1 | /* $NetBSD: sysv_shm.c,v 1.131 2015/11/26 13:15:34 martin Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, |
9 | * NASA Ames Research Center, and by Mindaugas Rasiukevicius. |
10 | * |
11 | * Redistribution and use in source and binary forms, with or without |
12 | * modification, are permitted provided that the following conditions |
13 | * are met: |
14 | * 1. Redistributions of source code must retain the above copyright |
15 | * notice, this list of conditions and the following disclaimer. |
16 | * 2. Redistributions in binary form must reproduce the above copyright |
17 | * notice, this list of conditions and the following disclaimer in the |
18 | * documentation and/or other materials provided with the distribution. |
19 | * |
20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
30 | * POSSIBILITY OF SUCH DAMAGE. |
31 | */ |
32 | |
33 | /* |
34 | * Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved. |
35 | * |
36 | * Redistribution and use in source and binary forms, with or without |
37 | * modification, are permitted provided that the following conditions |
38 | * are met: |
39 | * 1. Redistributions of source code must retain the above copyright |
40 | * notice, this list of conditions and the following disclaimer. |
41 | * 2. Redistributions in binary form must reproduce the above copyright |
42 | * notice, this list of conditions and the following disclaimer in the |
43 | * documentation and/or other materials provided with the distribution. |
44 | * 3. All advertising materials mentioning features or use of this software |
45 | * must display the following acknowledgement: |
46 | * This product includes software developed by Adam Glass and Charles M. |
47 | * Hannum. |
48 | * 4. The names of the authors may not be used to endorse or promote products |
49 | * derived from this software without specific prior written permission. |
50 | * |
51 | * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR |
52 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
53 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
54 | * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
55 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
60 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
61 | */ |
62 | |
63 | #include <sys/cdefs.h> |
64 | __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.131 2015/11/26 13:15:34 martin Exp $" ); |
65 | |
66 | #ifdef _KERNEL_OPT |
67 | #include "opt_sysv.h" |
68 | #endif |
69 | |
70 | #include <sys/param.h> |
71 | #include <sys/kernel.h> |
72 | #include <sys/kmem.h> |
73 | #include <sys/shm.h> |
74 | #include <sys/mutex.h> |
75 | #include <sys/mman.h> |
76 | #include <sys/stat.h> |
77 | #include <sys/sysctl.h> |
78 | #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */ |
79 | #include <sys/syscallargs.h> |
80 | #include <sys/queue.h> |
81 | #include <sys/kauth.h> |
82 | |
83 | #include <uvm/uvm_extern.h> |
84 | #include <uvm/uvm_object.h> |
85 | |
86 | struct shmmap_entry { |
87 | SLIST_ENTRY(shmmap_entry) next; |
88 | vaddr_t va; |
89 | int shmid; |
90 | }; |
91 | |
92 | int shm_nused __cacheline_aligned; |
93 | struct shmid_ds * shmsegs __read_mostly; |
94 | |
95 | static kmutex_t shm_lock __cacheline_aligned; |
96 | static kcondvar_t * shm_cv __cacheline_aligned; |
97 | static int shm_last_free __cacheline_aligned; |
98 | static size_t shm_committed __cacheline_aligned; |
99 | static int shm_use_phys __read_mostly; |
100 | |
101 | static kcondvar_t shm_realloc_cv; |
102 | static bool shm_realloc_state; |
103 | static u_int shm_realloc_disable; |
104 | |
105 | struct shmmap_state { |
106 | unsigned int nitems; |
107 | unsigned int nrefs; |
108 | SLIST_HEAD(, shmmap_entry) entries; |
109 | }; |
110 | |
111 | extern int kern_has_sysvshm; |
112 | |
113 | SYSCTL_SETUP_PROTO(sysctl_ipc_shm_setup); |
114 | |
115 | #ifdef SHMDEBUG |
116 | #define SHMPRINTF(a) printf a |
117 | #else |
118 | #define SHMPRINTF(a) |
119 | #endif |
120 | |
121 | static int shmrealloc(int); |
122 | |
123 | /* |
124 | * Find the shared memory segment by the identifier. |
125 | * => must be called with shm_lock held; |
126 | */ |
127 | static struct shmid_ds * |
128 | shm_find_segment_by_shmid(int shmid) |
129 | { |
130 | int segnum; |
131 | struct shmid_ds *shmseg; |
132 | |
133 | KASSERT(mutex_owned(&shm_lock)); |
134 | |
135 | segnum = IPCID_TO_IX(shmid); |
136 | if (segnum < 0 || segnum >= shminfo.shmmni) |
137 | return NULL; |
138 | shmseg = &shmsegs[segnum]; |
139 | if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0) |
140 | return NULL; |
141 | if ((shmseg->shm_perm.mode & |
142 | (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED) |
