundamentals of the CoAP-to-
   HTTP cross-protocol mapping process.  The additional rules for OSCORE
   messages are as follows:

   o  The HTTP OSCORE header field value is set to:

      *  AA if the CoAP OSCORE option is empty; otherwise,

      *  the value of the CoAP OSCORE option (Section 6.1) in base64url
         (Section 5 of [RFC4648]) encoding without padding.
         Implementation notes for this encoding are given in Appendix C
         of [RFC7515].

   o  The HTTP Content-Type is set to ’application/oscore’ (see
      Section 13.5), independent of CoAP Content-Format.
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11.3.  HTTP-to-CoAP Mapping

   Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
   HTTP-to-CoAP proxy.  The additional rules for HTTP messages with the
   OSCORE header field are as follows.

   o  The CoAP OSCORE option is set as follows:

      *  empty if the value of the HTTP OSCORE header field is a single
         zero byte (0x00) represented by AA; otherwise,

      *  the value of the HTTP OSCORE header field decoded from
         base64url (Section 5 of [RFC4648]) without padding.
         Implementation notes for this encoding are given in Appendix C
         of [RFC7515].

   o  The CoAP Content-Format option is omitted, the content format for
      OSCORE (Section 13.6) MUST NOT be used.

11.4.  HTTP Endpoints

   Restricted to subsets of HTTP and CoAP supporting a bijective
   mapping, OSCORE can be originated or terminated in HTTP endpoints.

   The sending HTTP endpoint uses [RFC8075] to translate the HTTP
   message into a CoAP message.  The CoAP message is then processed with
   OSCORE as defined in this document.  The OSCORE message is then
   mapped to HTTP as described in Section 11.2 and sent in compliance
   with the rules in Section 11.1.

   The receiving HTTP endpoint maps the HTTP message to a CoAP message
   using [RFC8075] and Section 11.3.  The resulting OSCORE message is
   processed as defined in this document.  If successful, the plaintext
   CoAP message is translated to HTTP for normal processing in the
   endpoint.

11.5.  Example: HTTP Client and CoAP Server

   This section gives an example of what a request and a response
   between an HTTP client and a CoAP server could look like.  The
   example is not a test vector but intended as an illustration of how
   the message fields are translated in the different steps.

   Mapping and notation here is based on "Simple Form" (Section 5.4.1 of
   [RFC8075]).
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   [HTTP request -- Before client object security processing]

     GET http://proxy.url/hc/?target_uri=coap://server.url/orders
      HTTP/1.1

   [HTTP request -- HTTP Client to Proxy]

     POST http://proxy.url/hc/?target_uri=coap://server.url/ HTTP/1.1
     Content-Type: application/oscore
     OSCORE: CSU
     Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [CoAP request -- Proxy to CoAP Server]

     POST coap://server.url/
     OSCORE: 09 25
     Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [CoAP request -- After server object security processing]

     GET coap://server.url/orders

   [CoAP response -- Before server object security processing]

     2.05 Content
     Content-Format: 0
     Payload: Exterminate! Exterminate!

   [CoAP response -- CoAP Server to Proxy]

     2.04 Changed
     OSCORE: [empty]
     Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [HTTP response -- Proxy to HTTP Client]

     HTTP/1.1 200 OK
     Content-Type: application/oscore
     OSCORE: AA
     Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [HTTP response -- After client object security processing]

     HTTP/1.1 200 OK
     Content-Type: text/plain
     Body: Exterminate! Exterminate!
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   Note that the HTTP Status Code 200 (OK) in the next-to-last message
   is the mapping of CoAP Code 2.04 (Changed), whereas the HTTP Status
   Code 200 (OK) in the last message is the mapping of the CoAP Code
   2.05 (Content), which was encrypted within the compressed COSE object
   carried in the Body of the HTTP response.

11.6.  Example: CoAP Client and HTTP Server

   This section gives an example of what a request and a response
   between a CoAP client and an HTTP server could look like.  The
   example is not a test vector but intended as an illustration of how
   the message fields are translated in the different steps.

   [CoAP request -- Before client object security processing]

     GET coap://proxy.url/
     Proxy-Uri=http://server.url/orders

   [CoAP request -- CoAP Client to Proxy]

     POST coap://proxy.url/
     Proxy-Uri=http://server.url/
     OSCORE: 09 25
     Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [HTTP request -- Proxy to HTTP Server]

     POST http://server.url/ HTTP/1.1
     Content-Type: application/oscore
     OSCORE: CSU
     Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

   [HTTP request -- After server object security processing]

     GET http://server.url/orders HTTP/1.1

   [HTTP response -- Before server object security processing]

     HTTP/1.1 200 OK
     Content-Type: text/plain
     Body: Exterminate! Exterminate!

   [HTTP response -- HTTP Server to Proxy]

     HTTP/1.1 200 OK
     Content-Type: application/oscore
     OSCORE: AA
     Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]
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   [CoAP response -- Proxy to CoAP Client]

     2.04 Changed
     OSCORE: [empty]
     Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

   [CoAP response -- After client object security processing]

     2.05 Content
     Content-Format: 0
     Payload: Exterminate! Exterminate!

   Note that the HTTP Code 2.04 (Changed) in the next-to-last message is
   the mapping of HTTP Status Code 200 (OK), whereas the CoAP Code 2.05
   (Content) in the last message is the value that was encrypted within
   the compressed COSE object carried in the Body of the HTTP response.

12.  Security Considerations

   An overview of the security properties is given in Appendix D.

12.1.  End-to-end Protection

   In scenarios with intermediary nodes such as proxies or gateways,
   transport layer security such as (D)TLS only protects data hop-by-
   hop.  As a consequence, the intermediary nodes can read and modify
   any information.  The trust model where all intermediary nodes are
   considered trustworthy is problematic, not only from a privacy
   perspective, but also from a security perspective, as the
   intermediaries are free to delete resources on sensors and falsify
   commands to actuators (such as "unlock door", "start fire alarm",
   "raise bridge").  Even in the rare cases where all the owners of the
   intermediary nodes are fully trusted, attacks and data breaches make
   such an architecture brittle.

   (D)TLS protects hop-by-hop the entire message.  OSCORE protects end-
   to-end all information that is not required for proxy operations (see
   Section 4).  (D)TLS and OSCORE can be combined, thereby enabling end-
   to-end security of the message payload, in combination with hop-by-
   hop protection of the entire message, during transport between
   endpoint and intermediary node.  In particular, when OSCORE is used
   with HTTP, the additional TLS protection of HTTP hops is RECOMMENDED,
   e.g., between an HTTP endpoint and a proxy translating between HTTP
   and CoAP.
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   Applications need to consider that certain message fields and
   messages types are not protected end-to-end and may be spoofed or
   manipulated.  The consequences of unprotected message fields are
   analyzed in Appendix D.5.

12.2.  Security Context Establishment

   The use of COSE_Encrypt0 and AEAD to protect messages as specified in
   this document requires an established security context.  The method
   to establish the security context described in Section 3.2 is based
   on a common Master Secret and unique Sender IDs.  The necessary input
   parameters may be preestablished or obtained using a key
   establishment protocol augmented with establishment of Sender/
   Recipient ID, such as a key exchange protocol or the OSCORE profile
   of the Authentication and Authorization for Constrained Environments
   (ACE) framework [OSCORE-PROFILE].  Such a procedure must ensure that
   the requirements of the security context parameters for the intended
   use are complied with (see Section 3.3) even in error situations.
   While recipient IDs are allowed to coincide between different
   security contexts (see Section 3.3), this may cause a server to
   process multiple verifications before finding the right security
   context or rejecting a message.  Considerations for deploying OSCORE
   with a fixed Master Secret are given in Appendix B.

12.3.  Master Secret

   OSCORE uses HKDF [RFC5869] and the established input parameters to
   derive the security context.  The required properties of the security
   context parameters are discussed in Section 3.3; in this section, we
   focus on the Master Secret.  In this specification, HKDF denotes the
   composition of the expand and extract functions as defined in
   [RFC5869] and the Master Secret is used as Input Keying Material
   (IKM).

   Informally, HKDF takes as source an IKM containing some good amount
   of randomness but not necessarily distributed uniformly (or for which
   an attacker has some partial knowledge) and derive from it one or
   more cryptographically strong secret keys [RFC5869].

