| 1 | /* $NetBSD: uvm_page.c,v 1.187 2015/04/11 19:24:13 joerg Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 1997 Charles D. Cranor and Washington University. |
| 5 | * Copyright (c) 1991, 1993, The Regents of the University of California. |
| 6 | * |
| 7 | * All rights reserved. |
| 8 | * |
| 9 | * This code is derived from software contributed to Berkeley by |
| 10 | * The Mach Operating System project at Carnegie-Mellon University. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or without |
| 13 | * modification, are permitted provided that the following conditions |
| 14 | * are met: |
| 15 | * 1. Redistributions of source code must retain the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer. |
| 17 | * 2. Redistributions in binary form must reproduce the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer in the |
| 19 | * documentation and/or other materials provided with the distribution. |
| 20 | * 3. Neither the name of the University nor the names of its contributors |
| 21 | * may be used to endorse or promote products derived from this software |
| 22 | * without specific prior written permission. |
| 23 | * |
| 24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 34 | * SUCH DAMAGE. |
| 35 | * |
| 36 | * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 |
| 37 | * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp |
| 38 | * |
| 39 | * |
| 40 | * Copyright (c) 1987, 1990 Carnegie-Mellon University. |
| 41 | * All rights reserved. |
| 42 | * |
| 43 | * Permission to use, copy, modify and distribute this software and |
| 44 | * its documentation is hereby granted, provided that both the copyright |
| 45 | * notice and this permission notice appear in all copies of the |
| 46 | * software, derivative works or modified versions, and any portions |
| 47 | * thereof, and that both notices appear in supporting documentation. |
| 48 | * |
| 49 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 50 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND |
| 51 | * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 52 | * |
| 53 | * Carnegie Mellon requests users of this software to return to |
| 54 | * |
| 55 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 56 | * School of Computer Science |
| 57 | * Carnegie Mellon University |
| 58 | * Pittsburgh PA 15213-3890 |
| 59 | * |
| 60 | * any improvements or extensions that they make and grant Carnegie the |
| 61 | * rights to redistribute these changes. |
| 62 | */ |
| 63 | |
| 64 | /* |
| 65 | * uvm_page.c: page ops. |
| 66 | */ |
| 67 | |
| 68 | #include <sys/cdefs.h> |
| 69 | __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.187 2015/04/11 19:24:13 joerg Exp $" ); |
| 70 | |
| 71 | #include "opt_ddb.h" |
| 72 | #include "opt_uvm.h" |
| 73 | #include "opt_uvmhist.h" |
| 74 | #include "opt_readahead.h" |
| 75 | |
| 76 | #include <sys/param.h> |
| 77 | #include <sys/systm.h> |
| 78 | #include <sys/sched.h> |
| 79 | #include <sys/kernel.h> |
| 80 | #include <sys/vnode.h> |
| 81 | #include <sys/proc.h> |
| 82 | #include <sys/atomic.h> |
| 83 | #include <sys/cpu.h> |
| 84 | |
| 85 | #include <uvm/uvm.h> |
| 86 | #include <uvm/uvm_ddb.h> |
| 87 | #include <uvm/uvm_pdpolicy.h> |
| 88 | |
| 89 | /* |
| 90 | * global vars... XXXCDC: move to uvm. structure. |
| 91 | */ |
| 92 | |
| 93 | /* |
| 94 | * physical memory config is stored in vm_physmem. |
| 95 | */ |
| 96 | |
| 97 | struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ |
| 98 | int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ |
| 99 | #define vm_nphysmem vm_nphysseg |
| 100 | |
| 101 | /* |
| 102 | * Some supported CPUs in a given architecture don't support all |
| 103 | * of the things necessary to do idle page zero'ing efficiently. |
| 104 | * We therefore provide a way to enable it from machdep code here. |
| 105 | */ |
| 106 | bool vm_page_zero_enable = false; |
| 107 | |
| 108 | /* |
| 109 | * number of pages per-CPU to reserve for the kernel. |
| 110 | */ |
| 111 | #ifndef UVM_RESERVED_PAGES_PER_CPU |
| 112 | #define UVM_RESERVED_PAGES_PER_CPU 5 |
| 113 | #endif |
| 114 | int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU; |
| 115 | |
| 116 | /* |
| 117 | * physical memory size; |
| 118 | */ |
| 119 | int physmem; |
| 120 | |
| 121 | /* |
| 122 | * local variables |
| 123 | */ |
| 124 | |
| 125 | /* |
| 126 | * these variables record the values returned by vm_page_bootstrap, |
| 127 | * for debugging purposes. The implementation of uvm_pageboot_alloc |
| 128 | * and pmap_startup here also uses them internally. |
| 129 | */ |
| 130 | |
| 131 | static vaddr_t virtual_space_start; |
| 132 | static vaddr_t virtual_space_end; |
| 133 | |
| 134 | /* |
| 135 | * we allocate an initial number of page colors in uvm_page_init(), |
| 136 | * and remember them. We may re-color pages as cache sizes are |
| 137 | * discovered during the autoconfiguration phase. But we can never |
| 138 | * free the initial set of buckets, since they are allocated using |
| 139 | * uvm_pageboot_alloc(). |
| 140 | */ |
| 141 | |
| 142 | static size_t recolored_pages_memsize /* = 0 */; |
| 143 | |
| 144 | #ifdef DEBUG |
| 145 | vaddr_t uvm_zerocheckkva; |
| 146 | #endif /* DEBUG */ |
| 147 | |
| 148 | /* |
| 149 | * local prototypes |
| 150 | */ |
| 151 | |
| 152 | static void uvm_pageinsert(struct uvm_object *, struct vm_page *); |
| 153 | static void uvm_pageremove(struct uvm_object *, struct vm_page *); |
| 154 | |
| 155 | /* |
| 156 | * per-object tree of pages |
| 157 | */ |
| 158 | |
| 159 | static signed int |
| 160 | uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2) |
| 161 | { |
| 162 | const struct vm_page *pg1 = n1; |
| 163 | const struct vm_page *pg2 = n2; |
| 164 | const voff_t a = pg1->offset; |
| 165 | const voff_t b = pg2->offset; |
| 166 | |
| 167 | if (a < b) |
| 168 | return -1; |
| 169 | if (a > b) |
| 170 | return 1; |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | static signed int |
| 175 | uvm_page_compare_key(void *ctx, const void *n, const void *key) |
| 176 | { |
| 177 | const struct vm_page *pg = n; |
| 178 | const voff_t a = pg->offset; |
| 179 | const voff_t b = *(const voff_t *)key; |
| 180 | |
| 181 | if (a < b) |
| 182 | return -1; |
| 183 | if (a > b) |
| 184 | return 1; |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | const rb_tree_ops_t uvm_page_tree_ops = { |
| 189 | .rbto_compare_nodes = uvm_page_compare_nodes, |
| 190 | .rbto_compare_key = uvm_page_compare_key, |
| 191 | .rbto_node_offset = offsetof(struct vm_page, rb_node), |
| 192 | .rbto_context = NULL |
| 193 | }; |
| 194 | |
| 195 | /* |
| 196 | * inline functions |
| 197 | */ |
| 198 | |
| 199 | /* |
| 200 | * uvm_pageinsert: insert a page in the object. |
| 201 | * |
| 202 | * => caller must lock object |
| 203 | * => caller must lock page queues |
| 204 | * => call should have already set pg's object and offset pointers |
| 205 | * and bumped the version counter |
| 206 | */ |
| 207 | |
| 208 | static inline void |
| 209 | uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg, |
| 210 | struct vm_page *where) |
| 211 | { |
| 212 | |
| 213 | KASSERT(uobj == pg->uobject); |
| 214 | KASSERT(mutex_owned(uobj->vmobjlock)); |
| 215 | KASSERT((pg->flags & PG_TABLED) == 0); |
| 216 | KASSERT(where == NULL || (where->flags & PG_TABLED)); |
| 217 | KASSERT(where == NULL || (where->uobject == uobj)); |
| 218 | |
| 219 | if (UVM_OBJ_IS_VNODE(uobj)) { |
| 220 | if (uobj->uo_npages == 0) { |
| 221 | struct vnode *vp = (struct vnode *)uobj; |
| 222 | |
| 223 | vholdl(vp); |
| 224 | } |
| 225 | if (UVM_OBJ_IS_VTEXT(uobj)) { |
| 226 | atomic_inc_uint(&uvmexp.execpages); |
| 227 | } else { |
| 228 | atomic_inc_uint(&uvmexp.filepages); |
| 229 | } |
| 230 | } else if (UVM_OBJ_IS_AOBJ(uobj)) { |
| 231 | atomic_inc_uint(&uvmexp.anonpages); |
| 232 | } |
| 233 | |
| 234 | if (where) |
| 235 | TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue); |
| 236 | else |
| 237 | TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue); |
| 238 | pg->flags |= PG_TABLED; |
| 239 | uobj->uo_npages++; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | static inline void |
| 244 | uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg) |
| 245 | { |
| 246 | struct vm_page *ret __diagused; |
| 247 | |
| 248 | KASSERT(uobj == pg->uobject); |
| 249 | ret = rb_tree_insert_node(&uobj->rb_tree, pg); |
| 250 | KASSERT(ret == pg); |
| 251 | } |
| 252 | |
| 253 | static inline void |
| 254 | uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg) |
| 255 | { |
| 256 | |
| 257 | KDASSERT(uobj != NULL); |
| 258 | uvm_pageinsert_tree(uobj, pg); |
| 259 | uvm_pageinsert_list(uobj, pg, NULL); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * uvm_page_remove: remove page from object. |
| 264 | * |
| 265 | * => caller must lock object |
| 266 | * => caller must lock page queues |
| 267 | */ |
| 268 | |
| 269 | static inline void |
| 270 | (struct uvm_object *uobj, struct vm_page *pg) |
| 271 | { |
| 272 | |
| 273 | KASSERT(uobj == pg->uobject); |
