1 | /* $NetBSD: ip_reass.c,v 1.10 2016/04/26 08:44:44 ozaki-r Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 1982, 1986, 1988, 1993 |
5 | * The Regents of the University of California. All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * 3. Neither the name of the University nor the names of its contributors |
16 | * may be used to endorse or promote products derived from this software |
17 | * without specific prior written permission. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
20 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
23 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
24 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
25 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
26 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
27 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
28 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
29 | * SUCH DAMAGE. |
30 | * |
31 | * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 |
32 | */ |
33 | |
34 | /* |
35 | * IP reassembly. |
36 | * |
37 | * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP |
38 | * reassembly queue buffer managment. |
39 | * |
40 | * We keep a count of total IP fragments (NB: not fragmented packets), |
41 | * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments. |
42 | * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total |
43 | * fragments in reassembly queues. This AIMD policy avoids repeatedly |
44 | * deleting single packets under heavy fragmentation load (e.g., from lossy |
45 | * NFS peers). |
46 | */ |
47 | |
48 | #include <sys/cdefs.h> |
49 | __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.10 2016/04/26 08:44:44 ozaki-r Exp $" ); |
50 | |
51 | #include <sys/param.h> |
52 | #include <sys/types.h> |
53 | |
54 | #include <sys/malloc.h> |
55 | #include <sys/mbuf.h> |
56 | #include <sys/mutex.h> |
57 | #include <sys/domain.h> |
58 | #include <sys/protosw.h> |
59 | #include <sys/pool.h> |
60 | #include <sys/queue.h> |
61 | #include <sys/sysctl.h> |
62 | #include <sys/systm.h> |
63 | |
64 | #include <net/if.h> |
65 | |
66 | #include <netinet/in.h> |
67 | #include <netinet/in_systm.h> |
68 | #include <netinet/ip.h> |
69 | #include <netinet/in_pcb.h> |
70 | #include <netinet/ip_var.h> |
71 | #include <netinet/in_proto.h> |
72 | #include <netinet/ip_private.h> |
73 | #include <netinet/in_var.h> |
74 | |
75 | /* |
76 | * IP reassembly queue structures. Each fragment being reassembled is |
77 | * attached to one of these structures. They are timed out after TTL |
78 | * drops to 0, and may also be reclaimed if memory becomes tight. |
79 | */ |
80 | |
81 | typedef struct ipfr_qent { |
82 | TAILQ_ENTRY(ipfr_qent) ipqe_q; |
83 | struct ip * ipqe_ip; |
84 | struct mbuf * ipqe_m; |
85 | bool ipqe_mff; |
86 | } ipfr_qent_t; |
87 | |
88 | TAILQ_HEAD(ipfr_qent_head, ipfr_qent); |
89 | |
90 | typedef struct ipfr_queue { |
91 | LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */ |
92 | struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */ |
93 | uint8_t ipq_ttl; /* time for reass q to live */ |
94 | uint8_t ipq_p; /* protocol of this fragment */ |
95 | uint16_t ipq_id; /* sequence id for reassembly */ |
96 | struct in_addr ipq_src; |
97 | struct in_addr ipq_dst; |
98 | uint16_t ipq_nfrags; /* frags in this queue entry */ |
99 | uint8_t ipq_tos; /* TOS of this fragment */ |
100 | } ipfr_queue_t; |
101 | |
102 | /* |
103 | * Hash table of IP reassembly queues. |
104 | */ |
105 | #define IPREASS_HASH_SHIFT 6 |
106 | #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT) |