   Therefore, the main requirement for the OSCORE Master Secret, in
   addition to being secret, is that it have a good amount of
   randomness.  The selected key establishment schemes must ensure that
   the necessary properties for the Master Secret are fulfilled.  For
   pre-shared key deployments and key transport solutions such as
   [OSCORE-PROFILE], the Master Secret can be generated offline using a
   good random number generator.  Randomness requirements for security
   are described in [RFC4086].
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12.4.  Replay Protection

   Replay attacks need to be considered in different parts of the
   implementation.  Most AEAD algorithms require a unique nonce for each
   message, for which the Sender Sequence Numbers in the COSE message
   field ’Partial IV’ is used.  If the recipient accepts any sequence
   number larger than the one previously received, then the problem of
   sequence number synchronization is avoided.  With reliable transport,
   it may be defined that only messages with sequence numbers that are
   equal to the previous sequence number + 1 are accepted.  An adversary
   may try to induce a device reboot for the purpose of replaying a
   message (see Section 7.5).

   Note that sharing a security context between servers may open up for
   replay attacks, for example, if the Replay Windows are not
   synchronized.

12.5.  Client Aliveness

   A verified OSCORE request enables the server to verify the identity
   of the entity who generated the message.  However, it does not verify
   that the client is currently involved in the communication, since the
   message may be a delayed delivery of a previously generated request,
   which now reaches the server.  To verify the aliveness of the client
   the server may use the Echo option in the response to a request from
   the client (see [CoAP-ECHO-REQ-TAG]).

12.6.  Cryptographic Considerations

   The maximum Sender Sequence Number is dependent on the AEAD
   algorithm.  The maximum Sender Sequence Number is 2^40 - 1, or any
   algorithm-specific lower limit, after which a new security context
   must be generated.  The mechanism to build the AEAD nonce
   (Section 5.2) assumes that the nonce is at least 56 bits, and the
   Partial IV is at most 40 bits.  The mandatory-to-implement AEAD
   algorithm AES-CCM-16-64-128 is selected for compatibility with CCM*.
   AEAD algorithms that require unpredictable nonces are not supported.

   In order to prevent cryptanalysis when the same plaintext is
   repeatedly encrypted by many different users with distinct AEAD keys,
   the AEAD nonce is formed by mixing the sequence number with a secret
   per-context initialization vector (Common IV) derived along with the
   keys (see Section 3.1 of [RFC8152]), and by using a Master Salt in
   the key derivation (see [MF00] for an overview).  The Master Secret,
   Sender Key, Recipient Key, and Common IV must be secret, the rest of
   the parameters may be public.  The Master Secret must have a good
   amount of randomness (see Section 12.3).
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   The ID Context, Sender ID, and Partial IV are always at least
   implicitly integrity protected, as manipulation leads to the wrong
   nonce or key being used and therefore results in decryption failure.

12.7.  Message Segmentation

   The Inner Block options enable the sender to split large messages
   into OSCORE-protected blocks such that the receiving endpoint can
   verify blocks before having received the complete message.  The Outer
   Block options allow for arbitrary proxy fragmentation operations that
   cannot be verified by the endpoints but that can, by policy, be
   restricted in size since the Inner Block options allow for secure
   fragmentation of very large messages.  A maximum message size (above
   which the sending endpoint fragments the message and the receiving
   endpoint discards the message, if complying to the policy) may be
   obtained as part of normal resource discovery.

12.8.  Privacy Considerations

   Privacy threats executed through intermediary nodes are considerably
   reduced by means of OSCORE.  End-to-end integrity protection and
   encryption of the message payload and all options that are not used
   for proxy operations provide mitigation against attacks on sensor and
   actuator communication, which may have a direct impact on the
   personal sphere.

   The unprotected options (Figure 5) may reveal privacy-sensitive
   information, see Appendix D.5.  CoAP headers sent in plaintext allow,
   for example, matching of CON and ACK (CoAP Message Identifier),
   matching of request and responses (Token) and traffic analysis.
   OSCORE does not provide protection for HTTP header fields that are
   not both CoAP-mappable and Class E.  The HTTP message fields that are
   visible to on-path entities are only used for the purpose of
   transporting the OSCORE message, whereas the application-layer
   message is encoded in CoAP and encrypted.

   COSE message fields, i.e., the OSCORE option, may reveal information
   about the communicating endpoints.  For example, ’kid’ and ’kid
   context’, which are intended to help the server find the right
   context, may reveal information about the client.  Tracking ’kid’ and
   ’kid context’ to one server may be used for correlating requests from
   one client.

   Unprotected error messages reveal information about the security
   state in the communication between the endpoints.  Unprotected
   signaling messages reveal information about the reliable transport
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   used on a leg of the path.  Using the mechanisms described in
   Section 7.5 may reveal when a device goes through a reboot.  This can
   be mitigated by the device storing the precise state of Sender
   Sequence Number and Replay Window on a clean shutdown.

   The length of message fields can reveal information about the
   message.  Applications may use a padding scheme to protect against
   traffic analysis.

13.  IANA Considerations

13.1.  COSE Header Parameters Registry

   The ’kid context’ parameter has been added to the "COSE Header
   Parameters" registry:

   o  Name: kid context

   o  Label: 10

   o  Value Type: bstr

   o  Value Registry:

   o  Description: Identifies the context for the key identifier

   o  Reference: Section 5.1 of this document

13.2.  CoAP Option Numbers Registry

   The OSCORE option has been added to the "CoAP Option Numbers"
   registry:

             +--------+-----------------+-------------------+
             | Number | Name            | Reference         |
             +--------+-----------------+-------------------+
             |     9  | OSCORE          | [RFC8613]         |
             +--------+-----------------+-------------------+
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   Furthermore, the following existing entries in the "CoAP Option
   Numbers" registry have been updated with a reference to the document
   specifying OSCORE processing of that option:

       +--------+-----------------+-------------------------------+
       | Number | Name            |          Reference            |
       +--------+-----------------+-------------------------------+
       |   1    | If-Match        | [RFC7252] [RFC8613]           |
       |   3    | Uri-Host        | [RFC7252] [RFC8613]           |
       |   4    | ETag            | [RFC7252] [RFC8613]           |
       |   5    | If-None-Match   | [RFC7252] [RFC8613]           |
       |   6    | Observe         | [RFC7641] [RFC8613]           |
       |   7    | Uri-Port        | [RFC7252] [RFC8613]           |
       |   8    | Location-Path   | [RFC7252] [RFC8613]           |
       |  11    | Uri-Path        | [RFC7252] [RFC8613]           |
       |  12    | Content-Format  | [RFC7252] [RFC8613]           |
       |  14    | Max-Age         | [RFC7252] [RFC8613]           |
       |  15    | Uri-Query       | [RFC7252] [RFC8613]           |
       |  17    | Accept          | [RFC7252] [RFC8613]           |
       |  20    | Location-Query  | [RFC7252] [RFC8613]           |
       |  23    | Block2          | [RFC7959] [RFC8323] [RFC8613] |
       |  27    | Block1          | [RFC7959] [RFC8323] [RFC8613] |
       |  28    | Size2           | [RFC7959] [RFC8613]           |
       |  35    | Proxy-Uri       | [RFC7252] [RFC8613]           |
       |  39    | Proxy-Scheme    | [RFC7252] [RFC8613]           |
       |  60    | Size1           | [RFC7252] [RFC8613]           |
       | 258    | No-Response     | [RFC7967] [RFC8613]           |
       +--------+-----------------+-------------------------------+

   Future additions to the "CoAP Option Numbers" registry need to
   provide a reference to the document where the OSCORE processing of
   that CoAP Option is defined.

13.3.  CoAP Signaling Option Numbers Registry

   The OSCORE option has been added to the "CoAP Signaling Option
   Numbers" registry:

     +------------+--------+---------------------+-------------------+
     | Applies to | Number | Name                | Reference         |
     +------------+--------+---------------------+-------------------+
     | 7.xx (all) |     9  | OSCORE              | [RFC8613]         |
     +------------+--------+---------------------+-------------------+
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13.4.  Header Field Registrations

   The HTTP OSCORE header field has been added to the "Message Headers"
   registry:

     +-------------------+----------+----------+---------------------+
     | Header Field Name | Protocol | Status   | Reference           |
     +-------------------+----------+----------+---------------------+
     | OSCORE            | http     | standard | [RFC8613],          |
     |                   |          |          | Section 11.1        |
     +-------------------+----------+----------+---------------------+

13.5.  Media Type Registration

   This section registers the ’application/oscore’ media type in the
   "Media Types" registry.  This media type is used to indicate that the
   content is an OSCORE message.  The OSCORE body cannot be understood
   without the OSCORE header field value and the security context.

