1 | /* $NetBSD: kern_exec.c,v 1.438 2016/11/03 22:08:30 kamil Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2008 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * |
16 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
17 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
18 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
19 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
20 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
26 | * POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | /*- |
30 | * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou |
31 | * Copyright (C) 1992 Wolfgang Solfrank. |
32 | * Copyright (C) 1992 TooLs GmbH. |
33 | * All rights reserved. |
34 | * |
35 | * Redistribution and use in source and binary forms, with or without |
36 | * modification, are permitted provided that the following conditions |
37 | * are met: |
38 | * 1. Redistributions of source code must retain the above copyright |
39 | * notice, this list of conditions and the following disclaimer. |
40 | * 2. Redistributions in binary form must reproduce the above copyright |
41 | * notice, this list of conditions and the following disclaimer in the |
42 | * documentation and/or other materials provided with the distribution. |
43 | * 3. All advertising materials mentioning features or use of this software |
44 | * must display the following acknowledgement: |
45 | * This product includes software developed by TooLs GmbH. |
46 | * 4. The name of TooLs GmbH may not be used to endorse or promote products |
47 | * derived from this software without specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR |
50 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
51 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
52 | * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
53 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
54 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
55 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
56 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
57 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
58 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
59 | */ |
60 | |
61 | #include <sys/cdefs.h> |
62 | __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.438 2016/11/03 22:08:30 kamil Exp $" ); |
63 | |
64 | #include "opt_exec.h" |
65 | #include "opt_execfmt.h" |
66 | #include "opt_ktrace.h" |
67 | #include "opt_modular.h" |
68 | #include "opt_syscall_debug.h" |
69 | #include "veriexec.h" |
70 | #include "opt_pax.h" |
71 | |
72 | #include <sys/param.h> |
73 | #include <sys/systm.h> |
74 | #include <sys/filedesc.h> |
75 | #include <sys/kernel.h> |
76 | #include <sys/proc.h> |
77 | #include <sys/mount.h> |
78 | #include <sys/kmem.h> |
79 | #include <sys/namei.h> |
80 | #include <sys/vnode.h> |
81 | #include <sys/file.h> |
82 | #include <sys/filedesc.h> |
83 | #include <sys/acct.h> |
84 | #include <sys/atomic.h> |
85 | #include <sys/exec.h> |
86 | #include <sys/ktrace.h> |
87 | #include <sys/uidinfo.h> |
88 | #include <sys/wait.h> |
89 | #include <sys/mman.h> |
90 | #include <sys/ras.h> |
91 | #include <sys/signalvar.h> |
92 | #include <sys/stat.h> |
93 | #include <sys/syscall.h> |
94 | #include <sys/kauth.h> |
95 | #include <sys/lwpctl.h> |
96 | #include <sys/pax.h> |
97 | #include <sys/cpu.h> |
98 | #include <sys/module.h> |
99 | #include <sys/syscallvar.h> |
100 | #include <sys/syscallargs.h> |
101 | #if NVERIEXEC > 0 |
102 | #include <sys/verified_exec.h> |
103 | #endif /* NVERIEXEC > 0 */ |
104 | #include <sys/sdt.h> |
105 | #include <sys/spawn.h> |
106 | #include <sys/prot.h> |
107 | #include <sys/cprng.h> |
108 | |
109 | #include <uvm/uvm_extern.h> |
110 | |
111 | #include <machine/reg.h> |
112 | |
113 | #include <compat/common/compat_util.h> |
114 | |
115 | #ifndef MD_TOPDOWN_INIT |
116 | #ifdef __USE_TOPDOWN_VM |
117 | #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM |
118 | #else |
119 | #define MD_TOPDOWN_INIT(epp) |
120 | #endif |
121 | #endif |
122 | |
123 | struct execve_data; |
124 | |
125 | extern int user_va0_disable; |
126 | |
127 | static size_t calcargs(struct execve_data * restrict, const size_t); |
128 | static size_t calcstack(struct execve_data * restrict, const size_t); |
129 | static int copyoutargs(struct execve_data * restrict, struct lwp *, |
130 | char * const); |
131 | static int copyoutpsstrs(struct execve_data * restrict, struct proc *); |
132 | static int copyinargs(struct execve_data * restrict, char * const *, |
133 | char * const *, execve_fetch_element_t, char **); |
134 | static int copyinargstrs(struct execve_data * restrict, char * const *, |
135 | execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); |
136 | static int exec_sigcode_map(struct proc *, const struct emul *); |
137 | |
138 | #if defined(DEBUG) && !defined(DEBUG_EXEC) |
139 | #define DEBUG_EXEC |
140 | #endif |
141 | #ifdef DEBUG_EXEC |
142 | #define DPRINTF(a) printf a |
143 | #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ |
144 | __LINE__, (s), (a), (b)) |
145 | static void dump_vmcmds(const struct exec_package * const, size_t, int); |
146 | #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) |
147 | #else |
148 | #define DPRINTF(a) |
149 | #define COPYPRINTF(s, a, b) |
150 | #define DUMPVMCMDS(p, x, e) do {} while (0) |
151 | #endif /* DEBUG_EXEC */ |
152 | |
153 | /* |
154 | * DTrace SDT provider definitions |
155 | */ |
156 | SDT_PROVIDER_DECLARE(proc); |
157 | SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *" ); |
158 | SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *" ); |
159 | SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int" ); |
160 | |
161 | /* |
162 | * Exec function switch: |
163 | * |
164 | * Note that each makecmds function is responsible for loading the |
165 | * exec package with the necessary functions for any exec-type-specific |
166 | * handling. |
167 | * |
168 | * Functions for specific exec types should be defined in their own |
169 | * header file. |
170 | */ |
171 | static const struct execsw **execsw = NULL; |
172 | static int nexecs; |
173 | |
174 | u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ |
175 | |
176 | /* list of dynamically loaded execsw entries */ |
177 | static LIST_HEAD(execlist_head, exec_entry) ex_head = |
178 | LIST_HEAD_INITIALIZER(ex_head); |
179 | struct exec_entry { |
180 | LIST_ENTRY(exec_entry) ex_list; |
181 | SLIST_ENTRY(exec_entry) ex_slist; |
182 | const struct execsw *ex_sw; |
183 | }; |
184 | |
185 | #ifndef __HAVE_SYSCALL_INTERN |
186 | void syscall(void); |
187 | #endif |
188 | |
189 | /* NetBSD autoloadable syscalls */ |
190 | #ifdef MODULAR |
191 | #include <kern/syscalls_autoload.c> |
192 | #endif |
193 | |
194 | /* NetBSD emul struct */ |
195 | struct emul emul_netbsd = { |
196 | .e_name = "netbsd" , |
197 | #ifdef EMUL_NATIVEROOT |
198 | .e_path = EMUL_NATIVEROOT, |
199 | #else |
200 | .e_path = NULL, |
201 | #endif |
202 | #ifndef __HAVE_MINIMAL_EMUL |
203 | .e_flags = EMUL_HAS_SYS___syscall, |
204 | .e_errno = NULL, |
205 | .e_nosys = SYS_syscall, |
206 | .e_nsysent = SYS_NSYSENT, |
207 | #endif |
208 | #ifdef MODULAR |
209 | .e_sc_autoload = netbsd_syscalls_autoload, |
210 | #endif |
211 | .e_sysent = sysent, |
212 | #ifdef SYSCALL_DEBUG |
213 | .e_syscallnames = syscallnames, |
214 | #else |
215 | .e_syscallnames = NULL, |
216 | #endif |
217 | .e_sendsig = sendsig, |
218 | .e_trapsignal = trapsignal, |
219 | .e_tracesig = NULL, |
220 | .e_sigcode = NULL, |
221 | .e_esigcode = NULL, |
222 | .e_sigobject = NULL, |
223 | .e_setregs = setregs, |
224 | .e_proc_exec = NULL, |
225 | .e_proc_fork = NULL, |
226 | .e_proc_exit = NULL, |
227 | .e_lwp_fork = NULL, |
228 | .e_lwp_exit = NULL, |
229 | #ifdef __HAVE_SYSCALL_INTERN |
230 | .e_syscall_intern = syscall_intern, |
231 | #else |
232 | .e_syscall = syscall, |
233 | #endif |
234 | .e_sysctlovly = NULL, |
235 | .e_fault = NULL, |
236 | .e_vm_default_addr = uvm_default_mapaddr, |
237 | .e_usertrap = NULL, |
238 | .e_ucsize = sizeof(ucontext_t), |
239 | .e_startlwp = startlwp |
240 | }; |
241 | |
242 | /* |
243 | * Exec lock. Used to control access to execsw[] structures. |
244 | * This must not be static so that netbsd32 can access it, too. |
245 | */ |
246 | krwlock_t exec_lock; |
247 | |
248 | static kmutex_t sigobject_lock; |
249 | |
250 | /* |
251 | * Data used between a loadvm and execve part of an "exec" operation |
252 | */ |
253 | struct execve_data { |
254 | struct exec_package ed_pack; |
255 | struct pathbuf *ed_pathbuf; |
256 | struct vattr ed_attr; |
257 | struct ps_strings ed_arginfo; |
258 | char *ed_argp; |
259 | const char *ed_pathstring; |
260 | char *ed_resolvedpathbuf; |
261 | size_t ed_ps_strings_sz; |
262 | int ed_szsigcode; |
263 | size_t ed_argslen; |
264 | long ed_argc; |
265 | long ed_envc; |
266 | }; |
267 | |
268 | /* |
269 | * data passed from parent lwp to child during a posix_spawn() |
270 | */ |
271 | struct spawn_exec_data { |
272 | struct execve_data sed_exec; |
273 | struct posix_spawn_file_actions |
274 | *sed_actions; |
275 | struct posix_spawnattr *sed_attrs; |
276 | struct proc *sed_parent; |
277 | kcondvar_t sed_cv_child_ready; |
278 | kmutex_t sed_mtx_child; |
279 | int sed_error; |
280 | volatile uint32_t sed_refcnt; |
281 | }; |
282 | |
283 | static void * |
284 | exec_pool_alloc(struct pool *pp, int flags) |
285 | { |
286 | |
287 | return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, |
288 | UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); |
289 | } |
290 | |
291 | static void |
292 | exec_pool_free(struct pool *pp, void *addr) |
293 | { |
294 | |
295 | uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); |
296 | } |
297 | |
298 | static struct pool exec_pool; |
299 | |
300 | static struct pool_allocator exec_palloc = { |
301 | .pa_alloc = exec_pool_alloc, |
302 | .pa_free = exec_pool_free, |
303 | .pa_pagesz = NCARGS |
304 | }; |
305 | |
306 | /* |
307 | * check exec: |
308 | * given an "executable" described in the exec package's namei info, |
309 | * see what we can do with it. |
310 | * |
311 | * ON ENTRY: |
312 | * exec package with appropriate namei info |
313 | * lwp pointer of exec'ing lwp |
314 | * NO SELF-LOCKED VNODES |
315 | * |
316 | * ON EXIT: |
317 | * error: nothing held, etc. exec header still allocated. |
318 | * ok: filled exec package, executable's vnode (unlocked). |
319 | * |
320 | * EXEC SWITCH ENTRY: |
321 | * Locked vnode to check, exec package, proc. |
322 | * |
323 | * EXEC SWITCH EXIT: |
324 | * ok: return 0, filled exec package, executable's vnode (unlocked). |
325 | * error: destructive: |
326 | * everything deallocated execept exec header. |
327 | * non-destructive: |
328 | * error code, executable's vnode (unlocked), |
329 | * exec header unmodified. |
330 | */ |
331 | int |
332 | /*ARGSUSED*/ |
333 | check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) |
334 | { |
335 | int error, i; |
336 | struct vnode *vp; |
337 | struct nameidata nd; |
338 | size_t resid; |
339 | |
340 | NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); |
341 | |
342 | /* first get the vnode */ |