143 | return NULL; |
144 | if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid)) |
145 | return NULL; |
146 | |
147 | return shmseg; |
148 | } |
149 | |
150 | /* |
151 | * Free memory segment. |
152 | * => must be called with shm_lock held; |
153 | */ |
154 | static void |
155 | shm_free_segment(int segnum) |
156 | { |
157 | struct shmid_ds *shmseg; |
158 | size_t size; |
159 | bool wanted; |
160 | |
161 | KASSERT(mutex_owned(&shm_lock)); |
162 | |
163 | shmseg = &shmsegs[segnum]; |
164 | SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n" , |
165 | shmseg->shm_perm._key, shmseg->shm_perm._seq)); |
166 | |
167 | size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; |
168 | wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED); |
169 | |
170 | shmseg->_shm_internal = NULL; |
171 | shm_committed -= btoc(size); |
172 | shm_nused--; |
173 | shmseg->shm_perm.mode = SHMSEG_FREE; |
174 | shm_last_free = segnum; |
175 | if (wanted == true) |
176 | cv_broadcast(&shm_cv[segnum]); |
177 | } |
178 | |
179 | /* |
180 | * Delete entry from the shm map. |
181 | * => must be called with shm_lock held; |
182 | */ |
183 | static struct uvm_object * |
184 | shm_delete_mapping(struct shmmap_state *shmmap_s, |
185 | struct shmmap_entry *shmmap_se) |
186 | { |
187 | struct uvm_object *uobj = NULL; |
188 | struct shmid_ds *shmseg; |
189 | int segnum; |
190 | |
191 | KASSERT(mutex_owned(&shm_lock)); |
192 | |
193 | segnum = IPCID_TO_IX(shmmap_se->shmid); |
194 | shmseg = &shmsegs[segnum]; |
195 | SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next); |
196 | shmmap_s->nitems--; |
197 | shmseg->shm_dtime = time_second; |
198 | if ((--shmseg->shm_nattch <= 0) && |
199 | (shmseg->shm_perm.mode & SHMSEG_REMOVED)) { |
200 | uobj = shmseg->_shm_internal; |
201 | shm_free_segment(segnum); |
202 | } |
203 | |
204 | return uobj; |
205 | } |
206 | |
207 | /* |
208 | * Get a non-shared shm map for that vmspace. Note, that memory |
209 | * allocation might be performed with lock held. |
210 | */ |
211 | static struct shmmap_state * |
212 | shmmap_getprivate(struct proc *p) |
213 | { |
214 | struct shmmap_state *oshmmap_s, *shmmap_s; |
215 | struct shmmap_entry *oshmmap_se, *shmmap_se; |
216 | |
217 | KASSERT(mutex_owned(&shm_lock)); |
218 | |
219 | /* 1. A shm map with refcnt = 1, used by ourselves, thus return */ |
220 | oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm; |
221 | if (oshmmap_s && oshmmap_s->nrefs == 1) |
222 | return oshmmap_s; |
223 | |
224 | /* 2. No shm map preset - create a fresh one */ |
225 | shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP); |
226 | shmmap_s->nrefs = 1; |
227 | SLIST_INIT(&shmmap_s->entries); |
228 | p->p_vmspace->vm_shm = (void *)shmmap_s; |
229 | |
230 | if (oshmmap_s == NULL) |
231 | return shmmap_s; |
232 | |
233 | SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n" , |
234 | p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs)); |
235 | |
236 | /* 3. A shared shm map, copy to a fresh one and adjust refcounts */ |
237 | SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) { |
238 | shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP); |
239 | shmmap_se->va = oshmmap_se->va; |
240 | shmmap_se->shmid = oshmmap_se->shmid; |
241 | SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next); |
242 | } |
243 | shmmap_s->nitems = oshmmap_s->nitems; |
244 | oshmmap_s->nrefs--; |
245 | |
246 | return shmmap_s; |
247 | } |
248 | |
249 | /* |
250 | * Lock/unlock the memory. |
251 | * => must be called with shm_lock held; |
252 | * => called from one place, thus, inline; |
253 | */ |
254 | static inline int |
255 | shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd) |
256 | { |
257 | struct proc *p = l->l_proc; |
258 | struct shmmap_entry *shmmap_se; |
259 | struct shmmap_state *shmmap_s; |
260 | size_t size; |
261 | int error; |
262 | |
263 | KASSERT(mutex_owned(&shm_lock)); |
264 | shmmap_s = shmmap_getprivate(p); |
265 | |
266 | /* Find our shared memory address by shmid */ |
267 | SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) { |
268 | if (shmmap_se->shmid != shmid) |
269 | continue; |
270 | |
271 | size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; |
272 | |
273 | if (cmd == SHM_LOCK && |
274 | (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) { |
275 | /* Wire the object and map, then tag it */ |
276 | error = uvm_obj_wirepages(shmseg->_shm_internal, |
277 | 0, size, NULL); |
278 | if (error) |
279 | return EIO; |
280 | error = uvm_map_pageable(&p->p_vmspace->vm_map, |
281 | shmmap_se->va, shmmap_se->va + size, false, 0); |
282 | if (error) { |
283 | uvm_obj_unwirepages(shmseg->_shm_internal, |
284 | 0, size); |