| 274 | KASSERT(mutex_owned(uobj->vmobjlock)); |
| 275 | KASSERT(pg->flags & PG_TABLED); |
| 276 | |
| 277 | if (UVM_OBJ_IS_VNODE(uobj)) { |
| 278 | if (uobj->uo_npages == 1) { |
| 279 | struct vnode *vp = (struct vnode *)uobj; |
| 280 | |
| 281 | holdrelel(vp); |
| 282 | } |
| 283 | if (UVM_OBJ_IS_VTEXT(uobj)) { |
| 284 | atomic_dec_uint(&uvmexp.execpages); |
| 285 | } else { |
| 286 | atomic_dec_uint(&uvmexp.filepages); |
| 287 | } |
| 288 | } else if (UVM_OBJ_IS_AOBJ(uobj)) { |
| 289 | atomic_dec_uint(&uvmexp.anonpages); |
| 290 | } |
| 291 | |
| 292 | /* object should be locked */ |
| 293 | uobj->uo_npages--; |
| 294 | TAILQ_REMOVE(&uobj->memq, pg, listq.queue); |
| 295 | pg->flags &= ~PG_TABLED; |
| 296 | pg->uobject = NULL; |
| 297 | } |
| 298 | |
| 299 | static inline void |
| 300 | (struct uvm_object *uobj, struct vm_page *pg) |
| 301 | { |
| 302 | |
| 303 | KASSERT(uobj == pg->uobject); |
| 304 | rb_tree_remove_node(&uobj->rb_tree, pg); |
| 305 | } |
| 306 | |
| 307 | static inline void |
| 308 | (struct uvm_object *uobj, struct vm_page *pg) |
| 309 | { |
| 310 | |
| 311 | KDASSERT(uobj != NULL); |
| 312 | uvm_pageremove_tree(uobj, pg); |
| 313 | uvm_pageremove_list(uobj, pg); |
| 314 | } |
| 315 | |
| 316 | static void |
| 317 | uvm_page_init_buckets(struct pgfreelist *pgfl) |
| 318 | { |
| 319 | int color, i; |
| 320 | |
| 321 | for (color = 0; color < uvmexp.ncolors; color++) { |
| 322 | for (i = 0; i < PGFL_NQUEUES; i++) { |
| 323 | LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]); |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * uvm_page_init: init the page system. called from uvm_init(). |
| 330 | * |
| 331 | * => we return the range of kernel virtual memory in kvm_startp/kvm_endp |
| 332 | */ |
| 333 | |
| 334 | void |
| 335 | uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp) |
| 336 | { |
| 337 | static struct uvm_cpu boot_cpu; |
| 338 | psize_t freepages, pagecount, bucketcount, n; |
| 339 | struct pgflbucket *bucketarray, *cpuarray; |
| 340 | struct vm_physseg *seg; |
| 341 | struct vm_page *pagearray; |
| 342 | int lcv; |
| 343 | u_int i; |
| 344 | paddr_t paddr; |
| 345 | |
| 346 | KASSERT(ncpu <= 1); |
| 347 | CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *)); |
| 348 | |
| 349 | /* |
| 350 | * init the page queues and page queue locks, except the free |
| 351 | * list; we allocate that later (with the initial vm_page |
| 352 | * structures). |
| 353 | */ |
| 354 | |
| 355 | uvm.cpus[0] = &boot_cpu; |
| 356 | curcpu()->ci_data.cpu_uvm = &boot_cpu; |
| 357 | uvmpdpol_init(); |
| 358 | mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE); |
| 359 | mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM); |
| 360 | |
| 361 | /* |
| 362 | * allocate vm_page structures. |
| 363 | */ |
| 364 | |
| 365 | /* |
| 366 | * sanity check: |
| 367 | * before calling this function the MD code is expected to register |
| 368 | * some free RAM with the uvm_page_physload() function. our job |
| 369 | * now is to allocate vm_page structures for this memory. |
| 370 | */ |
| 371 | |
| 372 | if (vm_nphysmem == 0) |
| 373 | panic("uvm_page_bootstrap: no memory pre-allocated" ); |
| 374 | |
| 375 | /* |
| 376 | * first calculate the number of free pages... |
| 377 | * |
| 378 | * note that we use start/end rather than avail_start/avail_end. |
| 379 | * this allows us to allocate extra vm_page structures in case we |
| 380 | * want to return some memory to the pool after booting. |
| 381 | */ |
| 382 | |
| 383 | freepages = 0; |
| 384 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { |
| 385 | seg = VM_PHYSMEM_PTR(lcv); |
| 386 | freepages += (seg->end - seg->start); |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Let MD code initialize the number of colors, or default |
| 391 | * to 1 color if MD code doesn't care. |
| 392 | */ |
| 393 | if (uvmexp.ncolors == 0) |
| 394 | uvmexp.ncolors = 1; |
| 395 | uvmexp.colormask = uvmexp.ncolors - 1; |
| 396 | KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0); |
| 397 | |
| 398 | /* |
| 399 | * we now know we have (PAGE_SIZE * freepages) bytes of memory we can |
| 400 | * use. for each page of memory we use we need a vm_page structure. |
| 401 | * thus, the total number of pages we can use is the total size of |
| 402 | * the memory divided by the PAGE_SIZE plus the size of the vm_page |
| 403 | * structure. we add one to freepages as a fudge factor to avoid |
| 404 | * truncation errors (since we can only allocate in terms of whole |
| 405 | * pages). |
| 406 | */ |
| 407 | |
| 408 | bucketcount = uvmexp.ncolors * VM_NFREELIST; |
| 409 | pagecount = ((freepages + 1) << PAGE_SHIFT) / |
| 410 | (PAGE_SIZE + sizeof(struct vm_page)); |
| 411 | |
| 412 | bucketarray = (void *)uvm_pageboot_alloc((bucketcount * |
| 413 | sizeof(struct pgflbucket) * 2) + (pagecount * |
| 414 | sizeof(struct vm_page))); |
| 415 | cpuarray = bucketarray + bucketcount; |
| 416 | pagearray = (struct vm_page *)(bucketarray + bucketcount * 2); |
| 417 | |
| 418 | for (lcv = 0; lcv < VM_NFREELIST; lcv++) { |
| 419 | uvm.page_free[lcv].pgfl_buckets = |
| 420 | (bucketarray + (lcv * uvmexp.ncolors)); |
| 421 | uvm_page_init_buckets(&uvm.page_free[lcv]); |
| 422 | uvm.cpus[0]->page_free[lcv].pgfl_buckets = |
| 423 | (cpuarray + (lcv * uvmexp.ncolors)); |
| 424 | uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]); |
| 425 | } |
| 426 | memset(pagearray, 0, pagecount * sizeof(struct vm_page)); |
| 427 | |
| 428 | /* |
| 429 | * init the vm_page structures and put them in the correct place. |
| 430 | */ |
| 431 | |
| 432 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { |
| 433 | seg = VM_PHYSMEM_PTR(lcv); |
| 434 | n = seg->end - seg->start; |
| 435 | |
| 436 | /* set up page array pointers */ |
| 437 | seg->pgs = pagearray; |
| 438 | pagearray += n; |
| 439 | pagecount -= n; |
| 440 | seg->lastpg = seg->pgs + n; |
| 441 | |
| 442 | /* init and free vm_pages (we've already zeroed them) */ |
| 443 | paddr = ctob(seg->start); |
| 444 | for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) { |
| 445 | seg->pgs[i].phys_addr = paddr; |
| 446 | #ifdef __HAVE_VM_PAGE_MD |
| 447 | VM_MDPAGE_INIT(&seg->pgs[i]); |
| 448 | #endif |
| 449 | if (atop(paddr) >= seg->avail_start && |
| 450 | atop(paddr) < seg->avail_end) { |
| 451 | uvmexp.npages++; |
| 452 | /* add page to free pool */ |
| 453 | uvm_pagefree(&seg->pgs[i]); |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * pass up the values of virtual_space_start and |
| 460 | * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper |
| 461 | * layers of the VM. |
| 462 | */ |
| 463 | |
| 464 | *kvm_startp = round_page(virtual_space_start); |
| 465 | *kvm_endp = trunc_page(virtual_space_end); |
| 466 | #ifdef DEBUG |
| 467 | /* |
| 468 | * steal kva for uvm_pagezerocheck(). |
| 469 | */ |
| 470 | uvm_zerocheckkva = *kvm_startp; |
| 471 | *kvm_startp += PAGE_SIZE; |
| 472 | #endif /* DEBUG */ |
| 473 | |
| 474 | /* |
| 475 | * init various thresholds. |
| 476 | */ |
| 477 | |
| 478 | uvmexp.reserve_pagedaemon = 1; |
| 479 | uvmexp.reserve_kernel = vm_page_reserve_kernel; |
| 480 | |
| 481 | /* |
| 482 | * determine if we should zero pages in the idle loop. |
| 483 | */ |
| 484 | |
| 485 | uvm.cpus[0]->page_idle_zero = vm_page_zero_enable; |
| 486 | |
| 487 | /* |
| 488 | * done! |
| 489 | */ |
| 490 | |
| 491 | uvm.page_init_done = true; |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * uvm_setpagesize: set the page size |
| 496 | * |
| 497 | * => sets page_shift and page_mask from uvmexp.pagesize. |
| 498 | */ |
| 499 | |
| 500 | void |
| 501 | uvm_setpagesize(void) |
| 502 | { |
| 503 | |
| 504 | /* |
| 505 | * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE |
| 506 | * to be a constant (indicated by being a non-zero value). |
| 507 | */ |
| 508 | if (uvmexp.pagesize == 0) { |
| 509 | if (PAGE_SIZE == 0) |
| 510 | panic("uvm_setpagesize: uvmexp.pagesize not set" ); |
| 511 | uvmexp.pagesize = PAGE_SIZE; |
| 512 | } |
| 513 | uvmexp.pagemask = uvmexp.pagesize - 1; |
| 514 | if ((uvmexp.pagemask & uvmexp.pagesize) != 0) |
| 515 | panic("uvm_setpagesize: page size %u (%#x) not a power of two" , |
| 516 | uvmexp.pagesize, uvmexp.pagesize); |
| 517 | for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) |
| 518 | if ((1 << uvmexp.pageshift) == uvmexp.pagesize) |
| 519 | break; |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * uvm_pageboot_alloc: steal memory from physmem for bootstrapping |
| 524 | */ |
| 525 | |
| 526 | vaddr_t |
| 527 | uvm_pageboot_alloc(vsize_t size) |
| 528 | { |
| 529 | static bool initialized = false; |
| 530 | vaddr_t addr; |
| 531 | #if !defined(PMAP_STEAL_MEMORY) |
| 532 | vaddr_t vaddr; |
| 533 | paddr_t paddr; |
| 534 | #endif |
| 535 | |
| 536 | /* |
| 537 | * on first call to this function, initialize ourselves. |
| 538 | */ |
| 539 | if (initialized == false) { |
| 540 | pmap_virtual_space(&virtual_space_start, &virtual_space_end); |
| 541 | |
| 542 | /* round it the way we like it */ |