343 | if ((error = namei(&nd)) != 0) |
344 | return error; |
345 | epp->ep_vp = vp = nd.ni_vp; |
346 | /* normally this can't fail */ |
347 | error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); |
348 | KASSERT(error == 0); |
349 | |
350 | #ifdef DIAGNOSTIC |
351 | /* paranoia (take this out once namei stuff stabilizes) */ |
352 | memset(nd.ni_pnbuf, '~', PATH_MAX); |
353 | #endif |
354 | |
355 | /* check access and type */ |
356 | if (vp->v_type != VREG) { |
357 | error = EACCES; |
358 | goto bad1; |
359 | } |
360 | if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) |
361 | goto bad1; |
362 | |
363 | /* get attributes */ |
364 | if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) |
365 | goto bad1; |
366 | |
367 | /* Check mount point */ |
368 | if (vp->v_mount->mnt_flag & MNT_NOEXEC) { |
369 | error = EACCES; |
370 | goto bad1; |
371 | } |
372 | if (vp->v_mount->mnt_flag & MNT_NOSUID) |
373 | epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); |
374 | |
375 | /* try to open it */ |
376 | if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) |
377 | goto bad1; |
378 | |
379 | /* unlock vp, since we need it unlocked from here on out. */ |
380 | VOP_UNLOCK(vp); |
381 | |
382 | #if NVERIEXEC > 0 |
383 | error = veriexec_verify(l, vp, epp->ep_resolvedname, |
384 | epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, |
385 | NULL); |
386 | if (error) |
387 | goto bad2; |
388 | #endif /* NVERIEXEC > 0 */ |
389 | |
390 | #ifdef PAX_SEGVGUARD |
391 | error = pax_segvguard(l, vp, epp->ep_resolvedname, false); |
392 | if (error) |
393 | goto bad2; |
394 | #endif /* PAX_SEGVGUARD */ |
395 | |
396 | /* now we have the file, get the exec header */ |
397 | error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, |
398 | UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); |
399 | if (error) |
400 | goto bad2; |
401 | epp->ep_hdrvalid = epp->ep_hdrlen - resid; |
402 | |
403 | /* |
404 | * Set up default address space limits. Can be overridden |
405 | * by individual exec packages. |
406 | */ |
407 | epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS); |
408 | epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; |
409 | |
410 | /* |
411 | * set up the vmcmds for creation of the process |
412 | * address space |
413 | */ |
414 | error = ENOEXEC; |
415 | for (i = 0; i < nexecs; i++) { |
416 | int newerror; |
417 | |
418 | epp->ep_esch = execsw[i]; |
419 | newerror = (*execsw[i]->es_makecmds)(l, epp); |
420 | |
421 | if (!newerror) { |
422 | /* Seems ok: check that entry point is not too high */ |
423 | if (epp->ep_entry > epp->ep_vm_maxaddr) { |
424 | #ifdef DIAGNOSTIC |
425 | printf("%s: rejecting %p due to " |
426 | "too high entry address (> %p)\n" , |
427 | __func__, (void *)epp->ep_entry, |
428 | (void *)epp->ep_vm_maxaddr); |
429 | #endif |
430 | error = ENOEXEC; |
431 | break; |
432 | } |
433 | /* Seems ok: check that entry point is not too low */ |
434 | if (epp->ep_entry < epp->ep_vm_minaddr) { |
435 | #ifdef DIAGNOSTIC |
436 | printf("%s: rejecting %p due to " |
437 | "too low entry address (< %p)\n" , |
438 | __func__, (void *)epp->ep_entry, |
439 | (void *)epp->ep_vm_minaddr); |
440 | #endif |
441 | error = ENOEXEC; |
442 | break; |
443 | } |
444 | |
445 | /* check limits */ |
446 | if ((epp->ep_tsize > MAXTSIZ) || |
447 | (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit |
448 | [RLIMIT_DATA].rlim_cur)) { |
449 | #ifdef DIAGNOSTIC |
450 | printf("%s: rejecting due to " |
451 | "limits (t=%llu > %llu || d=%llu > %llu)\n" , |
452 | __func__, |
453 | (unsigned long long)epp->ep_tsize, |
454 | (unsigned long long)MAXTSIZ, |
455 | (unsigned long long)epp->ep_dsize, |
456 | (unsigned long long) |
457 | l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); |
458 | #endif |
459 | error = ENOMEM; |
460 | break; |
461 | } |
462 | return 0; |
463 | } |
464 | |
465 | /* |
466 | * Reset all the fields that may have been modified by the |
467 | * loader. |
468 | */ |
469 | KASSERT(epp->ep_emul_arg == NULL); |
470 | if (epp->ep_emul_root != NULL) { |
471 | vrele(epp->ep_emul_root); |
472 | epp->ep_emul_root = NULL; |
473 | } |
474 | if (epp->ep_interp != NULL) { |
475 | vrele(epp->ep_interp); |
476 | epp->ep_interp = NULL; |
477 | } |
478 | epp->ep_pax_flags = 0; |
479 | |
480 | /* make sure the first "interesting" error code is saved. */ |
481 | if (error == ENOEXEC) |
482 | error = newerror; |
483 | |
484 | if (epp->ep_flags & EXEC_DESTR) |
485 | /* Error from "#!" code, tidied up by recursive call */ |
486 | return error; |
487 | } |
488 | |
489 | /* not found, error */ |
490 | |
491 | /* |
492 | * free any vmspace-creation commands, |
493 | * and release their references |
494 | */ |
495 | kill_vmcmds(&epp->ep_vmcmds); |
496 | |
497 | bad2: |
498 | /* |
499 | * close and release the vnode, restore the old one, free the |
500 | * pathname buf, and punt. |
501 | */ |
502 | vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); |
503 | VOP_CLOSE(vp, FREAD, l->l_cred); |
504 | vput(vp); |
505 | return error; |
506 | |
507 | bad1: |
508 | /* |
509 | * free the namei pathname buffer, and put the vnode |
510 | * (which we don't yet have open). |
511 | */ |
512 | vput(vp); /* was still locked */ |
513 | return error; |
514 | } |
515 | |
516 | #ifdef __MACHINE_STACK_GROWS_UP |
517 | #define STACK_PTHREADSPACE NBPG |
518 | #else |
519 | #define STACK_PTHREADSPACE 0 |
520 | #endif |
521 | |
522 | static int |
523 | execve_fetch_element(char * const *array, size_t index, char **value) |
524 | { |
525 | return copyin(array + index, value, sizeof(*value)); |
526 | } |
527 | |
528 | /* |
529 | * exec system call |
530 | */ |
531 | int |
532 | sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) |
533 | { |
534 | /* { |
535 | syscallarg(const char *) path; |
536 | syscallarg(char * const *) argp; |
537 | syscallarg(char * const *) envp; |
538 | } */ |
539 | |
540 | return execve1(l, SCARG(uap, path), SCARG(uap, argp), |
541 | SCARG(uap, envp), execve_fetch_element); |
542 | } |
543 | |
544 | int |
545 | sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, |
546 | register_t *retval) |
547 | { |
548 | /* { |
549 | syscallarg(int) fd; |
550 | syscallarg(char * const *) argp; |
551 | syscallarg(char * const *) envp; |
552 | } */ |
553 | |
554 | return ENOSYS; |
555 | } |
556 | |
557 | /* |
558 | * Load modules to try and execute an image that we do not understand. |
559 | * If no execsw entries are present, we load those likely to be needed |
560 | * in order to run native images only. Otherwise, we autoload all |
561 | * possible modules that could let us run the binary. XXX lame |
562 | */ |
563 | static void |
564 | exec_autoload(void) |
565 | { |
566 | #ifdef MODULAR |
567 | static const char * const native[] = { |
568 | "exec_elf32" , |
569 | "exec_elf64" , |
570 | "exec_script" , |
571 | NULL |
572 | }; |
573 | static const char * const compat[] = { |
574 | "exec_elf32" , |
575 | "exec_elf64" , |
576 | "exec_script" , |
577 | "exec_aout" , |
578 | "exec_coff" , |
579 | "exec_ecoff" , |
580 | "compat_aoutm68k" , |
581 | "compat_freebsd" , |
582 | "compat_ibcs2" , |
583 | "compat_linux" , |
584 | "compat_linux32" , |
585 | "compat_netbsd32" , |
586 | "compat_sunos" , |
587 | "compat_sunos32" , |
588 | "compat_svr4" , |
589 | "compat_svr4_32" , |
590 | "compat_ultrix" , |
591 | NULL |
592 | }; |
593 | char const * const *list; |
594 | int i; |
595 | |
596 | list = (nexecs == 0 ? native : compat); |
597 | for (i = 0; list[i] != NULL; i++) { |
598 | if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { |
599 | continue; |
600 | } |
601 | yield(); |
602 | } |
603 | #endif |
604 | } |
605 | |
606 | static int |
607 | makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp, |
608 | size_t *offs) |
609 | { |
610 | char *path, *bp; |
611 | size_t len, tlen; |
612 | int error; |
613 | struct cwdinfo *cwdi; |
614 | |
615 | path = PNBUF_GET(); |
616 | error = copyinstr(upath, path, MAXPATHLEN, &len); |
617 | if (error) { |
618 | PNBUF_PUT(path); |
619 | DPRINTF(("%s: copyin path @%p %d\n" , __func__, upath, error)); |
620 | return error; |
621 | } |
622 | |
623 | if (path[0] == '/') { |
624 | *offs = 0; |
625 | goto out; |
626 | } |
627 | |
628 | len++; |
629 | if (len + 1 >= MAXPATHLEN) |
630 | goto out; |
631 | bp = path + MAXPATHLEN - len; |
632 | memmove(bp, path, len); |
633 | *(--bp) = '/'; |
634 | |
635 | cwdi = l->l_proc->p_cwdi; |
636 | rw_enter(&cwdi->cwdi_lock, RW_READER); |
637 | error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2, |
638 | GETCWD_CHECK_ACCESS, l); |
639 | rw_exit(&cwdi->cwdi_lock); |
640 | |
641 | if (error) { |
642 | DPRINTF(("%s: getcwd_common path %s %d\n" , __func__, path, |
643 | error)); |
644 | goto out; |
645 | } |
646 | tlen = path + MAXPATHLEN - bp; |
647 | |
648 | memmove(path, bp, tlen); |
649 | path[tlen] = '\0'; |
650 | *offs = tlen - len; |
651 | out: |
652 | *pbp = pathbuf_assimilate(path); |
653 | return 0; |
654 | } |
655 | |
656 | vaddr_t |
657 | exec_vm_minaddr(vaddr_t va_min) |
658 | { |
659 | /* |
660 | * Increase va_min if we don't want NULL to be mappable by the |
661 | * process. |
662 | */ |
663 | #define VM_MIN_GUARD PAGE_SIZE |
664 | if (user_va0_disable && (va_min < VM_MIN_GUARD)) |
665 | return VM_MIN_GUARD; |
666 | return va_min; |
667 | } |
668 | |
669 | static int |
670 | execve_loadvm(struct lwp *l, const char *path, char * const *args, |
671 | char * const *envs, execve_fetch_element_t fetch_element, |
672 | struct execve_data * restrict data) |
673 | { |
674 | struct exec_package * const epp = &data->ed_pack; |
675 | int error; |
676 | struct proc *p; |
677 | char *dp; |
678 | u_int modgen; |
679 | size_t offs = 0; // XXX: GCC |
680 | |
681 | KASSERT(data != NULL); |
682 | |
683 | p = l->l_proc; |
684 | modgen = 0; |
685 | |
686 | SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0); |
687 | |
688 | /* |
689 | * Check if we have exceeded our number of processes limit. |
690 | * This is so that we handle the case where a root daemon |
691 | * forked, ran setuid to become the desired user and is trying |
692 | * to exec. The obvious place to do the reference counting check |
693 | * is setuid(), but we don't do the reference counting check there |
694 | * like other OS's do because then all the programs that use setuid() |
695 | * must be modified to check the return code of setuid() and exit(). |
696 | * It is dangerous to make setuid() fail, because it fails open and |
697 | * the program will continue to run as root. If we make it succeed |
698 | * and return an error code, again we are not enforcing the limit. |
699 | * The best place to enforce the limit is here, when the process tries |
700 | * to execute a new image, because eventually the process will need |
701 | * to call exec in order to do something useful. |
702 | */ |
703 | retry: |
704 | if (p->p_flag & PK_SUGID) { |
705 | if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, |
706 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), |
707 | &p->p_rlimit[RLIMIT_NPROC], |
708 | KAUTH_ARG(RLIMIT_NPROC)) != 0 && |
709 | chgproccnt(kauth_cred_getuid(l->l_cred), 0) > |