107 | #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1) |
108 | #define IPREASS_HASH(x, y) \ |
109 | (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK) |
110 | |
111 | static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE]; |
112 | static pool_cache_t ipfren_cache; |
113 | static kmutex_t ipfr_lock; |
114 | |
115 | /* Number of packets in reassembly queue and total number of fragments. */ |
116 | static int ip_nfragpackets; |
117 | static int ip_nfrags; |
118 | |
119 | /* Limits on packet and fragments. */ |
120 | static int ip_maxfragpackets; |
121 | static int ip_maxfrags; |
122 | |
123 | /* |
124 | * Cached copy of nmbclusters. If nbclusters is different, recalculate |
125 | * IP parameters derived from nmbclusters. |
126 | */ |
127 | static int ip_nmbclusters; |
128 | |
129 | /* |
130 | * IP reassembly TTL machinery for multiplicative drop. |
131 | */ |
132 | static u_int fragttl_histo[IPFRAGTTL + 1]; |
133 | |
134 | static struct sysctllog *ip_reass_sysctllog; |
135 | |
136 | void sysctl_ip_reass_setup(void); |
137 | static void ip_nmbclusters_changed(void); |
138 | |
139 | static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int); |
140 | static u_int ip_reass_ttl_decr(u_int ticks); |
141 | static void ip_reass_drophalf(void); |
142 | static void ip_freef(ipfr_queue_t *); |
143 | |
144 | /* |
145 | * ip_reass_init: |
146 | * |
147 | * Initialization of IP reassembly mechanism. |
148 | */ |
149 | void |
150 | ip_reass_init(void) |
151 | { |
152 | int i; |
153 | |
154 | ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit, |
155 | 0, 0, "ipfrenpl" , NULL, IPL_NET, NULL, NULL, NULL); |
156 | mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM); |
157 | |
158 | for (i = 0; i < IPREASS_HASH_SIZE; i++) { |
159 | LIST_INIT(&ip_frags[i]); |
160 | } |
161 | ip_maxfragpackets = 200; |
162 | ip_maxfrags = 0; |
163 | ip_nmbclusters_changed(); |
164 | |
165 | sysctl_ip_reass_setup(); |
166 | } |
167 | |
168 | void |
169 | sysctl_ip_reass_setup(void) |
170 | { |
171 | |
172 | sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL, |
173 | CTLFLAG_PERMANENT, |
174 | CTLTYPE_NODE, "inet" , |
175 | SYSCTL_DESCR("PF_INET related settings" ), |
176 | NULL, 0, NULL, 0, |
177 | CTL_NET, PF_INET, CTL_EOL); |
178 | sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL, |
179 | CTLFLAG_PERMANENT, |
180 | CTLTYPE_NODE, "ip" , |
181 | SYSCTL_DESCR("IPv4 related settings" ), |
182 | NULL, 0, NULL, 0, |
183 | CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL); |
184 | |
185 | sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL, |
186 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
187 | CTLTYPE_INT, "maxfragpackets" , |
188 | SYSCTL_DESCR("Maximum number of fragments to retain for " |
189 | "possible reassembly" ), |
190 | NULL, 0, &ip_maxfragpackets, 0, |
191 | CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL); |
192 | } |
193 | |
194 | #define CHECK_NMBCLUSTER_PARAMS() \ |
195 | do { \ |
196 | if (__predict_false(ip_nmbclusters != nmbclusters)) \ |
197 | ip_nmbclusters_changed(); \ |
198 | } while (/*CONSTCOND*/0) |
199 | |
200 | /* |
201 | * Compute IP limits derived from the value of nmbclusters. |
202 | */ |
203 | static void |
204 | ip_nmbclusters_changed(void) |
205 | { |
206 | ip_maxfrags = nmbclusters / 4; |
207 | ip_nmbclusters = nmbclusters; |
208 | } |
209 | |
210 | /* |
211 | * ip_reass: |
212 | * |
213 | * Take incoming datagram fragment and try to reassemble it into whole |
214 | * datagram. If a chain for reassembly of this datagram already exists, |
215 | * then it is given as 'fp'; otherwise have to make a chain. |