| 543 | virtual_space_start = round_page(virtual_space_start); |
| 544 | virtual_space_end = trunc_page(virtual_space_end); |
| 545 | |
| 546 | initialized = true; |
| 547 | } |
| 548 | |
| 549 | /* round to page size */ |
| 550 | size = round_page(size); |
| 551 | |
| 552 | #if defined(PMAP_STEAL_MEMORY) |
| 553 | |
| 554 | /* |
| 555 | * defer bootstrap allocation to MD code (it may want to allocate |
| 556 | * from a direct-mapped segment). pmap_steal_memory should adjust |
| 557 | * virtual_space_start/virtual_space_end if necessary. |
| 558 | */ |
| 559 | |
| 560 | addr = pmap_steal_memory(size, &virtual_space_start, |
| 561 | &virtual_space_end); |
| 562 | |
| 563 | return(addr); |
| 564 | |
| 565 | #else /* !PMAP_STEAL_MEMORY */ |
| 566 | |
| 567 | /* |
| 568 | * allocate virtual memory for this request |
| 569 | */ |
| 570 | if (virtual_space_start == virtual_space_end || |
| 571 | (virtual_space_end - virtual_space_start) < size) |
| 572 | panic("uvm_pageboot_alloc: out of virtual space" ); |
| 573 | |
| 574 | addr = virtual_space_start; |
| 575 | |
| 576 | #ifdef PMAP_GROWKERNEL |
| 577 | /* |
| 578 | * If the kernel pmap can't map the requested space, |
| 579 | * then allocate more resources for it. |
| 580 | */ |
| 581 | if (uvm_maxkaddr < (addr + size)) { |
| 582 | uvm_maxkaddr = pmap_growkernel(addr + size); |
| 583 | if (uvm_maxkaddr < (addr + size)) |
| 584 | panic("uvm_pageboot_alloc: pmap_growkernel() failed" ); |
| 585 | } |
| 586 | #endif |
| 587 | |
| 588 | virtual_space_start += size; |
| 589 | |
| 590 | /* |
| 591 | * allocate and mapin physical pages to back new virtual pages |
| 592 | */ |
| 593 | |
| 594 | for (vaddr = round_page(addr) ; vaddr < addr + size ; |
| 595 | vaddr += PAGE_SIZE) { |
| 596 | |
| 597 | if (!uvm_page_physget(&paddr)) |
| 598 | panic("uvm_pageboot_alloc: out of memory" ); |
| 599 | |
| 600 | /* |
| 601 | * Note this memory is no longer managed, so using |
| 602 | * pmap_kenter is safe. |
| 603 | */ |
| 604 | pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0); |
| 605 | } |
| 606 | pmap_update(pmap_kernel()); |
| 607 | return(addr); |
| 608 | #endif /* PMAP_STEAL_MEMORY */ |
| 609 | } |
| 610 | |
| 611 | #if !defined(PMAP_STEAL_MEMORY) |
| 612 | /* |
| 613 | * uvm_page_physget: "steal" one page from the vm_physmem structure. |
| 614 | * |
| 615 | * => attempt to allocate it off the end of a segment in which the "avail" |
| 616 | * values match the start/end values. if we can't do that, then we |
| 617 | * will advance both values (making them equal, and removing some |
| 618 | * vm_page structures from the non-avail area). |
| 619 | * => return false if out of memory. |
| 620 | */ |
| 621 | |
| 622 | /* subroutine: try to allocate from memory chunks on the specified freelist */ |
| 623 | static bool uvm_page_physget_freelist(paddr_t *, int); |
| 624 | |
| 625 | static bool |
| 626 | uvm_page_physget_freelist(paddr_t *paddrp, int freelist) |
| 627 | { |
| 628 | struct vm_physseg *seg; |
| 629 | int lcv, x; |
| 630 | |
| 631 | /* pass 1: try allocating from a matching end */ |
| 632 | #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) |
| 633 | for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--) |
| 634 | #else |
| 635 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) |
| 636 | #endif |
| 637 | { |
| 638 | seg = VM_PHYSMEM_PTR(lcv); |
| 639 | |
| 640 | if (uvm.page_init_done == true) |
| 641 | panic("uvm_page_physget: called _after_ bootstrap" ); |
| 642 | |
| 643 | if (seg->free_list != freelist) |
| 644 | continue; |
| 645 | |
| 646 | /* try from front */ |
| 647 | if (seg->avail_start == seg->start && |
| 648 | seg->avail_start < seg->avail_end) { |
| 649 | *paddrp = ctob(seg->avail_start); |
| 650 | seg->avail_start++; |
| 651 | seg->start++; |
| 652 | /* nothing left? nuke it */ |
| 653 | if (seg->avail_start == seg->end) { |
| 654 | if (vm_nphysmem == 1) |
| 655 | panic("uvm_page_physget: out of memory!" ); |
| 656 | vm_nphysmem--; |
| 657 | for (x = lcv ; x < vm_nphysmem ; x++) |
| 658 | /* structure copy */ |
| 659 | VM_PHYSMEM_PTR_SWAP(x, x + 1); |
| 660 | } |
| 661 | return (true); |
| 662 | } |
| 663 | |
| 664 | /* try from rear */ |
| 665 | if (seg->avail_end == seg->end && |
| 666 | seg->avail_start < seg->avail_end) { |
| 667 | *paddrp = ctob(seg->avail_end - 1); |
| 668 | seg->avail_end--; |
| 669 | seg->end--; |
| 670 | /* nothing left? nuke it */ |
| 671 | if (seg->avail_end == seg->start) { |
| 672 | if (vm_nphysmem == 1) |
| 673 | panic("uvm_page_physget: out of memory!" ); |
| 674 | vm_nphysmem--; |
| 675 | for (x = lcv ; x < vm_nphysmem ; x++) |
| 676 | /* structure copy */ |
| 677 | VM_PHYSMEM_PTR_SWAP(x, x + 1); |
| 678 | } |
| 679 | return (true); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /* pass2: forget about matching ends, just allocate something */ |
| 684 | #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) |
| 685 | for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--) |
| 686 | #else |
| 687 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) |
| 688 | #endif |
| 689 | { |
| 690 | seg = VM_PHYSMEM_PTR(lcv); |
| 691 | |
| 692 | /* any room in this bank? */ |
| 693 | if (seg->avail_start >= seg->avail_end) |
| 694 | continue; /* nope */ |
| 695 | |
| 696 | *paddrp = ctob(seg->avail_start); |
| 697 | seg->avail_start++; |
| 698 | /* truncate! */ |
| 699 | seg->start = seg->avail_start; |
| 700 | |
| 701 | /* nothing left? nuke it */ |
| 702 | if (seg->avail_start == seg->end) { |
| 703 | if (vm_nphysmem == 1) |
| 704 | panic("uvm_page_physget: out of memory!" ); |
| 705 | vm_nphysmem--; |
| 706 | for (x = lcv ; x < vm_nphysmem ; x++) |
| 707 | /* structure copy */ |
| 708 | VM_PHYSMEM_PTR_SWAP(x, x + 1); |
| 709 | } |
| 710 | return (true); |
| 711 | } |
| 712 | |
| 713 | return (false); /* whoops! */ |
| 714 | } |
| 715 | |
| 716 | bool |
| 717 | uvm_page_physget(paddr_t *paddrp) |
| 718 | { |
| 719 | int i; |
| 720 | |
| 721 | /* try in the order of freelist preference */ |
| 722 | for (i = 0; i < VM_NFREELIST; i++) |
| 723 | if (uvm_page_physget_freelist(paddrp, i) == true) |
| 724 | return (true); |
| 725 | return (false); |
| 726 | } |
| 727 | #endif /* PMAP_STEAL_MEMORY */ |
| 728 | |
| 729 | /* |
| 730 | * uvm_page_physload: load physical memory into VM system |
| 731 | * |
| 732 | * => all args are PFs |
| 733 | * => all pages in start/end get vm_page structures |
| 734 | * => areas marked by avail_start/avail_end get added to the free page pool |
| 735 | * => we are limited to VM_PHYSSEG_MAX physical memory segments |
| 736 | */ |
| 737 | |
| 738 | void |
| 739 | uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start, |
| 740 | paddr_t avail_end, int free_list) |
| 741 | { |
| 742 | int preload, lcv; |
| 743 | psize_t npages; |
| 744 | struct vm_page *pgs; |
| 745 | struct vm_physseg *ps; |
| 746 | |
| 747 | if (uvmexp.pagesize == 0) |
| 748 | panic("uvm_page_physload: page size not set!" ); |
| 749 | if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT) |
| 750 | panic("uvm_page_physload: bad free list %d" , free_list); |
| 751 | if (start >= end) |
| 752 | panic("uvm_page_physload: start >= end" ); |
| 753 | |
| 754 | /* |
| 755 | * do we have room? |
| 756 | */ |
| 757 | |
| 758 | if (vm_nphysmem == VM_PHYSSEG_MAX) { |
| 759 | printf("uvm_page_physload: unable to load physical memory " |
| 760 | "segment\n" ); |
| 761 | printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n" , |
| 762 | VM_PHYSSEG_MAX, (long long)start, (long long)end); |
| 763 | printf("\tincrease VM_PHYSSEG_MAX\n" ); |
| 764 | return; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * check to see if this is a "preload" (i.e. uvm_page_init hasn't been |
| 769 | * called yet, so kmem is not available). |
| 770 | */ |
| 771 | |
| 772 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { |
| 773 | if (VM_PHYSMEM_PTR(lcv)->pgs) |
| 774 | break; |
| 775 | } |
| 776 | preload = (lcv == vm_nphysmem); |
| 777 | |
| 778 | /* |
| 779 | * if VM is already running, attempt to kmem_alloc vm_page structures |
| 780 | */ |
| 781 | |
| 782 | if (!preload) { |
| 783 | panic("uvm_page_physload: tried to add RAM after vm_mem_init" ); |
| 784 | } else { |
| 785 | pgs = NULL; |
| 786 | npages = 0; |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * now insert us in the proper place in vm_physmem[] |
| 791 | */ |
| 792 | |
| 793 | #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) |
| 794 | /* random: put it at the end (easy!) */ |
| 795 | ps = VM_PHYSMEM_PTR(vm_nphysmem); |
| 796 | #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) |
| 797 | { |
| 798 | int x; |
| 799 | /* sort by address for binary search */ |
| 800 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) |
| 801 | if (start < VM_PHYSMEM_PTR(lcv)->start) |
| 802 | break; |
| 803 | ps = VM_PHYSMEM_PTR(lcv); |
| 804 | /* move back other entries, if necessary ... */ |
| 805 | for (x = vm_nphysmem ; x > lcv ; x--) |
| 806 | /* structure copy */ |
| 807 | VM_PHYSMEM_PTR_SWAP(x, x - 1); |
| 808 | } |
| 809 | #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) |