710 | p->p_rlimit[RLIMIT_NPROC].rlim_cur) |
711 | return EAGAIN; |
712 | } |
713 | |
714 | /* |
715 | * Drain existing references and forbid new ones. The process |
716 | * should be left alone until we're done here. This is necessary |
717 | * to avoid race conditions - e.g. in ptrace() - that might allow |
718 | * a local user to illicitly obtain elevated privileges. |
719 | */ |
720 | rw_enter(&p->p_reflock, RW_WRITER); |
721 | |
722 | /* |
723 | * Init the namei data to point the file user's program name. |
724 | * This is done here rather than in check_exec(), so that it's |
725 | * possible to override this settings if any of makecmd/probe |
726 | * functions call check_exec() recursively - for example, |
727 | * see exec_script_makecmds(). |
728 | */ |
729 | if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0) |
730 | goto clrflg; |
731 | data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); |
732 | data->ed_resolvedpathbuf = PNBUF_GET(); |
733 | |
734 | /* |
735 | * initialize the fields of the exec package. |
736 | */ |
737 | epp->ep_kname = data->ed_pathstring + offs; |
738 | epp->ep_resolvedname = data->ed_resolvedpathbuf; |
739 | epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); |
740 | epp->ep_hdrlen = exec_maxhdrsz; |
741 | epp->ep_hdrvalid = 0; |
742 | epp->ep_emul_arg = NULL; |
743 | epp->ep_emul_arg_free = NULL; |
744 | memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); |
745 | epp->ep_vap = &data->ed_attr; |
746 | epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; |
747 | MD_TOPDOWN_INIT(epp); |
748 | epp->ep_emul_root = NULL; |
749 | epp->ep_interp = NULL; |
750 | epp->ep_esch = NULL; |
751 | epp->ep_pax_flags = 0; |
752 | memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); |
753 | |
754 | rw_enter(&exec_lock, RW_READER); |
755 | |
756 | /* see if we can run it. */ |
757 | if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { |
758 | if (error != ENOENT && error != EACCES) { |
759 | DPRINTF(("%s: check exec failed %d\n" , |
760 | __func__, error)); |
761 | } |
762 | goto freehdr; |
763 | } |
764 | |
765 | /* allocate an argument buffer */ |
766 | data->ed_argp = pool_get(&exec_pool, PR_WAITOK); |
767 | KASSERT(data->ed_argp != NULL); |
768 | dp = data->ed_argp; |
769 | |
770 | if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { |
771 | goto bad; |
772 | } |
773 | |
774 | /* |
775 | * Calculate the new stack size. |
776 | */ |
777 | |
778 | #ifdef __MACHINE_STACK_GROWS_UP |
779 | /* |
780 | * copyargs() fills argc/argv/envp from the lower address even on |
781 | * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP |
782 | * so that _rtld() use it. |
783 | */ |
784 | #define RTLD_GAP 32 |
785 | #else |
786 | #define RTLD_GAP 0 |
787 | #endif |
788 | |
789 | const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; |
790 | |
791 | data->ed_argslen = calcargs(data, argenvstrlen); |
792 | |
793 | const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP); |
794 | |
795 | if (len > epp->ep_ssize) { |
796 | /* in effect, compare to initial limit */ |
797 | DPRINTF(("%s: stack limit exceeded %zu\n" , __func__, len)); |
798 | error = ENOMEM; |
799 | goto bad; |
800 | } |
801 | /* adjust "active stack depth" for process VSZ */ |
802 | epp->ep_ssize = len; |
803 | |
804 | return 0; |
805 | |
806 | bad: |
807 | /* free the vmspace-creation commands, and release their references */ |
808 | kill_vmcmds(&epp->ep_vmcmds); |
809 | /* kill any opened file descriptor, if necessary */ |
810 | if (epp->ep_flags & EXEC_HASFD) { |
811 | epp->ep_flags &= ~EXEC_HASFD; |
812 | fd_close(epp->ep_fd); |
813 | } |
814 | /* close and put the exec'd file */ |
815 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
816 | VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); |
817 | vput(epp->ep_vp); |
818 | pool_put(&exec_pool, data->ed_argp); |
819 | |
820 | freehdr: |
821 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
822 | if (epp->ep_emul_root != NULL) |
823 | vrele(epp->ep_emul_root); |
824 | if (epp->ep_interp != NULL) |
825 | vrele(epp->ep_interp); |
826 | |
827 | rw_exit(&exec_lock); |
828 | |
829 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
830 | pathbuf_destroy(data->ed_pathbuf); |
831 | PNBUF_PUT(data->ed_resolvedpathbuf); |
832 | |
833 | clrflg: |
834 | rw_exit(&p->p_reflock); |
835 | |
836 | if (modgen != module_gen && error == ENOEXEC) { |
837 | modgen = module_gen; |
838 | exec_autoload(); |
839 | goto retry; |
840 | } |
841 | |
842 | SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); |
843 | return error; |
844 | } |
845 | |
846 | static int |
847 | execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) |
848 | { |
849 | struct exec_package * const epp = &data->ed_pack; |
850 | struct proc *p = l->l_proc; |
851 | struct exec_vmcmd *base_vcp; |
852 | int error = 0; |
853 | size_t i; |
854 | |
855 | /* record proc's vnode, for use by procfs and others */ |
856 | if (p->p_textvp) |
857 | vrele(p->p_textvp); |
858 | vref(epp->ep_vp); |
859 | p->p_textvp = epp->ep_vp; |
860 | |
861 | /* create the new process's VM space by running the vmcmds */ |
862 | KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds" , __func__); |
863 | |
864 | #ifdef TRACE_EXEC |
865 | DUMPVMCMDS(epp, 0, 0); |
866 | #endif |
867 | |
868 | base_vcp = NULL; |
869 | |
870 | for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { |
871 | struct exec_vmcmd *vcp; |
872 | |
873 | vcp = &epp->ep_vmcmds.evs_cmds[i]; |
874 | if (vcp->ev_flags & VMCMD_RELATIVE) { |
875 | KASSERTMSG(base_vcp != NULL, |
876 | "%s: relative vmcmd with no base" , __func__); |
877 | KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, |
878 | "%s: illegal base & relative vmcmd" , __func__); |
879 | vcp->ev_addr += base_vcp->ev_addr; |
880 | } |
881 | error = (*vcp->ev_proc)(l, vcp); |
882 | if (error) |
883 | DUMPVMCMDS(epp, i, error); |
884 | if (vcp->ev_flags & VMCMD_BASE) |
885 | base_vcp = vcp; |
886 | } |
887 | |
888 | /* free the vmspace-creation commands, and release their references */ |
889 | kill_vmcmds(&epp->ep_vmcmds); |
890 | |
891 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
892 | VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); |
893 | vput(epp->ep_vp); |
894 | |
895 | /* if an error happened, deallocate and punt */ |
896 | if (error != 0) { |
897 | DPRINTF(("%s: vmcmd %zu failed: %d\n" , __func__, i - 1, error)); |
898 | } |
899 | return error; |
900 | } |
901 | |
902 | static void |
903 | execve_free_data(struct execve_data *data) |
904 | { |
905 | struct exec_package * const epp = &data->ed_pack; |
906 | |
907 | /* free the vmspace-creation commands, and release their references */ |
908 | kill_vmcmds(&epp->ep_vmcmds); |
909 | /* kill any opened file descriptor, if necessary */ |
910 | if (epp->ep_flags & EXEC_HASFD) { |
911 | epp->ep_flags &= ~EXEC_HASFD; |
912 | fd_close(epp->ep_fd); |
913 | } |
914 | |
915 | /* close and put the exec'd file */ |
916 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
917 | VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); |
918 | vput(epp->ep_vp); |
919 | pool_put(&exec_pool, data->ed_argp); |
920 | |
921 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
922 | if (epp->ep_emul_root != NULL) |
923 | vrele(epp->ep_emul_root); |
924 | if (epp->ep_interp != NULL) |
925 | vrele(epp->ep_interp); |
926 | |
927 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
928 | pathbuf_destroy(data->ed_pathbuf); |
929 | PNBUF_PUT(data->ed_resolvedpathbuf); |
930 | } |
931 | |
932 | static void |
933 | pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring) |
934 | { |
935 | const char *commandname; |
936 | size_t commandlen; |
937 | char *path; |
938 | struct proc *p = l->l_proc; |
939 | |
940 | /* set command name & other accounting info */ |
941 | commandname = strrchr(epp->ep_resolvedname, '/'); |
942 | if (commandname != NULL) { |
943 | commandname++; |
944 | } else { |
945 | commandname = epp->ep_resolvedname; |
946 | } |
947 | commandlen = min(strlen(commandname), MAXCOMLEN); |
948 | (void)memcpy(p->p_comm, commandname, commandlen); |
949 | p->p_comm[commandlen] = '\0'; |
950 | |
951 | |
952 | /* |
953 | * If the path starts with /, we don't need to do any work. |
954 | * This handles the majority of the cases. |
955 | * In the future perhaps we could canonicalize it? |
956 | */ |
957 | path = PNBUF_GET(); |
958 | if (pathstring[0] == '/') { |
959 | (void)strlcpy(path, pathstring, MAXPATHLEN); |
960 | epp->ep_path = path; |
961 | } |
962 | #ifdef notyet |
963 | /* |
964 | * Although this works most of the time [since the entry was just |
965 | * entered in the cache] we don't use it because it will fail for |
966 | * entries that are not placed in the cache because their name is |
967 | * longer than NCHNAMLEN and it is not the cleanest interface, |
968 | * because there could be races. When the namei cache is re-written, |
969 | * this can be changed to use the appropriate function. |
970 | */ |
971 | else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) |
972 | epp->ep_path = path; |
973 | #endif |
974 | else { |
975 | #ifdef notyet |
976 | printf("Cannot get path for pid %d [%s] (error %d)\n" , |
977 | (int)p->p_pid, p->p_comm, error); |
978 | #endif |
979 | PNBUF_PUT(path); |
980 | epp->ep_path = NULL; |
981 | } |
982 | } |
983 | |
984 | /* XXX elsewhere */ |
985 | static int |
986 | credexec(struct lwp *l, struct vattr *attr) |
987 | { |
988 | struct proc *p = l->l_proc; |
989 | int error; |
990 | |
991 | /* |
992 | * Deal with set[ug]id. MNT_NOSUID has already been used to disable |
993 | * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked |
994 | * out additional references on the process for the moment. |
995 | */ |
996 | if ((p->p_slflag & PSL_TRACED) == 0 && |
997 | |
998 | (((attr->va_mode & S_ISUID) != 0 && |
999 | kauth_cred_geteuid(l->l_cred) != attr->va_uid) || |
1000 | |
1001 | ((attr->va_mode & S_ISGID) != 0 && |
1002 | kauth_cred_getegid(l->l_cred) != attr->va_gid))) { |
1003 | /* |
1004 | * Mark the process as SUGID before we do |
1005 | * anything that might block. |
1006 | */ |
1007 | proc_crmod_enter(); |
1008 | proc_crmod_leave(NULL, NULL, true); |
1009 | |
1010 | /* Make sure file descriptors 0..2 are in use. */ |
1011 | if ((error = fd_checkstd()) != 0) { |
1012 | DPRINTF(("%s: fdcheckstd failed %d\n" , |
1013 | __func__, error)); |
1014 | return error; |
1015 | } |
1016 | |
1017 | /* |
1018 | * Copy the credential so other references don't see our |
1019 | * changes. |
1020 | */ |
1021 | l->l_cred = kauth_cred_copy(l->l_cred); |
1022 | #ifdef KTRACE |
1023 | /* |
1024 | * If the persistent trace flag isn't set, turn off. |
1025 | */ |
1026 | if (p->p_tracep) { |
1027 | mutex_enter(&ktrace_lock); |
1028 | if (!(p->p_traceflag & KTRFAC_PERSISTENT)) |
1029 | ktrderef(p); |
1030 | mutex_exit(&ktrace_lock); |
1031 | } |
1032 | #endif |
1033 | if (attr->va_mode & S_ISUID) |
1034 | kauth_cred_seteuid(l->l_cred, attr->va_uid); |
1035 | if (attr->va_mode & S_ISGID) |
1036 | kauth_cred_setegid(l->l_cred, attr->va_gid); |
1037 | } else { |
1038 | if (kauth_cred_geteuid(l->l_cred) == |
