1 | /* $NetBSD: tcp_vtw.h,v 1.7 2016/04/26 08:44:45 ozaki-r Exp $ */ |
2 | /* |
3 | * Copyright (c) 2011 The NetBSD Foundation, Inc. |
4 | * All rights reserved. |
5 | * |
6 | * This code is derived from software contributed to The NetBSD Foundation |
7 | * by Coyote Point Systems, Inc. |
8 | * |
9 | * Redistribution and use in source and binary forms, with or without |
10 | * modification, are permitted provided that the following conditions |
11 | * are met: |
12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. |
14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in the |
16 | * documentation and/or other materials provided with the distribution. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
19 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
20 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
21 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
22 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
23 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
24 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
25 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
26 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
27 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
28 | * POSSIBILITY OF SUCH DAMAGE. |
29 | */ |
30 | |
31 | /* |
32 | * Vestigial time-wait. |
33 | * |
34 | * This implementation uses cache-efficient techniques, which will |
35 | * appear somewhat peculiar. The main philosophy is to optimise the |
36 | * amount of information available within a cache line. Cache miss is |
37 | * expensive. So we employ ad-hoc techniques to pull a series of |
38 | * linked-list follows into a cache line. One cache line, multiple |
39 | * linked-list equivalents. |
40 | * |
41 | * One such ad-hoc technique is fat pointers. Additional degrees of |
42 | * ad-hoqueness result from having to hand tune it for pointer size |
43 | * and for cache line size. |
44 | * |
45 | * The 'fat pointer' approach aggregates, for x86_32, 15 linked-list |
46 | * data structures into one cache line. The additional 32 bits in the |
47 | * cache line are used for linking fat pointers, and for |
48 | * allocation/bookkeeping. |
49 | * |
50 | * The 15 32-bit tags encode the pointers to the linked list elements, |
51 | * and also encode the results of a search comparison. |
52 | * |
53 | * First, some more assumptions/restrictions. |
54 | * |
55 | * All the fat pointers are from a contiguous allocation arena. Thus, |
56 | * we can refer to them by offset from a base, not as full pointers. |
57 | * |
58 | * All the linked list data elements are also from a contiguous |
59 | * allocation arena, again so that we can refer to them as offset from |
60 | * a base. |
61 | * |
62 | * In order to add a data element to a fat pointer, a key value is |
63 | * computed, based on unique data within the data element. It is the |
64 | * linear searching of the linked lists of these elements based on |
65 | * these unique data that are being optimised here. |
66 | * |
67 | * Lets call the function that computes the key k(e), where e is the |
68 | * data element. In this example, k(e) returns 32-bits. |
69 | * |
70 | * Consider a set E (say of order 15) of data elements. Let K be |
71 | * the set of the k(e) for e in E. |
72 | * |
73 | * Let O be the set of the offsets from the base of the data elements in E. |
74 | * |
75 | * For each x in K, for each matching o in O, let t be x ^ o. These |
76 | * are the tags. (More or less). |
77 | * |
78 | * In order to search all the data elements in E, we compute the |
79 | * search key, and one at a time, XOR the key into the tags. If any |
80 | * result is a valid data element index, we have a possible match. If |
81 | * not, there is no match. |