| 810 | { |
| 811 | int x; |
| 812 | /* sort by largest segment first */ |
| 813 | for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) |
| 814 | if ((end - start) > |
| 815 | (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start)) |
| 816 | break; |
| 817 | ps = VM_PHYSMEM_PTR(lcv); |
| 818 | /* move back other entries, if necessary ... */ |
| 819 | for (x = vm_nphysmem ; x > lcv ; x--) |
| 820 | /* structure copy */ |
| 821 | VM_PHYSMEM_PTR_SWAP(x, x - 1); |
| 822 | } |
| 823 | #else |
| 824 | panic("uvm_page_physload: unknown physseg strategy selected!" ); |
| 825 | #endif |
| 826 | |
| 827 | ps->start = start; |
| 828 | ps->end = end; |
| 829 | ps->avail_start = avail_start; |
| 830 | ps->avail_end = avail_end; |
| 831 | if (preload) { |
| 832 | ps->pgs = NULL; |
| 833 | } else { |
| 834 | ps->pgs = pgs; |
| 835 | ps->lastpg = pgs + npages; |
| 836 | } |
| 837 | ps->free_list = free_list; |
| 838 | vm_nphysmem++; |
| 839 | |
| 840 | if (!preload) { |
| 841 | uvmpdpol_reinit(); |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * when VM_PHYSSEG_MAX is 1, we can simplify these functions |
| 847 | */ |
| 848 | |
| 849 | #if VM_PHYSSEG_MAX == 1 |
| 850 | static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *); |
| 851 | #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) |
| 852 | static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *); |
| 853 | #else |
| 854 | static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *); |
| 855 | #endif |
| 856 | |
| 857 | /* |
| 858 | * vm_physseg_find: find vm_physseg structure that belongs to a PA |
| 859 | */ |
| 860 | int |
| 861 | vm_physseg_find(paddr_t pframe, int *offp) |
| 862 | { |
| 863 | |
| 864 | #if VM_PHYSSEG_MAX == 1 |
| 865 | return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp); |
| 866 | #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) |
| 867 | return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp); |
| 868 | #else |
| 869 | return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp); |
| 870 | #endif |
| 871 | } |
| 872 | |
| 873 | #if VM_PHYSSEG_MAX == 1 |
| 874 | static inline int |
| 875 | vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) |
| 876 | { |
| 877 | |
| 878 | /* 'contig' case */ |
| 879 | if (pframe >= segs[0].start && pframe < segs[0].end) { |
| 880 | if (offp) |
| 881 | *offp = pframe - segs[0].start; |
| 882 | return(0); |
| 883 | } |
| 884 | return(-1); |
| 885 | } |
| 886 | |
| 887 | #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) |
| 888 | |
| 889 | static inline int |
| 890 | vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) |
| 891 | { |
| 892 | /* binary search for it */ |
| 893 | u_int start, len, guess; |
| 894 | |
| 895 | /* |
| 896 | * if try is too large (thus target is less than try) we reduce |
| 897 | * the length to trunc(len/2) [i.e. everything smaller than "try"] |
| 898 | * |
| 899 | * if the try is too small (thus target is greater than try) then |
| 900 | * we set the new start to be (try + 1). this means we need to |
| 901 | * reduce the length to (round(len/2) - 1). |
| 902 | * |
| 903 | * note "adjust" below which takes advantage of the fact that |
| 904 | * (round(len/2) - 1) == trunc((len - 1) / 2) |
| 905 | * for any value of len we may have |
| 906 | */ |
| 907 | |
| 908 | for (start = 0, len = nsegs ; len != 0 ; len = len / 2) { |
| 909 | guess = start + (len / 2); /* try in the middle */ |
| 910 | |
| 911 | /* start past our try? */ |
| 912 | if (pframe >= segs[guess].start) { |
| 913 | /* was try correct? */ |
| 914 | if (pframe < segs[guess].end) { |
| 915 | if (offp) |
| 916 | *offp = pframe - segs[guess].start; |
| 917 | return guess; /* got it */ |
| 918 | } |
| 919 | start = guess + 1; /* next time, start here */ |
| 920 | len--; /* "adjust" */ |
| 921 | } else { |
| 922 | /* |
| 923 | * pframe before try, just reduce length of |
| 924 | * region, done in "for" loop |
| 925 | */ |
| 926 | } |
| 927 | } |
| 928 | return(-1); |
| 929 | } |
| 930 | |
| 931 | #else |
| 932 | |
| 933 | static inline int |
| 934 | vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) |
| 935 | { |
| 936 | /* linear search for it */ |
| 937 | int lcv; |
| 938 | |
| 939 | for (lcv = 0; lcv < nsegs; lcv++) { |
| 940 | if (pframe >= segs[lcv].start && |
| 941 | pframe < segs[lcv].end) { |
| 942 | if (offp) |
| 943 | *offp = pframe - segs[lcv].start; |
| 944 | return(lcv); /* got it */ |
| 945 | } |
| 946 | } |
| 947 | return(-1); |
| 948 | } |
| 949 | #endif |
| 950 | |
| 951 | /* |
| 952 | * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages |
| 953 | * back from an I/O mapping (ugh!). used in some MD code as well. |
| 954 | */ |
| 955 | struct vm_page * |
| 956 | uvm_phys_to_vm_page(paddr_t pa) |
| 957 | { |
| 958 | paddr_t pf = atop(pa); |
| 959 | int off; |
| 960 | int psi; |
| 961 | |
| 962 | psi = vm_physseg_find(pf, &off); |
| 963 | if (psi != -1) |
| 964 | return(&VM_PHYSMEM_PTR(psi)->pgs[off]); |
| 965 | return(NULL); |
| 966 | } |
| 967 | |
| 968 | paddr_t |
| 969 | uvm_vm_page_to_phys(const struct vm_page *pg) |
| 970 | { |
| 971 | |
| 972 | return pg->phys_addr; |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * uvm_page_recolor: Recolor the pages if the new bucket count is |
| 977 | * larger than the old one. |
| 978 | */ |
| 979 | |
| 980 | void |
| 981 | uvm_page_recolor(int newncolors) |
| 982 | { |
| 983 | struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray; |
| 984 | struct pgfreelist gpgfl, pgfl; |
| 985 | struct vm_page *pg; |
| 986 | vsize_t bucketcount; |
| 987 | size_t bucketmemsize, oldbucketmemsize; |
| 988 | int lcv, color, i, ocolors; |
| 989 | struct uvm_cpu *ucpu; |
| 990 | |
| 991 | KASSERT(((newncolors - 1) & newncolors) == 0); |
| 992 | |
| 993 | if (newncolors <= uvmexp.ncolors) |
| 994 | return; |
| 995 | |
| 996 | if (uvm.page_init_done == false) { |
| 997 | uvmexp.ncolors = newncolors; |
| 998 | return; |
| 999 | } |
| 1000 | |
| 1001 | bucketcount = newncolors * VM_NFREELIST; |
| 1002 | bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2; |
| 1003 | bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP); |
| 1004 | cpuarray = bucketarray + bucketcount; |
| 1005 | if (bucketarray == NULL) { |
| 1006 | printf("WARNING: unable to allocate %ld page color buckets\n" , |
| 1007 | (long) bucketcount); |
| 1008 | return; |
| 1009 | } |
| 1010 | |
| 1011 | mutex_spin_enter(&uvm_fpageqlock); |
| 1012 | |
| 1013 | /* Make sure we should still do this. */ |
| 1014 | if (newncolors <= uvmexp.ncolors) { |
| 1015 | mutex_spin_exit(&uvm_fpageqlock); |
| 1016 | kmem_free(bucketarray, bucketmemsize); |
| 1017 | return; |
| 1018 | } |
| 1019 | |
| 1020 | oldbucketarray = uvm.page_free[0].pgfl_buckets; |
| 1021 | ocolors = uvmexp.ncolors; |
| 1022 | |
| 1023 | uvmexp.ncolors = newncolors; |
| 1024 | uvmexp.colormask = uvmexp.ncolors - 1; |
| 1025 | |
| 1026 | ucpu = curcpu()->ci_data.cpu_uvm; |
| 1027 | for (lcv = 0; lcv < VM_NFREELIST; lcv++) { |
| 1028 | gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors)); |
| 1029 | pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors)); |
| 1030 | uvm_page_init_buckets(&gpgfl); |
| 1031 | uvm_page_init_buckets(&pgfl); |
| 1032 | for (color = 0; color < ocolors; color++) { |
| 1033 | for (i = 0; i < PGFL_NQUEUES; i++) { |
| 1034 | while ((pg = LIST_FIRST(&uvm.page_free[ |
| 1035 | lcv].pgfl_buckets[color].pgfl_queues[i])) |
| 1036 | != NULL) { |
| 1037 | LIST_REMOVE(pg, pageq.list); /* global */ |
| 1038 | LIST_REMOVE(pg, listq.list); /* cpu */ |
| 1039 | LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[ |
| 1040 | VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ |
| 1041 | i], pg, pageq.list); |
| 1042 | LIST_INSERT_HEAD(&pgfl.pgfl_buckets[ |
| 1043 | VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ |
| 1044 | i], pg, listq.list); |
| 1045 | } |
| 1046 | } |
| 1047 | } |
| 1048 | uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets; |
| 1049 | ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; |
| 1050 | } |
| 1051 | |
| 1052 | oldbucketmemsize = recolored_pages_memsize; |
| 1053 | |
| 1054 | recolored_pages_memsize = bucketmemsize; |
| 1055 | mutex_spin_exit(&uvm_fpageqlock); |
| 1056 | |
| 1057 | if (oldbucketmemsize) { |
| 1058 | kmem_free(oldbucketarray, recolored_pages_memsize); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * this calls uvm_km_alloc() which may want to hold |
| 1063 | * uvm_fpageqlock. |
| 1064 | */ |
| 1065 | uvm_pager_realloc_emerg(); |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * uvm_cpu_attach: initialize per-CPU data structures. |
| 1070 | */ |
| 1071 | |
| 1072 | void |
| 1073 | uvm_cpu_attach(struct cpu_info *ci) |
| 1074 | { |
| 1075 | struct pgflbucket *bucketarray; |
| 1076 | struct pgfreelist pgfl; |
| 1077 | struct uvm_cpu *ucpu; |
| 1078 | vsize_t bucketcount; |
| 1079 | int lcv; |
| 1080 | |
| 1081 | if (CPU_IS_PRIMARY(ci)) { |
| 1082 | /* Already done in uvm_page_init(). */ |
| 1083 | goto attachrnd; |
| 1084 | } |