1039 | kauth_cred_getuid(l->l_cred) && |
1040 | kauth_cred_getegid(l->l_cred) == |
1041 | kauth_cred_getgid(l->l_cred)) |
1042 | p->p_flag &= ~PK_SUGID; |
1043 | } |
1044 | |
1045 | /* |
1046 | * Copy the credential so other references don't see our changes. |
1047 | * Test to see if this is necessary first, since in the common case |
1048 | * we won't need a private reference. |
1049 | */ |
1050 | if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || |
1051 | kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { |
1052 | l->l_cred = kauth_cred_copy(l->l_cred); |
1053 | kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); |
1054 | kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); |
1055 | } |
1056 | |
1057 | /* Update the master credentials. */ |
1058 | if (l->l_cred != p->p_cred) { |
1059 | kauth_cred_t ocred; |
1060 | |
1061 | kauth_cred_hold(l->l_cred); |
1062 | mutex_enter(p->p_lock); |
1063 | ocred = p->p_cred; |
1064 | p->p_cred = l->l_cred; |
1065 | mutex_exit(p->p_lock); |
1066 | kauth_cred_free(ocred); |
1067 | } |
1068 | |
1069 | return 0; |
1070 | } |
1071 | |
1072 | static void |
1073 | emulexec(struct lwp *l, struct exec_package *epp) |
1074 | { |
1075 | struct proc *p = l->l_proc; |
1076 | |
1077 | /* The emulation root will usually have been found when we looked |
1078 | * for the elf interpreter (or similar), if not look now. */ |
1079 | if (epp->ep_esch->es_emul->e_path != NULL && |
1080 | epp->ep_emul_root == NULL) |
1081 | emul_find_root(l, epp); |
1082 | |
1083 | /* Any old emulation root got removed by fdcloseexec */ |
1084 | rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); |
1085 | p->p_cwdi->cwdi_edir = epp->ep_emul_root; |
1086 | rw_exit(&p->p_cwdi->cwdi_lock); |
1087 | epp->ep_emul_root = NULL; |
1088 | if (epp->ep_interp != NULL) |
1089 | vrele(epp->ep_interp); |
1090 | |
1091 | /* |
1092 | * Call emulation specific exec hook. This can setup per-process |
1093 | * p->p_emuldata or do any other per-process stuff an emulation needs. |
1094 | * |
1095 | * If we are executing process of different emulation than the |
1096 | * original forked process, call e_proc_exit() of the old emulation |
1097 | * first, then e_proc_exec() of new emulation. If the emulation is |
1098 | * same, the exec hook code should deallocate any old emulation |
1099 | * resources held previously by this process. |
1100 | */ |
1101 | if (p->p_emul && p->p_emul->e_proc_exit |
1102 | && p->p_emul != epp->ep_esch->es_emul) |
1103 | (*p->p_emul->e_proc_exit)(p); |
1104 | |
1105 | /* |
1106 | * This is now LWP 1. |
1107 | */ |
1108 | /* XXX elsewhere */ |
1109 | mutex_enter(p->p_lock); |
1110 | p->p_nlwpid = 1; |
1111 | l->l_lid = 1; |
1112 | mutex_exit(p->p_lock); |
1113 | |
1114 | /* |
1115 | * Call exec hook. Emulation code may NOT store reference to anything |
1116 | * from &pack. |
1117 | */ |
1118 | if (epp->ep_esch->es_emul->e_proc_exec) |
1119 | (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); |
1120 | |
1121 | /* update p_emul, the old value is no longer needed */ |
1122 | p->p_emul = epp->ep_esch->es_emul; |
1123 | |
1124 | /* ...and the same for p_execsw */ |
1125 | p->p_execsw = epp->ep_esch; |
1126 | |
1127 | #ifdef __HAVE_SYSCALL_INTERN |
1128 | (*p->p_emul->e_syscall_intern)(p); |
1129 | #endif |
1130 | ktremul(); |
1131 | } |
1132 | |
1133 | static int |
1134 | execve_runproc(struct lwp *l, struct execve_data * restrict data, |
1135 | bool no_local_exec_lock, bool is_spawn) |
1136 | { |
1137 | struct exec_package * const epp = &data->ed_pack; |
1138 | int error = 0; |
1139 | struct proc *p; |
1140 | |
1141 | /* |
1142 | * In case of a posix_spawn operation, the child doing the exec |
1143 | * might not hold the reader lock on exec_lock, but the parent |
1144 | * will do this instead. |
1145 | */ |
1146 | KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); |
1147 | KASSERT(!no_local_exec_lock || is_spawn); |
1148 | KASSERT(data != NULL); |
1149 | |
1150 | p = l->l_proc; |
1151 | |
1152 | /* Get rid of other LWPs. */ |
1153 | if (p->p_nlwps > 1) { |
1154 | mutex_enter(p->p_lock); |
1155 | exit_lwps(l); |
1156 | mutex_exit(p->p_lock); |
1157 | } |
1158 | KDASSERT(p->p_nlwps == 1); |
1159 | |
1160 | /* Destroy any lwpctl info. */ |
1161 | if (p->p_lwpctl != NULL) |
1162 | lwp_ctl_exit(); |
1163 | |
1164 | /* Remove POSIX timers */ |
1165 | timers_free(p, TIMERS_POSIX); |
1166 | |
1167 | /* Set the PaX flags. */ |
1168 | pax_set_flags(epp, p); |
1169 | |
1170 | /* |
1171 | * Do whatever is necessary to prepare the address space |
1172 | * for remapping. Note that this might replace the current |
1173 | * vmspace with another! |
1174 | */ |
1175 | if (is_spawn) |
1176 | uvmspace_spawn(l, epp->ep_vm_minaddr, |
1177 | epp->ep_vm_maxaddr, |
1178 | epp->ep_flags & EXEC_TOPDOWN_VM); |
1179 | else |
1180 | uvmspace_exec(l, epp->ep_vm_minaddr, |
1181 | epp->ep_vm_maxaddr, |
1182 | epp->ep_flags & EXEC_TOPDOWN_VM); |
1183 | |
1184 | struct vmspace *vm; |
1185 | vm = p->p_vmspace; |
1186 | vm->vm_taddr = (void *)epp->ep_taddr; |
1187 | vm->vm_tsize = btoc(epp->ep_tsize); |
1188 | vm->vm_daddr = (void*)epp->ep_daddr; |
1189 | vm->vm_dsize = btoc(epp->ep_dsize); |
1190 | vm->vm_ssize = btoc(epp->ep_ssize); |
1191 | vm->vm_issize = 0; |
1192 | vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; |
1193 | vm->vm_minsaddr = (void *)epp->ep_minsaddr; |
1194 | |
1195 | pax_aslr_init_vm(l, vm, epp); |
1196 | |
1197 | /* Now map address space. */ |
1198 | error = execve_dovmcmds(l, data); |
1199 | if (error != 0) |
1200 | goto exec_abort; |
1201 | |
1202 | pathexec(epp, l, data->ed_pathstring); |
1203 | |
1204 | char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); |
1205 | |
1206 | error = copyoutargs(data, l, newstack); |
1207 | if (error != 0) |
1208 | goto exec_abort; |
1209 | |
1210 | cwdexec(p); |
1211 | fd_closeexec(); /* handle close on exec */ |
1212 | |
1213 | if (__predict_false(ktrace_on)) |
1214 | fd_ktrexecfd(); |
1215 | |
1216 | execsigs(p); /* reset caught signals */ |
1217 | |
1218 | mutex_enter(p->p_lock); |
1219 | l->l_ctxlink = NULL; /* reset ucontext link */ |
1220 | p->p_acflag &= ~AFORK; |
1221 | p->p_flag |= PK_EXEC; |
1222 | mutex_exit(p->p_lock); |
1223 | |
1224 | /* |
1225 | * Stop profiling. |
1226 | */ |
1227 | if ((p->p_stflag & PST_PROFIL) != 0) { |
1228 | mutex_spin_enter(&p->p_stmutex); |
1229 | stopprofclock(p); |
1230 | mutex_spin_exit(&p->p_stmutex); |
1231 | } |
1232 | |
1233 | /* |
1234 | * It's OK to test PL_PPWAIT unlocked here, as other LWPs have |
1235 | * exited and exec()/exit() are the only places it will be cleared. |
1236 | */ |
1237 | if ((p->p_lflag & PL_PPWAIT) != 0) { |
1238 | #if 0 |
1239 | lwp_t *lp; |
1240 | |
1241 | mutex_enter(proc_lock); |
1242 | lp = p->p_vforklwp; |
1243 | p->p_vforklwp = NULL; |
1244 | |
1245 | l->l_lwpctl = NULL; /* was on loan from blocked parent */ |
1246 | p->p_lflag &= ~PL_PPWAIT; |
1247 | |
1248 | lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ |
1249 | cv_broadcast(&lp->l_waitcv); |
1250 | mutex_exit(proc_lock); |
1251 | #else |
1252 | mutex_enter(proc_lock); |
1253 | l->l_lwpctl = NULL; /* was on loan from blocked parent */ |
1254 | p->p_lflag &= ~PL_PPWAIT; |
1255 | cv_broadcast(&p->p_pptr->p_waitcv); |
1256 | mutex_exit(proc_lock); |
1257 | #endif |
1258 | } |
1259 | |
1260 | error = credexec(l, &data->ed_attr); |
1261 | if (error) |
1262 | goto exec_abort; |
1263 | |
1264 | #if defined(__HAVE_RAS) |
1265 | /* |
1266 | * Remove all RASs from the address space. |
1267 | */ |
1268 | ras_purgeall(); |
1269 | #endif |
1270 | |
1271 | doexechooks(p); |
1272 | |
1273 | /* |
1274 | * Set initial SP at the top of the stack. |
1275 | * |
1276 | * Note that on machines where stack grows up (e.g. hppa), SP points to |
1277 | * the end of arg/env strings. Userland guesses the address of argc |
1278 | * via ps_strings::ps_argvstr. |
1279 | */ |
1280 | |
1281 | /* Setup new registers and do misc. setup. */ |
1282 | (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); |
1283 | if (epp->ep_esch->es_setregs) |
1284 | (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); |
1285 | |
1286 | /* Provide a consistent LWP private setting */ |
1287 | (void)lwp_setprivate(l, NULL); |
1288 | |
1289 | /* Discard all PCU state; need to start fresh */ |
1290 | pcu_discard_all(l); |
1291 | |
1292 | /* map the process's signal trampoline code */ |
1293 | if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { |
1294 | DPRINTF(("%s: map sigcode failed %d\n" , __func__, error)); |
1295 | goto exec_abort; |
1296 | } |
1297 | |
1298 | pool_put(&exec_pool, data->ed_argp); |
1299 | |
1300 | /* notify others that we exec'd */ |
1301 | KNOTE(&p->p_klist, NOTE_EXEC); |
1302 | |
1303 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
1304 | |
1305 | SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0); |
1306 | |
1307 | emulexec(l, epp); |
1308 | |
1309 | /* Allow new references from the debugger/procfs. */ |
1310 | rw_exit(&p->p_reflock); |
1311 | if (!no_local_exec_lock) |
1312 | rw_exit(&exec_lock); |
1313 | |
1314 | mutex_enter(proc_lock); |
1315 | |
1316 | if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { |
1317 | ksiginfo_t ksi; |
1318 | |
1319 | KSI_INIT_EMPTY(&ksi); |
1320 | ksi.ksi_signo = SIGTRAP; |
1321 | ksi.ksi_lid = l->l_lid; |
1322 | kpsignal(p, &ksi, NULL); |
1323 | } |
1324 | |
1325 | if (p->p_sflag & PS_STOPEXEC) { |
1326 | ksiginfoq_t kq; |
1327 | |
1328 | KERNEL_UNLOCK_ALL(l, &l->l_biglocks); |
1329 | p->p_pptr->p_nstopchild++; |
1330 | p->p_waited = 0; |
1331 | mutex_enter(p->p_lock); |
1332 | ksiginfo_queue_init(&kq); |
1333 | sigclearall(p, &contsigmask, &kq); |
1334 | lwp_lock(l); |
1335 | l->l_stat = LSSTOP; |
1336 | p->p_stat = SSTOP; |
1337 | p->p_nrlwps--; |
1338 | lwp_unlock(l); |
1339 | mutex_exit(p->p_lock); |
1340 | mutex_exit(proc_lock); |
1341 | lwp_lock(l); |
1342 | mi_switch(l); |
1343 | ksiginfo_queue_drain(&kq); |
1344 | KERNEL_LOCK(l->l_biglocks, l); |
1345 | } else { |
1346 | mutex_exit(proc_lock); |
1347 | } |
1348 | |
1349 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
1350 | pathbuf_destroy(data->ed_pathbuf); |
1351 | PNBUF_PUT(data->ed_resolvedpathbuf); |
1352 | #ifdef TRACE_EXEC |
1353 | DPRINTF(("%s finished\n" , __func__)); |
1354 | #endif |
1355 | return EJUSTRETURN; |
1356 | |
1357 | exec_abort: |
1358 | SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); |
1359 | rw_exit(&p->p_reflock); |
1360 | if (!no_local_exec_lock) |
1361 | rw_exit(&exec_lock); |
1362 | |
1363 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
1364 | pathbuf_destroy(data->ed_pathbuf); |
1365 | PNBUF_PUT(data->ed_resolvedpathbuf); |
1366 | |
1367 | /* |
1368 | * the old process doesn't exist anymore. exit gracefully. |
1369 | * get rid of the (new) address space we have created, if any, get rid |
1370 | * of our namei data and vnode, and exit noting failure |
1371 | */ |
1372 | uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, |
1373 | VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); |
1374 | |
1375 | exec_free_emul_arg(epp); |
1376 | pool_put(&exec_pool, data->ed_argp); |