82 | * |
83 | * The no-match cases mean we do not have to de-reference the pointer |
84 | * to the data element in question. We save cache miss penalty and |
85 | * cache load decreases. Only in the case of a valid looking data |
86 | * element index, do we have to look closer. |
87 | * |
88 | * Thus, in the absence of false positives, 15 data elements can be |
89 | * searched with one cache line fill, as opposed to 15 cache line |
90 | * fills for the usual implementation. |
91 | * |
92 | * The vestigial time waits (vtw_t), the data elements in the above, are |
93 | * searched by faddr, fport, laddr, lport. The key is a function of |
94 | * these values. |
95 | * |
96 | * We hash these keys into the traditional hash chains to reduce the |
97 | * search time, and use fat pointers to reduce the cache impacts of |
98 | * searching. |
99 | * |
100 | * The vtw_t are, per requirement, in a contiguous chunk. Allocation |
101 | * is done with a clock hand, and all vtw_t within one allocation |
102 | * domain have the same lifetime, so they will always be sorted by |
103 | * age. |
104 | * |
105 | * A vtw_t will be allocated, timestamped, and have a fixed future |
106 | * expiration. It will be added to a hash bucket implemented with fat |
107 | * pointers, which means that a cache line will be allocated in the |
108 | * hash bucket, placed at the head (more recent in time) and the vtw_t |
109 | * will be added to this. As more entries are added, the fat pointer |
110 | * cache line will fill, requiring additional cache lines for fat |
111 | * pointers to be allocated. These will be added at the head, and the |
112 | * aged entries will hang down, tapeworm like. As the vtw_t entries |
113 | * expire, the corresponding slot in the fat pointer will be |
114 | * reclaimed, and eventually the cache line will completely empty and |
115 | * be re-cycled, if not at the head of the chain. |
116 | * |
117 | * At times, a time-wait timer is restarted. This corresponds to |
118 | * deleting the current entry and re-adding it. |
119 | * |
120 | * Most of the time, they are just placed here to die. |
121 | */ |
122 | #ifndef _NETINET_TCP_VTW_H |
123 | #define _NETINET_TCP_VTW_H |
124 | |
125 | #include <sys/types.h> |
126 | #include <sys/socket.h> |
127 | #include <sys/sysctl.h> |
128 | #include <net/if.h> |
129 | #include <netinet/in.h> |
130 | #include <netinet/in_systm.h> |
131 | #include <netinet/ip.h> |
132 | #include <netinet/in_pcb.h> |
133 | #include <netinet/in_var.h> |
134 | #include <netinet/ip_var.h> |
135 | #include <netinet/in.h> |
136 | #include <netinet/tcp.h> |
137 | #include <netinet/tcp_timer.h> |
138 | #include <netinet/tcp_var.h> |
139 | #include <netinet6/in6.h> |
140 | #include <netinet/ip6.h> |
141 | #include <netinet6/ip6_var.h> |
142 | #include <netinet6/in6_pcb.h> |
143 | #include <netinet6/ip6_var.h> |
144 | #include <netinet6/in6_var.h> |
145 | #include <netinet/icmp6.h> |
146 | #include <netinet6/nd6.h> |
147 | |
148 | #define VTW_NCLASS (1+3) /* # different classes */ |
149 | |
150 | /* |
151 | * fat pointers, MI. |
152 | */ |
153 | struct fatp_mi; |
154 | |
155 | typedef uint32_t fatp_word_t; |
156 | |
157 | typedef struct fatp_mi fatp_t; |
158 | |
159 | /* Supported cacheline sizes: 32 64 128 bytes. See fatp_key(), |
160 | * fatp_slot_from_key(), fatp_xtra[]. |
161 | */ |
162 | #define FATP_NTAGS (CACHE_LINE_SIZE / sizeof(fatp_word_t) - 1) |
163 | #define FATP_NXT_WIDTH (sizeof(fatp_word_t) * NBBY - FATP_NTAGS) |
164 | |
165 | #define FATP_MAX (1 << FATP_NXT_WIDTH) |
166 | |
167 | /* Worked example: ULP32 with 64-byte cacheline (32-bit x86): |
168 | * 15 tags per cacheline. At most 2^17 fat pointers per fatp_ctl_t. |