216 | */ |
217 | struct mbuf * |
218 | ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash) |
219 | { |
220 | struct ip *ip = ipqe->ipqe_ip, *qip; |
221 | const int hlen = ip->ip_hl << 2; |
222 | struct mbuf *m = ipqe->ipqe_m, *t; |
223 | ipfr_qent_t *nq, *p, *q; |
224 | int i, next; |
225 | |
226 | KASSERT(mutex_owned(&ipfr_lock)); |
227 | |
228 | /* |
229 | * Presence of header sizes in mbufs would confuse code below. |
230 | */ |
231 | m->m_data += hlen; |
232 | m->m_len -= hlen; |
233 | |
234 | #ifdef notyet |
235 | /* Make sure fragment limit is up-to-date. */ |
236 | CHECK_NMBCLUSTER_PARAMS(); |
237 | |
238 | /* If we have too many fragments, drop the older half. */ |
239 | if (ip_nfrags >= ip_maxfrags) { |
240 | ip_reass_drophalf(void); |
241 | } |
242 | #endif |
243 | |
244 | /* |
245 | * We are about to add a fragment; increment frag count. |
246 | */ |
247 | ip_nfrags++; |
248 | |
249 | /* |
250 | * If first fragment to arrive, create a reassembly queue. |
251 | */ |
252 | if (fp == NULL) { |
253 | /* |
254 | * Enforce upper bound on number of fragmented packets |
255 | * for which we attempt reassembly: a) if maxfrag is 0, |
256 | * never accept fragments b) if maxfrag is -1, accept |
257 | * all fragments without limitation. |
258 | */ |
259 | if (ip_maxfragpackets < 0) |
260 | ; |
261 | else if (ip_nfragpackets >= ip_maxfragpackets) { |
262 | goto dropfrag; |
263 | } |
264 | fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT); |
265 | if (fp == NULL) { |
266 | goto dropfrag; |
267 | } |
268 | ip_nfragpackets++; |
269 | TAILQ_INIT(&fp->ipq_fragq); |
270 | fp->ipq_nfrags = 1; |
271 | fp->ipq_ttl = IPFRAGTTL; |
272 | fp->ipq_p = ip->ip_p; |
273 | fp->ipq_id = ip->ip_id; |
274 | fp->ipq_tos = ip->ip_tos; |
275 | fp->ipq_src = ip->ip_src; |
276 | fp->ipq_dst = ip->ip_dst; |
277 | LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q); |
278 | p = NULL; |
279 | goto insert; |
280 | } else { |
281 | fp->ipq_nfrags++; |
282 | } |
283 | |
284 | /* |
285 | * Find a segment which begins after this one does. |
286 | */ |
287 | TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) { |
288 | if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off)) |
289 | break; |
290 | } |
291 | if (q != NULL) { |
292 | p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q); |
293 | } else { |
294 | p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head); |
295 | } |
296 | |
297 | /* |
298 | * If there is a preceding segment, it may provide some of our |
299 | * data already. If so, drop the data from the incoming segment. |
300 | * If it provides all of our data, drop us. |
301 | */ |
302 | if (p != NULL) { |
303 | i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) - |
304 | ntohs(ip->ip_off); |
305 | if (i > 0) { |
306 | if (i >= ntohs(ip->ip_len)) { |
307 | goto dropfrag; |
308 | } |
309 | m_adj(ipqe->ipqe_m, i); |
310 | ip->ip_off = htons(ntohs(ip->ip_off) + i); |
311 | ip->ip_len = htons(ntohs(ip->ip_len) - i); |
312 | } |
313 | } |
314 | |
315 | /* |
316 | * While we overlap succeeding segments trim them or, if they are |
317 | * completely covered, dequeue them. |
318 | */ |
319 | while (q != NULL) { |
320 | size_t end; |
321 | |
322 | qip = q->ipqe_ip; |
323 | end = ntohs(ip->ip_off) + ntohs(ip->ip_len); |
324 | if (end <= ntohs(qip->ip_off)) { |
325 | break; |
326 | } |
327 | i = end - ntohs(qip->ip_off); |
328 | if (i < ntohs(qip->ip_len)) { |
329 | qip->ip_len = htons(ntohs(qip->ip_len) - i); |
330 | qip->ip_off = htons(ntohs(qip->ip_off) + i); |
331 | m_adj(q->ipqe_m, i); |
332 | break; |
333 | } |