1377 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
1378 | if (epp->ep_emul_root != NULL) |
1379 | vrele(epp->ep_emul_root); |
1380 | if (epp->ep_interp != NULL) |
1381 | vrele(epp->ep_interp); |
1382 | |
1383 | /* Acquire the sched-state mutex (exit1() will release it). */ |
1384 | if (!is_spawn) { |
1385 | mutex_enter(p->p_lock); |
1386 | exit1(l, error, SIGABRT); |
1387 | } |
1388 | |
1389 | return error; |
1390 | } |
1391 | |
1392 | int |
1393 | execve1(struct lwp *l, const char *path, char * const *args, |
1394 | char * const *envs, execve_fetch_element_t fetch_element) |
1395 | { |
1396 | struct execve_data data; |
1397 | int error; |
1398 | |
1399 | error = execve_loadvm(l, path, args, envs, fetch_element, &data); |
1400 | if (error) |
1401 | return error; |
1402 | error = execve_runproc(l, &data, false, false); |
1403 | return error; |
1404 | } |
1405 | |
1406 | static size_t |
1407 | fromptrsz(const struct exec_package *epp) |
1408 | { |
1409 | return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); |
1410 | } |
1411 | |
1412 | static size_t |
1413 | ptrsz(const struct exec_package *epp) |
1414 | { |
1415 | return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); |
1416 | } |
1417 | |
1418 | static size_t |
1419 | calcargs(struct execve_data * restrict data, const size_t argenvstrlen) |
1420 | { |
1421 | struct exec_package * const epp = &data->ed_pack; |
1422 | |
1423 | const size_t nargenvptrs = |
1424 | 1 + /* long argc */ |
1425 | data->ed_argc + /* char *argv[] */ |
1426 | 1 + /* \0 */ |
1427 | data->ed_envc + /* char *env[] */ |
1428 | 1 + /* \0 */ |
1429 | epp->ep_esch->es_arglen; /* auxinfo */ |
1430 | |
1431 | return (nargenvptrs * ptrsz(epp)) + argenvstrlen; |
1432 | } |
1433 | |
1434 | static size_t |
1435 | calcstack(struct execve_data * restrict data, const size_t gaplen) |
1436 | { |
1437 | struct exec_package * const epp = &data->ed_pack; |
1438 | |
1439 | data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - |
1440 | epp->ep_esch->es_emul->e_sigcode; |
1441 | |
1442 | data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? |
1443 | sizeof(struct ps_strings32) : sizeof(struct ps_strings); |
1444 | |
1445 | const size_t sigcode_psstr_sz = |
1446 | data->ed_szsigcode + /* sigcode */ |
1447 | data->ed_ps_strings_sz + /* ps_strings */ |
1448 | STACK_PTHREADSPACE; /* pthread space */ |
1449 | |
1450 | const size_t stacklen = |
1451 | data->ed_argslen + |
1452 | gaplen + |
1453 | sigcode_psstr_sz; |
1454 | |
1455 | /* make the stack "safely" aligned */ |
1456 | return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); |
1457 | } |
1458 | |
1459 | static int |
1460 | copyoutargs(struct execve_data * restrict data, struct lwp *l, |
1461 | char * const newstack) |
1462 | { |
1463 | struct exec_package * const epp = &data->ed_pack; |
1464 | struct proc *p = l->l_proc; |
1465 | int error; |
1466 | |
1467 | /* remember information about the process */ |
1468 | data->ed_arginfo.ps_nargvstr = data->ed_argc; |
1469 | data->ed_arginfo.ps_nenvstr = data->ed_envc; |
1470 | |
1471 | /* |
1472 | * Allocate the stack address passed to the newly execve()'ed process. |
1473 | * |
1474 | * The new stack address will be set to the SP (stack pointer) register |
1475 | * in setregs(). |
1476 | */ |
1477 | |
1478 | char *newargs = STACK_ALLOC( |
1479 | STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); |
1480 | |
1481 | error = (*epp->ep_esch->es_copyargs)(l, epp, |
1482 | &data->ed_arginfo, &newargs, data->ed_argp); |
1483 | |
1484 | if (epp->ep_path) { |
1485 | PNBUF_PUT(epp->ep_path); |
1486 | epp->ep_path = NULL; |
1487 | } |
1488 | if (error) { |
1489 | DPRINTF(("%s: copyargs failed %d\n" , __func__, error)); |
1490 | return error; |
1491 | } |
1492 | |
1493 | error = copyoutpsstrs(data, p); |
1494 | if (error != 0) |
1495 | return error; |
1496 | |
1497 | return 0; |
1498 | } |
1499 | |
1500 | static int |
1501 | copyoutpsstrs(struct execve_data * restrict data, struct proc *p) |
1502 | { |
1503 | struct exec_package * const epp = &data->ed_pack; |
1504 | struct ps_strings32 arginfo32; |
1505 | void *aip; |
1506 | int error; |
1507 | |
1508 | /* fill process ps_strings info */ |
1509 | p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, |
1510 | STACK_PTHREADSPACE), data->ed_ps_strings_sz); |
1511 | |
1512 | if (epp->ep_flags & EXEC_32) { |
1513 | aip = &arginfo32; |
1514 | arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; |
1515 | arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; |
1516 | arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; |
1517 | arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; |
1518 | } else |
1519 | aip = &data->ed_arginfo; |
1520 | |
1521 | /* copy out the process's ps_strings structure */ |
1522 | if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) |
1523 | != 0) { |
1524 | DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n" , |
1525 | __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); |
1526 | return error; |
1527 | } |
1528 | |
1529 | return 0; |
1530 | } |
1531 | |
1532 | static int |
1533 | copyinargs(struct execve_data * restrict data, char * const *args, |
1534 | char * const *envs, execve_fetch_element_t fetch_element, char **dpp) |
1535 | { |
1536 | struct exec_package * const epp = &data->ed_pack; |
1537 | char *dp; |
1538 | size_t i; |
1539 | int error; |
1540 | |
1541 | dp = *dpp; |
1542 | |
1543 | data->ed_argc = 0; |
1544 | |
1545 | /* copy the fake args list, if there's one, freeing it as we go */ |
1546 | if (epp->ep_flags & EXEC_HASARGL) { |
1547 | struct exec_fakearg *fa = epp->ep_fa; |
1548 | |
1549 | while (fa->fa_arg != NULL) { |
1550 | const size_t maxlen = ARG_MAX - (dp - data->ed_argp); |
1551 | size_t len; |
1552 | |
1553 | len = strlcpy(dp, fa->fa_arg, maxlen); |
1554 | /* Count NUL into len. */ |
1555 | if (len < maxlen) |
1556 | len++; |
1557 | else { |
1558 | while (fa->fa_arg != NULL) { |
1559 | kmem_free(fa->fa_arg, fa->fa_len); |
1560 | fa++; |
1561 | } |
1562 | kmem_free(epp->ep_fa, epp->ep_fa_len); |
1563 | epp->ep_flags &= ~EXEC_HASARGL; |
1564 | return E2BIG; |
1565 | } |
1566 | ktrexecarg(fa->fa_arg, len - 1); |
1567 | dp += len; |
1568 | |
1569 | kmem_free(fa->fa_arg, fa->fa_len); |
1570 | fa++; |
1571 | data->ed_argc++; |
1572 | } |
1573 | kmem_free(epp->ep_fa, epp->ep_fa_len); |
1574 | epp->ep_flags &= ~EXEC_HASARGL; |
1575 | } |
1576 | |
1577 | /* |
1578 | * Read and count argument strings from user. |
1579 | */ |
1580 | |
1581 | if (args == NULL) { |
1582 | DPRINTF(("%s: null args\n" , __func__)); |
1583 | return EINVAL; |
1584 | } |
1585 | if (epp->ep_flags & EXEC_SKIPARG) |
1586 | args = (const void *)((const char *)args + fromptrsz(epp)); |
1587 | i = 0; |
1588 | error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); |
1589 | if (error != 0) { |
1590 | DPRINTF(("%s: copyin arg %d\n" , __func__, error)); |
1591 | return error; |
1592 | } |
1593 | data->ed_argc += i; |
1594 | |
1595 | /* |
1596 | * Read and count environment strings from user. |
1597 | */ |
1598 | |
1599 | data->ed_envc = 0; |
1600 | /* environment need not be there */ |
1601 | if (envs == NULL) |
1602 | goto done; |
1603 | i = 0; |
1604 | error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); |
1605 | if (error != 0) { |
1606 | DPRINTF(("%s: copyin env %d\n" , __func__, error)); |
1607 | return error; |
1608 | } |
1609 | data->ed_envc += i; |
1610 | |
1611 | done: |
1612 | *dpp = dp; |
1613 | |
1614 | return 0; |
1615 | } |
1616 | |
1617 | static int |
1618 | copyinargstrs(struct execve_data * restrict data, char * const *strs, |
1619 | execve_fetch_element_t fetch_element, char **dpp, size_t *ip, |
1620 | void (*ktr)(const void *, size_t)) |
1621 | { |
1622 | char *dp, *sp; |
1623 | size_t i; |
1624 | int error; |
1625 | |
1626 | dp = *dpp; |
1627 | |
1628 | i = 0; |
1629 | while (1) { |
1630 | const size_t maxlen = ARG_MAX - (dp - data->ed_argp); |
1631 | size_t len; |
1632 | |
1633 | if ((error = (*fetch_element)(strs, i, &sp)) != 0) { |
1634 | return error; |
1635 | } |
1636 | if (!sp) |
1637 | break; |
1638 | if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { |
1639 | if (error == ENAMETOOLONG) |
1640 | error = E2BIG; |
1641 | return error; |
1642 | } |
1643 | if (__predict_false(ktrace_on)) |
1644 | (*ktr)(dp, len - 1); |
1645 | dp += len; |
1646 | i++; |
1647 | } |
1648 | |
1649 | *dpp = dp; |
1650 | *ip = i; |
1651 | |
1652 | return 0; |
1653 | } |
1654 | |
1655 | /* |
1656 | * Copy argv and env strings from kernel buffer (argp) to the new stack. |
1657 | * Those strings are located just after auxinfo. |
1658 | */ |
1659 | int |
1660 | copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, |
1661 | char **stackp, void *argp) |
1662 | { |
1663 | char **cpp, *dp, *sp; |
1664 | size_t len; |
1665 | void *nullp; |
1666 | long argc, envc; |
1667 | int error; |
1668 | |
1669 | cpp = (char **)*stackp; |
1670 | nullp = NULL; |
1671 | argc = arginfo->ps_nargvstr; |
1672 | envc = arginfo->ps_nenvstr; |
1673 | |
1674 | /* argc on stack is long */ |
1675 | CTASSERT(sizeof(*cpp) == sizeof(argc)); |
1676 | |
1677 | dp = (char *)(cpp + |
1678 | 1 + /* long argc */ |
1679 | argc + /* char *argv[] */ |
1680 | 1 + /* \0 */ |
1681 | envc + /* char *env[] */ |
1682 | 1 + /* \0 */ |
1683 | /* XXX auxinfo multiplied by ptr size? */ |
1684 | pack->ep_esch->es_arglen); /* auxinfo */ |
1685 | sp = argp; |
1686 | |
1687 | if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { |
1688 | COPYPRINTF("" , cpp - 1, sizeof(argc)); |
1689 | return error; |
1690 | } |
1691 | |
1692 | /* XXX don't copy them out, remap them! */ |
1693 | arginfo->ps_argvstr = cpp; /* remember location of argv for later */ |
1694 | |
1695 | for (; --argc >= 0; sp += len, dp += len) { |
1696 | if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { |
1697 | COPYPRINTF("" , cpp - 1, sizeof(dp)); |
1698 | return error; |
1699 | } |
1700 | if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { |
1701 | COPYPRINTF("str" , dp, (size_t)ARG_MAX); |
1702 | return error; |
1703 | } |
1704 | } |
1705 | |
1706 | if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { |
1707 | COPYPRINTF("" , cpp - 1, sizeof(nullp)); |
1708 | return error; |
1709 | } |
1710 | |
1711 | arginfo->ps_envstr = cpp; /* remember location of envp for later */ |
1712 | |
1713 | for (; --envc >= 0; sp += len, dp += len) { |
1714 | if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { |
1715 | COPYPRINTF("" , cpp - 1, sizeof(dp)); |
1716 | return error; |
1717 | } |
1718 | if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { |
1719 | COPYPRINTF("str" , dp, (size_t)ARG_MAX); |
1720 | return error; |
1721 | } |
1722 | |
1723 | } |
1724 | |
1725 | if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { |
1726 | COPYPRINTF("" , cpp - 1, sizeof(nullp)); |
1727 | return error; |
1728 | } |
1729 | |
1730 | *stackp = (char *)cpp; |
1731 | return 0; |
1732 | } |
1733 | |
1734 | |
1735 | /* |
1736 | * Add execsw[] entries. |
1737 | */ |
1738 | int |
1739 | exec_add(struct execsw *esp, int count) |
1740 | { |
1741 | struct exec_entry *it; |
1742 | int i; |