169 | * The comments on the fatp_mi members, below, correspond to the worked |
170 | * example. |
171 | */ |
172 | struct fatp_mi { |
173 | fatp_word_t inuse : FATP_NTAGS; /* (1+15)*4 == CL_SIZE */ |
174 | fatp_word_t nxt : FATP_NXT_WIDTH;/* at most 2^17 fat pointers */ |
175 | fatp_word_t tag[FATP_NTAGS]; /* 15 tags per CL */ |
176 | }; |
177 | |
178 | static inline int |
179 | fatp_ntags(void) |
180 | { |
181 | return FATP_NTAGS; |
182 | } |
183 | |
184 | static inline int |
185 | fatp_full(fatp_t *fp) |
186 | { |
187 | fatp_t full; |
188 | |
189 | full.inuse = (1U << FATP_NTAGS) - 1U; |
190 | |
191 | return (fp->inuse == full.inuse); |
192 | } |
193 | |
194 | struct vtw_common; |
195 | struct vtw_v4; |
196 | struct vtw_v6; |
197 | struct vtw_ctl; |
198 | |
199 | /*!\brief common to all vtw |
200 | */ |
201 | typedef struct vtw_common { |
202 | struct timeval expire; /* date of birth+msl */ |
203 | uint32_t key; /* hash key: full hash */ |
204 | uint32_t port_key; /* hash key: local port hash */ |
205 | uint32_t rcv_nxt; |
206 | uint32_t rcv_wnd; |
207 | uint32_t snd_nxt; |
208 | uint32_t snd_scale : 8; /* window scaling for send win */ |
209 | uint32_t msl_class : 2; /* TCP MSL class {0,1,2,3} */ |
210 | uint32_t reuse_port : 1; |
211 | uint32_t reuse_addr : 1; |
212 | uint32_t v6only : 1; |
213 | uint32_t hashed : 1; /* reachable via FATP */ |
214 | uint32_t uid; |
215 | } vtw_t; |
216 | |
217 | /*!\brief vestigial timewait for IPv4 |
218 | */ |
219 | typedef struct vtw_v4 { |
220 | vtw_t common; /* must be first */ |
221 | uint16_t lport; |
222 | uint16_t fport; |
223 | uint32_t laddr; |
224 | uint32_t faddr; |
225 | } vtw_v4_t; |
226 | |
227 | /*!\brief vestigial timewait for IPv6 |
228 | */ |
229 | typedef struct vtw_v6 { |
230 | vtw_t common; /* must be first */ |
231 | uint16_t lport; |
232 | uint16_t fport; |
233 | struct in6_addr laddr; |
234 | struct in6_addr faddr; |
235 | } vtw_v6_t; |
236 | |
237 | struct fatp_ctl; |
238 | typedef struct vtw_ctl vtw_ctl_t; |
239 | typedef struct fatp_ctl fatp_ctl_t; |
240 | |
241 | /* |
242 | * The vestigial time waits are kept in a contiguous chunk. |
243 | * Allocation and free pointers run as clock hands thru this array. |
244 | */ |
245 | struct vtw_ctl { |
246 | fatp_ctl_t *fat; /* collection of fatp to use */ |
247 | vtw_ctl_t *ctl; /* <! controller's controller */ |
248 | union { |
249 | vtw_t *v; /* common */ |
250 | struct vtw_v4 *v4; /* IPv4 resources */ |
251 | struct vtw_v6 *v6; /* IPv6 resources */ |
252 | } base, /* base of vtw_t array */ |
253 | /**/ lim, /* extent of vtw_t array */ |
254 | /**/ alloc, /* allocation pointer */ |
255 | /**/ oldest; /* ^ to oldest */ |
256 | uint32_t nfree; /* # free */ |
257 | uint32_t nalloc; /* # allocated */ |
258 | uint32_t idx_mask; /* mask capturing all index bits*/ |
259 | uint32_t is_v4 : 1; |
260 | uint32_t is_v6 : 1; |
261 | uint32_t idx_bits: 6; |
262 | uint32_t clidx : 3; /* <! class index */ |
263 | }; |
264 | |
265 | /*!\brief Collections of fat pointers. |
266 | */ |
267 | struct fatp_ctl { |
268 | vtw_ctl_t *vtw; /* associated VTWs */ |
269 | fatp_t *base; /* base of fatp_t array */ |
270 | fatp_t *lim; /* extent of fatp_t array */ |
271 | fatp_t *free; /* free list */ |
272 | uint32_t mask; /* hash mask */ |
273 | uint32_t nfree; /* # free */ |
274 | uint32_t nalloc; /* # allocated */ |
275 | fatp_t **hash; /* hash anchors */ |
276 | fatp_t **port; /* port hash anchors */ |
277 | }; |
278 | |
279 | /*!\brief stats |
280 | */ |
281 | struct vtw_stats { |
282 | uint64_t ins; /* <! inserts */ |
283 | uint64_t del; /* <! deleted */ |
284 | uint64_t kill; /* <! assassination */ |
285 | uint64_t look[2]; /* <! lookup: full hash, port hash */ |
286 | uint64_t hit[2]; /* <! lookups that hit */ |