| 1085 | |
| 1086 | /* Add more reserve pages for this CPU. */ |
| 1087 | uvmexp.reserve_kernel += vm_page_reserve_kernel; |
| 1088 | |
| 1089 | /* Configure this CPU's free lists. */ |
| 1090 | bucketcount = uvmexp.ncolors * VM_NFREELIST; |
| 1091 | bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket), |
| 1092 | KM_SLEEP); |
| 1093 | ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP); |
| 1094 | uvm.cpus[cpu_index(ci)] = ucpu; |
| 1095 | ci->ci_data.cpu_uvm = ucpu; |
| 1096 | for (lcv = 0; lcv < VM_NFREELIST; lcv++) { |
| 1097 | pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors)); |
| 1098 | uvm_page_init_buckets(&pgfl); |
| 1099 | ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; |
| 1100 | } |
| 1101 | |
| 1102 | attachrnd: |
| 1103 | /* |
| 1104 | * Attach RNG source for this CPU's VM events |
| 1105 | */ |
| 1106 | rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs, |
| 1107 | ci->ci_data.cpu_name, RND_TYPE_VM, |
| 1108 | RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE| |
| 1109 | RND_FLAG_ESTIMATE_VALUE); |
| 1110 | |
| 1111 | } |
| 1112 | |
| 1113 | /* |
| 1114 | * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat |
| 1115 | */ |
| 1116 | |
| 1117 | static struct vm_page * |
| 1118 | uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2, |
| 1119 | int *trycolorp) |
| 1120 | { |
| 1121 | struct pgflist *freeq; |
| 1122 | struct vm_page *pg; |
| 1123 | int color, trycolor = *trycolorp; |
| 1124 | struct pgfreelist *gpgfl, *pgfl; |
| 1125 | |
| 1126 | KASSERT(mutex_owned(&uvm_fpageqlock)); |
| 1127 | |
| 1128 | color = trycolor; |
| 1129 | pgfl = &ucpu->page_free[flist]; |
| 1130 | gpgfl = &uvm.page_free[flist]; |
| 1131 | do { |
| 1132 | /* cpu, try1 */ |
| 1133 | if ((pg = LIST_FIRST((freeq = |
| 1134 | &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) { |
| 1135 | KASSERT(pg->pqflags & PQ_FREE); |
| 1136 | KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO)); |
| 1137 | KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO)); |
| 1138 | KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg)); |
| 1139 | VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--; |
| 1140 | uvmexp.cpuhit++; |
| 1141 | goto gotit; |
| 1142 | } |
| 1143 | /* global, try1 */ |
| 1144 | if ((pg = LIST_FIRST((freeq = |
| 1145 | &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) { |
| 1146 | KASSERT(pg->pqflags & PQ_FREE); |
| 1147 | KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO)); |
| 1148 | KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO)); |
| 1149 | KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg)); |
| 1150 | VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--; |
| 1151 | uvmexp.cpumiss++; |
| 1152 | goto gotit; |
| 1153 | } |
| 1154 | /* cpu, try2 */ |
| 1155 | if ((pg = LIST_FIRST((freeq = |
| 1156 | &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) { |
| 1157 | KASSERT(pg->pqflags & PQ_FREE); |
| 1158 | KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO)); |
| 1159 | KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO)); |
| 1160 | KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg)); |
| 1161 | VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--; |
| 1162 | uvmexp.cpuhit++; |
| 1163 | goto gotit; |
| 1164 | } |
| 1165 | /* global, try2 */ |
| 1166 | if ((pg = LIST_FIRST((freeq = |
| 1167 | &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) { |
| 1168 | KASSERT(pg->pqflags & PQ_FREE); |
| 1169 | KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO)); |
| 1170 | KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO)); |
| 1171 | KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg)); |
| 1172 | VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--; |
| 1173 | uvmexp.cpumiss++; |
| 1174 | goto gotit; |
| 1175 | } |
| 1176 | color = (color + 1) & uvmexp.colormask; |
| 1177 | } while (color != trycolor); |
| 1178 | |
| 1179 | return (NULL); |
| 1180 | |
| 1181 | gotit: |
| 1182 | LIST_REMOVE(pg, pageq.list); /* global list */ |
| 1183 | LIST_REMOVE(pg, listq.list); /* per-cpu list */ |
| 1184 | uvmexp.free--; |
| 1185 | |
| 1186 | /* update zero'd page count */ |
| 1187 | if (pg->flags & PG_ZERO) |
| 1188 | uvmexp.zeropages--; |
| 1189 | |
| 1190 | if (color == trycolor) |
| 1191 | uvmexp.colorhit++; |
| 1192 | else { |
| 1193 | uvmexp.colormiss++; |
| 1194 | *trycolorp = color; |
| 1195 | } |
| 1196 | |
| 1197 | return (pg); |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * uvm_pagealloc_strat: allocate vm_page from a particular free list. |
| 1202 | * |
| 1203 | * => return null if no pages free |
| 1204 | * => wake up pagedaemon if number of free pages drops below low water mark |
| 1205 | * => if obj != NULL, obj must be locked (to put in obj's tree) |
| 1206 | * => if anon != NULL, anon must be locked (to put in anon) |
| 1207 | * => only one of obj or anon can be non-null |
| 1208 | * => caller must activate/deactivate page if it is not wired. |
| 1209 | * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL. |
| 1210 | * => policy decision: it is more important to pull a page off of the |
| 1211 | * appropriate priority free list than it is to get a zero'd or |
| 1212 | * unknown contents page. This is because we live with the |
| 1213 | * consequences of a bad free list decision for the entire |
| 1214 | * lifetime of the page, e.g. if the page comes from memory that |
| 1215 | * is slower to access. |
| 1216 | */ |
| 1217 | |
| 1218 | struct vm_page * |
| 1219 | uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon, |
| 1220 | int flags, int strat, int free_list) |
| 1221 | { |
| 1222 | int lcv, try1, try2, zeroit = 0, color; |
| 1223 | struct uvm_cpu *ucpu; |
| 1224 | struct vm_page *pg; |
| 1225 | lwp_t *l; |
| 1226 | |
| 1227 | KASSERT(obj == NULL || anon == NULL); |
| 1228 | KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0); |
| 1229 | KASSERT(off == trunc_page(off)); |
| 1230 | KASSERT(obj == NULL || mutex_owned(obj->vmobjlock)); |
| 1231 | KASSERT(anon == NULL || anon->an_lock == NULL || |
| 1232 | mutex_owned(anon->an_lock)); |
| 1233 | |
| 1234 | mutex_spin_enter(&uvm_fpageqlock); |
| 1235 | |
| 1236 | /* |
| 1237 | * This implements a global round-robin page coloring |
| 1238 | * algorithm. |
| 1239 | */ |
| 1240 | |
| 1241 | ucpu = curcpu()->ci_data.cpu_uvm; |
| 1242 | if (flags & UVM_FLAG_COLORMATCH) { |
| 1243 | color = atop(off) & uvmexp.colormask; |
| 1244 | } else { |
| 1245 | color = ucpu->page_free_nextcolor; |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * check to see if we need to generate some free pages waking |
| 1250 | * the pagedaemon. |
| 1251 | */ |
| 1252 | |
| 1253 | uvm_kick_pdaemon(); |
| 1254 | |
| 1255 | /* |
| 1256 | * fail if any of these conditions is true: |
| 1257 | * [1] there really are no free pages, or |
| 1258 | * [2] only kernel "reserved" pages remain and |
| 1259 | * reserved pages have not been requested. |
| 1260 | * [3] only pagedaemon "reserved" pages remain and |
| 1261 | * the requestor isn't the pagedaemon. |
| 1262 | * we make kernel reserve pages available if called by a |
| 1263 | * kernel thread or a realtime thread. |
| 1264 | */ |
| 1265 | l = curlwp; |
| 1266 | if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) { |
| 1267 | flags |= UVM_PGA_USERESERVE; |
| 1268 | } |
| 1269 | if ((uvmexp.free <= uvmexp.reserve_kernel && |
| 1270 | (flags & UVM_PGA_USERESERVE) == 0) || |
| 1271 | (uvmexp.free <= uvmexp.reserve_pagedaemon && |
| 1272 | curlwp != uvm.pagedaemon_lwp)) |
| 1273 | goto fail; |
| 1274 | |
| 1275 | #if PGFL_NQUEUES != 2 |
| 1276 | #error uvm_pagealloc_strat needs to be updated |
| 1277 | #endif |
| 1278 | |
| 1279 | /* |
| 1280 | * If we want a zero'd page, try the ZEROS queue first, otherwise |
| 1281 | * we try the UNKNOWN queue first. |
| 1282 | */ |
| 1283 | if (flags & UVM_PGA_ZERO) { |
| 1284 | try1 = PGFL_ZEROS; |
| 1285 | try2 = PGFL_UNKNOWN; |
| 1286 | } else { |
| 1287 | try1 = PGFL_UNKNOWN; |
| 1288 | try2 = PGFL_ZEROS; |
| 1289 | } |
| 1290 | |
| 1291 | again: |
| 1292 | switch (strat) { |
| 1293 | case UVM_PGA_STRAT_NORMAL: |
| 1294 | /* Check freelists: descending priority (ascending id) order */ |
| 1295 | for (lcv = 0; lcv < VM_NFREELIST; lcv++) { |
| 1296 | pg = uvm_pagealloc_pgfl(ucpu, lcv, |
| 1297 | try1, try2, &color); |
| 1298 | if (pg != NULL) |
| 1299 | goto gotit; |
| 1300 | } |
| 1301 | |
| 1302 | /* No pages free! */ |
| 1303 | goto fail; |
| 1304 | |
| 1305 | case UVM_PGA_STRAT_ONLY: |
| 1306 | case UVM_PGA_STRAT_FALLBACK: |
| 1307 | /* Attempt to allocate from the specified free list. */ |
| 1308 | KASSERT(free_list >= 0 && free_list < VM_NFREELIST); |
| 1309 | pg = uvm_pagealloc_pgfl(ucpu, free_list, |
| 1310 | try1, try2, &color); |
| 1311 | if (pg != NULL) |
| 1312 | goto gotit; |
| 1313 | |
| 1314 | /* Fall back, if possible. */ |
| 1315 | if (strat == UVM_PGA_STRAT_FALLBACK) { |
| 1316 | strat = UVM_PGA_STRAT_NORMAL; |
| 1317 | goto again; |
| 1318 | } |
| 1319 | |
| 1320 | /* No pages free! */ |
| 1321 | goto fail; |