     Type name: application

     Subtype name: oscore

     Required parameters: N/A

     Optional parameters: N/A

     Encoding considerations: binary

     Security considerations: See the Security Considerations section
        of [RFC8613].

     Interoperability considerations: N/A

     Published specification: [RFC8613]

     Applications that use this media type: IoT applications sending
        security content over HTTP(S) transports.

     Fragment identifier considerations: N/A

     Additional information:

     *  Deprecated alias names for this type: N/A
     *  Magic number(s): N/A
     *  File extension(s): N/A
     *  Macintosh file type code(s): N/A
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     Person & email address to contact for further information:
        IESG <iesg@ietf.org>

     Intended usage: COMMON

     Restrictions on usage: N/A

     Author: Goeran Selander <goran.selander@ericsson.com>

     Change Controller: IESG

     Provisional registration?  No

13.6.  CoAP Content-Formats Registry

   This section registers the media type ’application/oscore’ media type
   in the "CoAP Content-Formats" registry.  This Content-Format for the
   OSCORE payload is defined for potential future use cases and SHALL
   NOT be used in the OSCORE message.  The OSCORE payload cannot be
   understood without the OSCORE option value and the security context.

    +----------------------+----------+----------+-------------------+
    | Media Type           | Encoding |   ID     |     Reference     |
    +----------------------+----------+----------+-------------------+
    | application/oscore   |          |  10001   | [RFC8613]         |
    +----------------------+----------+----------+-------------------+

13.7.  OSCORE Flag Bits Registry

   This document defines a subregistry for the OSCORE flag bits within
   the "CoRE Parameters" registry.  The name of the subregistry is
   "OSCORE Flag Bits".  The registry has been created with the Expert
   Review policy [RFC8126].  Guidelines for the experts are provided in
   Section 13.8.

   The columns of the registry are as follows:

   o  Bit Position: This indicates the position of the bit in the set of
      OSCORE flag bits, starting at 0 for the most significant bit.  The
      bit position must be an integer or a range of integers, in the
      range 0 to 63.

   o  Name: The name is present to make it easier to refer to and
      discuss the registration entry.  The value is not used in the
      protocol.  Names are to be unique in the table.

   o  Description: This contains a brief description of the use of the
      bit.
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   o  Reference: This contains a pointer to the specification defining
      the entry.

   The initial contents of the registry are in the table below.  The
   reference column for all rows is this document.  The entries with Bit
   Position of 0 and 1 are marked as ’Reserved’.  The entry with Bit
   Position of 1 will be specified in a future document and will be used
   to expand the space for the OSCORE flag bits in Section 6.1, so that
   entries 8-63 of the registry are defined.

+--------------+-------------+-----------------------------+-----------+
| Bit Position | Name        | Description                 | Reference |
+--------------+-------------+-----------------------------+-----------+
|       0      | Reserved    |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       1      | Reserved    |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       2      | Unassigned  |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       3      | Kid Context | Set to 1 if kid context     | [RFC8613] |
|              | Flag        | is present in the           |           |
|              |             | compressed COSE object      |           |
+--------------+-------------+-----------------------------+-----------+
|       4      | Kid Flag    | Set to 1 if kid is present  | [RFC8613] |
|              |             | in the compressed COSE      |           |
|              |             | object                      |           |
+--------------+-------------+-----------------------------+-----------+
|     5-7      | Partial IV  | Encodes the Partial IV      | [RFC8613] |
|              | Length      | length; can have value      |           |
|              |             | 0 to 5                      |           |
+--------------+-------------+-----------------------------+-----------+
|    8-63      | Unassigned  |                             |           |
+--------------+-------------+-----------------------------+-----------+

13.8.  Expert Review Instructions

   The expert reviewers for the registry defined in this document are
   expected to ensure that the usage solves a valid use case that could
   not be solved better in a different way, that it is not going to
   duplicate one that is already registered, and that the registered
   point is likely to be used in deployments.  They are furthermore
   expected to check the clarity of purpose and use of the requested
   code points.  Experts should take into account the expected usage of
   entries when approving point assignment, and the length of the
   encoded value should be weighed against the number of code points
   left that encode to that size and the size of device it will be used
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   on.  Experts should block registration for entries 8-63 until these
   points are defined (i.e., until the mechanism for the OSCORE flag
   bits expansion via bit 1 is specified).
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Appendix A.  Scenario Examples

   This section gives examples of OSCORE, targeting scenarios in
   Section 2.2.1.1 of [CoAP-E2E-Sec].  The message exchanges are made,
   based on the assumption that there is a security context established
   between client and server.  For simplicity, these examples only
   indicate the content of the messages without going into detail of the
   (compressed) COSE message format.

A.1.  Secure Access to Sensor

   This example illustrates a client requesting the alarm status from a
   server.

      Client  Proxy  Server
        |       |       |
        +------>|       |            Code: 0.02 (POST)
        | POST  |       |           Token: 0x8c
        |       |       |          OSCORE: [kid:5f, Partial IV:42]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"alarm_status"}
        |       |       |
        |       +------>|            Code: 0.02 (POST)
        |       | POST  |           Token: 0x7b
        |       |       |          OSCORE: [kid:5f, Partial IV:42]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Uri-Path:"alarm_status"}
        |       |       |
        |       |<------+            Code: 2.04 (Changed)
        |       |  2.04 |           Token: 0x7b
        |       |       |          OSCORE: -
        |       |       |         Payload: {Code:2.05, "0"}
        |       |       |
        |<------+       |            Code: 2.04 (Changed)
        |  2.04 |       |           Token: 0x8c
        |       |       |          OSCORE: -
        |       |       |         Payload: {Code:2.05, "0"}
        |       |       |

   Square brackets [ ... ] indicate content of compressed COSE object.
   Curly brackets { ... } indicate encrypted data.

                    Figure 12: Secure Access to Sensor

   The CoAP request/response Codes are encrypted by OSCORE and only
   dummy Codes (POST/Changed) are visible in the header of the OSCORE
   message.  The option Uri-Path ("alarm_status") and payload ("0") are
   encrypted.
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   The COSE header of the request contains an identifier (5f),
   indicating which security context was used to protect the message and
   a Partial IV (42).

   The server verifies the request as specified in Section 8.2.  The
   client verifies the response as specified in Section 8.4.

A.2.  Secure Subscribe to Sensor

   This example illustrates a client requesting subscription to a blood
   sugar measurement resource (GET /glucose), first receiving the value
   220 mg/dl and then a second value 180 mg/dl.

      Client  Proxy  Server
        |       |       |
        +------>|       |            Code: 0.05 (FETCH)
        | FETCH |       |           Token: 0x83
        |       |       |         Observe: 0
        |       |       |          OSCORE: [kid:ca, Partial IV:15]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Observe:0,
        |       |       |                   Uri-Path:"glucose"}
        |       |       |
        |       +------>|            Code: 0.05 (FETCH)
        |       | FETCH |           Token: 0xbe
        |       |       |         Observe: 0
        |       |       |          OSCORE: [kid:ca, Partial IV:15]
        |       |       |         Payload: {Code:0.01,
        |       |       |                   Observe:0,
        |       |       |                   Uri-Path:"glucose"}
        |       |       |
        |       |<------+            Code: 2.05 (Content)
        |       |  2.05 |           Token: 0xbe
        |       |       |         Observe: 7
        |       |       |          OSCORE: -
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Observe:-,
        |       |       |                   Content-Format:0, "220"}
        |       |       |
        |<------+       |            Code: 2.05 (Content)
        |  2.05 |       |           Token: 0x83
        |       |       |         Observe: 7
        |       |       |          OSCORE: -
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Observe:-,
        |       |       |                   Content-Format:0, "220"}
       ...     ...     ...
        |       |       |
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        |       |<------+            Code: 2.05 (Content)
        |       |  2.05 |           Token: 0xbe
        |       |       |         Observe: 8
        |       |       |          OSCORE: [Partial IV:36]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Observe:-,
        |       |       |                   Content-Format:0, "180"}
        |       |       |
        |<------+       |            Code: 2.05 (Content)
        |  2.05 |       |           Token: 0x83
        |       |       |         Observe: 8
        |       |       |          OSCORE: [Partial IV:36]
        |       |       |         Payload: {Code:2.05,
        |       |       |                   Observe:-,
        |       |       |                   Content-Format:0, "180"}
        |       |       |

   Square brackets [ ... ] indicate content of compressed COSE object
   header.  Curly brackets { ... } indicate encrypted data.