334 | nq = TAILQ_NEXT(q, ipqe_q); |
335 | m_freem(q->ipqe_m); |
336 | TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); |
337 | pool_cache_put(ipfren_cache, q); |
338 | fp->ipq_nfrags--; |
339 | ip_nfrags--; |
340 | q = nq; |
341 | } |
342 | |
343 | insert: |
344 | /* |
345 | * Stick new segment in its place; check for complete reassembly. |
346 | */ |
347 | if (p == NULL) { |
348 | TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q); |
349 | } else { |
350 | TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q); |
351 | } |
352 | next = 0; |
353 | TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) { |
354 | qip = q->ipqe_ip; |
355 | if (ntohs(qip->ip_off) != next) { |
356 | mutex_exit(&ipfr_lock); |
357 | return NULL; |
358 | } |
359 | next += ntohs(qip->ip_len); |
360 | } |
361 | p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head); |
362 | if (p->ipqe_mff) { |
363 | mutex_exit(&ipfr_lock); |
364 | return NULL; |
365 | } |
366 | |
367 | /* |
368 | * Reassembly is complete. Check for a bogus message size. |
369 | */ |
370 | q = TAILQ_FIRST(&fp->ipq_fragq); |
371 | ip = q->ipqe_ip; |
372 | if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) { |
373 | IP_STATINC(IP_STAT_TOOLONG); |
374 | ip_freef(fp); |
375 | mutex_exit(&ipfr_lock); |
376 | return NULL; |
377 | } |
378 | LIST_REMOVE(fp, ipq_q); |
379 | ip_nfrags -= fp->ipq_nfrags; |
380 | ip_nfragpackets--; |
381 | mutex_exit(&ipfr_lock); |
382 | |
383 | /* Concatenate all fragments. */ |
384 | m = q->ipqe_m; |
385 | t = m->m_next; |
386 | m->m_next = NULL; |
387 | m_cat(m, t); |
388 | nq = TAILQ_NEXT(q, ipqe_q); |
389 | pool_cache_put(ipfren_cache, q); |
390 | |
391 | for (q = nq; q != NULL; q = nq) { |
392 | t = q->ipqe_m; |
393 | nq = TAILQ_NEXT(q, ipqe_q); |
394 | pool_cache_put(ipfren_cache, q); |
395 | m_cat(m, t); |
396 | } |
397 | |
398 | /* |
399 | * Create header for new packet by modifying header of first |
400 | * packet. Dequeue and discard fragment reassembly header. Make |
401 | * header visible. |
402 | */ |
403 | ip->ip_len = htons((ip->ip_hl << 2) + next); |
404 | ip->ip_src = fp->ipq_src; |
405 | ip->ip_dst = fp->ipq_dst; |
406 | free(fp, M_FTABLE); |
407 | |
408 | m->m_len += (ip->ip_hl << 2); |
409 | m->m_data -= (ip->ip_hl << 2); |
410 | |
411 | /* Fix up mbuf. XXX This should be done elsewhere. */ |
412 | if (m->m_flags & M_PKTHDR) { |
413 | int plen = 0; |
414 | for (t = m; t; t = t->m_next) { |
415 | plen += t->m_len; |
416 | } |
417 | m->m_pkthdr.len = plen; |
418 | m->m_pkthdr.csum_flags = 0; |
419 | } |
420 | return m; |
421 | |
422 | dropfrag: |
423 | if (fp != NULL) { |
424 | fp->ipq_nfrags--; |
425 | } |
426 | ip_nfrags--; |
427 | IP_STATINC(IP_STAT_FRAGDROPPED); |
428 | mutex_exit(&ipfr_lock); |
429 | |
430 | pool_cache_put(ipfren_cache, ipqe); |
431 | m_freem(m); |
432 | return NULL; |
433 | } |
434 | |
435 | /* |
436 | * ip_freef: |
437 | * |
438 | * Free a fragment reassembly header and all associated datagrams. |
439 | */ |
440 | static void |
441 | ip_freef(ipfr_queue_t *fp) |
442 | { |
443 | ipfr_qent_t *q; |
444 | |
445 | KASSERT(mutex_owned(&ipfr_lock)); |
446 | |
447 | LIST_REMOVE(fp, ipq_q); |
448 | ip_nfrags -= fp->ipq_nfrags; |
449 | ip_nfragpackets--; |
450 | |
451 | while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) { |
452 | TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); |
453 | m_freem(q->ipqe_m); |
454 | pool_cache_put(ipfren_cache, q); |
455 | } |
456 | free(fp, M_FTABLE); |
457 | } |
458 | |
459 | /* |
460 | * ip_reass_ttl_decr: |
461 | * |
462 | * Decrement TTL of all reasembly queue entries by `ticks'. Count |