| 1322 | |
| 1323 | default: |
| 1324 | panic("uvm_pagealloc_strat: bad strat %d" , strat); |
| 1325 | /* NOTREACHED */ |
| 1326 | } |
| 1327 | |
| 1328 | gotit: |
| 1329 | /* |
| 1330 | * We now know which color we actually allocated from; set |
| 1331 | * the next color accordingly. |
| 1332 | */ |
| 1333 | |
| 1334 | ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask; |
| 1335 | |
| 1336 | /* |
| 1337 | * update allocation statistics and remember if we have to |
| 1338 | * zero the page |
| 1339 | */ |
| 1340 | |
| 1341 | if (flags & UVM_PGA_ZERO) { |
| 1342 | if (pg->flags & PG_ZERO) { |
| 1343 | uvmexp.pga_zerohit++; |
| 1344 | zeroit = 0; |
| 1345 | } else { |
| 1346 | uvmexp.pga_zeromiss++; |
| 1347 | zeroit = 1; |
| 1348 | } |
| 1349 | if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) { |
| 1350 | ucpu->page_idle_zero = vm_page_zero_enable; |
| 1351 | } |
| 1352 | } |
| 1353 | KASSERT(pg->pqflags == PQ_FREE); |
| 1354 | |
| 1355 | pg->offset = off; |
| 1356 | pg->uobject = obj; |
| 1357 | pg->uanon = anon; |
| 1358 | pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE; |
| 1359 | if (anon) { |
| 1360 | anon->an_page = pg; |
| 1361 | pg->pqflags = PQ_ANON; |
| 1362 | atomic_inc_uint(&uvmexp.anonpages); |
| 1363 | } else { |
| 1364 | if (obj) { |
| 1365 | uvm_pageinsert(obj, pg); |
| 1366 | } |
| 1367 | pg->pqflags = 0; |
| 1368 | } |
| 1369 | mutex_spin_exit(&uvm_fpageqlock); |
| 1370 | |
| 1371 | #if defined(UVM_PAGE_TRKOWN) |
| 1372 | pg->owner_tag = NULL; |
| 1373 | #endif |
| 1374 | UVM_PAGE_OWN(pg, "new alloc" ); |
| 1375 | |
| 1376 | if (flags & UVM_PGA_ZERO) { |
| 1377 | /* |
| 1378 | * A zero'd page is not clean. If we got a page not already |
| 1379 | * zero'd, then we have to zero it ourselves. |
| 1380 | */ |
| 1381 | pg->flags &= ~PG_CLEAN; |
| 1382 | if (zeroit) |
| 1383 | pmap_zero_page(VM_PAGE_TO_PHYS(pg)); |
| 1384 | } |
| 1385 | |
| 1386 | return(pg); |
| 1387 | |
| 1388 | fail: |
| 1389 | mutex_spin_exit(&uvm_fpageqlock); |
| 1390 | return (NULL); |
| 1391 | } |
| 1392 | |
| 1393 | /* |
| 1394 | * uvm_pagereplace: replace a page with another |
| 1395 | * |
| 1396 | * => object must be locked |
| 1397 | */ |
| 1398 | |
| 1399 | void |
| 1400 | (struct vm_page *oldpg, struct vm_page *newpg) |
| 1401 | { |
| 1402 | struct uvm_object *uobj = oldpg->uobject; |
| 1403 | |
| 1404 | KASSERT((oldpg->flags & PG_TABLED) != 0); |
| 1405 | KASSERT(uobj != NULL); |
| 1406 | KASSERT((newpg->flags & PG_TABLED) == 0); |
| 1407 | KASSERT(newpg->uobject == NULL); |
| 1408 | KASSERT(mutex_owned(uobj->vmobjlock)); |
| 1409 | |
| 1410 | newpg->uobject = uobj; |
| 1411 | newpg->offset = oldpg->offset; |
| 1412 | |
| 1413 | uvm_pageremove_tree(uobj, oldpg); |
| 1414 | uvm_pageinsert_tree(uobj, newpg); |
| 1415 | uvm_pageinsert_list(uobj, newpg, oldpg); |
| 1416 | uvm_pageremove_list(uobj, oldpg); |
| 1417 | } |
| 1418 | |
| 1419 | /* |
| 1420 | * uvm_pagerealloc: reallocate a page from one object to another |
| 1421 | * |
| 1422 | * => both objects must be locked |
| 1423 | */ |
| 1424 | |
| 1425 | void |
| 1426 | (struct vm_page *pg, struct uvm_object *newobj, voff_t newoff) |
| 1427 | { |
| 1428 | /* |
| 1429 | * remove it from the old object |
| 1430 | */ |
| 1431 | |
| 1432 | if (pg->uobject) { |
| 1433 | uvm_pageremove(pg->uobject, pg); |
| 1434 | } |
| 1435 | |
| 1436 | /* |
| 1437 | * put it in the new object |
| 1438 | */ |
| 1439 | |
| 1440 | if (newobj) { |
| 1441 | pg->uobject = newobj; |
| 1442 | pg->offset = newoff; |
| 1443 | uvm_pageinsert(newobj, pg); |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | #ifdef DEBUG |
| 1448 | /* |
| 1449 | * check if page is zero-filled |
| 1450 | * |
| 1451 | * - called with free page queue lock held. |
| 1452 | */ |
| 1453 | void |
| 1454 | uvm_pagezerocheck(struct vm_page *pg) |
| 1455 | { |
| 1456 | int *p, *ep; |
| 1457 | |
| 1458 | KASSERT(uvm_zerocheckkva != 0); |
| 1459 | KASSERT(mutex_owned(&uvm_fpageqlock)); |
| 1460 | |
| 1461 | /* |
| 1462 | * XXX assuming pmap_kenter_pa and pmap_kremove never call |
| 1463 | * uvm page allocator. |
| 1464 | * |
| 1465 | * it might be better to have "CPU-local temporary map" pmap interface. |
| 1466 | */ |
| 1467 | pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0); |
| 1468 | p = (int *)uvm_zerocheckkva; |
| 1469 | ep = (int *)((char *)p + PAGE_SIZE); |
| 1470 | pmap_update(pmap_kernel()); |
| 1471 | while (p < ep) { |
| 1472 | if (*p != 0) |
| 1473 | panic("PG_ZERO page isn't zero-filled" ); |
| 1474 | p++; |
| 1475 | } |
| 1476 | pmap_kremove(uvm_zerocheckkva, PAGE_SIZE); |
| 1477 | /* |
| 1478 | * pmap_update() is not necessary here because no one except us |
| 1479 | * uses this VA. |
| 1480 | */ |
| 1481 | } |
| 1482 | #endif /* DEBUG */ |
| 1483 | |
| 1484 | /* |
| 1485 | * uvm_pagefree: free page |
| 1486 | * |
| 1487 | * => erase page's identity (i.e. remove from object) |
| 1488 | * => put page on free list |
| 1489 | * => caller must lock owning object (either anon or uvm_object) |
| 1490 | * => caller must lock page queues |
| 1491 | * => assumes all valid mappings of pg are gone |
| 1492 | */ |
| 1493 | |
| 1494 | void |
| 1495 | uvm_pagefree(struct vm_page *pg) |
| 1496 | { |
| 1497 | struct pgflist *pgfl; |
| 1498 | struct uvm_cpu *ucpu; |
| 1499 | int index, color, queue; |
| 1500 | bool iszero; |
| 1501 | |
| 1502 | #ifdef DEBUG |
| 1503 | if (pg->uobject == (void *)0xdeadbeef && |
| 1504 | pg->uanon == (void *)0xdeadbeef) { |
| 1505 | panic("uvm_pagefree: freeing free page %p" , pg); |
| 1506 | } |
| 1507 | #endif /* DEBUG */ |
| 1508 | |
| 1509 | KASSERT((pg->flags & PG_PAGEOUT) == 0); |
| 1510 | KASSERT(!(pg->pqflags & PQ_FREE)); |
| 1511 | //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg)); |
| 1512 | KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock)); |
| 1513 | KASSERT(pg->uobject != NULL || pg->uanon == NULL || |
| 1514 | mutex_owned(pg->uanon->an_lock)); |
| 1515 | |
| 1516 | /* |
| 1517 | * if the page is loaned, resolve the loan instead of freeing. |
| 1518 | */ |
| 1519 | |
| 1520 | if (pg->loan_count) { |
| 1521 | KASSERT(pg->wire_count == 0); |
| 1522 | |
| 1523 | /* |
| 1524 | * if the page is owned by an anon then we just want to |
| 1525 | * drop anon ownership. the kernel will free the page when |
| 1526 | * it is done with it. if the page is owned by an object, |
| 1527 | * remove it from the object and mark it dirty for the benefit |
| 1528 | * of possible anon owners. |
| 1529 | * |
| 1530 | * regardless of previous ownership, wakeup any waiters, |
| 1531 | * unbusy the page, and we're done. |
| 1532 | */ |
| 1533 | |
| 1534 | if (pg->uobject != NULL) { |
| 1535 | uvm_pageremove(pg->uobject, pg); |
| 1536 | pg->flags &= ~PG_CLEAN; |
| 1537 | } else if (pg->uanon != NULL) { |
| 1538 | if ((pg->pqflags & PQ_ANON) == 0) { |
| 1539 | pg->loan_count--; |
| 1540 | } else { |
| 1541 | pg->pqflags &= ~PQ_ANON; |
| 1542 | atomic_dec_uint(&uvmexp.anonpages); |
| 1543 | } |
| 1544 | pg->uanon->an_page = NULL; |
| 1545 | pg->uanon = NULL; |
| 1546 | } |
| 1547 | if (pg->flags & PG_WANTED) { |
| 1548 | wakeup(pg); |
| 1549 | } |
| 1550 | pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1); |
| 1551 | #ifdef UVM_PAGE_TRKOWN |
| 1552 | pg->owner_tag = NULL; |
| 1553 | #endif |
| 1554 | if (pg->loan_count) { |
| 1555 | KASSERT(pg->uobject == NULL); |
| 1556 | if (pg->uanon == NULL) { |
| 1557 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1558 | uvm_pagedequeue(pg); |
| 1559 | } |
| 1560 | return; |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | /* |
| 1565 | * remove page from its object or anon. |
| 1566 | */ |
| 1567 | |
| 1568 | if (pg->uobject != NULL) { |
| 1569 | uvm_pageremove(pg->uobject, pg); |
| 1570 | } else if (pg->uanon != NULL) { |
| 1571 | pg->uanon->an_page = NULL; |
| 1572 | atomic_dec_uint(&uvmexp.anonpages); |
| 1573 | } |
| 1574 | |
| 1575 | /* |
| 1576 | * now remove the page from the queues. |
| 1577 | */ |
| 1578 | if (uvmpdpol_pageisqueued_p(pg)) { |
| 1579 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1580 | uvm_pagedequeue(pg); |
| 1581 | } |
| 1582 | |
| 1583 | /* |
| 1584 | * if the page was wired, unwire it now. |
| 1585 | */ |
| 1586 | |
| 1587 | if (pg->wire_count) { |
| 1588 | pg->wire_count = 0; |
| 1589 | uvmexp.wired--; |
| 1590 | } |
| 1591 | |
| 1592 | /* |
| 1593 | * and put on free queue |
| 1594 | */ |
| 1595 | |
| 1596 | iszero = (pg->flags & PG_ZERO); |
| 1597 | index = uvm_page_lookup_freelist(pg); |
| 1598 | color = VM_PGCOLOR_BUCKET(pg); |
| 1599 | queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN); |
| 1600 | |
| 1601 | #ifdef DEBUG |
| 1602 | pg->uobject = (void *)0xdeadbeef; |
| 1603 | pg->uanon = (void *)0xdeadbeef; |
| 1604 | #endif |
| 1605 | |
| 1606 | mutex_spin_enter(&uvm_fpageqlock); |
| 1607 | pg->pqflags = PQ_FREE; |
| 1608 | |
| 1609 | #ifdef DEBUG |
| 1610 | if (iszero) |
| 1611 | uvm_pagezerocheck(pg); |
| 1612 | #endif /* DEBUG */ |
| 1613 | |
| 1614 | |
| 1615 | /* global list */ |