                   Figure 13: Secure Subscribe to Sensor

   The dummy Codes (FETCH/Content) are used to allow forwarding of
   Observe messages.  The options Content-Format (0) and the payload
   ("220" and "180") are encrypted.

   The COSE header of the request contains an identifier (ca),
   indicating the security context used to protect the message and a
   Partial IV (15).  The COSE header of the second response contains the
   Partial IV (36).  The first response uses the Partial IV of the
   request.

   The server verifies that the Partial IV has not been received before.
   The client verifies that the responses are bound to the request and
   that the Partial IVs are greater than any Partial IV previously
   received in a response bound to the request, except for the
   notification without Partial IV, which is considered the oldest.
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Appendix B.  Deployment Examples

   For many Internet of Things (IoT) deployments, a 128-bit uniformly
   random Master Key is sufficient for encrypting all data exchanged
   with the IoT device throughout its lifetime.  Two examples are given
   in this section.  In the first example, the security context is only
   derived once from the Master Secret.  In the second example, security
   contexts are derived multiple times using random inputs.

B.1.  Security Context Derived Once

   An application that only derives the security context once needs to
   handle the loss of mutable security context parameters, e.g., due to
   reboot.

B.1.1.  Sender Sequence Number

   In order to handle loss of Sender Sequence Numbers, the device may
   implement procedures for writing to nonvolatile memory during normal
   operations and updating the security context after reboot, provided
   that the procedures comply with the requirements on the security
   context parameters (Section 3.3).  This section gives an example of
   such a procedure.

   There are known issues related to writing to nonvolatile memory.  For
   example, flash drives may have a limited number of erase operations
   during its lifetime.  Also, the time for a write operation to
   nonvolatile memory to be completed may be unpredictable, e.g., due to
   caching, which could result in important security context data not
   being stored at the time when the device reboots.

   However, many devices have predictable limits for writing to
   nonvolatile memory, are physically limited to only send a small
   amount of messages per minute, and may have no good source of
   randomness.

   To prevent reuse of Sender Sequence Number, an endpoint may perform
   the following procedure during normal operations:

   o  Before using a Sender Sequence Number that is evenly divisible by
      K, where K is a positive integer, store the Sender Sequence Number
      (SSN1) in nonvolatile memory.  After booting, the endpoint
      initiates the new Sender Sequence Number (SSN2) to the value
      stored in persistent memory plus K plus F: SSN2 = SSN1 + K + F,
      where F is a positive integer.
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      *  Writing to nonvolatile memory can be costly; the value K gives
         a trade-off between frequency of storage operations and
         efficient use of Sender Sequence Numbers.

      *  Writing to nonvolatile memory may be subject to delays, or
         failure; F MUST be set so that the last Sender Sequence Number
         used before reboot is never larger than SSN2.

   If F cannot be set so SSN2 is always larger than the last Sender
   Sequence Number used before reboot, the method described in this
   section MUST NOT be used.

B.1.2.  Replay Window

   In case of loss of security context on the server, to prevent
   accepting replay of previously received requests, the server may
   perform the following procedure after booting:

   o  The server updates its Sender Sequence Number as specified in
      Appendix B.1.1 to be used as Partial IV in the response containing
      the Echo option (next bullet).

   o  For each stored security context, the first time after booting,
      the server receives an OSCORE request, the server responds with an
      OSCORE protected 4.01 (Unauthorized), containing only the Echo
      option [CoAP-ECHO-REQ-TAG] and no diagnostic payload.  The server
      MUST use its Partial IV when generating the AEAD nonce and MUST
      include the Partial IV in the response (see Section 5).  If the
      server with use of the Echo option can verify a second OSCORE
      request as fresh, then the Partial IV of the second request is set
      as the lower limit of the Replay Window of that security context.

B.1.3.  Notifications

   To prevent the acceptance of replay of previously received
   notifications, the client may perform the following procedure after
   booting:

   o  The client forgets about earlier registrations and removes all
      Notification Numbers.  The client then registers again using the
      Observe option.
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B.2.  Security Context Derived Multiple Times

   An application that does not require forward secrecy may allow
   multiple security contexts to be derived from one Master Secret.  The
   requirements on the security context parameters MUST be fulfilled
   (Section 3.3) even if the client or server is rebooted,
   recommissioned, or in error cases.

   This section gives an example of a protocol that adds randomness to
   the ID Context parameter and uses that together with input parameters
   preestablished between client and server, in particular Master
   Secret, Master Salt, and Sender/Recipient ID (see Section 3.2), to
   derive new security contexts.  The random input is transported
   between client and server in the ’kid context’ parameter.  This
   protocol MUST NOT be used unless both endpoints have good sources of
   randomness.

   During normal requests, the ID Context of an established security
   context may be sent in the ’kid context’, which, together with ’kid’,
   facilitates for the server to locate a security context.
   Alternatively, the ’kid context’ may be omitted since the ID Context
   is expected to be known to both client and server; see Section 5.1.

   The protocol described in this section may only be needed when the
   mutable part of security context is lost in the client or server,
   e.g., when the endpoint has rebooted.  The protocol may additionally
   be used whenever the client and server need to derive a new security
   context.  For example, if a device is provisioned with one fixed set
   of input parameters (including Master Secret, Sender and Recipient
   Identifiers), then a randomized ID Context ensures that the security
   context is different for each deployment.

   Note that the server needs to be configured to run this protocol when
   it is not able to retrieve an existing security context, instead of
   stopping processing the message as described in step 2 of
   Section 8.2.

   The protocol is described below with reference to Figure 14.  The
   client or the server may initiate the protocol, in the latter case
   step 1 is omitted.
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                      Client                Server
                        |                      |
1. Protect with         |      request #1      |
   ID Context = ID1     |--------------------->| 2. Verify with
                        |  kid_context = ID1   |    ID Context = ID1
                        |                      |
                        |      response #1     |    Protect with
3. Verify with          |<---------------------|    ID Context = R2||ID1
   ID Context = R2||ID1 |   kid_context = R2   |
                        |                      |
   Protect with         |      request #2      |
   ID Context = R2||R3  |--------------------->| 4. Verify with
                        | kid_context = R2||R3 |    ID Context = R2||R3
                        |                      |
                        |      response #2     |    Protect with
5. Verify with          |<---------------------|    ID Context = R2||R3
   ID Context = R2||R3  |                      |

        Figure 14: Protocol for Establishing a New Security Context

   1.  (Optional) If the client does not have a valid security context
       with the server, e.g., because of reboot or because this is the
       first time it contacts the server, then it generates a random
       string R1 and uses this as ID Context together with the input
       parameters shared with the server to derive a first security
       context.  The client sends an OSCORE request to the server
       protected with the first security context, containing R1 wrapped
       in a CBOR bstr as ’kid context’.  The request may target a
       special resource used for updating security contexts.

   2.  The server receives an OSCORE request for which it does not have
       a valid security context, either because the client has generated
       a new security context ID1 = R1 or because the server has lost
       part of its security context, e.g., ID Context, Sender Sequence
       Number or Replay Window.  If the server is able to verify the
       request (see Section 8.2) with the new derived first security
       context using the received ID1 (transported in ’kid context’) as
       ID Context and the input parameters associated to the received
       ’kid’, then the server generates a random string R2 and derives a
       second security context with ID Context = ID2 = R2 || ID1.  The
       server sends a 4.01 (Unauthorized) response protected with the
       second security context, containing R2 wrapped in a CBOR bstr as
       ’kid context’, and caches R2.  R2 MUST NOT be reused as that may
       lead to reuse of key and nonce in response #1.  Note that the
       server may receive several requests #1 associated with one
       security context, leading to multiple parallel protocol runs.
       Multiple instances of R2 may need to be cached until one of the
       protocol runs is completed, see Appendix B.2.1.
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   3.  The client receives a response with ’kid context’ containing a
       CBOR bstr wrapping R2 to an OSCORE request it made with ID
       Context = ID1.  The client derives a second security context
       using ID Context = ID2 = R2 || ID1.  If the client can verify the
       response (see Section 8.4) using the second security context,
       then the client makes a request protected with a third security
       context derived from ID Context = ID3 = R2 || R3, where R3 is a
       random byte string generated by the client.  The request includes
       R2 || R3 wrapped in a CBOR bstr as ’kid context’.