463 | * number of distinct fragments (as opposed to partial, fragmented |
464 | * datagrams) inthe reassembly queue. While we traverse the entire |
465 | * reassembly queue, compute and return the median TTL over all |
466 | * fragments. |
467 | */ |
468 | static u_int |
469 | ip_reass_ttl_decr(u_int ticks) |
470 | { |
471 | u_int nfrags, median, dropfraction, keepfraction; |
472 | ipfr_queue_t *fp, *nfp; |
473 | int i; |
474 | |
475 | nfrags = 0; |
476 | memset(fragttl_histo, 0, sizeof(fragttl_histo)); |
477 | |
478 | for (i = 0; i < IPREASS_HASH_SIZE; i++) { |
479 | for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) { |
480 | fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ? |
481 | 0 : fp->ipq_ttl - ticks); |
482 | nfp = LIST_NEXT(fp, ipq_q); |
483 | if (fp->ipq_ttl == 0) { |
484 | IP_STATINC(IP_STAT_FRAGTIMEOUT); |
485 | ip_freef(fp); |
486 | } else { |
487 | nfrags += fp->ipq_nfrags; |
488 | fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags; |
489 | } |
490 | } |
491 | } |
492 | |
493 | KASSERT(ip_nfrags == nfrags); |
494 | |
495 | /* Find median (or other drop fraction) in histogram. */ |
496 | dropfraction = (ip_nfrags / 2); |
497 | keepfraction = ip_nfrags - dropfraction; |
498 | for (i = IPFRAGTTL, median = 0; i >= 0; i--) { |
499 | median += fragttl_histo[i]; |
500 | if (median >= keepfraction) |
501 | break; |
502 | } |
503 | |
504 | /* Return TTL of median (or other fraction). */ |
505 | return (u_int)i; |
506 | } |
507 | |
508 | static void |
509 | ip_reass_drophalf(void) |
510 | { |
511 | u_int median_ticks; |
512 | |
513 | KASSERT(mutex_owned(&ipfr_lock)); |
514 | |
515 | /* |
516 | * Compute median TTL of all fragments, and count frags |
517 | * with that TTL or lower (roughly half of all fragments). |
518 | */ |
519 | median_ticks = ip_reass_ttl_decr(0); |
520 | |
521 | /* Drop half. */ |
522 | median_ticks = ip_reass_ttl_decr(median_ticks); |
523 | } |
524 | |
525 | /* |
526 | * ip_reass_drain: drain off all datagram fragments. Do not acquire |
527 | * softnet_lock as can be called from hardware interrupt context. |
528 | */ |
529 | void |
530 | ip_reass_drain(void) |
531 | { |
532 | |
533 | /* |
534 | * We may be called from a device's interrupt context. If |
535 | * the ipq is already busy, just bail out now. |
536 | */ |
537 | if (mutex_tryenter(&ipfr_lock)) { |
538 | /* |
539 | * Drop half the total fragments now. If more mbufs are |
540 | * needed, we will be called again soon. |
541 | */ |
542 | ip_reass_drophalf(); |
543 | mutex_exit(&ipfr_lock); |
544 | } |
545 | } |
546 | |
547 | /* |
548 | * ip_reass_slowtimo: |
549 | * |
550 | * If a timer expires on a reassembly queue, discard it. |
551 | */ |
552 | void |
553 | ip_reass_slowtimo(void) |
554 | { |
555 | static u_int dropscanidx = 0; |
556 | u_int i, median_ttl; |
557 | |
558 | mutex_enter(&ipfr_lock); |
559 | |
560 | /* Age TTL of all fragments by 1 tick .*/ |
561 | median_ttl = ip_reass_ttl_decr(1); |
562 | |
563 | /* Make sure fragment limit is up-to-date. */ |
564 | CHECK_NMBCLUSTER_PARAMS(); |
565 | |
566 | /* If we have too many fragments, drop the older half. */ |
567 | if (ip_nfrags > ip_maxfrags) { |
568 | ip_reass_ttl_decr(median_ttl); |
569 | } |
570 | |
571 | /* |
572 | * If we are over the maximum number of fragmented packets (due to |
573 | * the limit being lowered), drain off enough to get down to the |
574 | * new limit. Start draining from the reassembly hashqueue most |
575 | * recently drained. |
576 | */ |
577 | if (ip_maxfragpackets < 0) |
578 | ; |
579 | else { |
580 | int wrapped = 0; |