285 | if (error == EFAULT) |
286 | error = ENOMEM; |
287 | return error; |
288 | } |
289 | shmseg->shm_perm.mode |= SHMSEG_WIRED; |
290 | |
291 | } else if (cmd == SHM_UNLOCK && |
292 | (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) { |
293 | /* Unwire the object and map, then untag it */ |
294 | uvm_obj_unwirepages(shmseg->_shm_internal, 0, size); |
295 | error = uvm_map_pageable(&p->p_vmspace->vm_map, |
296 | shmmap_se->va, shmmap_se->va + size, true, 0); |
297 | if (error) |
298 | return EIO; |
299 | shmseg->shm_perm.mode &= ~SHMSEG_WIRED; |
300 | } |
301 | } |
302 | |
303 | return 0; |
304 | } |
305 | |
306 | /* |
307 | * Unmap shared memory. |
308 | */ |
309 | int |
310 | sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval) |
311 | { |
312 | /* { |
313 | syscallarg(const void *) shmaddr; |
314 | } */ |
315 | struct proc *p = l->l_proc; |
316 | struct shmmap_state *shmmap_s1, *shmmap_s; |
317 | struct shmmap_entry *shmmap_se; |
318 | struct uvm_object *uobj; |
319 | struct shmid_ds *shmseg; |
320 | size_t size; |
321 | |
322 | mutex_enter(&shm_lock); |
323 | /* In case of reallocation, we will wait for completion */ |
324 | while (__predict_false(shm_realloc_state)) |
325 | cv_wait(&shm_realloc_cv, &shm_lock); |
326 | |
327 | shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm; |
328 | if (shmmap_s1 == NULL) { |
329 | mutex_exit(&shm_lock); |
330 | return EINVAL; |
331 | } |
332 | |
333 | /* Find the map entry */ |
334 | SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next) |
335 | if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr)) |
336 | break; |
337 | if (shmmap_se == NULL) { |
338 | mutex_exit(&shm_lock); |
339 | return EINVAL; |
340 | } |
341 | |
342 | shmmap_s = shmmap_getprivate(p); |
343 | if (shmmap_s != shmmap_s1) { |
344 | /* Map has been copied, lookup entry in new map */ |
345 | SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) |
346 | if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr)) |
347 | break; |
348 | if (shmmap_se == NULL) { |
349 | mutex_exit(&shm_lock); |
350 | return EINVAL; |
351 | } |
352 | } |
353 | |
354 | SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n" , |
355 | p->p_vmspace, shmmap_se->shmid, shmmap_se->va)); |
356 | |
357 | /* Delete the entry from shm map */ |
358 | uobj = shm_delete_mapping(shmmap_s, shmmap_se); |
359 | shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)]; |
360 | size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; |
361 | mutex_exit(&shm_lock); |
362 | |
363 | uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size); |
364 | if (uobj != NULL) { |
365 | uao_detach(uobj); |
366 | } |
367 | kmem_free(shmmap_se, sizeof(struct shmmap_entry)); |
368 | |
369 | return 0; |
370 | } |
371 | |
372 | /* |
373 | * Map shared memory. |
374 | */ |
375 | int |
376 | sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval) |
377 | { |
378 | /* { |
379 | syscallarg(int) shmid; |
380 | syscallarg(const void *) shmaddr; |
381 | syscallarg(int) shmflg; |
382 | } */ |
383 | int error, flags = 0; |
384 | struct proc *p = l->l_proc; |
385 | kauth_cred_t cred = l->l_cred; |
386 | struct shmid_ds *shmseg; |
387 | struct shmmap_state *shmmap_s; |
388 | struct shmmap_entry *shmmap_se; |
389 | struct uvm_object *uobj; |
390 | struct vmspace *vm; |
391 | vaddr_t attach_va; |
392 | vm_prot_t prot; |
393 | vsize_t size; |
394 | |
395 | /* Allocate a new map entry and set it */ |
396 | shmmap_se = kmem_alloc(sizeof(struct shmmap_entry), KM_SLEEP); |
397 | shmmap_se->shmid = SCARG(uap, shmid); |
398 | |
399 | mutex_enter(&shm_lock); |
400 | /* In case of reallocation, we will wait for completion */ |
401 | while (__predict_false(shm_realloc_state)) |
402 | cv_wait(&shm_realloc_cv, &shm_lock); |
403 | |
404 | shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid)); |
405 | if (shmseg == NULL) { |
406 | error = EINVAL; |
407 | goto err; |
408 | } |
409 | error = ipcperm(cred, &shmseg->shm_perm, |
410 | (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W); |
411 | if (error) |
412 | goto err; |
413 | |
414 | vm = p->p_vmspace; |
415 | shmmap_s = (struct shmmap_state *)vm->vm_shm; |
416 | if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) { |
417 | error = EMFILE; |
418 | goto err; |
419 | } |
420 | |
421 | size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; |
422 | prot = VM_PROT_READ; |
423 | if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0) |
424 | prot |= VM_PROT_WRITE; |
425 | if (SCARG(uap, shmaddr)) { |
426 | flags |= UVM_FLAG_FIXED; |
427 | if (SCARG(uap, shmflg) & SHM_RND) |
428 | attach_va = |
429 | (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1); |