   4.  If the server receives a request with ’kid context’ containing a
       CBOR bstr wrapping ID3, where the first part of ID3 is identical
       to an R2 sent in a previous response #1, which it has not
       received before, then the server derives a third security context
       with ID Context = ID3.  The server MUST NOT accept replayed
       request #2 messages.  If the server can verify the request (see
       Section 8.2) with the third security context, then the server
       marks the third security context to be used with this client and
       removes all instances of R2 associated to this security context
       from the cache.  This security context replaces the previous
       security context with the client, and the first and the second
       security contexts are deleted.  The server responds using the
       same security context as in the request.

   5.  If the client receives a response to the request with the third
       security context and the response verifies (see Section 8.4),
       then the client marks the third security context to be used with
       this server.  This security context replaces the previous
       security context with the server, and the first and second
       security contexts are deleted.

   If verification fails in any step, the endpoint stops processing that
   message.

   The length of the nonces R1, R2, and R3 is application specific.  The
   application needs to set the length of each nonce such that the
   probability of its value being repeated is negligible; typically, at
   least 8 bytes long.  Since R2 may be generated as the result of a
   replayed request #1, the probability for collision of R2s is impacted
   by the birthday paradox.  For example, setting the length of R2 to 8
   bytes results in an average collision after 2^32 response #1
   messages, which should not be an issue for a constrained server
   handling on the order of one request per second.
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   Request #2 can be an ordinary request.  The server performs the
   action of the request and sends response #2 after having successfully
   completed the operations related to the security context in step 4.
   The client acts on response #2 after having successfully completed
   step 5.

   When sending request #2, the client is assured that the Sender Key
   (derived with the random value R3) has never been used before.  When
   receiving response #2, the client is assured that the response
   (protected with a key derived from the random value R3 and the Master
   Secret) was created by the server in response to request #2.

   Similarly, when receiving request #2, the server is assured that the
   request (protected with a key derived from the random value R2 and
   the Master Secret) was created by the client in response to response
   #1.  When sending response #2, the server is assured that the Sender
   Key (derived with the random value R2) has never been used before.

   Implementation and denial-of-service considerations are made in
   Appendix B.2.1 and Appendix B.2.2.

B.2.1.  Implementation Considerations

   This section add some implementation considerations to the protocol
   described in the previous section.

   The server may only have space for a few security contexts or only be
   able to handle a few protocol runs in parallel.  The server may
   legitimately receive multiple request #1 messages using the same
   immutable security context, e.g., because of packet loss.  Replays of
   old request #1 messages could be difficult for the server to
   distinguish from legitimate.  The server needs to handle the case
   when the maximum number of cached R2s is reached.  If the server
   receives a request #1 and is not capable of executing it then it may
   respond with an unprotected 5.03 (Service Unavailable) error message.
   The server may clear up state from protocol runs that never complete,
   e.g., set a timer when caching R2, and remove R2 and the associated
   security contexts from the cache at timeout.  Additionally, state
   information can be flushed at reboot.

   As an alternative to caching R2, the server could generate R2 in such
   a way that it can be sent (in response #1) and verified (at reception
   of request #2) as the value of R2 it had generated.  Such a procedure
   MUST NOT lead to the server accepting replayed request #2 messages.
   One construction described in the following is based on using a
   secret random HMAC key K_HMAC per set of immutable security context
   parameters associated with a client.  This construction allows the
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   server to handle verification of R2 in response #2 at the cost of
   storing the K_HMAC keys and a slightly larger message overhead in
   response #1.  Steps below refer to modifications to Appendix B.2:

   o  In step 2, R2 is generated in the following way.  First, the
      server generates a random K_HMAC (unless it already has one
      associated with the security context), then it sets R2 = S2 ||
      HMAC(K_HMAC, S2) where S2 is a random byte string, and the HMAC is
      truncated to 8 bytes.  K_HMAC may have an expiration time, after
      which it is erased.  Note that neither R2, S2, nor the derived
      first and second security contexts need to be cached.

   o  In step 4, instead of verifying that R2 coincides with a cached
      value, the server looks up the associated K_HMAC and verifies the
      truncated HMAC, and the processing continues accordingly depending
      on verification success or failure.  K_HMAC is used until a run of
      the protocol is completed (after verification of request #2), or
      until it expires (whatever comes first), after which K_HMAC is
      erased.  (The latter corresponds to removing the cached values of
      R2 in step 4 of Appendix B.2 and makes the server reject replays
      of request #2.)

   The length of S2 is application specific and the probability for
   collision of S2s is impacted by the birthday paradox.  For example,
   setting the length of S2 to 8 bytes results in an average collision
   after 2^32 response #1 messages, which should not be an issue for a
   constrained server handling on the order of one request per second.

   Two endpoints sharing a security context may accidentally initiate
   two instances of the protocol at the same time, each in the role of
   client, e.g., after a power outage affecting both endpoints.  Such a
   race condition could potentially lead to both protocols failing, and
   both endpoints repeatedly reinitiating the protocol without
   converging.  Both endpoints can detect this situation, and it can be
   handled in different ways.  The requests could potentially be more
   spread out in time, for example, by only initiating this protocol
   when the endpoint actually needs to make a request, potentially
   adding a random delay before requests immediately after reboot or if
   such parallel protocol runs are detected.

B.2.2.  Attack Considerations

   An on-path attacker may inject a message causing the endpoint to
   process verification of the message.  A message crafted without
   access to the Master Secret will fail to verify.
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   Replaying an old request with a value of ’kid_context’ that the
   server does not recognize could trigger the protocol.  This causes
   the server to generate the first and second security context and send
   a response.  But if the client did not expect a response, it will be
   discarded.  This may still result in a denial-of-service attack
   against the server, e.g., because of not being able to manage the
   state associated with many parallel protocol runs, and it may prevent
   legitimate client requests.  Implementation alternatives with less
   data caching per request #1 message are favorable in this respect;
   see Appendix B.2.1.

   Replaying response #1 in response to some request other than request
   #1 will fail to verify, since response #1 is associated to request
   #1, through the dependencies of ID Contexts and the Partial IV of
   request #1 included in the external_aad of response #1.

   If request #2 has already been well received, then the server has a
   valid security context, so a replay of request #2 is handled by the
   normal replay protection mechanism.  Similarly, if response #2 has
   already been received, a replay of response #2 to some other request
   from the client will fail by the normal verification of binding of
   response to request.

Appendix C.  Test Vectors

   This appendix includes the test vectors for different examples of
   CoAP messages using OSCORE.  Given a set of inputs, OSCORE defines
   how to set up the Security Context in both the client and the server.

   Note that in Appendix C.4 and all following test vectors the Token
   and the Message ID of the OSCORE-protected CoAP messages are set to
   the same value of the unprotected CoAP message to help the reader
   with comparisons.

C.1.  Test Vector 1: Key Derivation with Master Salt

   In this test vector, a Master Salt of 8 bytes is used.  The default
   values are used for AEAD Algorithm and HKDF.

C.1.1.  Client

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Master Salt: 0x9e7ca92223786340 (8 bytes)

   o  Sender ID: 0x (0 byte)
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   o  Recipient ID: 0x01 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x8540f60a634b657910 (9 bytes)

   o  info (for Recipient Key): 0x854101f60a634b657910 (10 bytes)

   o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

   Outputs:

   o  Sender Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

   o  Recipient Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

   o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0x4622d4dd6d944168eefb54987c (13 bytes)

   o  recipient nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)

C.1.2.  Server

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Master Salt: 0x9e7ca92223786340 (8 bytes)

   o  Sender ID: 0x01 (1 byte)

   o  Recipient ID: 0x (0 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x854101f60a634b657910 (10 bytes)

   o  info (for Recipient Key): 0x8540f60a634b657910 (9 bytes)

   o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

   Outputs:

   o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)
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   o  Recipient Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

   o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)

   o  recipient nonce: 0x4622d4dd6d944168eefb54987c (13 bytes)

C.2.  Test Vector 2: Key Derivation without Master Salt

   In this test vector, the default values are used for AEAD Algorithm,
   HKDF, and Master Salt.