| 1616 | pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue]; |
| 1617 | LIST_INSERT_HEAD(pgfl, pg, pageq.list); |
| 1618 | uvmexp.free++; |
| 1619 | if (iszero) { |
| 1620 | uvmexp.zeropages++; |
| 1621 | } |
| 1622 | |
| 1623 | /* per-cpu list */ |
| 1624 | ucpu = curcpu()->ci_data.cpu_uvm; |
| 1625 | pg->offset = (uintptr_t)ucpu; |
| 1626 | pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue]; |
| 1627 | LIST_INSERT_HEAD(pgfl, pg, listq.list); |
| 1628 | ucpu->pages[queue]++; |
| 1629 | if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) { |
| 1630 | ucpu->page_idle_zero = vm_page_zero_enable; |
| 1631 | } |
| 1632 | |
| 1633 | mutex_spin_exit(&uvm_fpageqlock); |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | * uvm_page_unbusy: unbusy an array of pages. |
| 1638 | * |
| 1639 | * => pages must either all belong to the same object, or all belong to anons. |
| 1640 | * => if pages are object-owned, object must be locked. |
| 1641 | * => if pages are anon-owned, anons must be locked. |
| 1642 | * => caller must lock page queues if pages may be released. |
| 1643 | * => caller must make sure that anon-owned pages are not PG_RELEASED. |
| 1644 | */ |
| 1645 | |
| 1646 | void |
| 1647 | uvm_page_unbusy(struct vm_page **pgs, int npgs) |
| 1648 | { |
| 1649 | struct vm_page *pg; |
| 1650 | int i; |
| 1651 | UVMHIST_FUNC("uvm_page_unbusy" ); UVMHIST_CALLED(ubchist); |
| 1652 | |
| 1653 | for (i = 0; i < npgs; i++) { |
| 1654 | pg = pgs[i]; |
| 1655 | if (pg == NULL || pg == PGO_DONTCARE) { |
| 1656 | continue; |
| 1657 | } |
| 1658 | |
| 1659 | KASSERT(uvm_page_locked_p(pg)); |
| 1660 | KASSERT(pg->flags & PG_BUSY); |
| 1661 | KASSERT((pg->flags & PG_PAGEOUT) == 0); |
| 1662 | if (pg->flags & PG_WANTED) { |
| 1663 | wakeup(pg); |
| 1664 | } |
| 1665 | if (pg->flags & PG_RELEASED) { |
| 1666 | UVMHIST_LOG(ubchist, "releasing pg %p" , pg,0,0,0); |
| 1667 | KASSERT(pg->uobject != NULL || |
| 1668 | (pg->uanon != NULL && pg->uanon->an_ref > 0)); |
| 1669 | pg->flags &= ~PG_RELEASED; |
| 1670 | uvm_pagefree(pg); |
| 1671 | } else { |
| 1672 | UVMHIST_LOG(ubchist, "unbusying pg %p" , pg,0,0,0); |
| 1673 | KASSERT((pg->flags & PG_FAKE) == 0); |
| 1674 | pg->flags &= ~(PG_WANTED|PG_BUSY); |
| 1675 | UVM_PAGE_OWN(pg, NULL); |
| 1676 | } |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | #if defined(UVM_PAGE_TRKOWN) |
| 1681 | /* |
| 1682 | * uvm_page_own: set or release page ownership |
| 1683 | * |
| 1684 | * => this is a debugging function that keeps track of who sets PG_BUSY |
| 1685 | * and where they do it. it can be used to track down problems |
| 1686 | * such a process setting "PG_BUSY" and never releasing it. |
| 1687 | * => page's object [if any] must be locked |
| 1688 | * => if "tag" is NULL then we are releasing page ownership |
| 1689 | */ |
| 1690 | void |
| 1691 | uvm_page_own(struct vm_page *pg, const char *tag) |
| 1692 | { |
| 1693 | |
| 1694 | KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0); |
| 1695 | KASSERT((pg->flags & PG_WANTED) == 0); |
| 1696 | KASSERT(uvm_page_locked_p(pg)); |
| 1697 | |
| 1698 | /* gain ownership? */ |
| 1699 | if (tag) { |
| 1700 | KASSERT((pg->flags & PG_BUSY) != 0); |
| 1701 | if (pg->owner_tag) { |
| 1702 | printf("uvm_page_own: page %p already owned " |
| 1703 | "by proc %d [%s]\n" , pg, |
| 1704 | pg->owner, pg->owner_tag); |
| 1705 | panic("uvm_page_own" ); |
| 1706 | } |
| 1707 | pg->owner = curproc->p_pid; |
| 1708 | pg->lowner = curlwp->l_lid; |
| 1709 | pg->owner_tag = tag; |
| 1710 | return; |
| 1711 | } |
| 1712 | |
| 1713 | /* drop ownership */ |
| 1714 | KASSERT((pg->flags & PG_BUSY) == 0); |
| 1715 | if (pg->owner_tag == NULL) { |
| 1716 | printf("uvm_page_own: dropping ownership of an non-owned " |
| 1717 | "page (%p)\n" , pg); |
| 1718 | panic("uvm_page_own" ); |
| 1719 | } |
| 1720 | if (!uvmpdpol_pageisqueued_p(pg)) { |
| 1721 | KASSERT((pg->uanon == NULL && pg->uobject == NULL) || |
| 1722 | pg->wire_count > 0); |
| 1723 | } else { |
| 1724 | KASSERT(pg->wire_count == 0); |
| 1725 | } |
| 1726 | pg->owner_tag = NULL; |
| 1727 | } |
| 1728 | #endif |
| 1729 | |
| 1730 | /* |
| 1731 | * uvm_pageidlezero: zero free pages while the system is idle. |
| 1732 | * |
| 1733 | * => try to complete one color bucket at a time, to reduce our impact |
| 1734 | * on the CPU cache. |
| 1735 | * => we loop until we either reach the target or there is a lwp ready |
| 1736 | * to run, or MD code detects a reason to break early. |
| 1737 | */ |
| 1738 | void |
| 1739 | uvm_pageidlezero(void) |
| 1740 | { |
| 1741 | struct vm_page *pg; |
| 1742 | struct pgfreelist *pgfl, *gpgfl; |
| 1743 | struct uvm_cpu *ucpu; |
| 1744 | int free_list, firstbucket, nextbucket; |
| 1745 | bool lcont = false; |
| 1746 | |
| 1747 | ucpu = curcpu()->ci_data.cpu_uvm; |
| 1748 | if (!ucpu->page_idle_zero || |
| 1749 | ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) { |
| 1750 | ucpu->page_idle_zero = false; |
| 1751 | return; |
| 1752 | } |
| 1753 | if (!mutex_tryenter(&uvm_fpageqlock)) { |
| 1754 | /* Contention: let other CPUs to use the lock. */ |
| 1755 | return; |
| 1756 | } |
| 1757 | firstbucket = ucpu->page_free_nextcolor; |
| 1758 | nextbucket = firstbucket; |
| 1759 | do { |
| 1760 | for (free_list = 0; free_list < VM_NFREELIST; free_list++) { |
| 1761 | if (sched_curcpu_runnable_p()) { |
| 1762 | goto quit; |
| 1763 | } |
| 1764 | pgfl = &ucpu->page_free[free_list]; |
| 1765 | gpgfl = &uvm.page_free[free_list]; |
| 1766 | while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[ |
| 1767 | nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) { |
| 1768 | if (lcont || sched_curcpu_runnable_p()) { |
| 1769 | goto quit; |
| 1770 | } |
| 1771 | LIST_REMOVE(pg, pageq.list); /* global list */ |
| 1772 | LIST_REMOVE(pg, listq.list); /* per-cpu list */ |
| 1773 | ucpu->pages[PGFL_UNKNOWN]--; |
| 1774 | uvmexp.free--; |
| 1775 | KASSERT(pg->pqflags == PQ_FREE); |
| 1776 | pg->pqflags = 0; |
| 1777 | mutex_spin_exit(&uvm_fpageqlock); |
| 1778 | #ifdef PMAP_PAGEIDLEZERO |
| 1779 | if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) { |
| 1780 | |
| 1781 | /* |
| 1782 | * The machine-dependent code detected |
| 1783 | * some reason for us to abort zeroing |
| 1784 | * pages, probably because there is a |
| 1785 | * process now ready to run. |
| 1786 | */ |
| 1787 | |
| 1788 | mutex_spin_enter(&uvm_fpageqlock); |
| 1789 | pg->pqflags = PQ_FREE; |
| 1790 | LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[ |
| 1791 | nextbucket].pgfl_queues[ |
| 1792 | PGFL_UNKNOWN], pg, pageq.list); |
| 1793 | LIST_INSERT_HEAD(&pgfl->pgfl_buckets[ |
| 1794 | nextbucket].pgfl_queues[ |
| 1795 | PGFL_UNKNOWN], pg, listq.list); |
| 1796 | ucpu->pages[PGFL_UNKNOWN]++; |
| 1797 | uvmexp.free++; |
| 1798 | uvmexp.zeroaborts++; |
| 1799 | goto quit; |
| 1800 | } |
| 1801 | #else |
| 1802 | pmap_zero_page(VM_PAGE_TO_PHYS(pg)); |
| 1803 | #endif /* PMAP_PAGEIDLEZERO */ |
| 1804 | pg->flags |= PG_ZERO; |
| 1805 | |
| 1806 | if (!mutex_tryenter(&uvm_fpageqlock)) { |
| 1807 | lcont = true; |
| 1808 | mutex_spin_enter(&uvm_fpageqlock); |
| 1809 | } else { |
| 1810 | lcont = false; |
| 1811 | } |
| 1812 | pg->pqflags = PQ_FREE; |
| 1813 | LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[ |
| 1814 | nextbucket].pgfl_queues[PGFL_ZEROS], |
| 1815 | pg, pageq.list); |
| 1816 | LIST_INSERT_HEAD(&pgfl->pgfl_buckets[ |
| 1817 | nextbucket].pgfl_queues[PGFL_ZEROS], |
| 1818 | pg, listq.list); |
| 1819 | ucpu->pages[PGFL_ZEROS]++; |
| 1820 | uvmexp.free++; |
| 1821 | uvmexp.zeropages++; |
| 1822 | } |
| 1823 | } |
| 1824 | if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) { |
| 1825 | break; |
| 1826 | } |
| 1827 | nextbucket = (nextbucket + 1) & uvmexp.colormask; |
| 1828 | } while (nextbucket != firstbucket); |
| 1829 | ucpu->page_idle_zero = false; |
| 1830 | quit: |
| 1831 | mutex_spin_exit(&uvm_fpageqlock); |
| 1832 | } |
| 1833 | |
| 1834 | /* |
| 1835 | * uvm_pagelookup: look up a page |
| 1836 | * |
| 1837 | * => caller should lock object to keep someone from pulling the page |
| 1838 | * out from under it |
| 1839 | */ |
| 1840 | |
| 1841 | struct vm_page * |
| 1842 | uvm_pagelookup(struct uvm_object *obj, voff_t off) |
| 1843 | { |
| 1844 | struct vm_page *pg; |
| 1845 | |
| 1846 | KASSERT(mutex_owned(obj->vmobjlock)); |
| 1847 | |
| 1848 | pg = rb_tree_find_node(&obj->rb_tree, &off); |
| 1849 | |
| 1850 | KASSERT(pg == NULL || obj->uo_npages != 0); |
| 1851 | KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || |
| 1852 | (pg->flags & PG_BUSY) != 0); |
| 1853 | return pg; |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * uvm_pagewire: wire the page, thus removing it from the daemon's grasp |
| 1858 | * |
| 1859 | * => caller must lock page queues |
| 1860 | */ |
| 1861 | |
| 1862 | void |
| 1863 | uvm_pagewire(struct vm_page *pg) |
| 1864 | { |
| 1865 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1866 | #if defined(READAHEAD_STATS) |
| 1867 | if ((pg->pqflags & PQ_READAHEAD) != 0) { |
| 1868 | uvm_ra_hit.ev_count++; |
| 1869 | pg->pqflags &= ~PQ_READAHEAD; |