430 | else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0) |
431 | attach_va = (vaddr_t)SCARG(uap, shmaddr); |
432 | else { |
433 | error = EINVAL; |
434 | goto err; |
435 | } |
436 | } else { |
437 | /* This is just a hint to uvm_map() about where to put it. */ |
438 | attach_va = p->p_emul->e_vm_default_addr(p, |
439 | (vaddr_t)vm->vm_daddr, size, |
440 | p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); |
441 | } |
442 | |
443 | /* |
444 | * Create a map entry, add it to the list and increase the counters. |
445 | * The lock will be dropped before the mapping, disable reallocation. |
446 | */ |
447 | shmmap_s = shmmap_getprivate(p); |
448 | SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next); |
449 | shmmap_s->nitems++; |
450 | shmseg->shm_lpid = p->p_pid; |
451 | shmseg->shm_nattch++; |
452 | shm_realloc_disable++; |
453 | mutex_exit(&shm_lock); |
454 | |
455 | /* |
456 | * Add a reference to the memory object, map it to the |
457 | * address space, and lock the memory, if needed. |
458 | */ |
459 | uobj = shmseg->_shm_internal; |
460 | uao_reference(uobj); |
461 | error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0, |
462 | UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags)); |
463 | if (error) |
464 | goto err_detach; |
465 | if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) { |
466 | error = uvm_map_pageable(&vm->vm_map, attach_va, |
467 | attach_va + size, false, 0); |
468 | if (error) { |
469 | if (error == EFAULT) |
470 | error = ENOMEM; |
471 | uvm_deallocate(&vm->vm_map, attach_va, size); |
472 | goto err_detach; |
473 | } |
474 | } |
475 | |
476 | /* Set the new address, and update the time */ |
477 | mutex_enter(&shm_lock); |
478 | shmmap_se->va = attach_va; |
479 | shmseg->shm_atime = time_second; |
480 | shm_realloc_disable--; |
481 | retval[0] = attach_va; |
482 | SHMPRINTF(("shmat: vm %p: add %d @%lx\n" , |
483 | p->p_vmspace, shmmap_se->shmid, attach_va)); |
484 | err: |
485 | cv_broadcast(&shm_realloc_cv); |
486 | mutex_exit(&shm_lock); |
487 | if (error && shmmap_se) { |
488 | kmem_free(shmmap_se, sizeof(struct shmmap_entry)); |
489 | } |
490 | return error; |
491 | |
492 | err_detach: |
493 | uao_detach(uobj); |
494 | mutex_enter(&shm_lock); |
495 | uobj = shm_delete_mapping(shmmap_s, shmmap_se); |
496 | shm_realloc_disable--; |
497 | cv_broadcast(&shm_realloc_cv); |
498 | mutex_exit(&shm_lock); |
499 | if (uobj != NULL) { |
500 | uao_detach(uobj); |
501 | } |
502 | kmem_free(shmmap_se, sizeof(struct shmmap_entry)); |
503 | return error; |
504 | } |
505 | |
506 | /* |
507 | * Shared memory control operations. |
508 | */ |
509 | int |
510 | sys___shmctl50(struct lwp *l, const struct sys___shmctl50_args *uap, |
511 | register_t *retval) |
512 | { |
513 | /* { |
514 | syscallarg(int) shmid; |
515 | syscallarg(int) cmd; |
516 | syscallarg(struct shmid_ds *) buf; |
517 | } */ |
518 | struct shmid_ds shmbuf; |
519 | int cmd, error; |
520 | |
521 | cmd = SCARG(uap, cmd); |
522 | if (cmd == IPC_SET) { |
523 | error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf)); |
524 | if (error) |
525 | return error; |
526 | } |
527 | |
528 | error = shmctl1(l, SCARG(uap, shmid), cmd, |
529 | (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL); |
530 | |
531 | if (error == 0 && cmd == IPC_STAT) |
532 | error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf)); |
533 | |
534 | return error; |
535 | } |
536 | |
537 | int |
538 | shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf) |
539 | { |
540 | struct uvm_object *uobj = NULL; |
541 | kauth_cred_t cred = l->l_cred; |
542 | struct shmid_ds *shmseg; |
543 | int error = 0; |
544 | |
545 | mutex_enter(&shm_lock); |
546 | /* In case of reallocation, we will wait for completion */ |
547 | while (__predict_false(shm_realloc_state)) |
548 | cv_wait(&shm_realloc_cv, &shm_lock); |
549 | |
550 | shmseg = shm_find_segment_by_shmid(shmid); |
551 | if (shmseg == NULL) { |
552 | mutex_exit(&shm_lock); |
553 | return EINVAL; |
554 | } |
555 | |
556 | switch (cmd) { |
557 | case IPC_STAT: |
558 | if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0) |
559 | break; |
560 | memcpy(shmbuf, shmseg, sizeof(struct shmid_ds)); |
561 | break; |
562 | case IPC_SET: |
563 | if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0) |
564 | break; |
565 | shmseg->shm_perm.uid = shmbuf->shm_perm.uid; |
566 | shmseg->shm_perm.gid = shmbuf->shm_perm.gid; |
567 | shmseg->shm_perm.mode = |
568 | (shmseg->shm_perm.mode & ~ACCESSPERMS) | |
569 | (shmbuf->shm_perm.mode & ACCESSPERMS); |
570 | shmseg->shm_ctime = time_second; |
571 | break; |
572 | case IPC_RMID: |
573 | if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0) |