C.2.1.  Client

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Sender ID: 0x00 (1 byte)

   o  Recipient ID: 0x01 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x854100f60a634b657910 (10 bytes)

   o  info (for Recipient Key): 0x854101f60a634b657910 (10 bytes)

   o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

   Outputs:

   o  Sender Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

   o  Recipient Key: 0xe57b5635815177cd679ab4bcec9d7dda (16 bytes)

   o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0xbf35ae297d2dace910c52e99f9 (13 bytes)

   o  recipient nonce: 0xbf35ae297d2dace810c52e99f9 (13 bytes)

Selander, et al.             Standards Track                   [Page 77]



RFC 8613                         OSCORE                        July 2019

C.2.2.  Server

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Sender ID: 0x01 (1 byte)

   o  Recipient ID: 0x00 (1 byte)

   From the previous parameters,

   o  info (for Sender Key): 0x854101f60a634b657910 (10 bytes)

   o  info (for Recipient Key): 0x854100f60a634b657910 (10 bytes)

   o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

   Outputs:

   o  Sender Key: 0xe57b5635815177cd679ab4bcec9d7dda (16 bytes)

   o  Recipient Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

   o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0xbf35ae297d2dace810c52e99f9 (13 bytes)

   o  recipient nonce: 0xbf35ae297d2dace910c52e99f9 (13 bytes)

C.3.  Test Vector 3: Key Derivation with ID Context

   In this test vector, a Master Salt of 8 bytes and an ID Context of 8
   bytes are used.  The default values are used for AEAD Algorithm and
   HKDF.

C.3.1.  Client

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Master Salt: 0x9e7ca92223786340 (8 bytes)

   o  Sender ID: 0x (0 byte)
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   o  Recipient ID: 0x01 (1 byte)

   o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

   From the previous parameters,

   o  info (for Sender Key): 0x85404837cbf3210017a2d30a634b657910 (17
      bytes)

   o  info (for Recipient Key): 0x8541014837cbf3210017a2d30a634b657910
      (18 bytes)

   o  info (for Common IV): 0x85404837cbf3210017a2d30a6249560d (16
      bytes)

   Outputs:

   o  Sender Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

   o  Recipient Key: 0xe39a0c7c77b43f03b4b39ab9a268699f (16 bytes)

   o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

   o  recipient nonce: 0x2da58fb85ff1b81d0b7181b85e (13 bytes)

C.3.2.  Server

   Inputs:

   o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

   o  Master Salt: 0x9e7ca92223786340 (8 bytes)

   o  Sender ID: 0x01 (1 byte)

   o  Recipient ID: 0x (0 byte)

   o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

   From the previous parameters,

   o  info (for Sender Key): 0x8541014837cbf3210017a2d30a634b657910 (18
      bytes)
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   o  info (for Recipient Key): 0x85404837cbf3210017a2d30a634b657910 (17
      bytes)

   o  info (for Common IV): 0x85404837cbf3210017a2d30a6249560d (16
      bytes)

   Outputs:

   o  Sender Key: 0xe39a0c7c77b43f03b4b39ab9a268699f (16 bytes)

   o  Recipient Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

   o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

   From the previous parameters and a Partial IV equal to 0 (both for
   sender and recipient):

   o  sender nonce: 0x2da58fb85ff1b81d0b7181b85e (13 bytes)

   o  recipient nonce: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

C.4.  Test Vector 4: OSCORE Request, Client

   This section contains a test vector for an OSCORE-protected CoAP GET
   request using the security context derived in Appendix C.1.  The
   unprotected request only contains the Uri-Path and Uri-Host options.

   Unprotected CoAP request:
   0x44015d1f00003974396c6f63616c686f737483747631 (22 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

   Sender Context:

   o  Sender ID: 0x (0 byte)

   o  Sender Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

   o  Sender Sequence Number: 20

Selander, et al.             Standards Track                   [Page 80]



RFC 8613                         OSCORE                        July 2019

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x14 (1 byte)

   o  kid: 0x (0 byte)

   o  aad_array: 0x8501810a40411440 (8 bytes)

   o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

   o  plaintext: 0x01b3747631 (5 bytes)

   o  encryption key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

   o  nonce: 0x4622d4dd6d944168eefb549868 (13 bytes)

   From the previous parameter, the following is derived:

   o  OSCORE option value: 0x0914 (2 bytes)

   o  ciphertext: 0x612f1092f1776f1c1668b3825e (13 bytes)

   From there:

   o  Protected CoAP request (OSCORE message): 0x44025d1f00003974396c6f6
      3616c686f7374620914ff612f1092f1776f1c1668b3825e (35 bytes)

C.5.  Test Vector 5: OSCORE Request, Client

   This section contains a test vector for an OSCORE-protected CoAP GET
   request using the security context derived in Appendix C.2.  The
   unprotected request only contains the Uri-Path and Uri-Host options.

   Unprotected CoAP request:
   0x440171c30000b932396c6f63616c686f737483747631 (22 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

   Sender Context:

   o  Sender ID: 0x00 (1 bytes)
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   o  Sender Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

   o  Sender Sequence Number: 20

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x14 (1 byte)

   o  kid: 0x00 (1 byte)

   o  aad_array: 0x8501810a4100411440 (9 bytes)

   o  AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

   o  plaintext: 0x01b3747631 (5 bytes)

   o  encryption key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

   o  nonce: 0xbf35ae297d2dace910c52e99ed (13 bytes)

   From the previous parameter, the following is derived:

   o  OSCORE option value: 0x091400 (3 bytes)

   o  ciphertext: 0x4ed339a5a379b0b8bc731fffb0 (13 bytes)

   From there:

   o  Protected CoAP request (OSCORE message): 0x440271c30000b932396c6f6
      3616c686f737463091400ff4ed339a5a379b0b8bc731fffb0 (36 bytes)

C.6.  Test Vector 6: OSCORE Request, Client

   This section contains a test vector for an OSCORE-protected CoAP GET
   request for an application that sets the ID Context and requires it
   to be sent in the request, so ’kid context’ is present in the
   protected message.  This test vector uses the security context
   derived in Appendix C.3.  The unprotected request only contains the
   Uri-Path and Uri-Host options.

   Unprotected CoAP request:
   0x44012f8eef9bbf7a396c6f63616c686f737483747631 (22 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256
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   o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

   o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

   Sender Context:

   o  Sender ID: 0x (0 bytes)

   o  Sender Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

   o  Sender Sequence Number: 20

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x14 (1 byte)

   o  kid: 0x (0 byte)

   o  kid context: 0x37cbf3210017a2d3 (8 bytes)

   o  aad_array: 0x8501810a40411440 (8 bytes)

   o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

   o  plaintext: 0x01b3747631 (5 bytes)

   o  encryption key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

   o  nonce: 0x2ca58fb85ff1b81c0b7181b84a (13 bytes)

   From the previous parameter, the following is derived:

   o  OSCORE option value: 0x19140837cbf3210017a2d3 (11 bytes)

   o  ciphertext: 0x72cd7273fd331ac45cffbe55c3 (13 bytes)

   From there:

   o  Protected CoAP request (OSCORE message):
      0x44022f8eef9bbf7a396c6f63616c686f73746b19140837cbf3210017a2d3ff
      72cd7273fd331ac45cffbe55c3 (44 bytes)
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C.7.  Test Vector 7: OSCORE Response, Server

   This section contains a test vector for an OSCORE-protected 2.05
   (Content) response to the request in Appendix C.4.  The unprotected
   response has payload "Hello World!" and no options.  The protected
   response does not contain a ’kid’ nor a Partial IV.  Note that some
   parameters are derived from the request.

   Unprotected CoAP response:
   0x64455d1f00003974ff48656c6c6f20576f726c6421 (21 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

   Sender Context:

   o  Sender ID: 0x01 (1 byte)

   o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

   o  Sender Sequence Number: 0

   The following COSE and cryptographic parameters are derived:

   o  aad_array: 0x8501810a40411440 (8 bytes)

   o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

   o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

   o  encryption key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

   o  nonce: 0x4622d4dd6d944168eefb549868 (13 bytes)

   From the previous parameter, the following is derived:

   o  OSCORE option value: 0x (0 bytes)

   o  ciphertext: 0xdbaad1e9a7e7b2a813d3c31524378303cdafae119106 (22
      bytes)
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   From there:

   o  Protected CoAP response (OSCORE message):
      0x64445d1f0000397490ffdbaad1e9a7e7b2a813d3c31524378303cdafae119106
      (32 bytes)

C.8.  Test Vector 8: OSCORE Response with Partial IV, Server

   This section contains a test vector for an OSCORE protected 2.05
   (Content) response to the request in Appendix C.4.  The unprotected
   response has payload "Hello World!" and no options.  The protected
   response does not contain a ’kid’, but contains a Partial IV.  Note
   that some parameters are derived from the request.