| 1870 | } |
| 1871 | #endif /* defined(READAHEAD_STATS) */ |
| 1872 | if (pg->wire_count == 0) { |
| 1873 | uvm_pagedequeue(pg); |
| 1874 | uvmexp.wired++; |
| 1875 | } |
| 1876 | pg->wire_count++; |
| 1877 | } |
| 1878 | |
| 1879 | /* |
| 1880 | * uvm_pageunwire: unwire the page. |
| 1881 | * |
| 1882 | * => activate if wire count goes to zero. |
| 1883 | * => caller must lock page queues |
| 1884 | */ |
| 1885 | |
| 1886 | void |
| 1887 | uvm_pageunwire(struct vm_page *pg) |
| 1888 | { |
| 1889 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1890 | pg->wire_count--; |
| 1891 | if (pg->wire_count == 0) { |
| 1892 | uvm_pageactivate(pg); |
| 1893 | uvmexp.wired--; |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * uvm_pagedeactivate: deactivate page |
| 1899 | * |
| 1900 | * => caller must lock page queues |
| 1901 | * => caller must check to make sure page is not wired |
| 1902 | * => object that page belongs to must be locked (so we can adjust pg->flags) |
| 1903 | * => caller must clear the reference on the page before calling |
| 1904 | */ |
| 1905 | |
| 1906 | void |
| 1907 | uvm_pagedeactivate(struct vm_page *pg) |
| 1908 | { |
| 1909 | |
| 1910 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1911 | KASSERT(uvm_page_locked_p(pg)); |
| 1912 | KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg)); |
| 1913 | uvmpdpol_pagedeactivate(pg); |
| 1914 | } |
| 1915 | |
| 1916 | /* |
| 1917 | * uvm_pageactivate: activate page |
| 1918 | * |
| 1919 | * => caller must lock page queues |
| 1920 | */ |
| 1921 | |
| 1922 | void |
| 1923 | uvm_pageactivate(struct vm_page *pg) |
| 1924 | { |
| 1925 | |
| 1926 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1927 | KASSERT(uvm_page_locked_p(pg)); |
| 1928 | #if defined(READAHEAD_STATS) |
| 1929 | if ((pg->pqflags & PQ_READAHEAD) != 0) { |
| 1930 | uvm_ra_hit.ev_count++; |
| 1931 | pg->pqflags &= ~PQ_READAHEAD; |
| 1932 | } |
| 1933 | #endif /* defined(READAHEAD_STATS) */ |
| 1934 | if (pg->wire_count != 0) { |
| 1935 | return; |
| 1936 | } |
| 1937 | uvmpdpol_pageactivate(pg); |
| 1938 | } |
| 1939 | |
| 1940 | /* |
| 1941 | * uvm_pagedequeue: remove a page from any paging queue |
| 1942 | */ |
| 1943 | |
| 1944 | void |
| 1945 | uvm_pagedequeue(struct vm_page *pg) |
| 1946 | { |
| 1947 | |
| 1948 | if (uvmpdpol_pageisqueued_p(pg)) { |
| 1949 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1950 | } |
| 1951 | |
| 1952 | uvmpdpol_pagedequeue(pg); |
| 1953 | } |
| 1954 | |
| 1955 | /* |
| 1956 | * uvm_pageenqueue: add a page to a paging queue without activating. |
| 1957 | * used where a page is not really demanded (yet). eg. read-ahead |
| 1958 | */ |
| 1959 | |
| 1960 | void |
| 1961 | uvm_pageenqueue(struct vm_page *pg) |
| 1962 | { |
| 1963 | |
| 1964 | KASSERT(mutex_owned(&uvm_pageqlock)); |
| 1965 | if (pg->wire_count != 0) { |
| 1966 | return; |
| 1967 | } |
| 1968 | uvmpdpol_pageenqueue(pg); |
| 1969 | } |
| 1970 | |
| 1971 | /* |
| 1972 | * uvm_pagezero: zero fill a page |
| 1973 | * |
| 1974 | * => if page is part of an object then the object should be locked |
| 1975 | * to protect pg->flags. |
| 1976 | */ |
| 1977 | |
| 1978 | void |
| 1979 | uvm_pagezero(struct vm_page *pg) |
| 1980 | { |
| 1981 | pg->flags &= ~PG_CLEAN; |
| 1982 | pmap_zero_page(VM_PAGE_TO_PHYS(pg)); |
| 1983 | } |
| 1984 | |
| 1985 | /* |
| 1986 | * uvm_pagecopy: copy a page |
| 1987 | * |
| 1988 | * => if page is part of an object then the object should be locked |
| 1989 | * to protect pg->flags. |
| 1990 | */ |
| 1991 | |
| 1992 | void |
| 1993 | uvm_pagecopy(struct vm_page *src, struct vm_page *dst) |
| 1994 | { |
| 1995 | |
| 1996 | dst->flags &= ~PG_CLEAN; |
| 1997 | pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst)); |
| 1998 | } |
| 1999 | |
| 2000 | /* |
| 2001 | * uvm_pageismanaged: test it see that a page (specified by PA) is managed. |
| 2002 | */ |
| 2003 | |
| 2004 | bool |
| 2005 | uvm_pageismanaged(paddr_t pa) |
| 2006 | { |
| 2007 | |
| 2008 | return (vm_physseg_find(atop(pa), NULL) != -1); |
| 2009 | } |
| 2010 | |
| 2011 | /* |
| 2012 | * uvm_page_lookup_freelist: look up the free list for the specified page |
| 2013 | */ |
| 2014 | |
| 2015 | int |
| 2016 | uvm_page_lookup_freelist(struct vm_page *pg) |
| 2017 | { |
| 2018 | int lcv; |
| 2019 | |
| 2020 | lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL); |
| 2021 | KASSERT(lcv != -1); |
| 2022 | return (VM_PHYSMEM_PTR(lcv)->free_list); |
| 2023 | } |
| 2024 | |
| 2025 | /* |
| 2026 | * uvm_page_locked_p: return true if object associated with page is |
| 2027 | * locked. this is a weak check for runtime assertions only. |
| 2028 | */ |
| 2029 | |
| 2030 | bool |
| 2031 | uvm_page_locked_p(struct vm_page *pg) |
| 2032 | { |
| 2033 | |
| 2034 | if (pg->uobject != NULL) { |
| 2035 | return mutex_owned(pg->uobject->vmobjlock); |
| 2036 | } |
| 2037 | if (pg->uanon != NULL) { |
| 2038 | return mutex_owned(pg->uanon->an_lock); |
| 2039 | } |
| 2040 | return true; |
| 2041 | } |
| 2042 | |
| 2043 | #if defined(DDB) || defined(DEBUGPRINT) |
| 2044 | |
| 2045 | /* |
| 2046 | * uvm_page_printit: actually print the page |
| 2047 | */ |
| 2048 | |
| 2049 | static const char page_flagbits[] = UVM_PGFLAGBITS; |
| 2050 | static const char page_pqflagbits[] = UVM_PQFLAGBITS; |
| 2051 | |
| 2052 | void |
| 2053 | uvm_page_printit(struct vm_page *pg, bool full, |
| 2054 | void (*pr)(const char *, ...)) |
| 2055 | { |
| 2056 | struct vm_page *tpg; |
| 2057 | struct uvm_object *uobj; |
| 2058 | struct pgflist *pgl; |
| 2059 | char pgbuf[128]; |
| 2060 | char pqbuf[128]; |
| 2061 | |
| 2062 | (*pr)("PAGE %p:\n" , pg); |
| 2063 | snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags); |
| 2064 | snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags); |
| 2065 | (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n" , |
| 2066 | pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg)); |
| 2067 | (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n" , |
| 2068 | pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count); |
| 2069 | #if defined(UVM_PAGE_TRKOWN) |
| 2070 | if (pg->flags & PG_BUSY) |
| 2071 | (*pr)(" owning process = %d, tag=%s\n" , |
| 2072 | pg->owner, pg->owner_tag); |
| 2073 | else |
| 2074 | (*pr)(" page not busy, no owner\n" ); |
| 2075 | #else |
| 2076 | (*pr)(" [page ownership tracking disabled]\n" ); |
| 2077 | #endif |
| 2078 | |
| 2079 | if (!full) |
| 2080 | return; |
| 2081 | |
| 2082 | /* cross-verify object/anon */ |
| 2083 | if ((pg->pqflags & PQ_FREE) == 0) { |
| 2084 | if (pg->pqflags & PQ_ANON) { |
| 2085 | if (pg->uanon == NULL || pg->uanon->an_page != pg) |
| 2086 | (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n" , |
| 2087 | (pg->uanon) ? pg->uanon->an_page : NULL); |
| 2088 | else |
| 2089 | (*pr)(" anon backpointer is OK\n" ); |
| 2090 | } else { |
| 2091 | uobj = pg->uobject; |
| 2092 | if (uobj) { |
| 2093 | (*pr)(" checking object list\n" ); |
| 2094 | TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) { |
| 2095 | if (tpg == pg) { |
| 2096 | break; |
| 2097 | } |
| 2098 | } |
| 2099 | if (tpg) |
| 2100 | (*pr)(" page found on object list\n" ); |
| 2101 | else |
| 2102 | (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n" ); |
| 2103 | } |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | /* cross-verify page queue */ |
| 2108 | if (pg->pqflags & PQ_FREE) { |
| 2109 | int fl = uvm_page_lookup_freelist(pg); |
| 2110 | int color = VM_PGCOLOR_BUCKET(pg); |
| 2111 | pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[ |
| 2112 | ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN]; |
| 2113 | } else { |
| 2114 | pgl = NULL; |
| 2115 | } |
| 2116 | |
| 2117 | if (pgl) { |
| 2118 | (*pr)(" checking pageq list\n" ); |
| 2119 | LIST_FOREACH(tpg, pgl, pageq.list) { |
| 2120 | if (tpg == pg) { |
| 2121 | break; |
| 2122 | } |
| 2123 | } |
| 2124 | if (tpg) |
| 2125 | (*pr)(" page found on pageq list\n" ); |
| 2126 | else |
| 2127 | (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n" ); |
| 2128 | } |
| 2129 | } |
| 2130 | |
| 2131 | /* |
| 2132 | * uvm_pages_printthem - print a summary of all managed pages |
| 2133 | */ |
| 2134 | |
| 2135 | void |
| 2136 | uvm_page_printall(void (*pr)(const char *, ...)) |
| 2137 | { |
| 2138 | unsigned i; |
| 2139 | struct vm_page *pg; |
| 2140 | |
| 2141 | (*pr)("%18s %4s %4s %18s %18s" |
| 2142 | #ifdef UVM_PAGE_TRKOWN |
| 2143 | " OWNER" |
| 2144 | #endif |
| 2145 | "\n" , "PAGE" , "FLAG" , "PQ" , "UOBJECT" , "UANON" ); |
| 2146 | for (i = 0; i < vm_nphysmem; i++) { |
| 2147 | for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) { |
| 2148 | (*pr)("%18p %04x %04x %18p %18p" , |
| 2149 | pg, pg->flags, pg->pqflags, pg->uobject, |
| 2150 | pg->uanon); |
| 2151 | #ifdef UVM_PAGE_TRKOWN |
| 2152 | if (pg->flags & PG_BUSY) |
| 2153 | (*pr)(" %d [%s]" , pg->owner, pg->owner_tag); |
| 2154 | #endif |
| 2155 | (*pr)("\n" ); |
| 2156 | } |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | #endif /* DDB || DEBUGPRINT */ |
| 2161 | |