574 | break; |
575 | shmseg->shm_perm._key = IPC_PRIVATE; |
576 | shmseg->shm_perm.mode |= SHMSEG_REMOVED; |
577 | if (shmseg->shm_nattch <= 0) { |
578 | uobj = shmseg->_shm_internal; |
579 | shm_free_segment(IPCID_TO_IX(shmid)); |
580 | } |
581 | break; |
582 | case SHM_LOCK: |
583 | case SHM_UNLOCK: |
584 | if ((error = kauth_authorize_system(cred, |
585 | KAUTH_SYSTEM_SYSVIPC, |
586 | (cmd == SHM_LOCK) ? KAUTH_REQ_SYSTEM_SYSVIPC_SHM_LOCK : |
587 | KAUTH_REQ_SYSTEM_SYSVIPC_SHM_UNLOCK, NULL, NULL, NULL)) != 0) |
588 | break; |
589 | error = shm_memlock(l, shmseg, shmid, cmd); |
590 | break; |
591 | default: |
592 | error = EINVAL; |
593 | } |
594 | |
595 | mutex_exit(&shm_lock); |
596 | if (uobj != NULL) |
597 | uao_detach(uobj); |
598 | return error; |
599 | } |
600 | |
601 | /* |
602 | * Try to take an already existing segment. |
603 | * => must be called with shm_lock held; |
604 | * => called from one place, thus, inline; |
605 | */ |
606 | static inline int |
607 | shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode, |
608 | register_t *retval) |
609 | { |
610 | struct shmid_ds *shmseg; |
611 | kauth_cred_t cred = l->l_cred; |
612 | int segnum, error; |
613 | again: |
614 | KASSERT(mutex_owned(&shm_lock)); |
615 | |
616 | /* Find segment by key */ |
617 | for (segnum = 0; segnum < shminfo.shmmni; segnum++) |
618 | if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) && |
619 | shmsegs[segnum].shm_perm._key == SCARG(uap, key)) |
620 | break; |
621 | if (segnum == shminfo.shmmni) { |
622 | /* Not found */ |
623 | return -1; |
624 | } |
625 | |
626 | shmseg = &shmsegs[segnum]; |
627 | if (shmseg->shm_perm.mode & SHMSEG_REMOVED) { |
628 | /* |
629 | * This segment is in the process of being allocated. Wait |
630 | * until it's done, and look the key up again (in case the |
631 | * allocation failed or it was freed). |
632 | */ |
633 | shmseg->shm_perm.mode |= SHMSEG_WANTED; |
634 | error = cv_wait_sig(&shm_cv[segnum], &shm_lock); |
635 | if (error) |
636 | return error; |
637 | goto again; |
638 | } |
639 | |
640 | /* |
641 | * First check the flags, to generate a useful error when a |
642 | * segment already exists. |
643 | */ |
644 | if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) == |
645 | (IPC_CREAT | IPC_EXCL)) |
646 | return EEXIST; |
647 | |
648 | /* Check the permission and segment size. */ |
649 | error = ipcperm(cred, &shmseg->shm_perm, mode); |
650 | if (error) |
651 | return error; |
652 | if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz) |
653 | return EINVAL; |
654 | |
655 | *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); |
656 | return 0; |
657 | } |
658 | |
659 | int |
660 | sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval) |
661 | { |
662 | /* { |
663 | syscallarg(key_t) key; |
664 | syscallarg(size_t) size; |
665 | syscallarg(int) shmflg; |
666 | } */ |
667 | struct shmid_ds *shmseg; |
668 | kauth_cred_t cred = l->l_cred; |
669 | key_t key = SCARG(uap, key); |
670 | size_t size; |
671 | int error, mode, segnum; |
672 | bool lockmem; |
673 | |
674 | mode = SCARG(uap, shmflg) & ACCESSPERMS; |
675 | if (SCARG(uap, shmflg) & _SHM_RMLINGER) |
676 | mode |= SHMSEG_RMLINGER; |
677 | |
678 | SHMPRINTF(("shmget: key 0x%lx size 0x%zx shmflg 0x%x mode 0x%x\n" , |
679 | SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode)); |
680 | |
681 | mutex_enter(&shm_lock); |
682 | /* In case of reallocation, we will wait for completion */ |
683 | while (__predict_false(shm_realloc_state)) |
684 | cv_wait(&shm_realloc_cv, &shm_lock); |
685 | |
686 | if (key != IPC_PRIVATE) { |
687 | error = shmget_existing(l, uap, mode, retval); |
688 | if (error != -1) { |
689 | mutex_exit(&shm_lock); |
690 | return error; |
691 | } |
692 | if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) { |
693 | mutex_exit(&shm_lock); |
694 | return ENOENT; |
695 | } |
696 | } |
697 | error = 0; |
698 | |
699 | /* |
700 | * Check the for the limits. |
701 | */ |
702 | size = SCARG(uap, size); |
703 | if (size < shminfo.shmmin || size > shminfo.shmmax) { |
704 | mutex_exit(&shm_lock); |
705 | return EINVAL; |
706 | } |
707 | if (shm_nused >= shminfo.shmmni) { |
708 | mutex_exit(&shm_lock); |
709 | return ENOSPC; |
710 | } |
711 | size = (size + PGOFSET) & ~PGOFSET; |
712 | if (shm_committed + btoc(size) > shminfo.shmall) { |
713 | mutex_exit(&shm_lock); |
714 | return ENOMEM; |
715 | } |
716 | |
717 | /* Find the first available segment */ |
718 | if (shm_last_free < 0) { |
719 | for (segnum = 0; segnum < shminfo.shmmni; segnum++) |
720 | if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE) |
721 | break; |
722 | KASSERT(segnum < shminfo.shmmni); |