   Unprotected CoAP response:
   0x64455d1f00003974ff48656c6c6f20576f726c6421 (21 bytes)

   Common Context:

   o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

   o  Key Derivation Function: HKDF SHA-256

   o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

   Sender Context:

   o  Sender ID: 0x01 (1 byte)

   o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

   o  Sender Sequence Number: 0

   The following COSE and cryptographic parameters are derived:

   o  Partial IV: 0x00 (1 byte)

   o  aad_array: 0x8501810a40411440 (8 bytes)

   o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

   o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

   o  encryption key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

   o  nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)
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   From the previous parameter, the following is derived:

   o  OSCORE option value: 0x0100 (2 bytes)

   o  ciphertext: 0x4d4c13669384b67354b2b6175ff4b8658c666a6cf88e (22
      bytes)

   From there:

   o  Protected CoAP response (OSCORE message): 0x64445d1f00003974920100
      ff4d4c13669384b67354b2b6175ff4b8658c666a6cf88e (34 bytes)

Appendix D.  Overview of Security Properties

D.1.  Threat Model

   This section describes the threat model using the terms of [RFC3552].

   It is assumed that the endpoints running OSCORE have not themselves
   been compromised.  The attacker is assumed to have control of the
   CoAP channel over which the endpoints communicate, including
   intermediary nodes.  The attacker is capable of launching any passive
   or active on-path or off-path attacks; including eavesdropping,
   traffic analysis, spoofing, insertion, modification, deletion, delay,
   replay, man-in-the-middle, and denial-of-service attacks.  This means
   that the attacker can read any CoAP message on the network and
   undetectably remove, change, or inject forged messages onto the wire.

   OSCORE targets the protection of the CoAP request/response layer
   (Section 2 of [RFC7252]) between the endpoints, including the CoAP
   Payload, Code, Uri-Path/Uri-Query, and the other Class E option
   instances (Section 4.1).

   OSCORE does not protect the CoAP messaging layer (Section 2 of
   [RFC7252]) or other lower layers involved in routing and transporting
   the CoAP requests and responses.

   Additionally, OSCORE does not protect Class U option instances
   (Section 4.1), as these are used to support CoAP forward proxy
   operations (see Section 5.7.2 of [RFC7252]).  The supported proxies
   (forwarding, cross-protocol, e.g., CoAP to CoAP-mappable protocols
   such as HTTP) must be able to change certain Class U options (by
   instruction from the Client), resulting in the CoAP request being
   redirected to the server.  Changes caused by the proxy may result in
   the request not reaching the server or reaching the wrong server.
   For cross-protocol proxies, mappings are done on the Outer part of
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   the message so these protocols are essentially used as transport.
   Manipulation of these options may thus impact whether the protected
   message reaches or does not reach the destination endpoint.

   Attacks on unprotected CoAP message fields generally causes denial-
   of-service attacks which are out of scope of this document, more
   details are given in Appendix D.5.

   Attacks against the CoAP request-response layer are in scope.  OSCORE
   is intended to protect against eavesdropping, spoofing, insertion,
   modification, deletion, replay, and man-in-the middle attacks.

   OSCORE is susceptible to traffic analysis as discussed later in
   Appendix D.

D.2.  Supporting Proxy Operations

   CoAP is designed to work with intermediaries reading and/or changing
   CoAP message fields to perform supporting operations in constrained
   environments, e.g., forwarding and cross-protocol translations.

   Securing CoAP on the transport layer protects the entire message
   between the endpoints, in which case CoAP proxy operations are not
   possible.  In order to enable proxy operations, security on the
   transport layer needs to be terminated at the proxy; in which case,
   the CoAP message in its entirety is unprotected in the proxy.

   Requirements for CoAP end-to-end security are specified in
   [CoAP-E2E-Sec], in particular, forwarding is detailed in
   Section 2.2.1.  The client and server are assumed to be honest, while
   proxies and gateways are only trusted to perform their intended
   operations.

   By working at the CoAP layer, OSCORE enables different CoAP message
   fields to be protected differently, which allows message fields
   required for proxy operations to be available to the proxy while
   message fields intended for the other endpoint remain protected.  In
   the remainder of this section, we analyze how OSCORE protects the
   protected message fields and the consequences of message fields
   intended for proxy operation being unprotected.

D.3.  Protected Message Fields

   Protected message fields are included in the plaintext (Section 5.3)
   and the AAD (Section 5.4) of the COSE_Encrypt0 object and encrypted
   using an AEAD algorithm.
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   OSCORE depends on a preestablished random Master Secret
   (Section 12.3) used to derive encryption keys, and a construction for
   making (key, nonce) pairs unique (Appendix D.4).  Assuming this is
   true, and the keys are used for no more data than indicated in
   Section 7.2.1, OSCORE should provide the following guarantees:

   o  Confidentiality: An attacker should not be able to determine the
      plaintext contents of a given OSCORE message or determine that
      different plaintexts are related (Section 5.3).

   o  Integrity: An attacker should not be able to craft a new OSCORE
      message with protected message fields different from an existing
      OSCORE message that will be accepted by the receiver.

   o  Request-response binding: An attacker should not be able to make a
      client match a response to the wrong request.

   o  Non-replayability: An attacker should not be able to cause the
      receiver to accept a message that it has previously received and
      accepted.

   In the above, the attacker is anyone except the endpoints, e.g., a
   compromised intermediary.  Informally, OSCORE provides these
   properties by AEAD-protecting the plaintext with a strong key and
   uniqueness of (key, nonce) pairs.  AEAD encryption [RFC5116] provides
   confidentiality and integrity for the data.  Response-request binding
   is provided by including the ’kid’ and Partial IV of the request in
   the AAD of the response.  Non-replayability of requests and
   notifications is provided by using unique (key, nonce) pairs and a
   replay protection mechanism (application dependent, see Section 7.4).

   OSCORE is susceptible to a variety of traffic analysis attacks based
   on observing the length and timing of encrypted packets.  OSCORE does
   not provide any specific defenses against this form of attack, but
   the application may use a padding mechanism to prevent an attacker
   from directly determining the length of the padding.  However,
   information about padding may still be revealed by side-channel
   attacks observing differences in timing.

D.4.  Uniqueness of (key, nonce)

   In this section, we show that (key, nonce) pairs are unique as long
   as the requirements in Sections 3.3 and 7.2.1 are followed.

   Fix a Common Context (Section 3.1) and an endpoint, called the
   encrypting endpoint.  An endpoint may alternate between client and
   server roles, but each endpoint always encrypts with the Sender Key
   of its Sender Context.  Sender Keys are (stochastically) unique since
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   they are derived with HKDF using unique Sender IDs, so messages
   encrypted by different endpoints use different keys.  It remains to
   be proven that the nonces used by the fixed endpoint are unique.

   Since the Common IV is fixed, the nonces are determined by PIV, where
   PIV takes the value of the Partial IV of the request or of the
   response, and by the Sender ID of the endpoint generating that
   Partial IV (ID_PIV).  The nonce construction (Section 5.2) with the
   size of the ID_PIV (S) creates unique nonces for different (ID_PIV,
   PIV) pairs.  There are two cases:

   A.  For requests, and responses with Partial IV (e.g., Observe
   notifications):

   o  ID_PIV = Sender ID of the encrypting endpoint

   o  PIV = current Partial IV of the encrypting endpoint

   Since the encrypting endpoint steps the Partial IV for each use, the
   nonces used in case A are all unique as long as the number of
   encrypted messages is kept within the required range (Section 7.2.1).

   B.  For responses without Partial IV (e.g., single response to a
   request):

   o  ID_PIV = Sender ID of the endpoint generating the request

   o  PIV = Partial IV of the request

   Since the Sender IDs are unique, ID_PIV is different from the Sender
   ID of the encrypting endpoint.  Therefore, the nonces in case B are
   different compared to nonces in case A, where the encrypting endpoint
   generated the Partial IV.  Since the Partial IV of the request is
   verified for replay (Section 7.4) associated to this Recipient
   Context, PIV is unique for this ID_PIV, which makes all nonces in
   case B distinct.

D.5.  Unprotected Message Fields

   This section analyzes attacks on message fields that are not
   protected by OSCORE according to the threat model Appendix D.1.