581 | |
582 | i = dropscanidx; |
583 | while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) { |
584 | while (LIST_FIRST(&ip_frags[i]) != NULL) { |
585 | ip_freef(LIST_FIRST(&ip_frags[i])); |
586 | } |
587 | if (++i >= IPREASS_HASH_SIZE) { |
588 | i = 0; |
589 | } |
590 | /* |
591 | * Do not scan forever even if fragment counters are |
592 | * wrong: stop after scanning entire reassembly queue. |
593 | */ |
594 | if (i == dropscanidx) { |
595 | wrapped = 1; |
596 | } |
597 | } |
598 | dropscanidx = i; |
599 | } |
600 | mutex_exit(&ipfr_lock); |
601 | } |
602 | |
603 | /* |
604 | * ip_reass_packet: generic routine to perform IP reassembly. |
605 | * |
606 | * => Passed fragment should have IP_MF flag and/or offset set. |
607 | * => Fragment should not have other than IP_MF flags set. |
608 | * |
609 | * => Returns 0 on success or error otherwise. |
610 | * => On complete, m0 represents a constructed final packet. |
611 | */ |
612 | int |
613 | ip_reass_packet(struct mbuf **m0, struct ip *ip) |
614 | { |
615 | const int hlen = ip->ip_hl << 2; |
616 | const int len = ntohs(ip->ip_len); |
617 | struct mbuf *m = *m0; |
618 | ipfr_queue_t *fp; |
619 | ipfr_qent_t *ipqe; |
620 | u_int hash, off, flen; |
621 | bool mff; |
622 | |
623 | /* |
624 | * Prevent TCP blind data attacks by not allowing non-initial |
625 | * fragments to start at less than 68 bytes (minimal fragment |
626 | * size) and making sure the first fragment is at least 68 |
627 | * bytes. |
628 | */ |
629 | off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; |
630 | if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) { |
631 | IP_STATINC(IP_STAT_BADFRAGS); |
632 | return EINVAL; |
633 | } |
634 | |
635 | /* |
636 | * Fragment length and MF flag. Make sure that fragments have |
637 | * a data length which is non-zero and multiple of 8 bytes. |
638 | */ |
639 | flen = ntohs(ip->ip_len) - hlen; |
640 | mff = (ip->ip_off & htons(IP_MF)) != 0; |
641 | if (mff && (flen == 0 || (flen & 0x7) != 0)) { |
642 | IP_STATINC(IP_STAT_BADFRAGS); |
643 | return EINVAL; |
644 | } |
645 | |
646 | /* |
647 | * Adjust total IP length to not reflect header and convert |
648 | * offset of this to bytes. XXX: clobbers struct ip. |
649 | */ |
650 | ip->ip_len = htons(flen); |
651 | ip->ip_off = htons(off); |
652 | |
653 | /* Look for queue of fragments of this datagram. */ |
654 | mutex_enter(&ipfr_lock); |
655 | hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); |
656 | LIST_FOREACH(fp, &ip_frags[hash], ipq_q) { |
657 | if (ip->ip_id != fp->ipq_id) |
658 | continue; |
659 | if (!in_hosteq(ip->ip_src, fp->ipq_src)) |
660 | continue; |
661 | if (!in_hosteq(ip->ip_dst, fp->ipq_dst)) |
662 | continue; |
663 | if (ip->ip_p != fp->ipq_p) |
664 | continue; |
665 | break; |
666 | } |
667 | |
668 | /* Make sure that TOS matches previous fragments. */ |
669 | if (fp && fp->ipq_tos != ip->ip_tos) { |
670 | IP_STATINC(IP_STAT_BADFRAGS); |
671 | mutex_exit(&ipfr_lock); |
672 | return EINVAL; |
673 | } |
674 | |
675 | /* |
676 | * Create new entry and attempt to reassembly. |
677 | */ |
678 | IP_STATINC(IP_STAT_FRAGMENTS); |
679 | ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT); |
680 | if (ipqe == NULL) { |
681 | IP_STATINC(IP_STAT_RCVMEMDROP); |
682 | mutex_exit(&ipfr_lock); |
683 | return ENOMEM; |
684 | } |
685 | ipqe->ipqe_mff = mff; |
686 | ipqe->ipqe_m = m; |
687 | ipqe->ipqe_ip = ip; |
688 | |
689 | *m0 = ip_reass(ipqe, fp, hash); |
690 | if (*m0) { |
691 | /* Note that finally reassembled. */ |
692 | IP_STATINC(IP_STAT_REASSEMBLED); |
693 | } |
694 | return 0; |
695 | } |
696 | |