723 | } else { |
724 | segnum = shm_last_free; |
725 | shm_last_free = -1; |
726 | } |
727 | |
728 | /* |
729 | * Initialize the segment. |
730 | * We will drop the lock while allocating the memory, thus mark the |
731 | * segment present, but removed, that no other thread could take it. |
732 | * Also, disable reallocation, while lock is dropped. |
733 | */ |
734 | shmseg = &shmsegs[segnum]; |
735 | shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED; |
736 | shm_committed += btoc(size); |
737 | shm_nused++; |
738 | lockmem = shm_use_phys; |
739 | shm_realloc_disable++; |
740 | mutex_exit(&shm_lock); |
741 | |
742 | /* Allocate the memory object and lock it if needed */ |
743 | shmseg->_shm_internal = uao_create(size, 0); |
744 | if (lockmem) { |
745 | /* Wire the pages and tag it */ |
746 | error = uvm_obj_wirepages(shmseg->_shm_internal, 0, size, NULL); |
747 | if (error) { |
748 | uao_detach(shmseg->_shm_internal); |
749 | mutex_enter(&shm_lock); |
750 | shm_free_segment(segnum); |
751 | shm_realloc_disable--; |
752 | mutex_exit(&shm_lock); |
753 | return error; |
754 | } |
755 | } |
756 | |
757 | /* |
758 | * Please note, while segment is marked, there are no need to hold the |
759 | * lock, while setting it (except shm_perm.mode). |
760 | */ |
761 | shmseg->shm_perm._key = SCARG(uap, key); |
762 | shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff; |
763 | *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); |
764 | |
765 | shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred); |
766 | shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred); |
767 | shmseg->shm_segsz = SCARG(uap, size); |
768 | shmseg->shm_cpid = l->l_proc->p_pid; |
769 | shmseg->shm_lpid = shmseg->shm_nattch = 0; |
770 | shmseg->shm_atime = shmseg->shm_dtime = 0; |
771 | shmseg->shm_ctime = time_second; |
772 | |
773 | /* |
774 | * Segment is initialized. |
775 | * Enter the lock, mark as allocated, and notify waiters (if any). |
776 | * Also, unmark the state of reallocation. |
777 | */ |
778 | mutex_enter(&shm_lock); |
779 | shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) | |
780 | (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) | |
781 | SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0); |
782 | if (shmseg->shm_perm.mode & SHMSEG_WANTED) { |
783 | shmseg->shm_perm.mode &= ~SHMSEG_WANTED; |
784 | cv_broadcast(&shm_cv[segnum]); |
785 | } |
786 | shm_realloc_disable--; |
787 | cv_broadcast(&shm_realloc_cv); |
788 | mutex_exit(&shm_lock); |
789 | |
790 | return error; |
791 | } |
792 | |
793 | void |
794 | shmfork(struct vmspace *vm1, struct vmspace *vm2) |
795 | { |
796 | struct shmmap_state *shmmap_s; |
797 | struct shmmap_entry *shmmap_se; |
798 | |
799 | SHMPRINTF(("shmfork %p->%p\n" , vm1, vm2)); |
800 | mutex_enter(&shm_lock); |
801 | vm2->vm_shm = vm1->vm_shm; |
802 | if (vm1->vm_shm) { |
803 | shmmap_s = (struct shmmap_state *)vm1->vm_shm; |
804 | SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) |
805 | shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++; |
806 | shmmap_s->nrefs++; |
807 | } |
808 | mutex_exit(&shm_lock); |
809 | } |
810 | |
811 | void |
812 | shmexit(struct vmspace *vm) |
813 | { |
814 | struct shmmap_state *shmmap_s; |
815 | struct shmmap_entry *shmmap_se; |
816 | |
817 | mutex_enter(&shm_lock); |
818 | shmmap_s = (struct shmmap_state *)vm->vm_shm; |
819 | if (shmmap_s == NULL) { |
820 | mutex_exit(&shm_lock); |
821 | return; |
822 | } |
823 | vm->vm_shm = NULL; |
824 | |
825 | if (--shmmap_s->nrefs > 0) { |
826 | SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n" , |
827 | vm, shmmap_s->nitems, shmmap_s->nrefs)); |
828 | SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) { |
829 | shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--; |
830 | } |
831 | mutex_exit(&shm_lock); |
832 | return; |
833 | } |
834 | |
835 | SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n" , vm, shmmap_s->nitems)); |
836 | if (shmmap_s->nitems == 0) { |
837 | mutex_exit(&shm_lock); |
838 | kmem_free(shmmap_s, sizeof(struct shmmap_state)); |
839 | return; |
840 | } |
841 | |
842 | /* |
843 | * Delete the entry from shm map. |
844 | */ |
845 | for (;;) { |
846 | struct shmid_ds *shmseg; |
847 | struct uvm_object *uobj; |
848 | size_t sz; |
849 | |
850 | shmmap_se = SLIST_FIRST(&shmmap_s->entries); |
851 | KASSERT(shmmap_se != NULL); |
852 | |
853 | shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)]; |
854 | sz = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; |
855 | /* shm_delete_mapping() removes from the list. */ |
856 | uobj = shm_delete_mapping(shmmap_s, shmmap_se); |
857 | mutex_exit(&shm_lock); |
858 | |