1743 | |
1744 | if (count == 0) { |
1745 | return 0; |
1746 | } |
1747 | |
1748 | /* Check for duplicates. */ |
1749 | rw_enter(&exec_lock, RW_WRITER); |
1750 | for (i = 0; i < count; i++) { |
1751 | LIST_FOREACH(it, &ex_head, ex_list) { |
1752 | /* assume unique (makecmds, probe_func, emulation) */ |
1753 | if (it->ex_sw->es_makecmds == esp[i].es_makecmds && |
1754 | it->ex_sw->u.elf_probe_func == |
1755 | esp[i].u.elf_probe_func && |
1756 | it->ex_sw->es_emul == esp[i].es_emul) { |
1757 | rw_exit(&exec_lock); |
1758 | return EEXIST; |
1759 | } |
1760 | } |
1761 | } |
1762 | |
1763 | /* Allocate new entries. */ |
1764 | for (i = 0; i < count; i++) { |
1765 | it = kmem_alloc(sizeof(*it), KM_SLEEP); |
1766 | it->ex_sw = &esp[i]; |
1767 | LIST_INSERT_HEAD(&ex_head, it, ex_list); |
1768 | } |
1769 | |
1770 | /* update execsw[] */ |
1771 | exec_init(0); |
1772 | rw_exit(&exec_lock); |
1773 | return 0; |
1774 | } |
1775 | |
1776 | /* |
1777 | * Remove execsw[] entry. |
1778 | */ |
1779 | int |
1780 | exec_remove(struct execsw *esp, int count) |
1781 | { |
1782 | struct exec_entry *it, *next; |
1783 | int i; |
1784 | const struct proclist_desc *pd; |
1785 | proc_t *p; |
1786 | |
1787 | if (count == 0) { |
1788 | return 0; |
1789 | } |
1790 | |
1791 | /* Abort if any are busy. */ |
1792 | rw_enter(&exec_lock, RW_WRITER); |
1793 | for (i = 0; i < count; i++) { |
1794 | mutex_enter(proc_lock); |
1795 | for (pd = proclists; pd->pd_list != NULL; pd++) { |
1796 | PROCLIST_FOREACH(p, pd->pd_list) { |
1797 | if (p->p_execsw == &esp[i]) { |
1798 | mutex_exit(proc_lock); |
1799 | rw_exit(&exec_lock); |
1800 | return EBUSY; |
1801 | } |
1802 | } |
1803 | } |
1804 | mutex_exit(proc_lock); |
1805 | } |
1806 | |
1807 | /* None are busy, so remove them all. */ |
1808 | for (i = 0; i < count; i++) { |
1809 | for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { |
1810 | next = LIST_NEXT(it, ex_list); |
1811 | if (it->ex_sw == &esp[i]) { |
1812 | LIST_REMOVE(it, ex_list); |
1813 | kmem_free(it, sizeof(*it)); |
1814 | break; |
1815 | } |
1816 | } |
1817 | } |
1818 | |
1819 | /* update execsw[] */ |
1820 | exec_init(0); |
1821 | rw_exit(&exec_lock); |
1822 | return 0; |
1823 | } |
1824 | |
1825 | /* |
1826 | * Initialize exec structures. If init_boot is true, also does necessary |
1827 | * one-time initialization (it's called from main() that way). |
1828 | * Once system is multiuser, this should be called with exec_lock held, |
1829 | * i.e. via exec_{add|remove}(). |
1830 | */ |
1831 | int |
1832 | exec_init(int init_boot) |
1833 | { |
1834 | const struct execsw **sw; |
1835 | struct exec_entry *ex; |
1836 | SLIST_HEAD(,exec_entry) first; |
1837 | SLIST_HEAD(,exec_entry) any; |
1838 | SLIST_HEAD(,exec_entry) last; |
1839 | int i, sz; |
1840 | |
1841 | if (init_boot) { |
1842 | /* do one-time initializations */ |
1843 | rw_init(&exec_lock); |
1844 | mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); |
1845 | pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, |
1846 | "execargs" , &exec_palloc, IPL_NONE); |
1847 | pool_sethardlimit(&exec_pool, maxexec, "should not happen" , 0); |
1848 | } else { |
1849 | KASSERT(rw_write_held(&exec_lock)); |
1850 | } |
1851 | |
1852 | /* Sort each entry onto the appropriate queue. */ |
1853 | SLIST_INIT(&first); |
1854 | SLIST_INIT(&any); |
1855 | SLIST_INIT(&last); |
1856 | sz = 0; |
1857 | LIST_FOREACH(ex, &ex_head, ex_list) { |
1858 | switch(ex->ex_sw->es_prio) { |
1859 | case EXECSW_PRIO_FIRST: |
1860 | SLIST_INSERT_HEAD(&first, ex, ex_slist); |
1861 | break; |
1862 | case EXECSW_PRIO_ANY: |
1863 | SLIST_INSERT_HEAD(&any, ex, ex_slist); |
1864 | break; |
1865 | case EXECSW_PRIO_LAST: |
1866 | SLIST_INSERT_HEAD(&last, ex, ex_slist); |
1867 | break; |
1868 | default: |
1869 | panic("%s" , __func__); |
1870 | break; |
1871 | } |
1872 | sz++; |
1873 | } |
1874 | |
1875 | /* |
1876 | * Create new execsw[]. Ensure we do not try a zero-sized |
1877 | * allocation. |
1878 | */ |
1879 | sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); |
1880 | i = 0; |
1881 | SLIST_FOREACH(ex, &first, ex_slist) { |
1882 | sw[i++] = ex->ex_sw; |
1883 | } |
1884 | SLIST_FOREACH(ex, &any, ex_slist) { |
1885 | sw[i++] = ex->ex_sw; |
1886 | } |
1887 | SLIST_FOREACH(ex, &last, ex_slist) { |
1888 | sw[i++] = ex->ex_sw; |
1889 | } |
1890 | |
1891 | /* Replace old execsw[] and free used memory. */ |
1892 | if (execsw != NULL) { |
1893 | kmem_free(__UNCONST(execsw), |
1894 | nexecs * sizeof(struct execsw *) + 1); |
1895 | } |
1896 | execsw = sw; |
1897 | nexecs = sz; |
1898 | |
1899 | /* Figure out the maximum size of an exec header. */ |
1900 | exec_maxhdrsz = sizeof(int); |
1901 | for (i = 0; i < nexecs; i++) { |
1902 | if (execsw[i]->es_hdrsz > exec_maxhdrsz) |
1903 | exec_maxhdrsz = execsw[i]->es_hdrsz; |
1904 | } |
1905 | |
1906 | return 0; |
1907 | } |
1908 | |
1909 | static int |
1910 | exec_sigcode_map(struct proc *p, const struct emul *e) |
1911 | { |
1912 | vaddr_t va; |
1913 | vsize_t sz; |
1914 | int error; |
1915 | struct uvm_object *uobj; |
1916 | |
1917 | sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; |
1918 | |
1919 | if (e->e_sigobject == NULL || sz == 0) { |
1920 | return 0; |
1921 | } |
1922 | |
1923 | /* |
1924 | * If we don't have a sigobject for this emulation, create one. |
1925 | * |
1926 | * sigobject is an anonymous memory object (just like SYSV shared |
1927 | * memory) that we keep a permanent reference to and that we map |
1928 | * in all processes that need this sigcode. The creation is simple, |
1929 | * we create an object, add a permanent reference to it, map it in |
1930 | * kernel space, copy out the sigcode to it and unmap it. |
1931 | * We map it with PROT_READ|PROT_EXEC into the process just |
1932 | * the way sys_mmap() would map it. |
1933 | */ |
1934 | |
1935 | uobj = *e->e_sigobject; |
1936 | if (uobj == NULL) { |
1937 | mutex_enter(&sigobject_lock); |
1938 | if ((uobj = *e->e_sigobject) == NULL) { |
1939 | uobj = uao_create(sz, 0); |
1940 | (*uobj->pgops->pgo_reference)(uobj); |
1941 | va = vm_map_min(kernel_map); |
1942 | if ((error = uvm_map(kernel_map, &va, round_page(sz), |
1943 | uobj, 0, 0, |
1944 | UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, |
1945 | UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { |
1946 | printf("kernel mapping failed %d\n" , error); |
1947 | (*uobj->pgops->pgo_detach)(uobj); |
1948 | mutex_exit(&sigobject_lock); |
1949 | return error; |
1950 | } |
1951 | memcpy((void *)va, e->e_sigcode, sz); |
1952 | #ifdef PMAP_NEED_PROCWR |
1953 | pmap_procwr(&proc0, va, sz); |
1954 | #endif |
1955 | uvm_unmap(kernel_map, va, va + round_page(sz)); |
1956 | *e->e_sigobject = uobj; |
1957 | } |
1958 | mutex_exit(&sigobject_lock); |
1959 | } |
1960 | |
1961 | /* Just a hint to uvm_map where to put it. */ |
1962 | va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, |
1963 | round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); |
1964 | |
1965 | #ifdef __alpha__ |
1966 | /* |
1967 | * Tru64 puts /sbin/loader at the end of user virtual memory, |
1968 | * which causes the above calculation to put the sigcode at |
1969 | * an invalid address. Put it just below the text instead. |
1970 | */ |
1971 | if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { |
1972 | va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); |
1973 | } |
1974 | #endif |
1975 | |
1976 | (*uobj->pgops->pgo_reference)(uobj); |
1977 | error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), |
1978 | uobj, 0, 0, |
1979 | UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, |
1980 | UVM_ADV_RANDOM, 0)); |
1981 | if (error) { |
1982 | DPRINTF(("%s, %d: map %p " |
1983 | "uvm_map %#" PRIxVSIZE"@%#" PRIxVADDR" failed %d\n" , |
1984 | __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), |
1985 | va, error)); |
1986 | (*uobj->pgops->pgo_detach)(uobj); |
1987 | return error; |
1988 | } |
1989 | p->p_sigctx.ps_sigcode = (void *)va; |
1990 | return 0; |
1991 | } |
1992 | |
1993 | /* |
1994 | * Release a refcount on spawn_exec_data and destroy memory, if this |
1995 | * was the last one. |
1996 | */ |
1997 | static void |
1998 | spawn_exec_data_release(struct spawn_exec_data *data) |
1999 | { |
2000 | if (atomic_dec_32_nv(&data->sed_refcnt) != 0) |
2001 | return; |
2002 | |
2003 | cv_destroy(&data->sed_cv_child_ready); |
2004 | mutex_destroy(&data->sed_mtx_child); |
2005 | |
2006 | if (data->sed_actions) |
2007 | posix_spawn_fa_free(data->sed_actions, |
2008 | data->sed_actions->len); |
2009 | if (data->sed_attrs) |
2010 | kmem_free(data->sed_attrs, |
2011 | sizeof(*data->sed_attrs)); |
2012 | kmem_free(data, sizeof(*data)); |
2013 | } |
2014 | |
2015 | /* |
2016 | * A child lwp of a posix_spawn operation starts here and ends up in |
2017 | * cpu_spawn_return, dealing with all filedescriptor and scheduler |
2018 | * manipulations in between. |
2019 | * The parent waits for the child, as it is not clear whether the child |
2020 | * will be able to acquire its own exec_lock. If it can, the parent can |
2021 | * be released early and continue running in parallel. If not (or if the |
2022 | * magic debug flag is passed in the scheduler attribute struct), the |
2023 | * child rides on the parent's exec lock until it is ready to return to |
2024 | * to userland - and only then releases the parent. This method loses |
2025 | * concurrency, but improves error reporting. |
2026 | */ |
2027 | static void |
2028 | spawn_return(void *arg) |
2029 | { |
2030 | struct spawn_exec_data *spawn_data = arg; |
2031 | struct lwp *l = curlwp; |
2032 | int error, newfd; |
2033 | int ostat; |
2034 | size_t i; |
2035 | const struct posix_spawn_file_actions_entry *fae; |
2036 | pid_t ppid; |
2037 | register_t retval; |
2038 | bool have_reflock; |
2039 | bool parent_is_waiting = true; |
2040 | |
2041 | /* |
2042 | * Check if we can release parent early. |
2043 | * We either need to have no sed_attrs, or sed_attrs does not |
2044 | * have POSIX_SPAWN_RETURNERROR or one of the flags, that require |
2045 | * safe access to the parent proc (passed in sed_parent). |
2046 | * We then try to get the exec_lock, and only if that works, we can |
2047 | * release the parent here already. |
2048 | */ |
2049 | ppid = spawn_data->sed_parent->p_pid; |
2050 | if ((!spawn_data->sed_attrs |
2051 | || (spawn_data->sed_attrs->sa_flags |
2052 | & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) |
2053 | && rw_tryenter(&exec_lock, RW_READER)) { |
2054 | parent_is_waiting = false; |
2055 | mutex_enter(&spawn_data->sed_mtx_child); |
2056 | cv_signal(&spawn_data->sed_cv_child_ready); |
2057 | mutex_exit(&spawn_data->sed_mtx_child); |
2058 | } |
2059 | |
2060 | /* don't allow debugger access yet */ |
2061 | rw_enter(&l->l_proc->p_reflock, RW_WRITER); |
2062 | have_reflock = true; |
2063 | |
2064 | error = 0; |
2065 | /* handle posix_spawn_file_actions */ |
2066 | if (spawn_data->sed_actions != NULL) { |
2067 | for (i = 0; i < spawn_data->sed_actions->len; i++) { |
2068 | fae = &spawn_data->sed_actions->fae[i]; |
2069 | switch (fae->fae_action) { |
2070 | case FAE_OPEN: |
2071 | if (fd_getfile(fae->fae_fildes) != NULL) { |