287 | uint64_t miss[2]; /* <! lookups that miss */ |
288 | uint64_t probe[2]; /* <! hits+miss */ |
289 | uint64_t losing[2]; /* <! misses requiring dereference */ |
290 | uint64_t max_chain[2]; /* <! max fatp chain traversed */ |
291 | uint64_t max_probe[2]; /* <! max probes in any one chain */ |
292 | uint64_t max_loss[2]; /* <! max losing probes in any one |
293 | * chain |
294 | */ |
295 | }; |
296 | |
297 | typedef struct vtw_stats vtw_stats_t; |
298 | |
299 | /*!\brief follow fatp next 'pointer' |
300 | */ |
301 | static inline fatp_t * |
302 | fatp_next(fatp_ctl_t *fat, fatp_t *fp) |
303 | { |
304 | return fp->nxt ? fat->base + fp->nxt-1 : 0; |
305 | } |
306 | |
307 | /*!\brief determine a collection-relative fat pointer index. |
308 | */ |
309 | static inline uint32_t |
310 | fatp_index(fatp_ctl_t *fat, fatp_t *fp) |
311 | { |
312 | return fp ? 1 + (fp - fat->base) : 0; |
313 | } |
314 | |
315 | |
316 | static inline uint32_t |
317 | v4_tag(uint32_t faddr, uint32_t fport, uint32_t laddr, uint32_t lport) |
318 | { |
319 | return (ntohl(faddr) + ntohs(fport) |
320 | + ntohl(laddr) + ntohs(lport)); |
321 | } |
322 | |
323 | static inline uint32_t |
324 | v6_tag(const struct in6_addr *faddr, uint16_t fport, |
325 | const struct in6_addr *laddr, uint16_t lport) |
326 | { |
327 | #ifdef IN6_HASH |
328 | return IN6_HASH(faddr, fport, laddr, lport); |
329 | #else |
330 | return 0; |
331 | #endif |
332 | } |
333 | |
334 | static inline uint32_t |
335 | v4_port_tag(uint16_t lport) |
336 | { |
337 | uint32_t tag = lport ^ (lport << 11); |
338 | |
339 | tag ^= tag << 3; |
340 | tag += tag >> 5; |
341 | tag ^= tag << 4; |
342 | tag += tag >> 17; |
343 | tag ^= tag << 25; |
344 | tag += tag >> 6; |
345 | |
346 | return tag; |
347 | } |
348 | |
349 | static inline uint32_t |
350 | v6_port_tag(uint16_t lport) |
351 | { |
352 | return v4_port_tag(lport); |
353 | } |
354 | |
355 | struct tcpcb; |
356 | struct tcphdr; |
357 | |
358 | int vtw_add(int, struct tcpcb *); |
359 | void vtw_del(vtw_ctl_t *, vtw_t *); |
360 | int vtw_lookup_v4(const struct ip *ip, const struct tcphdr *th, |
361 | uint32_t faddr, uint16_t fport, |
362 | uint32_t laddr, uint16_t lport); |
363 | struct ip6_hdr; |
364 | struct in6_addr; |
365 | |
366 | int vtw_lookup_v6(const struct ip6_hdr *ip, const struct tcphdr *th, |
367 | const struct in6_addr *faddr, uint16_t fport, |
368 | const struct in6_addr *laddr, uint16_t lport); |
369 | |
370 | typedef struct vestigial_inpcb { |
371 | union { |
372 | struct in_addr v4; |
373 | struct in6_addr v6; |
374 | } faddr, laddr; |
375 | uint16_t fport, lport; |
376 | uint32_t valid : 1; |
377 | uint32_t v4 : 1; |
378 | uint32_t reuse_addr : 1; |
379 | uint32_t reuse_port : 1; |
380 | uint32_t v6only : 1; |
381 | uint32_t more_tbd : 1; |
382 | uint32_t uid; |
383 | uint32_t rcv_nxt; |
384 | uint32_t rcv_wnd; |
385 | uint32_t snd_nxt; |
386 | struct vtw_common *vtw; |
387 | struct vtw_ctl *ctl; |
388 | } vestigial_inpcb_t; |
389 | |
390 | #ifdef _KERNEL |
391 | void vtw_restart(vestigial_inpcb_t*); |
392 | int vtw_earlyinit(void); |
393 | int sysctl_tcp_vtw_enable(SYSCTLFN_PROTO); |
394 | #endif /* _KERNEL */ |
395 | |
396 | #ifdef VTW_DEBUG |
397 | typedef struct sin_either { |
398 | uint8_t sin_len; |
399 | uint8_t sin_family; |
400 | uint16_t sin_port; |
401 | union { |
402 | struct in_addr v4; |
403 | struct in6_addr v6; |
404 | } sin_addr; |
405 | } sin_either_t; |
406 | |
407 | int vtw_debug_add(int af, sin_either_t *, sin_either_t *, int, int); |
408 | |
409 | typedef struct vtw_sysargs { |
410 | uint32_t op; |
411 | sin_either_t fa; |
412 | sin_either_t la; |
413 | } vtw_sysargs_t; |
414 | |
415 | #endif /* VTW_DEBUG */ |
416 | |
417 | #endif /* _NETINET_TCP_VTW_H */ |
418 | |