859 | uvm_deallocate(&vm->vm_map, shmmap_se->va, sz); |
860 | if (uobj != NULL) { |
861 | uao_detach(uobj); |
862 | } |
863 | kmem_free(shmmap_se, sizeof(struct shmmap_entry)); |
864 | |
865 | if (SLIST_EMPTY(&shmmap_s->entries)) { |
866 | break; |
867 | } |
868 | mutex_enter(&shm_lock); |
869 | KASSERT(!SLIST_EMPTY(&shmmap_s->entries)); |
870 | } |
871 | kmem_free(shmmap_s, sizeof(struct shmmap_state)); |
872 | } |
873 | |
874 | static int |
875 | shmrealloc(int newshmni) |
876 | { |
877 | vaddr_t v; |
878 | struct shmid_ds *oldshmsegs, *newshmsegs; |
879 | kcondvar_t *newshm_cv, *oldshm_cv; |
880 | size_t sz; |
881 | int i, lsegid, oldshmni; |
882 | |
883 | if (newshmni < 1) |
884 | return EINVAL; |
885 | |
886 | /* Allocate new memory area */ |
887 | sz = ALIGN(newshmni * sizeof(struct shmid_ds)) + |
888 | ALIGN(newshmni * sizeof(kcondvar_t)); |
889 | sz = round_page(sz); |
890 | v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO); |
891 | if (v == 0) |
892 | return ENOMEM; |
893 | |
894 | mutex_enter(&shm_lock); |
895 | while (shm_realloc_state || shm_realloc_disable) |
896 | cv_wait(&shm_realloc_cv, &shm_lock); |
897 | |
898 | /* |
899 | * Get the number of last segment. Fail we are trying to |
900 | * reallocate less memory than we use. |
901 | */ |
902 | lsegid = 0; |
903 | for (i = 0; i < shminfo.shmmni; i++) |
904 | if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0) |
905 | lsegid = i; |
906 | if (lsegid >= newshmni) { |
907 | mutex_exit(&shm_lock); |
908 | uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED); |
909 | return EBUSY; |
910 | } |
911 | shm_realloc_state = true; |
912 | |
913 | newshmsegs = (void *)v; |
914 | newshm_cv = (void *)((uintptr_t)newshmsegs + |
915 | ALIGN(newshmni * sizeof(struct shmid_ds))); |
916 | |
917 | /* Copy all memory to the new area */ |
918 | for (i = 0; i < shm_nused; i++) { |
919 | cv_init(&newshm_cv[i], "shmwait" ); |
920 | (void)memcpy(&newshmsegs[i], &shmsegs[i], |
921 | sizeof(newshmsegs[0])); |
922 | } |
923 | |
924 | /* Mark as free all new segments, if there is any */ |
925 | for (; i < newshmni; i++) { |
926 | cv_init(&newshm_cv[i], "shmwait" ); |
927 | newshmsegs[i].shm_perm.mode = SHMSEG_FREE; |
928 | newshmsegs[i].shm_perm._seq = 0; |
929 | } |
930 | |
931 | oldshmsegs = shmsegs; |
932 | oldshmni = shminfo.shmmni; |
933 | shminfo.shmmni = newshmni; |
934 | shmsegs = newshmsegs; |
935 | shm_cv = newshm_cv; |
936 | |
937 | /* Reallocation completed - notify all waiters, if any */ |
938 | shm_realloc_state = false; |
939 | cv_broadcast(&shm_realloc_cv); |
940 | mutex_exit(&shm_lock); |
941 | |
942 | /* Release now unused resources. */ |
943 | oldshm_cv = (void *)((uintptr_t)oldshmsegs + |
944 | ALIGN(oldshmni * sizeof(struct shmid_ds))); |
945 | for (i = 0; i < oldshmni; i++) |
946 | cv_destroy(&oldshm_cv[i]); |
947 | |
948 | sz = ALIGN(oldshmni * sizeof(struct shmid_ds)) + |
949 | ALIGN(oldshmni * sizeof(kcondvar_t)); |
950 | sz = round_page(sz); |
951 | uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED); |
952 | |
953 | return 0; |
954 | } |
955 | |
956 | void |
957 | shminit(struct sysctllog **clog) |
958 | { |
959 | vaddr_t v; |
960 | size_t sz; |
961 | int i; |
962 | |
963 | mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE); |
964 | cv_init(&shm_realloc_cv, "shmrealc" ); |
965 | |
966 | /* Allocate the wired memory for our structures */ |
967 | sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) + |
968 | ALIGN(shminfo.shmmni * sizeof(kcondvar_t)); |
969 | sz = round_page(sz); |
970 | v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO); |
971 | if (v == 0) |
972 | panic("sysv_shm: cannot allocate memory" ); |
973 | shmsegs = (void *)v; |
974 | shm_cv = (void *)((uintptr_t)shmsegs + |
975 | ALIGN(shminfo.shmmni * sizeof(struct shmid_ds))); |
976 | |
977 | if (shminfo.shmmax == 0) |
978 | shminfo.shmmax = max(physmem / 4, 1024) * PAGE_SIZE; |
979 | else |
980 | shminfo.shmmax *= PAGE_SIZE; |
981 | shminfo.shmall = shminfo.shmmax / PAGE_SIZE; |
982 | |
983 | for (i = 0; i < shminfo.shmmni; i++) { |
984 | cv_init(&shm_cv[i], "shmwait" ); |
985 | shmsegs[i].shm_perm.mode = SHMSEG_FREE; |
986 | shmsegs[i].shm_perm._seq = 0; |
987 | } |
988 | shm_last_free = 0; |
989 | shm_nused = 0; |
990 | shm_committed = 0; |
991 | shm_realloc_disable = 0; |
992 | shm_realloc_state = false; |
993 | |
994 | kern_has_sysvshm = 1; |
995 | |
996 | /* Load the callback function pointers for the uvm subsystem */ |
997 | uvm_shmexit = shmexit; |
998 | uvm_shmfork = shmfork; |
999 | |
1000 | #ifdef _MODULE |
1001 | if (clog) |
1002 | sysctl_ipc_shm_setup(clog); |
1003 | #endif |
1004 | } |
1005 | |
1006 | int |
1007 | shmfini(void) |
1008 | { |