2072 | error = fd_close(fae->fae_fildes); |
2073 | if (error) |
2074 | break; |
2075 | } |
2076 | error = fd_open(fae->fae_path, fae->fae_oflag, |
2077 | fae->fae_mode, &newfd); |
2078 | if (error) |
2079 | break; |
2080 | if (newfd != fae->fae_fildes) { |
2081 | error = dodup(l, newfd, |
2082 | fae->fae_fildes, 0, &retval); |
2083 | if (fd_getfile(newfd) != NULL) |
2084 | fd_close(newfd); |
2085 | } |
2086 | break; |
2087 | case FAE_DUP2: |
2088 | error = dodup(l, fae->fae_fildes, |
2089 | fae->fae_newfildes, 0, &retval); |
2090 | break; |
2091 | case FAE_CLOSE: |
2092 | if (fd_getfile(fae->fae_fildes) == NULL) { |
2093 | error = EBADF; |
2094 | break; |
2095 | } |
2096 | error = fd_close(fae->fae_fildes); |
2097 | break; |
2098 | } |
2099 | if (error) |
2100 | goto report_error; |
2101 | } |
2102 | } |
2103 | |
2104 | /* handle posix_spawnattr */ |
2105 | if (spawn_data->sed_attrs != NULL) { |
2106 | struct sigaction sigact; |
2107 | sigact._sa_u._sa_handler = SIG_DFL; |
2108 | sigact.sa_flags = 0; |
2109 | |
2110 | /* |
2111 | * set state to SSTOP so that this proc can be found by pid. |
2112 | * see proc_enterprp, do_sched_setparam below |
2113 | */ |
2114 | mutex_enter(proc_lock); |
2115 | /* |
2116 | * p_stat should be SACTIVE, so we need to adjust the |
2117 | * parent's p_nstopchild here. For safety, just make |
2118 | * we're on the good side of SDEAD before we adjust. |
2119 | */ |
2120 | ostat = l->l_proc->p_stat; |
2121 | KASSERT(ostat < SSTOP); |
2122 | l->l_proc->p_stat = SSTOP; |
2123 | l->l_proc->p_waited = 0; |
2124 | l->l_proc->p_pptr->p_nstopchild++; |
2125 | mutex_exit(proc_lock); |
2126 | |
2127 | /* Set process group */ |
2128 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { |
2129 | pid_t mypid = l->l_proc->p_pid, |
2130 | pgrp = spawn_data->sed_attrs->sa_pgroup; |
2131 | |
2132 | if (pgrp == 0) |
2133 | pgrp = mypid; |
2134 | |
2135 | error = proc_enterpgrp(spawn_data->sed_parent, |
2136 | mypid, pgrp, false); |
2137 | if (error) |
2138 | goto report_error_stopped; |
2139 | } |
2140 | |
2141 | /* Set scheduler policy */ |
2142 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) |
2143 | error = do_sched_setparam(l->l_proc->p_pid, 0, |
2144 | spawn_data->sed_attrs->sa_schedpolicy, |
2145 | &spawn_data->sed_attrs->sa_schedparam); |
2146 | else if (spawn_data->sed_attrs->sa_flags |
2147 | & POSIX_SPAWN_SETSCHEDPARAM) { |
2148 | error = do_sched_setparam(ppid, 0, |
2149 | SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); |
2150 | } |
2151 | if (error) |
2152 | goto report_error_stopped; |
2153 | |
2154 | /* Reset user ID's */ |
2155 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { |
2156 | error = do_setresuid(l, -1, |
2157 | kauth_cred_getgid(l->l_cred), -1, |
2158 | ID_E_EQ_R | ID_E_EQ_S); |
2159 | if (error) |
2160 | goto report_error_stopped; |
2161 | error = do_setresuid(l, -1, |
2162 | kauth_cred_getuid(l->l_cred), -1, |
2163 | ID_E_EQ_R | ID_E_EQ_S); |
2164 | if (error) |
2165 | goto report_error_stopped; |
2166 | } |
2167 | |
2168 | /* Set signal masks/defaults */ |
2169 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { |
2170 | mutex_enter(l->l_proc->p_lock); |
2171 | error = sigprocmask1(l, SIG_SETMASK, |
2172 | &spawn_data->sed_attrs->sa_sigmask, NULL); |
2173 | mutex_exit(l->l_proc->p_lock); |
2174 | if (error) |
2175 | goto report_error_stopped; |
2176 | } |
2177 | |
2178 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { |
2179 | /* |
2180 | * The following sigaction call is using a sigaction |
2181 | * version 0 trampoline which is in the compatibility |
2182 | * code only. This is not a problem because for SIG_DFL |
2183 | * and SIG_IGN, the trampolines are now ignored. If they |
2184 | * were not, this would be a problem because we are |
2185 | * holding the exec_lock, and the compat code needs |
2186 | * to do the same in order to replace the trampoline |
2187 | * code of the process. |
2188 | */ |
2189 | for (i = 1; i <= NSIG; i++) { |
2190 | if (sigismember( |
2191 | &spawn_data->sed_attrs->sa_sigdefault, i)) |
2192 | sigaction1(l, i, &sigact, NULL, NULL, |
2193 | 0); |
2194 | } |
2195 | } |
2196 | mutex_enter(proc_lock); |
2197 | l->l_proc->p_stat = ostat; |
2198 | l->l_proc->p_pptr->p_nstopchild--; |
2199 | mutex_exit(proc_lock); |
2200 | } |
2201 | |
2202 | /* now do the real exec */ |
2203 | error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, |
2204 | true); |
2205 | have_reflock = false; |
2206 | if (error == EJUSTRETURN) |
2207 | error = 0; |
2208 | else if (error) |
2209 | goto report_error; |
2210 | |
2211 | if (parent_is_waiting) { |
2212 | mutex_enter(&spawn_data->sed_mtx_child); |
2213 | cv_signal(&spawn_data->sed_cv_child_ready); |
2214 | mutex_exit(&spawn_data->sed_mtx_child); |
2215 | } |
2216 | |
2217 | /* release our refcount on the data */ |
2218 | spawn_exec_data_release(spawn_data); |
2219 | |
2220 | /* and finally: leave to userland for the first time */ |
2221 | cpu_spawn_return(l); |
2222 | |
2223 | /* NOTREACHED */ |
2224 | return; |
2225 | |
2226 | report_error_stopped: |
2227 | mutex_enter(proc_lock); |
2228 | l->l_proc->p_stat = ostat; |
2229 | l->l_proc->p_pptr->p_nstopchild--; |
2230 | mutex_exit(proc_lock); |
2231 | report_error: |
2232 | if (have_reflock) { |
2233 | /* |
2234 | * We have not passed through execve_runproc(), |
2235 | * which would have released the p_reflock and also |
2236 | * taken ownership of the sed_exec part of spawn_data, |
2237 | * so release/free both here. |
2238 | */ |
2239 | rw_exit(&l->l_proc->p_reflock); |
2240 | execve_free_data(&spawn_data->sed_exec); |
2241 | } |
2242 | |
2243 | if (parent_is_waiting) { |
2244 | /* pass error to parent */ |
2245 | mutex_enter(&spawn_data->sed_mtx_child); |
2246 | spawn_data->sed_error = error; |
2247 | cv_signal(&spawn_data->sed_cv_child_ready); |
2248 | mutex_exit(&spawn_data->sed_mtx_child); |
2249 | } else { |
2250 | rw_exit(&exec_lock); |
2251 | } |
2252 | |
2253 | /* release our refcount on the data */ |
2254 | spawn_exec_data_release(spawn_data); |
2255 | |
2256 | /* done, exit */ |
2257 | mutex_enter(l->l_proc->p_lock); |
2258 | /* |
2259 | * Posix explicitly asks for an exit code of 127 if we report |
2260 | * errors from the child process - so, unfortunately, there |
2261 | * is no way to report a more exact error code. |
2262 | * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as |
2263 | * flag bit in the attrp argument to posix_spawn(2), see above. |
2264 | */ |
2265 | exit1(l, 127, 0); |
2266 | } |
2267 | |
2268 | void |
2269 | posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) |
2270 | { |
2271 | |
2272 | for (size_t i = 0; i < len; i++) { |
2273 | struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; |
2274 | if (fae->fae_action != FAE_OPEN) |
2275 | continue; |
2276 | kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); |
2277 | } |
2278 | if (fa->len > 0) |
2279 | kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); |
2280 | kmem_free(fa, sizeof(*fa)); |
2281 | } |
2282 | |
2283 | static int |
2284 | posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, |
2285 | const struct posix_spawn_file_actions *ufa, rlim_t lim) |
2286 | { |
2287 | struct posix_spawn_file_actions *fa; |
2288 | struct posix_spawn_file_actions_entry *fae; |
2289 | char *pbuf = NULL; |
2290 | int error; |
2291 | size_t i = 0; |
2292 | |
2293 | fa = kmem_alloc(sizeof(*fa), KM_SLEEP); |
2294 | error = copyin(ufa, fa, sizeof(*fa)); |
2295 | if (error || fa->len == 0) { |
2296 | kmem_free(fa, sizeof(*fa)); |
2297 | return error; /* 0 if not an error, and len == 0 */ |
2298 | } |
2299 | |
2300 | if (fa->len > lim) { |
2301 | kmem_free(fa, sizeof(*fa)); |
2302 | return EINVAL; |
2303 | } |
2304 | |
2305 | fa->size = fa->len; |
2306 | size_t fal = fa->len * sizeof(*fae); |
2307 | fae = fa->fae; |
2308 | fa->fae = kmem_alloc(fal, KM_SLEEP); |
2309 | error = copyin(fae, fa->fae, fal); |
2310 | if (error) |
2311 | goto out; |
2312 | |
2313 | pbuf = PNBUF_GET(); |
2314 | for (; i < fa->len; i++) { |
2315 | fae = &fa->fae[i]; |
2316 | if (fae->fae_action != FAE_OPEN) |
2317 | continue; |
2318 | error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); |
2319 | if (error) |
2320 | goto out; |
2321 | fae->fae_path = kmem_alloc(fal, KM_SLEEP); |
2322 | memcpy(fae->fae_path, pbuf, fal); |
2323 | } |
2324 | PNBUF_PUT(pbuf); |
2325 | |
2326 | *fap = fa; |
2327 | return 0; |
2328 | out: |
2329 | if (pbuf) |
2330 | PNBUF_PUT(pbuf); |
2331 | posix_spawn_fa_free(fa, i); |
2332 | return error; |
2333 | } |
2334 | |
2335 | int |
2336 | check_posix_spawn(struct lwp *l1) |
2337 | { |
2338 | int error, tnprocs, count; |
2339 | uid_t uid; |
2340 | struct proc *p1; |
2341 | |
2342 | p1 = l1->l_proc; |
2343 | uid = kauth_cred_getuid(l1->l_cred); |
2344 | tnprocs = atomic_inc_uint_nv(&nprocs); |
2345 | |
2346 | /* |
2347 | * Although process entries are dynamically created, we still keep |
2348 | * a global limit on the maximum number we will create. |
2349 | */ |
2350 | if (__predict_false(tnprocs >= maxproc)) |
2351 | error = -1; |
2352 | else |
2353 | error = kauth_authorize_process(l1->l_cred, |
2354 | KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); |
2355 | |
2356 | if (error) { |
2357 | atomic_dec_uint(&nprocs); |
2358 | return EAGAIN; |
2359 | } |
2360 | |
2361 | /* |
2362 | * Enforce limits. |
2363 | */ |
2364 | count = chgproccnt(uid, 1); |
2365 | if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, |
2366 | p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), |
2367 | &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && |
2368 | __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { |
2369 | (void)chgproccnt(uid, -1); |
2370 | atomic_dec_uint(&nprocs); |
2371 | return EAGAIN; |
2372 | } |
2373 | |
2374 | return 0; |
2375 | } |
2376 | |
2377 | int |
2378 | do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, |
2379 | struct posix_spawn_file_actions *fa, |
2380 | struct posix_spawnattr *sa, |
2381 | char *const *argv, char *const *envp, |
2382 | execve_fetch_element_t fetch) |
2383 | { |
2384 | |
2385 | struct proc *p1, *p2; |
2386 | struct lwp *l2; |
2387 | int error; |
2388 | struct spawn_exec_data *spawn_data; |
2389 | vaddr_t uaddr; |
2390 | pid_t pid; |
2391 | bool have_exec_lock = false; |
2392 | |
2393 | p1 = l1->l_proc; |
2394 | |
2395 | /* Allocate and init spawn_data */ |
2396 | spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); |
2397 | spawn_data->sed_refcnt = 1; /* only parent so far */ |
2398 | cv_init(&spawn_data->sed_cv_child_ready, "pspawn" ); |
2399 | mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); |
2400 | mutex_enter(&spawn_data->sed_mtx_child); |
2401 | |
2402 | /* |
2403 | * Do the first part of the exec now, collect state |
2404 | * in spawn_data. |
2405 | */ |
2406 | error = execve_loadvm(l1, path, argv, |
2407 | envp, fetch, &spawn_data->sed_exec); |
2408 | if (error == EJUSTRETURN) |
2409 | error = 0; |
2410 | else if (error) |
2411 | goto error_exit; |
2412 | |
2413 | have_exec_lock = true; |
2414 | |
2415 | /* |
2416 | * Allocate virtual address space for the U-area now, while it |