D.5.1.  CoAP Header Fields

   o  Version.  The CoAP version [RFC7252] is not expected to be
      sensitive to disclosure.  Currently, there is only one CoAP
      version defined.  A change of this parameter is potentially a
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      denial-of-service attack.  Future versions of CoAP need to analyze
      attacks to OSCORE-protected messages due to an adversary changing
      the CoAP version.

   o  Token/Token Length.  The Token field is a client-local identifier
      for differentiating between concurrent requests [RFC7252].  CoAP
      proxies are allowed to read and change Token and Token Length
      between hops.  An eavesdropper reading the Token can match
      requests to responses that can be used in traffic analysis.  In
      particular, this is true for notifications, where multiple
      responses are matched to one request.  Modifications of Token and
      Token Length by an on-path attacker may become a denial-of-service
      attack, since it may prevent the client to identify to which
      request the response belongs or to find the correct information to
      verify integrity of the response.

   o  Code.  The Outer CoAP Code of an OSCORE message is POST or FETCH
      for requests with corresponding response codes.  An endpoint
      receiving the message discards the Outer CoAP Code and uses the
      Inner CoAP Code instead (see Section 4.2).  Hence, modifications
      from attackers to the Outer Code do not impact the receiving
      endpoint.  However, changing the Outer Code from FETCH to a Code
      value for a method that does not work with Observe (such as POST)
      may, depending on proxy implementation since Observe is undefined
      for several Codes, cause the proxy to not forward notifications,
      which is a denial-of-service attack.  The use of FETCH rather than
      POST reveals no more than what is revealed by the presence of the
      Outer Observe option.

   o  Type/Message ID.  The Type/Message ID fields [RFC7252] reveal
      information about the UDP transport binding, e.g., an eavesdropper
      reading the Type or Message ID gain information about how UDP
      messages are related to each other.  CoAP proxies are allowed to
      change Type and Message ID.  These message fields are not present
      in CoAP over TCP [RFC8323] and do not impact the request/response
      message.  A change of these fields in a UDP hop is a denial-of-
      service attack.  By sending an ACK, an attacker can make the
      endpoint believe that it does not need to retransmit the previous
      message.  By sending a RST, an attacker may be able to cancel an
      observation.  By changing a NON to a CON, the attacker can cause
      the receiving endpoint to ACK messages for which no ACK was
      requested.

   o  Length.  This field contains the length of the message [RFC8323],
      which may be used for traffic analysis.  This message field is not
      present in CoAP over UDP and does not impact the request/response
      message.  A change of Length is a denial-of-service attack similar
      to changing TCP header fields.
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D.5.2.  CoAP Options

   o  Max-Age. The Outer Max-Age is set to zero to avoid unnecessary
      caching of OSCORE error responses.  Changing this value thus may
      cause unnecessary caching.  No additional information is carried
      with this option.

   o  Proxy-Uri/Proxy-Scheme.  These options are used in CoAP forward
      proxy deployments.  With OSCORE, the Proxy-Uri option does not
      contain the Uri-Path/Uri-Query parts of the URI.  The other parts
      of Proxy-Uri cannot be protected because forward proxies need to
      change them in order to perform their functions.  The server can
      verify what scheme is used in the last hop, but not what was
      requested by the client or what was used in previous hops.

   o  Uri-Host/Uri-Port.  In forward proxy deployments, the Uri-Host/
      Uri-Port may be changed by an adversary, and the application needs
      to handle the consequences of that (see Section 4.1.3.2).  The
      Uri-Host may either be omitted, reveal information equivalent to
      that of the IP address, or reveal more privacy-sensitive
      information, which is discouraged.

   o  Observe.  The Outer Observe option is intended for a proxy to
      support forwarding of Observe messages, but it is ignored by the
      endpoints since the Inner Observe option determines the processing
      in the endpoints.  Since the Partial IV provides absolute ordering
      of notifications, it is not possible for an intermediary to spoof
      reordering (see Section 4.1.3.5).  The absence of Partial IV,
      since only allowed for the first notification, does not prevent
      correct ordering of notifications.  The size and distributions of
      notifications over time may reveal information about the content
      or nature of the notifications.  Cancellations (Section 4.1.3.5.1)
      are not bound to the corresponding registrations in the same way
      responses are bound to requests in OSCORE (see Appendix D.3).
      However, that does not make attacks based on mismatched
      cancellations possible, since for cancellations to be accepted,
      all options in the decrypted message except for ETag options MUST
      be the same (see Section 4.1.3.5).

   o  Block1/Block2/Size1/Size2.  The Outer Block options enable
      fragmentation of OSCORE messages in addition to segmentation
      performed by the Inner Block options.  The presence of these
      options indicates a large message being sent, and the message size
      can be estimated and used for traffic analysis.  Manipulating
      these options is a potential denial-of-service attack, e.g.,
      injection of alleged Block fragments.  The specification of a
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      maximum size of message, MAX_UNFRAGMENTED_SIZE
      (Section 4.1.3.4.2), above which messages will be dropped, is
      intended as one measure to mitigate this kind of attack.

   o  No-Response.  The Outer No-Response option is used to support
      proxy functionality, specifically to avoid error transmissions
      from proxies to clients, and to avoid bandwidth reduction to
      servers by proxies applying congestion control when not receiving
      responses.  Modifying or introducing this option is a potential
      denial-of-service attack against the proxy operations, but since
      the option has an Inner value, its use can be securely agreed upon
      between the endpoints.  The presence of this option is not
      expected to reveal any sensitive information about the message
      exchange.

   o  OSCORE.  The OSCORE option contains information about the
      compressed COSE header.  Changing this field may cause OSCORE
      verification to fail.

D.5.3.  Error and Signaling Messages

   Error messages occurring during CoAP processing are protected end-to-
   end.  Error messages occurring during OSCORE processing are not
   always possible to protect, e.g., if the receiving endpoint cannot
   locate the right security context.  For this setting, unprotected
   error messages are allowed as specified to prevent extensive
   retransmissions.  Those error messages can be spoofed or manipulated,
   which is a potential denial-of-service attack.

   This document specifies OPTIONAL error codes and specific diagnostic
   payloads for OSCORE processing error messages.  Such messages might
   reveal information about how many and which security contexts exist
   on the server.  Servers MAY want to omit the diagnostic payload of
   error messages, use the same error code for all errors, or avoid
   responding altogether in case of OSCORE processing errors, if that is
   a security concern for the application.  Moreover, clients MUST NOT
   rely on the error code or the diagnostic payload to trigger specific
   actions, as these errors are unprotected and can be spoofed or
   manipulated.

   Signaling messages used in CoAP over TCP [RFC8323] are intended to be
   hop-by-hop; spoofing signaling messages can be used as a denial-of-
   service attack of a TCP connection.
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D.5.4.  HTTP Message Fields

   In contrast to CoAP, where OSCORE does not protect header fields to
   enable CoAP-CoAP proxy operations, the use of OSCORE with HTTP is
   restricted to transporting a protected CoAP message over an HTTP hop.
   Any unprotected HTTP message fields may reveal information about the
   transport of the OSCORE message and enable various denial-of-service
   attacks.  It is RECOMMENDED to additionally use TLS [RFC8446] for
   HTTP hops, which enables encryption and integrity protection of
   headers, but still leaves some information for traffic analysis.

Appendix E.  CDDL Summary

   Data structure definitions in the present specification employ the
   CDDL language for conciseness and precision [RFC8610].  This appendix
   summarizes the small subset of CDDL that is used in the present
   specification.

   Within the subset being used here, a CDDL rule is of the form "name =
   type", where "name" is the name given to the "type".  A "type" can be
   one of:

   o  a reference to another named type, by giving its name.  The
      predefined named types used in the present specification are as
      follows: "uint", an unsigned integer (as represented in CBOR by
      major type 0); "int", an unsigned or negative integer (as
      represented in CBOR by major type 0 or 1); "bstr", a byte string
      (as represented in CBOR by major type 2); "tstr", a text string
      (as represented in CBOR by major type 3);

   o  a choice between two types, by giving both types separated by a
      "/";

   o  an array type (as represented in CBOR by major type 4), where the
      sequence of elements of the array is described by giving a
      sequence of entries separated by commas ",", and this sequence is
      enclosed by square brackets "[" and "]".  Arrays described by an
      array description contain elements that correspond one-to-one to
      the sequence of entries given.  Each entry of an array description
      is of the form "name : type", where "name" is the name given to
      the entry and "type" is the type of the array element
      corresponding to this entry.
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