1009 | size_t sz; |
1010 | int i; |
1011 | vaddr_t v = (vaddr_t)shmsegs; |
1012 | |
1013 | mutex_enter(&shm_lock); |
1014 | if (shm_nused) { |
1015 | mutex_exit(&shm_lock); |
1016 | return 1; |
1017 | } |
1018 | |
1019 | /* Clear the callback function pointers for the uvm subsystem */ |
1020 | uvm_shmexit = NULL; |
1021 | uvm_shmfork = NULL; |
1022 | |
1023 | /* Destroy all condvars */ |
1024 | for (i = 0; i < shminfo.shmmni; i++) |
1025 | cv_destroy(&shm_cv[i]); |
1026 | cv_destroy(&shm_realloc_cv); |
1027 | |
1028 | /* Free the allocated/wired memory */ |
1029 | sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) + |
1030 | ALIGN(shminfo.shmmni * sizeof(kcondvar_t)); |
1031 | sz = round_page(sz); |
1032 | uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED); |
1033 | |
1034 | /* Release and destroy our mutex */ |
1035 | mutex_exit(&shm_lock); |
1036 | mutex_destroy(&shm_lock); |
1037 | |
1038 | kern_has_sysvshm = 0; |
1039 | |
1040 | return 0; |
1041 | } |
1042 | |
1043 | static int |
1044 | sysctl_ipc_shmmni(SYSCTLFN_ARGS) |
1045 | { |
1046 | int newsize, error; |
1047 | struct sysctlnode node; |
1048 | node = *rnode; |
1049 | node.sysctl_data = &newsize; |
1050 | |
1051 | newsize = shminfo.shmmni; |
1052 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
1053 | if (error || newp == NULL) |
1054 | return error; |
1055 | |
1056 | sysctl_unlock(); |
1057 | error = shmrealloc(newsize); |
1058 | sysctl_relock(); |
1059 | return error; |
1060 | } |
1061 | |
1062 | static int |
1063 | sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS) |
1064 | { |
1065 | uint32_t newsize; |
1066 | int error; |
1067 | struct sysctlnode node; |
1068 | node = *rnode; |
1069 | node.sysctl_data = &newsize; |
1070 | |
1071 | newsize = shminfo.shmall; |
1072 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
1073 | if (error || newp == NULL) |
1074 | return error; |
1075 | |
1076 | if (newsize < 1) |
1077 | return EINVAL; |
1078 | |
1079 | shminfo.shmall = newsize; |
1080 | shminfo.shmmax = (uint64_t)shminfo.shmall * PAGE_SIZE; |
1081 | |
1082 | return 0; |
1083 | } |
1084 | |
1085 | static int |
1086 | sysctl_ipc_shmmax(SYSCTLFN_ARGS) |
1087 | { |
1088 | uint64_t newsize; |
1089 | int error; |
1090 | struct sysctlnode node; |
1091 | node = *rnode; |
1092 | node.sysctl_data = &newsize; |
1093 | |
1094 | newsize = shminfo.shmmax; |
1095 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
1096 | if (error || newp == NULL) |
1097 | return error; |
1098 | |
1099 | if (newsize < PAGE_SIZE) |
1100 | return EINVAL; |
1101 | |
1102 | shminfo.shmmax = round_page(newsize); |
1103 | shminfo.shmall = shminfo.shmmax >> PAGE_SHIFT; |
1104 | |
1105 | return 0; |
1106 | } |
1107 | |
1108 | SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup" ) |
1109 | { |
1110 | |
1111 | sysctl_createv(clog, 0, NULL, NULL, |
1112 | CTLFLAG_PERMANENT, |
1113 | CTLTYPE_NODE, "ipc" , |
1114 | SYSCTL_DESCR("SysV IPC options" ), |
1115 | NULL, 0, NULL, 0, |
1116 | CTL_KERN, KERN_SYSVIPC, CTL_EOL); |
1117 | sysctl_createv(clog, 0, NULL, NULL, |
1118 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, |
1119 | CTLTYPE_QUAD, "shmmax" , |
1120 | SYSCTL_DESCR("Max shared memory segment size in bytes" ), |
1121 | sysctl_ipc_shmmax, 0, &shminfo.shmmax, 0, |
1122 | CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL); |
1123 | sysctl_createv(clog, 0, NULL, NULL, |
1124 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, |
1125 | CTLTYPE_INT, "shmmni" , |
1126 | SYSCTL_DESCR("Max number of shared memory identifiers" ), |
1127 | sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0, |
1128 | CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL); |
1129 | sysctl_createv(clog, 0, NULL, NULL, |
1130 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, |
1131 | CTLTYPE_INT, "shmseg" , |
1132 | SYSCTL_DESCR("Max shared memory segments per process" ), |
1133 | NULL, 0, &shminfo.shmseg, 0, |
1134 | CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL); |
1135 | sysctl_createv(clog, 0, NULL, NULL, |
1136 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, |
1137 | CTLTYPE_INT, "shmmaxpgs" , |
1138 | SYSCTL_DESCR("Max amount of shared memory in pages" ), |
1139 | sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0, |
1140 | CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL); |
1141 | sysctl_createv(clog, 0, NULL, NULL, |
1142 | CTLFLAG_PERMANENT | CTLFLAG_READWRITE, |
1143 | CTLTYPE_INT, "shm_use_phys" , |
1144 | SYSCTL_DESCR("Enable/disable locking of shared memory in " |
1145 | "physical memory" ), NULL, 0, &shm_use_phys, 0, |
1146 | CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL); |
1147 | } |
1148 | |