2417 | * is still easy to abort the fork operation if we're out of |
2418 | * kernel virtual address space. |
2419 | */ |
2420 | uaddr = uvm_uarea_alloc(); |
2421 | if (__predict_false(uaddr == 0)) { |
2422 | error = ENOMEM; |
2423 | goto error_exit; |
2424 | } |
2425 | |
2426 | /* |
2427 | * Allocate new proc. Borrow proc0 vmspace for it, we will |
2428 | * replace it with its own before returning to userland |
2429 | * in the child. |
2430 | * This is a point of no return, we will have to go through |
2431 | * the child proc to properly clean it up past this point. |
2432 | */ |
2433 | p2 = proc_alloc(); |
2434 | pid = p2->p_pid; |
2435 | |
2436 | /* |
2437 | * Make a proc table entry for the new process. |
2438 | * Start by zeroing the section of proc that is zero-initialized, |
2439 | * then copy the section that is copied directly from the parent. |
2440 | */ |
2441 | memset(&p2->p_startzero, 0, |
2442 | (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); |
2443 | memcpy(&p2->p_startcopy, &p1->p_startcopy, |
2444 | (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); |
2445 | p2->p_vmspace = proc0.p_vmspace; |
2446 | |
2447 | TAILQ_INIT(&p2->p_sigpend.sp_info); |
2448 | |
2449 | LIST_INIT(&p2->p_lwps); |
2450 | LIST_INIT(&p2->p_sigwaiters); |
2451 | |
2452 | /* |
2453 | * Duplicate sub-structures as needed. |
2454 | * Increase reference counts on shared objects. |
2455 | * Inherit flags we want to keep. The flags related to SIGCHLD |
2456 | * handling are important in order to keep a consistent behaviour |
2457 | * for the child after the fork. If we are a 32-bit process, the |
2458 | * child will be too. |
2459 | */ |
2460 | p2->p_flag = |
2461 | p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); |
2462 | p2->p_emul = p1->p_emul; |
2463 | p2->p_execsw = p1->p_execsw; |
2464 | |
2465 | mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); |
2466 | mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); |
2467 | rw_init(&p2->p_reflock); |
2468 | cv_init(&p2->p_waitcv, "wait" ); |
2469 | cv_init(&p2->p_lwpcv, "lwpwait" ); |
2470 | |
2471 | p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); |
2472 | |
2473 | kauth_proc_fork(p1, p2); |
2474 | |
2475 | p2->p_raslist = NULL; |
2476 | p2->p_fd = fd_copy(); |
2477 | |
2478 | /* XXX racy */ |
2479 | p2->p_mqueue_cnt = p1->p_mqueue_cnt; |
2480 | |
2481 | p2->p_cwdi = cwdinit(); |
2482 | |
2483 | /* |
2484 | * Note: p_limit (rlimit stuff) is copy-on-write, so normally |
2485 | * we just need increase pl_refcnt. |
2486 | */ |
2487 | if (!p1->p_limit->pl_writeable) { |
2488 | lim_addref(p1->p_limit); |
2489 | p2->p_limit = p1->p_limit; |
2490 | } else { |
2491 | p2->p_limit = lim_copy(p1->p_limit); |
2492 | } |
2493 | |
2494 | p2->p_lflag = 0; |
2495 | p2->p_sflag = 0; |
2496 | p2->p_slflag = 0; |
2497 | p2->p_pptr = p1; |
2498 | p2->p_ppid = p1->p_pid; |
2499 | LIST_INIT(&p2->p_children); |
2500 | |
2501 | p2->p_aio = NULL; |
2502 | |
2503 | #ifdef KTRACE |
2504 | /* |
2505 | * Copy traceflag and tracefile if enabled. |
2506 | * If not inherited, these were zeroed above. |
2507 | */ |
2508 | if (p1->p_traceflag & KTRFAC_INHERIT) { |
2509 | mutex_enter(&ktrace_lock); |
2510 | p2->p_traceflag = p1->p_traceflag; |
2511 | if ((p2->p_tracep = p1->p_tracep) != NULL) |
2512 | ktradref(p2); |
2513 | mutex_exit(&ktrace_lock); |
2514 | } |
2515 | #endif |
2516 | |
2517 | /* |
2518 | * Create signal actions for the child process. |
2519 | */ |
2520 | p2->p_sigacts = sigactsinit(p1, 0); |
2521 | mutex_enter(p1->p_lock); |
2522 | p2->p_sflag |= |
2523 | (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); |
2524 | sched_proc_fork(p1, p2); |
2525 | mutex_exit(p1->p_lock); |
2526 | |
2527 | p2->p_stflag = p1->p_stflag; |
2528 | |
2529 | /* |
2530 | * p_stats. |
2531 | * Copy parts of p_stats, and zero out the rest. |
2532 | */ |
2533 | p2->p_stats = pstatscopy(p1->p_stats); |
2534 | |
2535 | /* copy over machdep flags to the new proc */ |
2536 | cpu_proc_fork(p1, p2); |
2537 | |
2538 | /* |
2539 | * Prepare remaining parts of spawn data |
2540 | */ |
2541 | spawn_data->sed_actions = fa; |
2542 | spawn_data->sed_attrs = sa; |
2543 | |
2544 | spawn_data->sed_parent = p1; |
2545 | |
2546 | /* create LWP */ |
2547 | lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, |
2548 | &l2, l1->l_class); |
2549 | l2->l_ctxlink = NULL; /* reset ucontext link */ |
2550 | |
2551 | /* |
2552 | * Copy the credential so other references don't see our changes. |
2553 | * Test to see if this is necessary first, since in the common case |
2554 | * we won't need a private reference. |
2555 | */ |
2556 | if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || |
2557 | kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { |
2558 | l2->l_cred = kauth_cred_copy(l2->l_cred); |
2559 | kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); |
2560 | kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); |
2561 | } |
2562 | |
2563 | /* Update the master credentials. */ |
2564 | if (l2->l_cred != p2->p_cred) { |
2565 | kauth_cred_t ocred; |
2566 | |
2567 | kauth_cred_hold(l2->l_cred); |
2568 | mutex_enter(p2->p_lock); |
2569 | ocred = p2->p_cred; |
2570 | p2->p_cred = l2->l_cred; |
2571 | mutex_exit(p2->p_lock); |
2572 | kauth_cred_free(ocred); |
2573 | } |
2574 | |
2575 | *child_ok = true; |
2576 | spawn_data->sed_refcnt = 2; /* child gets it as well */ |
2577 | #if 0 |
2578 | l2->l_nopreempt = 1; /* start it non-preemptable */ |
2579 | #endif |
2580 | |
2581 | /* |
2582 | * It's now safe for the scheduler and other processes to see the |
2583 | * child process. |
2584 | */ |
2585 | mutex_enter(proc_lock); |
2586 | |
2587 | if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) |
2588 | p2->p_lflag |= PL_CONTROLT; |
2589 | |
2590 | LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); |
2591 | p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ |
2592 | |
2593 | LIST_INSERT_AFTER(p1, p2, p_pglist); |
2594 | LIST_INSERT_HEAD(&allproc, p2, p_list); |
2595 | |
2596 | p2->p_trace_enabled = trace_is_enabled(p2); |
2597 | #ifdef __HAVE_SYSCALL_INTERN |
2598 | (*p2->p_emul->e_syscall_intern)(p2); |
2599 | #endif |
2600 | |
2601 | /* |
2602 | * Make child runnable, set start time, and add to run queue except |
2603 | * if the parent requested the child to start in SSTOP state. |
2604 | */ |
2605 | mutex_enter(p2->p_lock); |
2606 | |
2607 | getmicrotime(&p2->p_stats->p_start); |
2608 | |
2609 | lwp_lock(l2); |
2610 | KASSERT(p2->p_nrlwps == 1); |
2611 | p2->p_nrlwps = 1; |
2612 | p2->p_stat = SACTIVE; |
2613 | l2->l_stat = LSRUN; |
2614 | sched_enqueue(l2, false); |
2615 | lwp_unlock(l2); |
2616 | |
2617 | mutex_exit(p2->p_lock); |
2618 | mutex_exit(proc_lock); |
2619 | |
2620 | cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); |
2621 | error = spawn_data->sed_error; |
2622 | mutex_exit(&spawn_data->sed_mtx_child); |
2623 | spawn_exec_data_release(spawn_data); |
2624 | |
2625 | rw_exit(&p1->p_reflock); |
2626 | rw_exit(&exec_lock); |
2627 | have_exec_lock = false; |
2628 | |
2629 | *pid_res = pid; |
2630 | return error; |
2631 | |
2632 | error_exit: |
2633 | if (have_exec_lock) { |
2634 | execve_free_data(&spawn_data->sed_exec); |
2635 | rw_exit(&p1->p_reflock); |
2636 | rw_exit(&exec_lock); |
2637 | } |
2638 | mutex_exit(&spawn_data->sed_mtx_child); |
2639 | spawn_exec_data_release(spawn_data); |
2640 | |
2641 | return error; |
2642 | } |
2643 | |
2644 | int |
2645 | sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, |
2646 | register_t *retval) |
2647 | { |
2648 | /* { |
2649 | syscallarg(pid_t *) pid; |
2650 | syscallarg(const char *) path; |
2651 | syscallarg(const struct posix_spawn_file_actions *) file_actions; |
2652 | syscallarg(const struct posix_spawnattr *) attrp; |
2653 | syscallarg(char *const *) argv; |
2654 | syscallarg(char *const *) envp; |
2655 | } */ |
2656 | |
2657 | int error; |
2658 | struct posix_spawn_file_actions *fa = NULL; |
2659 | struct posix_spawnattr *sa = NULL; |
2660 | pid_t pid; |
2661 | bool child_ok = false; |
2662 | rlim_t max_fileactions; |
2663 | proc_t *p = l1->l_proc; |
2664 | |
2665 | error = check_posix_spawn(l1); |
2666 | if (error) { |
2667 | *retval = error; |
2668 | return 0; |
2669 | } |
2670 | |
2671 | /* copy in file_actions struct */ |
2672 | if (SCARG(uap, file_actions) != NULL) { |
2673 | max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, |
2674 | maxfiles); |
2675 | error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), |
2676 | max_fileactions); |
2677 | if (error) |
2678 | goto error_exit; |
2679 | } |
2680 | |
2681 | /* copyin posix_spawnattr struct */ |
2682 | if (SCARG(uap, attrp) != NULL) { |
2683 | sa = kmem_alloc(sizeof(*sa), KM_SLEEP); |
2684 | error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); |
2685 | if (error) |
2686 | goto error_exit; |
2687 | } |
2688 | |
2689 | /* |
2690 | * Do the spawn |
2691 | */ |
2692 | error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, |
2693 | SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); |
2694 | if (error) |
2695 | goto error_exit; |
2696 | |
2697 | if (error == 0 && SCARG(uap, pid) != NULL) |
2698 | error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); |
2699 | |
2700 | *retval = error; |
2701 | return 0; |
2702 | |
2703 | error_exit: |
2704 | if (!child_ok) { |
2705 | (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); |
2706 | atomic_dec_uint(&nprocs); |
2707 | |
2708 | if (sa) |
2709 | kmem_free(sa, sizeof(*sa)); |
2710 | if (fa) |
2711 | posix_spawn_fa_free(fa, fa->len); |
2712 | } |
2713 | |
2714 | *retval = error; |
2715 | return 0; |
2716 | } |
2717 | |
2718 | void |
2719 | exec_free_emul_arg(struct exec_package *epp) |
2720 | { |
2721 | if (epp->ep_emul_arg_free != NULL) { |
2722 | KASSERT(epp->ep_emul_arg != NULL); |
2723 | (*epp->ep_emul_arg_free)(epp->ep_emul_arg); |
2724 | epp->ep_emul_arg_free = NULL; |
2725 | epp->ep_emul_arg = NULL; |
2726 | } else { |
2727 | KASSERT(epp->ep_emul_arg == NULL); |
2728 | } |
2729 | } |
2730 | |
2731 | #ifdef DEBUG_EXEC |
2732 | static void |
2733 | dump_vmcmds(const struct exec_package * const epp, size_t x, int error) |
2734 | { |
2735 | struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; |
2736 | size_t j; |
2737 | |
2738 | if (error == 0) |
2739 | DPRINTF(("vmcmds %u\n" , epp->ep_vmcmds.evs_used)); |
2740 | else |
2741 | DPRINTF(("vmcmds %zu/%u, error %d\n" , x, |
2742 | epp->ep_vmcmds.evs_used, error)); |
2743 | |
2744 | for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { |
2745 | DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" |
2746 | PRIxVADDR"/%#" PRIxVSIZE" fd@%#" |
2747 | PRIxVSIZE" prot=0%o flags=%d\n" , j, |
2748 | vp[j].ev_proc == vmcmd_map_pagedvn ? |
2749 | "pagedvn" : |
2750 | vp[j].ev_proc == vmcmd_map_readvn ? |
2751 | "readvn" : |
2752 | vp[j].ev_proc == vmcmd_map_zero ? |
2753 | "zero" : "*unknown*" , |
2754 | vp[j].ev_addr, vp[j].ev_len, |
2755 | vp[j].ev_offset, vp[j].ev_prot, |
2756 | vp[j].ev_flags)); |
2757 | if (error != 0 && j == x) |
2758 | DPRINTF((" ^--- failed\n" )); |
2759 | } |
2760 | } |
2761 | #endif |
2762 | |